当前位置:文档之家› 阻容吸收器有什么作用

阻容吸收器有什么作用

阻容吸收器有什么作用
阻容吸收器有什么作用

阻容吸收器有什么作用?

真空开关设备、由于其灭弧能力特别强、因此在开断电动机、变压器、电抗器、电容器负载时容易引起截流多次重燃及三相同步开断等操作过电压。随着电力系统稳定安全供电重要性的增强。对提高系统可靠性和安全性要求愈加严格。而操作过电压危害极大。在很大程度上影响着系统的稳定性。可靠性和安全性。因此必须开发,研制和生产出新的过电压保护装置以满足上述的需求。ZR阻容过电压吸收器是完全能满足上述需求的一种全新的高科技产品。该产品是将一种被称之谓“保护电容器”(接于电力线路与地之间用以吸收冲击过电压的电容器)的专用电容器和电阻器串联后再接到开关的负荷侧与地之间、它可有效抑制操作过电压的瞬间振荡和高频电流、使过电压的波形变缓、陡度和幅值降低。再加上电阻的阻尼作用、使高频振荡迅速衰减.无论对哪种负荷设备都非常有效.是使电器设备避免因操作过电压造成绝缘损坏.保证电器设备安全运行必不可少的理想过电压保护装置。

过电压保护器特点:

(1) 过电压保护器(采用四星形接线),可将相间过电压大大降低,与普通MOA相比,可降低60%~70%,可靠地保护了电动机的相间绝缘。

(2) 同带串联间隙的MOA一样,由于采用了氧化锌阀片与间隙串联的结构,提高了保护器的使用寿命,且使保护器在系统出现单相接地、间隙性弧光接地和谐振过电压等状态下均可安全运行。

阻容吸收器特点:

(1) 阻容吸收器可随时吸收回路的过电压,当真空断路器切断电动机或变压器时,R-C的加入可使操作过电压的震荡衰减较快,较好地限制了过电压的幅值和震荡频率。

(2) 因阻容吸收器限制过电压的原理与MOA不同,它不存在残压问题,而是靠操作过电压高频出现后引起容抗(ZC=1/(2πfc))降低,增大电容器上电流,来吸收产生过电压震荡的能量,从而限制操作过电压。正常工频工作状态下,电流很小,所以其使用寿命较长。

真空断路器虽然熄弧能力很强,但是在开断小电流感性负载时,引起的操作过电压问题,要综合考虑,区分对待。对于中性点不接地系统,采用带串(并)联间隙氧化锌避雷器保护操作过电压,简单经济,且基本满足使用要求;如果电动机相间绝缘要求高,则可考虑采用三相组合式过电压保护器保护。对于中性点接地系统,最好采用C-R阻容过电压吸收器。

阻容吸收器阻容参数的简单计算

阻容吸收器是一个频敏元件,不同于压敏元件(如避雷器)。其可以看作一个典型的串联RC保护电路,R、C、L同时起作用。

一、电容选值

操作过电压,其实质是开关开端时产生的电磁能量震荡过程。在回路中没有保护器存在时,总电容值很小,导致震荡频率f很高。电容的引入,可以大大提高回路总电容值,降低震荡频率。最佳的效果应是降低频

率正好到工频(50Hz),基本计算公式如下:

f=ω/2π (1)

ω=(1/LC-(R/2L)2)1/2 (2)

由于每个电路的初始L和C都不同,最佳值是不可能得到的。只能依据真空断路器大致的情况进行经验比较。根据多年运行经验,取电容0.1μF时,一般可以将f限制在150Hz以下,因此0.1就成为一个比较通用的值。理论上讲,若对具体电路可以做到精确测算,容量再大些对保护效果会更好(这就是有些地方用0.2或0.15的原因),但若没有精确测算,导致f太小将造成副作用。

二、电阻选值

R是一个阻尼元件,一方面对震荡频率有影响,一方面对电容器保护有利。

对震荡频率的影响可以参考上面的公式(2),R不应小于其临界值2(L/C)1/2,否则对降低频率不利。所以存在电阻值不应小于100Ω的说法。R值高同样有利于保护电容本身安全,防止电容过载烧毁。故一般高安全性的阻容吸收装置,都适当的增大了R的值(一般最高做到400Ω)。但是R值如果太大,将大大提高时间常数,导致暂态时间延长,不利于保护的高效性。

所以我们希望R能够是一个压敏元件,在低压下电阻尽可能大,以保护电容;在高压下达到百欧姆级,以利于工作。自控式阻容吸收器的最主要改革就在于此。而且这样改革后,额外的起到了限制正常电压下阻容吸收器接地电流的作用,不会造成以往出现的阻容吸收器接地电流引发系统误判断的问题,简化了整体设计。

RC吸收电路

缓冲电路(独立运行光伏发电系统功率控制研究-----内蒙古工业大学硕士论文) 开关管开通和关断理论上都是瞬间完成的,但实际情况开关管关断时刻下降的电流和上升的电压有重叠时间,所以会有较大的关断损耗。为了使IGBT 关断过程电压能够得到有效的抑制并减小关断损耗,通常都需要给IGBT 主电路设置关断缓冲电路。通常情况下,在设计关于IGBT 的缓冲电路时要综合考虑从IGBT 应用的主电路结构、器件容量以及要满足主电路各种技术指标所要求的IGBT 开通特性、关断特性等因素。 选用RCD 缓冲电路,结构如图4-5所示。 对缓冲电路的要求:尽量减小主电路的电感;电容应采用低感吸收电容;二极管应选用快开通和快速恢复二极管,以免产生开通过电压和反向恢复引起较大的振荡过电压。 (1)缓冲电容的计算 ()500.850.5184 ce s r f ce I C t t uF V =+=?=

(2)缓冲电阻的计算 0.55029.4330.283on s s t us R C uF ?===Ω? (3)缓冲二极管的选择 选用快速恢复二极管ERA34-10,参数为0.1A/1000V/0.15us 。 继电器RC 加吸收单元起到什么作用? 接触器和继电器在断电时,线圈释放瞬间会产生一个浪涌脉冲,这个浪涌电压对某些敏感电子装置会有干扰,造成电子装置误动作或故障,因此在接触器和继电器线圈并联一个阻容吸收器来吸收这个脉冲。 一般安装吸收单元的接触器或继电器都是因为在他的同一电路中存在敏感电子电路,这些电路对浪涌脉冲比较敏感,所以这类电路中的接触器或继电器才加装吸收单元,吸收继电器线圈释放产生的脉冲和浪涌,避免电子电路的故障或误动作. RC 吸收回路的作用,一是为了对感性器件在电流瞬变时的自感电动势进行钳位,二是抑制电路中因dV/dt 对器件所引起的冲击,在感性负载中,开关器件关断的瞬间,如果此时感性负载的磁通不为零,根据愣次定律便会产生一个自感电动势,对外界辞放磁场储能,为简单起见,一般都采用RC 吸收回路,将这部份能量以热能的方式消耗掉。 设计RC 吸收回路参数,需要先确定磁场储能的大小,这分几种情况: 1、电机、继电器等,它的励磁电感与主回路串联,磁场储能需要全部由RC 回路处理,开关器件关断的瞬间,RC 回路的初始电流等于关断前的工作电流;

晶闸管阻容吸收回路

晶闸管阻容吸收回路 一、晶闸管两端并联RC阻容吸收电路的作用 在实际晶闸管电路中,常在其两端并联RC串联网络,该网络常称为RC阻容吸收电路。 晶闸管有一个重要特性参数-断态电压临界上升率dlv/dlt。它表明晶闸管在额定结温和门极断路条件下,使晶闸管从断态转入通态的最低电压上升率。若电压上升率过大,超过了晶闸管的电压上升率的值,则会在无门极信号的情况下开通。即使此时加于晶闸管的正向电压低于其阳极峰值电压,也可能发生这种情况。因为晶闸管可以看作是由三个PN结组成。 晶闸管处于阻断状态下,因各层相距很近,其J2结结面相当于一个电容C0。当晶闸管阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管误导通现象,即常说的硬开通,这是不允许的。因此,对加到晶闸管上的阳极电压上升率应有一定的限制。 为了限制电路电压上升率过大,确保晶闸管安全运行,常在晶闸管两端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。同时,避免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。 由于晶闸管过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。RC阻容吸收网络就是常用的保护方法之一。 二、晶闸管阻容吸收元件的选择 . 例:晶闸管是200A/1400V(KP200A)的,阻容电路该如何选择啊? 结果:电阻:10欧姆,电容0.5微法电阻功率:P=F*C*Um*10^(-6)

ZR阻容过电压吸收器选型指南

随着电力工业的迅猛发展,电力系统稳定安全供电重要性的增强,对提高系统的可靠性和安全性要求愈加严格。而操作过电压危害极大,在很大程度上影响着系统的稳定性、可靠性和安全性,因此必须开发、研制和生产出新的过电压保护装置以满足上述的需求。 ZRN21型阻容过电压吸收器是我公司和西安高压电器研究所专家联合研制,是在ZR10型及ZR20型基础上改进的最新研制、开发和生产的第二代高科技产品,并在国家高压电器质量监督检验中心,西安高压电器研究所高压电器实验室通过全部型式试验。该产品采用的是具有自愈功能的干式高压电容器,这种电容器是名副其实的“保护电容器”,其绝缘水平已完全达到了GB311.1-1997标准的要求。该产品能在温度上限、1.15Un和1.5ln下长期运行,在2Un下连续运行4小时不出现闪络和击穿。在暂时过电压(包括工频电压升高、谐振过电压、单相接地短路和间歇性弧光接地过电压)下安全运行。 电容器外壳用DMC压制而成,并选用优质、高性能的绝缘材料聚丙烯金属薄膜为固体介质,用阻燃的环氧树脂灌封制成的干式高压电容器。产品电性能稳定可靠,并配置散热性能良好的线编无感或金属氧化膜电阻器,使阻容过电压吸收器的性能和可靠性大大提高。 ZRN21型阻容过电压吸收器,在实验室内经过反复过电压吸收性能试验表明,在施加标准雷电冲击电压时,经过阻容过电压吸收器吸收后,这个电压降得很低,一般不超过相对地电压的2倍(峰值)。另据广东电力2003年8月4期刊登的“真空断路器投切并联电抗

器试验研究”一文现场试验提供的数据:断路器分闸时,在接入氧化锌避雷器时的电压为3.48倍,而接入阻容过电压吸收时“最大过电压为1.87倍”,“可见阻容装置有明显的限制过电压的功能”。因此该文章最后建议:“鉴于该过电压属于高频过电压,建议再加装阻容装置。该装置即可降低过电压幅度,也可降低过电压的频率”。由此可见,ZRN21型阻容过电压吸收器是保护各种电器设备免遭操作过电压损坏的最理想、最有效的装置。 西安旭新电器有限公司 刘作栋

电子元件基础知识44506

电阻器和电容器 电阻器和电容器简称为阻容元件,在各类电子元器件中,它们是生产量最大,使用范围最广 的一类元件。 (一)电阻器(元件符号R) 我们平常在工作中所说的电阻其实是电阻器。 电阻器是一种具有一定阻值,一定几何形状,一定性能参数,在电路中起电阻作用的实体元件。在电路中,它的主要作用是稳定和调节电路中的电流和电压,作为分流器、分压器和消 耗电能的负载使用。 大部分电阻器的引出线为轴向引线,一小部分为径向引线,为了适应现代表面组装技术 (SMT )的需要,还有“无引出线”的片状电阻器(或叫无脚零件),片状电阻器像米粒般 大小、扁平的,一般用自动贴片机摆放,我们公司的SMT机房里面就有。电阻器是非极性 元件,电阻器的阻值可在元件体通过色环或工程编码来鉴别。 种类: 我们常见的电阻器有下列几种: (1)金属膜电阻器(2)碳膜电阻器 (3)线绕电阻器(4)电位器 (5)电阻网络器(6)热敏电阻器 不同的电阻器,不仅其电阻值不同,功能也不一样,所以不同的电阻器是不可以随便替代的。 2.电阻的单位是欧姆(Q ),千欧(K Q ),兆欧(M Q)o 它们的换算公式为106Q =1M Q =103K Q 注意:若在元件体的一端有一宽的银色环,则此元件不是电阻,是电感器,如果这种银色环 与元件体上其它色环宽度相同,则还是电阻。 5 .电阻器的标识方法 (1 )色环法:目前国标上普遍流行色环标识电阻,色环在电阻器上有不同的含义,它具有简单、直观、方便等特点。色环电阻中最常见的是四环电阻和五环电阻。 四环电阻(碳膜电阻) 第一道色环印在电阻的金属帽上,表示电阻有效数字的最高位,也表示电阻值色标法读数的 方向,第二道色环表示有效数字的次高位,第三道色环表示相乘的倍率,第四环表示误差。 金色为土5%,银色为土10%。 值得注意的是:第四环的位置国内外的标法有异,国外有此厂家把第四环也标在另一端的金属 帽上,遇此情况切记:金色或银色的一端不是第一环。第一环是离元件体端部最近的一环。 例:某电阻的色环依次为“黄、紫、红、银”,则该电阻的阻值为4700 Q =4.7K Q,误差为

阻容吸收回路

阻容吸收回路通常过电压均具有较高的频率,因此常用电容作为吸收元件,为防止振荡,常加阻尼电阻,构成阻容吸收回路。阻容吸收回路可接在电路的交流侧、直流侧,或并接在晶闸管的阳极与阴极之间。 压敏电阻是以氧化锌为基体的金属氧化物非线性电阻,其结构为两个电极,电极之间填充的粒径为10~50μm的不规则的ZNO微结晶,结晶粒间是厚约1μm的氧化铋粒界层。这个粒界层在正常电压下呈高阻状态,只有很小的漏电流,其值小于100μA。当加上电压时,引起了电子雪崩,粒界层迅速变成低阻抗,电流迅速增加,泄漏了能量,抑制了过电压,从而使晶闸管得到保护。浪涌过后,粒界层又恢复为高阻态。收电路最好选用无感电容,接线应尽量短 由于压敏电阻的通流容量大,残压低,抑制过电压能力强;平时漏电流小,放电后不会有续流,元件的标称电压等级多,便于用户选择;伏安特性是对称的,可用于交、直流或正负浪涌;因此用途较广。。 过电压产生的原因主要是供给的电功率或系统的储能发生了激烈的变化,使得系统来不及转换,或者系统中原来积聚的电磁能量来不及消散而造成的。主要发现为雷击等外来冲击引起的过电压和开关的开闭引起的冲击电压两种类型。 (1)交流电源接通、断开产生的过电压例如,交流开关的开闭、交流侧熔断器的熔断等引起的过电压,这些过电压由于变压器绕组的分布电容、漏抗造成的谐振回路、电容分压等使过电压数值为正常值的2至10多倍。一般地,开闭速度越快过电压越高,在空载情况下断开回路将会有更高的过电压。 (2)直流侧产生的过电压如切断回路的电感较大或者切断时的电流值较大,都会产生比较大的过电压。这种情况常出现于切除负载、正在导通的晶闸管开路或是快速熔断器熔体烧断等原因引起 浪涌电流是指电网中出现的短时间象“浪”一样的高电压引起的大电流。当某些大容量的电气设备接通或断开时间,由于电网中存在电感,将在电网产生“浪涌电压”,从而引发浪涌电流.

阻容滤波电路原理与特点及RC元件选择

阻容滤波电路原理与特点及RC元件选择 阻容滤波电路图如下: 阻容滤波电路优点: 1.滤波效能较高 2.能兼降压限流作用 阻容滤波电路缺点: 1.带负载能力差 2.有直流电压损失 阻容滤波电路适用场合:负载电阻较大,电流较小及要求纹波系数很小的情况 阻容滤波电路参数选择: 全波整流 RC2=[(2.3×106)/rRL] R一般取数十至数百WC(mF) 何谓退耦? 所谓退耦,既防止前后电路网络电流大小变化时,在供电电路中所形成的电流冲动对网络的正常工作产生影响。换言之,退耦电路能够有效的消除电路网络之间的寄生耦合。 退耦滤波电容的取值通常为47~200μF,退耦压差越大时,电容的取值应越大。所谓退耦压差指前后电路网络工作电压之差。 如下图为典型的RC退耦电路,R起到降压作用:

大家看到图中,在一个大容量的电解电容C1旁边又并联了一个容量很小的无极性电容C2 原因很简单,因为在高频情况下工作的电解电容与小容量电容相比,无论在介质损耗还是寄生电感等方面都有显著的差别(由于电解电容的接触电阻和等效电感的影响,当工作频高于谐振频率时,电解电容相当于一个电感线圈,不再起电容作用)。在不少典型电路,如电源退耦电路,自动增益控制电路及各种误差控制电路中,均采用了大容量电解电容旁边并联一只小电容的电路结构,这样大容量电解电容肩负着低频交变信号的退耦,滤波,平滑之作用;而小容量电容则以自身固有之优势,消除电路网络中的中,高频寄生耦合。在这些电路中的这一大一小的电容均称之为退耦电容。 还有些电路存在一些设置直流工作点的电阻,为消除其对于交流信号的耦合或反馈作用就需要在其上并联适当的电容来减少对交流信号的阻抗。这些电容均起到退耦作用称之为退耦电容。 在放大倍数较高的电路中,后级的信号电流往往比较大,而电源内阻和电源布线的电阻就不容忽视了,较大的信号电流,会在这些电阻上产生压降,这些压降就会“耦合”到前面的小信号放大级的输入端,从而又被重新放大,如此反复,造成恶性循环,于是整个放大电路就无法正常工作,其表现就是产生“自激振荡”。 退耦电路就是要退除掉这种通过电源内阻、或电源布线电阻产生的耦合。使后级的大电流信号不能通过这些电阻重新耦合到前级,以保证放大电路正常工作。 小电流的退耦合电路通常是用阻容滤波电路,该电路中的电阻就称为滤波电阻,他不是什么特殊的电阻,就是普通的电阻,因为是起滤波作用,因此叫做滤波电阻。

6kV10kV阻容吸收器使用说明书

6k V~10kV阻容吸收器使用说明书 上海益护电气科技有限公司 真空断路器、真空接触器操作时,合闸、开断电动机、电抗器和变压器等感性负载,容易产生截流过电压、多次重燃过电压以及三相同时开断过电压等。这类过电压的特点是:频率高(高达104 Hz106Hz)、陡度大,过电压幅值也就高,对感性设备的威胁很大。我公司最新研制的R C阻容吸收器采用无感可变电阻及优质聚丙烯金属化镀膜干式电容器,,能有效的抑制此类高频振荡过电压,降低频率,使高频振荡迅速衰减为低频振荡乃至接近工频的弱小振荡,从而降低了过电压幅值,具有保护效果优异、质量安全可靠等特点。是有效保护电气设备的绝缘免受上述高频振荡过电压损坏、安全正常运行的专用设备。 一产品特点 1)YHP-RC阻容吸收器为三相四极式结构,一字形排列成整体,直观、美观、轻巧、牢固、便于安装。 2)无触点自控式接入电网,动作电压稳定,分散性小、节能。 电阻元件采用非线性优异的可变电阻,系统正常工作时,它相当于绝缘体,使阻容吸收器与系统隔离,即电容不接入电网;当过电压幅值达某一设定值时,由于电阻的非线性特性其阻值变小,阻容吸收器自动接入电网,发挥它的保护作用。因此其显著特点是: ①即使多台使用也不会增加电网的接地电容性电流; ②系统正常工作情况下,流过阻容吸收器的电流极小,不大于30,节省能源。 3)电阻、电容元件密封于绝缘外壳和硅橡胶外套内,阻燃、防爆性能好。 4)阻容元件设计成全封闭、全绝缘结构,密封性能优。 5)非线性电阻通流容量大(热容量大4.4kj/kV),是一般阻容吸收器线性电阻热容量的几十倍。 6) 既保护相~相间的过电压又保护相~地之间的过电压对设备的危害,且可将相~相间的过电压和相~地之间的过电压幅值降到同一水平。 7)产品适用于柜内使用,吸收真空开关(断路器)开断时产生的高频振荡过电压,不能用于防雷,也不能用于长时间吸收系统高次谐波。与组合式避雷器并联使用,保护效果更佳。 二使用条件 正常使用条件 Ⅰ)按下列正常使用条件,适用于户内运行: 1.环境温度不高于+40℃,不低于-20℃; 2.海拔高度不超过1000m; 3.无太阳光的辐射; 4.电源的频率不小于48Hz,不大于62Hz; 5.长期施加在吸收器端子间的工频电压应不超过吸收器的额定电压; 6.地震烈度7度及以下地区; 7.相对湿度不大于90%(25℃)。

阻容原理

阻容吸收原理[工程技术] 1个回答686次浏览 北京过客2009-6-19 16:51:27 222.35.64.* 举报 阻容吸收原理 回答 登录并发表回答取消在谷歌搜索阻容吸收原理 回答按时间排序按投票数排序 jiongwang2009-6-19 16:51:58 221.2.147.* 举报 为防止系统内部瞬间过电压冲击(主要为断路器、接触器开断产生的操作过电压)对重要电气设备的损伤,通行的做法是在靠近断路器或接触器位置安装氧化锌避雷器(MOA)或阻容吸收器进行冲击保护。比较两类产品性能上的优点,氧化锌产品的优点主要在能量吸收能力强,可以用于防雷电等大电流冲击;阻容吸收器的优点主要在于起始工作电压低,可有效吸收小电流冲击对设备的影响。 由于传统避雷器或阻容吸收器是单极式,一端接母排一端接地,虽可以有效吸收相对地过电压,但起不到相间过电压的保护作用。故近年来推广三相组合式过电压吸收器,将上述两类产品做成通过中性点再接地形式,以起到相间保护作用。(见附图) 10年来三相组合式过电压吸收器的推广实践显示,以非线性氧化锌电阻片元件为主的组合式产品整体事故率较低,事故主要在于个别厂家的个别批次产品生产工艺上的失误。严格执行相关标准的产品均能安全使用多年。相反,以薄膜电容元件为主的组合式阻容吸收器事故率较高,原因不明的电容器损坏事故时有发生。因此自2002年以后,主要的组合式阻容吸收器生产厂家均在其产品电容上串联间隙或其它元件将电容器从正常系统中隔离,以防止继续出现电容烧毁事故。对于此类问题,目前通行的解释是:由于电容器为频敏元件,对系统高频谐波敏感性高。一旦系统谐波比较严重,就将使电容频繁处于工作状态,无法有效散

阻容吸收器和过电压保护装置选型指南

阻容吸收器 过电压保护装置选型指南 前言 真空断路器、真空负荷开关、真空接触器、真空分断器和真空重合器(以下简称真空开关设备)因具有体积小、重量轻、高性能、高可靠性、维护检查方便、适合频繁操作等优点,因此迅速地占领了市场,在各个领域都得到了广泛的应用。 但是真空开关设备由于其灭弧能力特别强,因此在开断电动机、变压器、电炉变压器、电抗器和电容器等负载时容易引起截流、多次重燃和三相同步开断操作过电压。 随着稳定安全供电重要性的增强,对提高系统可靠性要求愈加严格。而操作过电压危害极大,在很大程度上影响着系统的稳定性和可靠性,因此了解操作过电压的产生、性质和特点,对正确选用过电压保护装置是十分重要的。 本文对操作过电压的产生、性质及特点以及如何正确选用过电压保护装置进行粗浅的分析,供设计和用户选型时参考,同时也热忱欢迎提出宝贵意见。 一、操作过电压的产生、性质和特点: 操作过电压是指真空开关设备在分、合闸时产生的高幅值、高频率的瞬间振荡电压。这个电压对运行着的各种电器设备危害极大,因此必须合理选用适当的过电压保护装置以降低乃至消除这个过电压。众所周知,真空灭弧室中的电弧是由从触头蒸发出的中性金属蒸汽中

的原子、离子和电子组成,它们由触头提供后,迅速地扩散到灭弧室中,冷却后附着在电弧屏蔽罩和触头的表面上。在电流自然零点附近及电流过零后,这些粒子的快速运动使得真空开关设备具有极高的绝缘恢复能力,但是随之也产生了极陡的截流现象和极高的高频灭弧能力。这是产生过电压的极其重要因素。此外,因这些粒子的产生源为触头,所以上述的各种特性还会很大程度上受触头材料特性的影响。 1、1截流过电压 真空灭弧室中的电弧的构成如前所述,在开断小电流(如空载变压器)时,在电流过零前后,这些粒子的供给量不足以补充扩散量,这时电弧变得极难维持,使电流变得极不稳定,在某一电流值(不同触头材料特性决定的电流值)以下时,在电流自然过零点之前电流就被开断,这就是截流现象。 在忽略电动机、变压器等电器设备的损耗时,开关设备K中流过电感L的电流I在I0处被截断,因电感L中的电流不能突变,所以积蓄在L中的的电磁能向电容器C充电,在C的端子上产生了所谓的截流过电压。负荷侧的等效回路如下图: L-负荷的等效电感 c-负荷侧的等效电容 e-截流时电源的电压

阻容电子电路

电容降压的工作原理并不复杂。他的 工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电容的电流有70mA,但在电容器上并不产生功耗,因为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。因为5W/65V的灯泡的工作电流也约为70mA。因此,电容降压实际上是利用容抗限流。而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。 LED节能灯电路原理图 P 图1是一款LED灯杯的实用电路图,该灯使用220V电源供电,220V交流电经C1降压电容降压后经全桥整流再通过C2滤波后经限流电阻R3给串联的38颗LED提供恒流电源.LED的额定电流为20mA,但是我们在制作节能灯的时候要考虑很多方面的因素对LED的影响,包括光衰和发热的问题,我们在做这种灯的时候因为LED的安装密度比较高,热量不容易散出,LED的温度对光衰和寿命影响很大,如果散热不好很容

阻容吸收原理

阻容吸收原理 为防止系统内部瞬间过电压冲击(主要为断路器、接触器开断产生的操作过电压)对重要电气设备的损伤,通行的做法是在靠近断路器或接触器位置安装氧化锌避雷器(MOA)或阻容吸收器进行冲击保护。比较两类产品性能上的优点,氧化锌产品的优点主要在能量吸收能力强,可以用于防雷电等大电流冲击;阻容吸收器的优点主要在于起始工作电压低,可有效吸收小电流冲击对设备的影响。 由于传统避雷器或阻容吸收器是单极式,一端接母排一端接地,虽可以有效吸收相对地过电压,但起不到相间过电压的保护作用。故近年来推广三相组合式过电压吸收器,将上述两类产品做成通过中性点再接地形式,以起到相间保护作用。(见附图) 10年来三相组合式过电压吸收器的推广实践显示,以非线性氧化锌电阻片元件为主的组合式产品整体事故率较低,事故主要在于个别厂家的个别批次产品生产工艺上的失误。严格执行相关标准的产品均能安全使用多年。相反,以薄膜电容元件为主的组合式阻容吸收器事故率较高,原因不明的电容器损坏事故时有发生。因此自2002年以后,主要的组合式阻容吸收器生产厂家均在其产品电容上串联间隙或其它元件将电容器从正常系统中隔离,以防止继续出现电容烧毁事故。对于此类问题,目前通行的解释是:由于电容器为频敏元件,对系统高频谐波敏感性高。一旦系统谐波比较严重,就将使电容频繁处于工作状态,无法有效散发能量,积累导致最终烧毁。这也是后来普遍装设间隙或其它隔离元件的理论依据。 但是,据此理论做出的组合式阻容吸收器,由于存在隔离装置,使小电流区域阻容吸收器较氧化锌型产品的性能优势有所降低;而在大电流区域阻容吸收器较氧化锌型产品又有先天上的不足。那么能不能做出一种既不牺牲性能又保障安全的组合式阻容吸收器?我们对此有全新的认识。 我公司长期生产氧化锌型限压产品和阻容吸收型产品,依据我们的实际经验,认为过去电容烧毁频频的主要原因,并不能完全归罪在谐波超标,而是其它问题。只要克服这个问题,就可以生产出一种无须隔离装置依然可以长期安全使用的组合式阻容吸收产品。使组合式阻容吸收器真正在性能上远远优于氧化锌类产品。 在讨论此之前,需要先明晰氧化锌类组合式产品A、B、C、E四个模块的常规配置方式。按照业内主要生产厂家的企标和今年刚通过审批的机械部部标,通行的配置方式如下: 电压值:相模块+地模块=普通MOA 其中相模块稍高于地模块,或在相模块中装设间隙。 通流值:组合式各模块均高于普通MOA 也就是说,在氧化锌电阻片的配置数量上,任意相模块+地模块=普通MOA;在氧化锌电阻片的能量吸收能力上,组合式产品优于普通MOA。 这里存在一个技术上的争议。普通MOA一端接母线,一端接地线,系统电压正常时其承受电压为相电压。组合式产品的这种配置,表面上看是假设相模块+地模块串联后一起承受相电压。然而事实上绝非如此简单。因为A、B、C三个相模块下部连为一体,相当于电阻星型连接。在系统电压稳定时,O点为标准的中性点,电位应为零(见附图)。我们刚才假设的相+地串联共同承受相电压的情况并不成立。实际的情况是系统正常时,零电位点在地模块的上端而非下端。相模块需要单独承受持续的相电压。我们知道,氧化锌电阻片两端承受

可控硅并联阻容吸收电路的选型与计算(修正)

可控硅并联阻容吸收电路的选型与计算 为什么要在晶闸管两端并联阻容网络 一、在实际晶闸管电路中,常在其两端并联RC串联网络,该网络常称为RC阻容吸收电路。 我们知道,晶闸管有一个重要特性参数-断态电压临界上升率dlv/dlt。它表明晶闸管在额定结温和门极断路条件下,使晶闸管从断态转入通态的最低电压上升率。若电压上升率过大,超过了晶闸管的电压上升率的值,则会在无门极信号的情况下开通。即使此时加于晶闸管的正向电压低于其阳极峰值电压,也可能发生这种情况。因为晶闸管可以看作是由三个PN结组成。 在晶闸管处于阻断状态下,因各层相距很近,其J2结结面相当于一个电容C0。当晶闸管阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管误导通现象,即常说的硬开通,这是不允许的。因此,对加到晶闸管上的阳极电压上升率应有一定的限制。 为了限制电路电压上升率过大,确保晶闸管安全运行,常在晶闸管两端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。同时,避免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。 由于晶闸管过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。RC阻容吸收网络就是常用的保护方法之一。 二、整流晶闸管(可控硅)阻容吸收元件的选择 电容的选择 C=(2.5-5)×10的负8次方×If If=0.367Id Id-直流电流值 如果整流侧采用500A的晶闸管(可控硅) 可以计算C=(2.5-5)×10的负8次方×500=1.25-2.5mF 选用2.5mF,1kv 的电容器 电阻的选择: R=((2-4) ×535)/If=2.14-8.56 选择10欧 PR=(1.5×(pfv×2πfc)的平方×10的负12次方×R)2 Pfv=2u(1.5-2.0) u=三相电压的有效值 阻容吸收回路在实际应用中,RC的时间常数一般情况下取1~10毫秒。 小功率负载通常取2毫秒左右,R=220欧姆1W,C=0.01微法400~630V。

阻容感元件标识

家用电子整机产品是由许多元器件和利料组成的,它们在电子电路中起着不同的作用。家用电于整机产品性能的优劣,不但同电路的设计、结构、工艺和操作水平有关,而且还里与止确识别、判别、选用元器件材料有很大的关系。 元器件是电路的基本零件。单个分立的常规零件,也可以由若干个零件组成,带有端子,可直接与其他器件相连接,能在同类装置中互换使用,这种零件通常称为元件,也可称为锚件。 常用元器件的品种、规格较多,它的分类方法也不同,下面介绍几种常用的分类方法。 22s件{:::三;:::二三:;,:;:二 ·2)按元器件的引出线分 有川“线元件{二:::;: 无引出线,i件(片状元件或贴片 元器件的变化规律分 :卧式或水平式 元件) 厂模拟元件、 元28件叫 l非线性元件 l开关元件 元器件的功能分 /无源元件(电阻2S、电容器、电感器) J有源元件(电真空器件、半导体器件) /电子元件<变换元件(电声器件、热电路件、拾音器、 J 1磁性元件(磁钢、铁氧体等) 1\敏感元件(热敏、光敏、压敏、力敏、湿‘ 4.1 阻容感元件 家用电子整机产品中使用最广泛的元件是无源元件。凡对电压和电流无控制和变换作呻D放大、开关、振荡等)的元件,称为无源元什。它主要包括电阻器、电容器、电感器;类,所以也简称为阻容感元件。 4.1.1阻容感元件概述 (1)电阻器。物体对电流通过时的阻碍作用,称为电阻。具有一定的阻值、一定的几 何形状、一定的技术性能、在电路中能起电阻作用的元件,称为电阻器。由于电阻是物理量, 电阻2S是物体的名称,因此平时我们不能把电阻等同于电阻器来看待。电阻器中能改变电阻 值,能控制电位大小的元件,也称为电位器或可变电阻罪。 (2)电容器。在两个导体中间隔一层绝缘介质,就能构成— 电荷的容器,称为电容器。 (3)电感器。应用电感感应原理制成的元件称为电感器。 和变压器两种,具有自感作用的电感器称为电感线圈,具有互 器。 家用电子按机产品中的阻容感元件, 电感器又可分为电感线圈 感作用的电感器称为变压 电阻器在电路中具有限流、分流、降压、分压、负载、取样等作用。 电容器在电路中具有隔直、通交(耦合、旁路、滤波)、储存电能、补偿等作用 电感器在电路中具有电磁能转换、储存磁能、延时、分离信号等作用。 3.阻容感元件的代号 参照GBff7195—1987国家标准,详见附表A所示。 4.阻容感元件的图形符号 参照GB/'T4728--1985国家标准,图4.1表示了阻容感元件中常用的图形符号。 5.电阻、电容、电感量的单位

阻容吸收器阻容参数的简单计算

阻容吸收器阻容参数的简单计算 阻容吸收器是一个频敏元件,不同于压敏元件(如避雷器)。其可以看作一个典型的串联RC 保护电路,R、C、L同时起作用。 一、电容选值 操作过电压,其实质是开关断开时产生的电磁能量震荡过程。在回路中没有保护器存在时,总电容值很小,导致震荡频率f很高。电容的引入,可以大大提高回路总电容值,降低震荡频率。最佳的效果应是降低频率正好到工频(50Hz),基本计算公式如下: f=ω/2π (1) ω=(1/LC-(R/2L)2)1/2 (2) 由于每个电路的初始L和C都不同,最佳值是不可能得到的。只能依据真空断路器大致的情况进行经验比较。根据多年运行经验,取电容0.1μF时,一般可以将f限制在150Hz以下,因此0.1就成为一个比较通用的值。理论上讲,若对具体电路可以做到精确测算,容量再大些对保护效果会更好(这就是有些地方用0.2或0.15的原因),但若没有精确测算,导致f 太小将造成副作用。 二、电阻选值 R是一个阻尼元件,一方面对震荡频率有影响,一方面对电容器保护有利。 对震荡频率的影响可以参考上面的公式(2),R不应小于其临界值2(L/C)1/2,否则对降低频率不利。所以存在电阻值不应小于100Ω的说法。R值高同样有利于保护电容本身安全,防止电容过载烧毁。故一般高安全性的阻容吸收装置,都适当的增大了R的值(一般最高做到400Ω)。但是R值如果太大,将大大提高时间常数,导致暂态时间延长,不利于保护的高效性。 所以我们希望R能够是一个压敏元件,在低压下电阻尽可能大,以保护电容;在高压下达到百欧姆级,以利于工作。自控式阻容吸收器的最主要改革就在于此。而且这样改革后,额外的起到了限制正常电压下阻容吸收器接地电流的作用,不会造成以往出现的阻容吸收器接地电流引发系统误判断的问题,简化了整体设计。 为什么要在晶闸管两端并联阻容网络 一、在实际晶闸管电路中,常在其两端并联RC串联网络,该网络常称为RC阻容吸收电路。 我们知道,晶闸管有一个重要特性参数-断态电压临界上升率dlv/dlt。它表明晶闸管在额定结温和门极断路条件下,使晶闸管从断态转入通态的最低电压上升率。若电压上升率过大,超过了晶闸管的电压上升率的值,则会在无门极信号的情况下开通。即使此时加于晶闸管的正向电压低于其阳极峰值电压,也可能发生这种情况。因为晶闸管可以看作是由三个PN结组成。 在晶闸管处于阻断状态下,因各层相距很近,其J2结结面相当于一个电容C0。当晶闸管阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管误导通现象,即常说的硬开通,这是不允许的。因此,对加到晶闸管上的阳极电压上升率应有一定的限制。 为了限制电路电压上升率过大,确保晶闸管安全运行,常在晶闸管两端并联RC 阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。同时,避免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。 由于晶闸管过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。RC阻容吸收网络就是常用的保护方法之一。

晶闸管可控硅阻容吸收元件的选择

晶闸管可控硅阻容吸收 元件的选择 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

一、晶闸管(可控硅)两端为什么并联电阻和电容在实际晶闸管(可控硅)电路中,常在其两端并联RC串联网络,该网络常称为RC阻容吸收电路。 我们知道,晶闸管(可控硅)有一个重要特性参数-断态电压临界上升率dlv/dlt。它表明晶闸管(可控硅)在额定结温和门极断路条件下,使晶闸管(可控硅)从断态转入通态的最低电压上升率。若电压上升率过大,超过了晶闸管(可控硅)的电压上升率的值,则会在无门极信号的情况下开通。即使此时加于晶闸管(可控硅)的正向电压低于其阳极峰值电压,也可能发生这种情况。因为晶闸管(可控硅)可以看作是由三个PN 结组成。 在晶闸管(可控硅)处于阻断状态下,因各层相距很近,其J2结结面相当于一个电容C0。当晶闸管(可控硅)阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管(可控硅)在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管(可控硅)误导通现象,即常说的硬开通,这是不允许的。因此,对加到晶闸管(可控硅)上的阳极电压上升率应有一定的限制。 为了限制电路电压上升率过大,确保晶闸管(可控硅)安全运行,常在晶闸管(可控硅)两端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管(可控硅)。同时,避免电容器通过晶闸管(可控硅)放电电流过大,造成过电流而损坏晶闸管(可控硅)。

IGBT无损缓冲吸收电路设计

IGBT无损缓冲吸收电路设计 1 IGBT无损吸收网络 工作在硬开关方式下的IGBT,若不断地提高其工作频率会引起以下问题。 1)开关损耗大。开通时,开关器件的电流上升和电压下降同时进行;关断时,电压上升 和电流下降同时进行。电压、电流波形的交叠产生了开关损耗,该损耗随开关频率的提高 而急速增加。 2)感性关断电压尖峰大。当器件关断时,电路中的感性元件感应出尖峰电压。开关频率 愈高,关断愈快,该感应电压愈高。此电压加在开关器件两端,易造成IGBT模块击穿。3)容性开通电流尖峰大。当开关器件在很高的电压下开通时,储存在开关器件结电容中 的能量将以电流形式全部耗散在该器件内。频率愈高,开通电流尖峰愈大,从而会引起IGBT器件过热损坏。另外,二极管由导通变为截止时存在着反向恢复期,开关管在此期间的开通动作易产生很大的冲击电流。频率愈高,该冲击电流愈大,对器件的安全运行造成 危害。 4)电磁干扰严重。随着频率提高,电路中的di/dt和du/dt增大,从而使电磁干扰增大,影响变换器和周围电子设备的工作。 上述问题严重妨碍了开关器件工作频率的提高,降低变换器的效率,并危及开关器件的安 全可靠工作。近年来开展的软开关技术研究为克服上述缺陷提供了一条有效途径。软开关 工方式与硬开关工作方式不同,理想的零电流软关断过程是电流先降到零,电压再缓慢上 升到断态值,所以关断损耗近似为零。由于器件关断前电流已下降到零,解决了感性关断 问题。理想的零电压软开通过程是电压先降到零后,电流再缓慢上升到通态值,所以开通 损耗近似为零,器件结电容上的电压亦为零,解决了容性开通问题。同时,开通时二极管 反向恢复过程已经结束,因此二极管反向恢复问题亦不存往。di/dt和du/dt的降低使得EMI问题得以解决。 软开关技术实际上是利用电容与电感缓冲吸收原理,使开关器件中电流(或电压)按正弦 或准正弦规律变化。当电流过零时,使器件关断;当电压过零时,使器件开通-实现开关损耗为零。 软开关技术在改善功率开关器件工作状态方面效果明显,使电力变换器的高频化成为可能,提高了功率器件工作的可靠性和安全性,实现了开关器件的软开关,使开关器件的电压、 电流应力减小,在减小电力变换器的体积、重量以及降低电磁干扰方面效果明显。 1.缓冲吸收原理 缓冲电路(阻容吸收电路)主要用于抑制模块内部的IGBT单元的过电压和du/dt或者过 电流和di/dt,同时减小IGRT的开关损耗。由于缓冲电路所需的电阻、电容的功率、体积都较大,所以在IGBT模块内部并没有专门集成这部分电路,因此,在实际的系统中设有 缓冲电路,通过电容可把过电压的电磁能量变成静电能量储存起来,电阻可防止电容与电

RC吸收电路的原理

?RC吸收电路也叫RC缓冲电路,它是电阻Rs与电容Cs串联,并与开关并联连接的电路结构。用于改进电力电子器件开通和关断时刻所承受的电压、电流波形。 目录 ?RC吸收电路的原理 ?RC吸收电路的作用 ?RC吸收电路的原件选择 RC吸收电路的原理 ?若开关断开,蓄积在寄生电感中能量对开关的寄生电容充电的同时,通过吸收电阻对吸收电容充电。由于吸收电阻作用,阻抗变大,那么,吸收电容也等效地增加了开关的并联电容容量,为此,抑制开关断开的电压浪涌。开关接通时,吸收电容通过开关放电,其放电电流被吸收电阻所限制。 RC吸收电路的作用 ?为了限制电路电压上升率过大,确保晶闸管安全运行,常在晶闸管两端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。同时,避免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。 由于晶闸管过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。RC阻容吸收网络就是常用的保护方法之一。 RC吸收电路的原件选择 ?电容的选择 C=(2.5-5)×10的负8次方×If If=0.367Id Id-直流电流值 如果整流侧采用500A的晶闸管(可控硅) 可以计算C=(2.5-5)×10的负8次方×500=1.25-2.5mF 选用2.5mF,1kv 的电容器

电阻的选择: R=((2-4) ×535)If=2.14-8.56 选择10欧 PR=(1.5×(pfv×2πfc)的平方×10的负12次方×R)2 Pfv=2u(1.5-2.0) u=三相电压的有效值 阻容吸收回路在实际应用中,RC的时间常数一般情况下取1~10毫秒。 小功率负载通常取2毫秒左右,R=220欧姆1W,C=0.01微法400~630V。 大功率负载通常取10毫秒,R=10欧姆10W,C=1微法630~1000V。 R的选取:小功率选金属膜或RX21线绕或水泥电阻;大功率选RX21线绕或水泥电阻。 C的选取:CBB系列相应耐压的无极性电容器。 看保护对象来区分:接触器线圈的阻尼吸收和小于10A电流的可控硅的阻尼吸收列入小功率范畴;接触器触点和大于10A以上的可控硅的阻尼吸收列入大功率范畴。

0 阻容元件标识.

一:1MΩ=1000KΩ ,1KΩ=1000Ω。101=100Ω;102= 1KΩ;103=10KΩ;104=100KΩ;105=1MΩ;106 =10MΩ。223= 22KΩ。 二:0.1Ω=Ω1=0R1, 3.3Ω=3Ω3=3R3,3K3=3.3KΩ;471=470Ω 105=1M 2R2=2.2Ω 三:.四环电阻: 因表示误差的色环只有金色或银色,色环中的金色或银色环一定是第四环. 四:五环电阻: (1)从阻值范围判断:因为一般电阻范围是0-10M,如果我们读出的阻值超过这个范围,可能是第一环选错了. (2)从误差环的颜色判断:表示误差的色环颜色有银、金、紫、蓝、绿、红、棕.如里靠近电阻器端头的色环不是误差颜色,则可确定为第一环. 五: 47nF=0.047UF=47000PF 前2位是数值,第3位是10的N次方 473=47*10的3次方=47*1000=47000PF=47nf 1F=1000mF 1mF=1000μF 1μF=1000nF 1nF=1000pF 5P9=5.9pF 3n3=0.0033pf 1n=0.001pf 590N=0.59pf 59n=0.059pf 3F3=3.3f 电容器主要特性参数 1、标称电容量和允许偏差 标称电容量是标志在电容器上的电容量。 电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%) 在允差范围内吗?新生产出来的电容都有许允差的,例如标称104 k ,±10%容量就是100000 x 0.9 到100000 x 1.1之间,104z +80% -20%容量就是100000 x 0.8到100000x 1.8之间,如果容量不在允差范围内就叫不良品,能不能用就要看你用在什么地方,起什么作用。 Z :+80% -20% M :±20% K :±10% J :±5% G :±2% F :±1% D :±0.5 C :±0.25 颜色黑棕红橙黄绿蓝紫灰 耐压 4V 6.3V 10V 16V 25V 32V 40V 50V 63V 电容容量识别

阻容吸收原理

阻容吸收原理 为防止系统部瞬间过电压冲击(主要为断路器、接触器开断产生的操作过电压)对重要电气设备的损伤,通行的做法是在靠近断路器或接触器位置安装氧化锌避雷器(MOA)或阻容吸收器进行冲击保护。比较两类产品性能上的优点,氧化锌产品的优点主要在能量吸收能力强,可以用于防雷电等大电流冲击;阻容吸收器的优点主要在于起始工作电压低,可有效吸收小电流冲击对设备的影响。 由于传统避雷器或阻容吸收器是单极式,一端接母排一端接地,虽可以有效吸收相对地过电压,但起不到相间过电压的保护作用。故近年来推广三相组合式过电压吸收器,将上述两类产品做成通过中性点再接地形式,以起到相间保护作用。(见附图) 10年来三相组合式过电压吸收器的推广实践显示,以非线性氧化锌电阻片元件为主的组合式产品整体事故率较低,事故主要在于个别厂家的个别批次产品生产工艺上的失误。严格执行相关标准的产品均能安全使用多年。相反,以薄膜电容元件为主的组合式阻容吸收器事故率较高,原因不明的电容器损坏事故时有发生。因此自2002年以后,主要的组合式阻容吸收器生产厂家均在其产品电容上串联间隙或其它元件将电容器从正常系统中隔离,以防止继续出现电容烧毁事故。对于此类问题,目前通行的解释是:由于电容器为频敏元件,对系统高频谐波敏感性高。一旦系统谐波比较严重,就将使电容频繁处于工作状态,无法有效散发能量,积累导致最终烧毁。这也是后来普遍装设间隙或其它隔离元件的理论依据。 但是,据此理论做出的组合式阻容吸收器,由于存在隔离装置,使小电流区域阻容吸收器较氧化锌型产品的性能优势有所降低;而在大电流区域阻容吸收器较氧化锌型产品又有先天上的不足。那么能不能做出一种既不牺牲性能又保障安全的组合式阻容吸收器?我们对此有全新的认识。 我公司长期生产氧化锌型限压产品和阻容吸收型产品,依据我们的实际经验,认为过去电容烧毁频频的主要原因,并不能完全归罪在谐波超标,而是其它问题。只要克服这个问题,就可以生产出一种无须隔离装置依然可以长期安全使用的组合式阻容吸收产品。使组合式阻容吸收器真正在性能上远远优于氧化锌类产品。 在讨论此之前,需要先明晰氧化锌类组合式产品A、B、C、E四个模块的常规配置方式。按照业主要生产厂家的企标和今年刚通过审批的机械部部标,通行的配置方式如下: 电压值:相模块+地模块=普通MOA 其中相模块稍高于地模块,或在相模块中装设间隙。 通流值:组合式各模块均高于普通MOA 也就是说,在氧化锌电阻片的配置数量上,任意相模块+地模块=普通MOA;在氧化锌电阻片的能量吸收能力上,组合式产品优于普通MOA。 这里存在一个技术上的争议。普通MOA一端接母线,一端接地线,系统电压正常时其承受电压为相电压。组合式产品的这种配置,表面上看是假设相模块+地模块串联后一起承受相电压。然而事实上绝非如此简单。因为A、B、C三个相模块下部连为一体,相当于电阻星型连接。在系统电压稳定时,O点为标准的中性点,电位应为零(见附图)。我们刚才假设的相+地串联共同承受相电压的情况并不成立。实际的情况是系统正常时,零电位点在地模块的上端而非下端。相模块需要单独承受持续的相电压。我们知道,氧化锌电阻片两端承受

相关主题
文本预览
相关文档 最新文档