当前位置:文档之家› 阻容吸收器阻容参数的简单计算

阻容吸收器阻容参数的简单计算

阻容吸收器阻容参数的简单计算
阻容吸收器阻容参数的简单计算

阻容吸收器阻容参数的简单计算

阻容吸收器是一个频敏元件,不同于压敏元件(如避雷器)。其可以看作一个典型的串联RC 保护电路,R、C、L同时起作用。

一、电容选值

操作过电压,其实质是开关断开时产生的电磁能量震荡过程。在回路中没有保护器存在时,总电容值很小,导致震荡频率f很高。电容的引入,可以大大提高回路总电容值,降低震荡频率。最佳的效果应是降低频率正好到工频(50Hz),基本计算公式如下:

f=ω/2π (1)

ω=(1/LC-(R/2L)2)1/2 (2)

由于每个电路的初始L和C都不同,最佳值是不可能得到的。只能依据真空断路器大致的情况进行经验比较。根据多年运行经验,取电容0.1μF时,一般可以将f限制在150Hz以下,因此0.1就成为一个比较通用的值。理论上讲,若对具体电路可以做到精确测算,容量再大些对保护效果会更好(这就是有些地方用0.2或0.15的原因),但若没有精确测算,导致f 太小将造成副作用。

二、电阻选值

R是一个阻尼元件,一方面对震荡频率有影响,一方面对电容器保护有利。

对震荡频率的影响可以参考上面的公式(2),R不应小于其临界值2(L/C)1/2,否则对降低频率不利。所以存在电阻值不应小于100Ω的说法。R值高同样有利于保护电容本身安全,防止电容过载烧毁。故一般高安全性的阻容吸收装置,都适当的增大了R的值(一般最高做到400Ω)。但是R值如果太大,将大大提高时间常数,导致暂态时间延长,不利于保护的高效性。

所以我们希望R能够是一个压敏元件,在低压下电阻尽可能大,以保护电容;在高压下达到百欧姆级,以利于工作。自控式阻容吸收器的最主要改革就在于此。而且这样改革后,额外的起到了限制正常电压下阻容吸收器接地电流的作用,不会造成以往出现的阻容吸收器接地电流引发系统误判断的问题,简化了整体设计。

为什么要在晶闸管两端并联阻容网络

一、在实际晶闸管电路中,常在其两端并联RC串联网络,该网络常称为RC阻容吸收电路。

我们知道,晶闸管有一个重要特性参数-断态电压临界上升率dlv/dlt。它表明晶闸管在额定结温和门极断路条件下,使晶闸管从断态转入通态的最低电压上升率。若电压上升率过大,超过了晶闸管的电压上升率的值,则会在无门极信号的情况下开通。即使此时加于晶闸管的正向电压低于其阳极峰值电压,也可能发生这种情况。因为晶闸管可以看作是由三个PN结组成。

在晶闸管处于阻断状态下,因各层相距很近,其J2结结面相当于一个电容C0。当晶闸管阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管误导通现象,即常说的硬开通,这是不允许的。因此,对加到晶闸管上的阳极电压上升率应有一定的限制。

为了限制电路电压上升率过大,确保晶闸管安全运行,常在晶闸管两端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。同时,避免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。

由于晶闸管过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。RC阻容吸收网络就是常用的保护方法之一。

二、整流晶闸管(可控硅)阻容吸收元件的选择

电容的选择

C=(2.5-5)×10的负8次方×If

If=0.367Id

Id-直流电流值

如果整流侧采用500A的晶闸管(可控硅)

可以计算C=(2.5-5)×10的负8次方×500=1.25-2.5mF

选用2.5mF,1kv 的电容器

电阻的选择:

R=((2-4) ×535)If=2.14-8.56

选择10欧

PR=(1.5×(pfv×2πfc)的平方×10的负12次方×R)2

Pfv=2u(1.5-2.0)

u=三相电压的有效值

阻容吸收回路在实际应用中,RC的时间常数一般情况下取1~10毫秒。

小功率负载通常取2毫秒左右,R=220欧姆1W,C=0.01微法400~630V。

大功率负载通常取10毫秒,R=10欧姆10W,C=1微法630~1000V。

R的选取:小功率选金属膜或RX21线绕或水泥电阻;大功率选RX21线绕或水泥电阻。

C的选取:CBB系列相应耐压的无极性电容器。

看保护对象来区分:接触器线圈的阻尼吸收和小于10A电流的可控硅的阻尼吸收列入小功率范畴;接触器触点和大于10A以上的可控硅的阻尼吸收列入大功率范畴。

RC吸收电路

缓冲电路(独立运行光伏发电系统功率控制研究-----内蒙古工业大学硕士论文) 开关管开通和关断理论上都是瞬间完成的,但实际情况开关管关断时刻下降的电流和上升的电压有重叠时间,所以会有较大的关断损耗。为了使IGBT 关断过程电压能够得到有效的抑制并减小关断损耗,通常都需要给IGBT 主电路设置关断缓冲电路。通常情况下,在设计关于IGBT 的缓冲电路时要综合考虑从IGBT 应用的主电路结构、器件容量以及要满足主电路各种技术指标所要求的IGBT 开通特性、关断特性等因素。 选用RCD 缓冲电路,结构如图4-5所示。 对缓冲电路的要求:尽量减小主电路的电感;电容应采用低感吸收电容;二极管应选用快开通和快速恢复二极管,以免产生开通过电压和反向恢复引起较大的振荡过电压。 (1)缓冲电容的计算 ()500.850.5184 ce s r f ce I C t t uF V =+=?=

(2)缓冲电阻的计算 0.55029.4330.283on s s t us R C uF ?===Ω? (3)缓冲二极管的选择 选用快速恢复二极管ERA34-10,参数为0.1A/1000V/0.15us 。 继电器RC 加吸收单元起到什么作用? 接触器和继电器在断电时,线圈释放瞬间会产生一个浪涌脉冲,这个浪涌电压对某些敏感电子装置会有干扰,造成电子装置误动作或故障,因此在接触器和继电器线圈并联一个阻容吸收器来吸收这个脉冲。 一般安装吸收单元的接触器或继电器都是因为在他的同一电路中存在敏感电子电路,这些电路对浪涌脉冲比较敏感,所以这类电路中的接触器或继电器才加装吸收单元,吸收继电器线圈释放产生的脉冲和浪涌,避免电子电路的故障或误动作. RC 吸收回路的作用,一是为了对感性器件在电流瞬变时的自感电动势进行钳位,二是抑制电路中因dV/dt 对器件所引起的冲击,在感性负载中,开关器件关断的瞬间,如果此时感性负载的磁通不为零,根据愣次定律便会产生一个自感电动势,对外界辞放磁场储能,为简单起见,一般都采用RC 吸收回路,将这部份能量以热能的方式消耗掉。 设计RC 吸收回路参数,需要先确定磁场储能的大小,这分几种情况: 1、电机、继电器等,它的励磁电感与主回路串联,磁场储能需要全部由RC 回路处理,开关器件关断的瞬间,RC 回路的初始电流等于关断前的工作电流;

阻容降压原理图及电路图

阻容降压原理及电路 将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 一、电路原理 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。 二、器件选择 1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁. 2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。

3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。 三、设计举例 图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。 C1在电路中的容抗Xc为: Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K 流过电容器C1的充电电流(Ic)为: Ic = U / Xc = 220 / 9.65 = 22mA。 通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C 的容量单位是μF,Io的单位是A。 电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电 阻容降压原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏 V;Zc=2*Pi*f*C为阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。

阻容降压原理和计算公式修订稿

阻容降压原理和计算公 式 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

阻容降压原理和计算公式 阻容降压原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(AV)=*V/Zc=*220*2*Pi*f*C ?=*220*2**50*C=30000C ?=30000*==30mA f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏V;Zc=2*Pi*f*C为阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=*V/Zc=*220*2*Pi*f*C ?=*220*2**50*C=60000C ?=60000*==60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。

电容降压式电源将交流式电转换为低压直流 电容降压原理 电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz 的交流电上,灯泡同样会被点亮,而不会被烧毁。因为5W/65V的灯泡的工作电流也约为70mA。因此,电容降压实际上是利用容抗限流。而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。 将交流式电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 一、电路原理

阻容降压原理和计算公式

阻容降压原理和计算公式 通常降压电容C1的容量C与负载电流Io的关系可近似认为: C=14.5 I,其中C的容量单位是μF,Io的单位是A。 ---------------------------------------------------------------------------------------------------------------------- 1μF,在交流输入为220V/50Hz容抗Xc为: Xc=1 /(2 πf C) = 1/(2*3.14*50*1*10-6) = 3184.7Ω 流过电容器C1的充电电流(Ic)为: Ic = U / Xc = 220 / 3184.7 = 69mA。 ---------------------------------------------------------------------------------------------------------------------- 一、能提供的电流 采用半波整流时,每微法电容可得到电流(平均值)为:30mA 如果采用全波整流可得到双倍的电流(平均值)为:60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。

二、电容降压式电源将交流式电转换为低压直流 1.电容降压原理电容降压原理 电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz 的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。因为5W/65V的灯泡的工作电流也约为70mA。因此,电容降压实际上是利用容抗限流。而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。 将交流式电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 2.电路原理电路原理 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。 在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。

5V阻容串联降压电源电路

阻容串联降压电路 5V 输出电路解析 20131119 电路用于有双向可控硅系统的单片机控制电路。 半波阻容降压电路。经过电容降压的电源(市电,正弦波)有半个波经过D2被消耗掉, 另一半波,经过D1流过负载被使用,同时,D2反向击穿起稳定作用。 在有可控硅的系统中,应优选负电源。避免可控硅使用在第四象限。 稳压二极管D1过热损坏与其消耗的功率有关。在稳压二极管没有损坏之前,其端电压就会在5.6V左右,施加多少电压的说法不正确,关键是看你给它的电流是多少,不能超过其本身可承受的功率值(5.6V*电流值)。 稳压管之所以可以稳压就是要工作在反向击穿状态下,只要流过它的反向电流和 稳压电压的乘积不超过所允许的功率就不会造成永久性损坏,这种击穿是可逆的。至于热击穿的说法不切合稳压管的实际,只是针对三极管的说法。 UBN的交流电压波形,电容降压整流后味精稳压的直流电压一般会高于30V, 并且会随负 载电流的变化发生很大波动。 C1为275VAC交流耐压电容(X2型)。

概述: 将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用阻容降压式电源。阻容降压包括电容降压和电阻降压两种。电容降压的原理用复函数来分析:电容的阻抗Xc=1/j ωC,电容上的压降IXc,此处I为复函数电流。也可近似表示为IoXc,此处Io为负载电流。 电容降压整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,故不适合大电流供电的应用场合。 1、单负电源电容降压半波整流电路 该电路常用于电流小,空间有限,电源单一,有可控硅控制的电路中。可避免可控硅 使用在第四象限。如无可控硅控制优先选用全波整流。 1.1原理图 1.3电路原理分析 上面图1是基本的半波阻容降压电路。经过电容的电流和电容阻抗的乘积就是电容的压降。经过电容降压的电源,有半个波经过ZD1被消耗掉。另一半波, 经D1流过负载被使用,ZD1稳定负载的电压。 1.5该类电路的应用场合说明 该电路常用于电流小,空间有限,成本要求高的系统中。特别是用可控硅控制的线路,可避免可控硅使用在第四象限,优势特别明显。

阻容降压原理及计算公式

阻容降压原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。 采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(A V)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA f为电源频率单位HZ;C为电容容值单位(F)法拉;V为电源电压单位伏V;Zc=1/(2*Pi*f*C)为阻抗,阻值单位欧姆。 如果采用全波整流可得到双倍的电流(平均值)为: I(A V)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电容降压式电源将交流式电转换为低压直流 电容降压原理 电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为110V/8W 的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。因为5W/65V的灯泡的工作电流也约为70mA。因此,电容降压实际上

ZR阻容过电压吸收器选型指南

随着电力工业的迅猛发展,电力系统稳定安全供电重要性的增强,对提高系统的可靠性和安全性要求愈加严格。而操作过电压危害极大,在很大程度上影响着系统的稳定性、可靠性和安全性,因此必须开发、研制和生产出新的过电压保护装置以满足上述的需求。 ZRN21型阻容过电压吸收器是我公司和西安高压电器研究所专家联合研制,是在ZR10型及ZR20型基础上改进的最新研制、开发和生产的第二代高科技产品,并在国家高压电器质量监督检验中心,西安高压电器研究所高压电器实验室通过全部型式试验。该产品采用的是具有自愈功能的干式高压电容器,这种电容器是名副其实的“保护电容器”,其绝缘水平已完全达到了GB311.1-1997标准的要求。该产品能在温度上限、1.15Un和1.5ln下长期运行,在2Un下连续运行4小时不出现闪络和击穿。在暂时过电压(包括工频电压升高、谐振过电压、单相接地短路和间歇性弧光接地过电压)下安全运行。 电容器外壳用DMC压制而成,并选用优质、高性能的绝缘材料聚丙烯金属薄膜为固体介质,用阻燃的环氧树脂灌封制成的干式高压电容器。产品电性能稳定可靠,并配置散热性能良好的线编无感或金属氧化膜电阻器,使阻容过电压吸收器的性能和可靠性大大提高。 ZRN21型阻容过电压吸收器,在实验室内经过反复过电压吸收性能试验表明,在施加标准雷电冲击电压时,经过阻容过电压吸收器吸收后,这个电压降得很低,一般不超过相对地电压的2倍(峰值)。另据广东电力2003年8月4期刊登的“真空断路器投切并联电抗

器试验研究”一文现场试验提供的数据:断路器分闸时,在接入氧化锌避雷器时的电压为3.48倍,而接入阻容过电压吸收时“最大过电压为1.87倍”,“可见阻容装置有明显的限制过电压的功能”。因此该文章最后建议:“鉴于该过电压属于高频过电压,建议再加装阻容装置。该装置即可降低过电压幅度,也可降低过电压的频率”。由此可见,ZRN21型阻容过电压吸收器是保护各种电器设备免遭操作过电压损坏的最理想、最有效的装置。 西安旭新电器有限公司 刘作栋

电容工作原理

电容工作原理 电容串联可以隔直通交,并联可以滤波。 电容器就是两片不相连的金属板.电容器在电子线路中的作用一般概括为:通交流、阻直流。电容器通常起滤波、旁路、耦合、去耦、转相等电气作用,是电子线路必不可少的组成部分。滤波电路是把脉冲通到地去了,不是通到输出端。 正因为通交流,才能把交流成分通向地,保留直流成分. 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 其实主要是充放电的工作原理。其实电容就相当于 一个水库,让过来的有波动的水变的很平稳 电解电容的作用有滤波,一般用在整流桥的后面。 你可以看一下电容是并连还是串连在回路里,并联的话是率除高频,串联的话是率除低频。还有降压电容。还有隔直的作用,一般做保护用! 电容串联和并联在电路中各有什么作用? 电容的作用是储存、释放电荷,可起到隔直通交、滤波、振荡作用 电容在电路中:如串联使用一般作为交流信号隔离,如音频功放、视频放大器等 如并联使用一般作为滤波,如电源、信号处理电路中噪声去除等 如与电感或其他芯片并联可组成振荡回路,如无线信号发射、接收、调制、解调等 电容并联可增大电容量,串联减小。比如手头没有大电容,只有小的,就可以并起来用,反之,没有小的就可以用大的串起来用。 在集成电路、超大规模集成电路已经大行其道的今天,电容器作为一种分立式无源元件仍然大量使用于各种功能的电路中,其在电路中所起的重要作用可见一斑。 作贮能元件也是电容器的一个重要应用领域,同电池等储能元件相比,电容器可以瞬时充放电,并且充放电电流基本上不受限制,可以为熔焊机、闪光灯等设备提供大功率的瞬时脉冲电流。 电容器还常常被用以改善电路的品质因子,如节能灯用电容器。 隔直流:作用是阻止直流通过而让交流通过。 旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路 滤波:将整流以后的锯齿波变为平滑的脉动波,接近于直流。 温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。计时:电容器与电阻器配合使用,确定电路的时间常数。 调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。 整流:在预定的时间开或者关半闭导体开关元件。

晶闸管阻容吸收回路

晶闸管阻容吸收回路 一、晶闸管两端并联RC阻容吸收电路的作用 在实际晶闸管电路中,常在其两端并联RC串联网络,该网络常称为RC阻容吸收电路。 晶闸管有一个重要特性参数-断态电压临界上升率dlv/dlt。它表明晶闸管在额定结温和门极断路条件下,使晶闸管从断态转入通态的最低电压上升率。若电压上升率过大,超过了晶闸管的电压上升率的值,则会在无门极信号的情况下开通。即使此时加于晶闸管的正向电压低于其阳极峰值电压,也可能发生这种情况。因为晶闸管可以看作是由三个PN结组成。 晶闸管处于阻断状态下,因各层相距很近,其J2结结面相当于一个电容C0。当晶闸管阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管误导通现象,即常说的硬开通,这是不允许的。因此,对加到晶闸管上的阳极电压上升率应有一定的限制。 为了限制电路电压上升率过大,确保晶闸管安全运行,常在晶闸管两端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。同时,避免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。 由于晶闸管过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。RC阻容吸收网络就是常用的保护方法之一。 二、晶闸管阻容吸收元件的选择 . 例:晶闸管是200A/1400V(KP200A)的,阻容电路该如何选择啊? 结果:电阻:10欧姆,电容0.5微法电阻功率:P=F*C*Um*10^(-6)

阻容降压的几种电路(优.选)

电容降压原理 最近见到几张用电容降压做电源的电路图,随即对这种结构简单,成本低廉,占用空间小的电路产生了兴趣。上网查了查资料,发现这算是一个比较古老的技术,但是如此运用电容,确实是很巧妙。网上关于这方面的交流也不少,但是大多是转载的,主要有两个版本,出处已经无从考证,但是很少有较为严谨的计算。笔者查阅了一些资料,在此对其原理和参数的计算作一些总结, 基本原理: 电容降压主要是用在直流稳压电源电路里。直流稳压电源电路的大致结构是: 市电——变压(降压)——整流——滤波——稳压——直流输出 第一个环节,也就是变压,主要是降压,一般使用变压器来完成。但是变压器体积较大,成本也较高,如果电路简单,例如声光控制开关,那么加一个变压器就显得大材小用。这个时候用一个电容,就可以解决降压的问题,简化电路,节约成本。基本电路如图1: 图1半波整流 市电经过C1降压后到D2,D2完成半波整流,C2对整流后的脉动直流滤波,D3稳压,输出稳定的直流电压给负载。R1是电源关闭后C1的电荷泄放电阻。D1是为了在市电的负半周给C1提供充放电通路。因为要保证C1在整个交流电周期内都是工作的。

如果将C1后面的电路都看作负载的话,那么相当于C1和一个电阻串联在市电通路里,电容和电阻在交流下都是有阻抗的,串联分压,自然负载上的电压就小了。这样理解也对。但是更准确的理解应该是:C1起到了限流的作用,它决定了电路中的最大电流,当负载一定的情况下,C1也就决定了负载上可以得到的电压,最终起到了降压的作用。 例如:图1中如果负载短路,220V 交流电全部加在C1上,电路中的电流等于C1的充放电电流。 /*69 1C U I U Z U jwC mA jwC ====。 这个电流也就是电路中的最大电流。这里取得都是有效值。 当加上负载后,如果输出直流电压比较低(稳压管决定),则可以近似认为全部电压都加在电容上。由于是半波整流,所以电容C1后面的电路只能得到C1半个周期的充放电电流,也就是有效值的一半,大约34.5mA 左右。由于负载上有电压,所以实际电流要小一点,大约30mA 。当负载需要的电流不超过30mA 时,电路就可以正常工作,电容也就起到了类似变压器的作用——降压。 对于桥式整流,C1后面的电路能得到C1整个周期的充放电电流,大约60mA 。 图2 全波整流

阻容降压的原理及计算公式

阻容降压原理和计算公式 一、能提供的电流 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。 采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA 0.44:半波整流的平均值系数 F:电源频率单位HZ; C:电容容值单位F法拉; V:电源电压单位伏V; Zc=2*Pi*f*C:阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电容降压式电源将交流式电转换为低压直流 二、电容降压式电源将交流式电转换为低压直流 电容降压原理 1.电容降压原理 电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF

阻容吸收回路

阻容吸收回路通常过电压均具有较高的频率,因此常用电容作为吸收元件,为防止振荡,常加阻尼电阻,构成阻容吸收回路。阻容吸收回路可接在电路的交流侧、直流侧,或并接在晶闸管的阳极与阴极之间。 压敏电阻是以氧化锌为基体的金属氧化物非线性电阻,其结构为两个电极,电极之间填充的粒径为10~50μm的不规则的ZNO微结晶,结晶粒间是厚约1μm的氧化铋粒界层。这个粒界层在正常电压下呈高阻状态,只有很小的漏电流,其值小于100μA。当加上电压时,引起了电子雪崩,粒界层迅速变成低阻抗,电流迅速增加,泄漏了能量,抑制了过电压,从而使晶闸管得到保护。浪涌过后,粒界层又恢复为高阻态。收电路最好选用无感电容,接线应尽量短 由于压敏电阻的通流容量大,残压低,抑制过电压能力强;平时漏电流小,放电后不会有续流,元件的标称电压等级多,便于用户选择;伏安特性是对称的,可用于交、直流或正负浪涌;因此用途较广。。 过电压产生的原因主要是供给的电功率或系统的储能发生了激烈的变化,使得系统来不及转换,或者系统中原来积聚的电磁能量来不及消散而造成的。主要发现为雷击等外来冲击引起的过电压和开关的开闭引起的冲击电压两种类型。 (1)交流电源接通、断开产生的过电压例如,交流开关的开闭、交流侧熔断器的熔断等引起的过电压,这些过电压由于变压器绕组的分布电容、漏抗造成的谐振回路、电容分压等使过电压数值为正常值的2至10多倍。一般地,开闭速度越快过电压越高,在空载情况下断开回路将会有更高的过电压。 (2)直流侧产生的过电压如切断回路的电感较大或者切断时的电流值较大,都会产生比较大的过电压。这种情况常出现于切除负载、正在导通的晶闸管开路或是快速熔断器熔体烧断等原因引起 浪涌电流是指电网中出现的短时间象“浪”一样的高电压引起的大电流。当某些大容量的电气设备接通或断开时间,由于电网中存在电感,将在电网产生“浪涌电压”,从而引发浪涌电流.

6kV10kV阻容吸收器使用说明书

6k V~10kV阻容吸收器使用说明书 上海益护电气科技有限公司 真空断路器、真空接触器操作时,合闸、开断电动机、电抗器和变压器等感性负载,容易产生截流过电压、多次重燃过电压以及三相同时开断过电压等。这类过电压的特点是:频率高(高达104 Hz106Hz)、陡度大,过电压幅值也就高,对感性设备的威胁很大。我公司最新研制的R C阻容吸收器采用无感可变电阻及优质聚丙烯金属化镀膜干式电容器,,能有效的抑制此类高频振荡过电压,降低频率,使高频振荡迅速衰减为低频振荡乃至接近工频的弱小振荡,从而降低了过电压幅值,具有保护效果优异、质量安全可靠等特点。是有效保护电气设备的绝缘免受上述高频振荡过电压损坏、安全正常运行的专用设备。 一产品特点 1)YHP-RC阻容吸收器为三相四极式结构,一字形排列成整体,直观、美观、轻巧、牢固、便于安装。 2)无触点自控式接入电网,动作电压稳定,分散性小、节能。 电阻元件采用非线性优异的可变电阻,系统正常工作时,它相当于绝缘体,使阻容吸收器与系统隔离,即电容不接入电网;当过电压幅值达某一设定值时,由于电阻的非线性特性其阻值变小,阻容吸收器自动接入电网,发挥它的保护作用。因此其显著特点是: ①即使多台使用也不会增加电网的接地电容性电流; ②系统正常工作情况下,流过阻容吸收器的电流极小,不大于30,节省能源。 3)电阻、电容元件密封于绝缘外壳和硅橡胶外套内,阻燃、防爆性能好。 4)阻容元件设计成全封闭、全绝缘结构,密封性能优。 5)非线性电阻通流容量大(热容量大4.4kj/kV),是一般阻容吸收器线性电阻热容量的几十倍。 6) 既保护相~相间的过电压又保护相~地之间的过电压对设备的危害,且可将相~相间的过电压和相~地之间的过电压幅值降到同一水平。 7)产品适用于柜内使用,吸收真空开关(断路器)开断时产生的高频振荡过电压,不能用于防雷,也不能用于长时间吸收系统高次谐波。与组合式避雷器并联使用,保护效果更佳。 二使用条件 正常使用条件 Ⅰ)按下列正常使用条件,适用于户内运行: 1.环境温度不高于+40℃,不低于-20℃; 2.海拔高度不超过1000m; 3.无太阳光的辐射; 4.电源的频率不小于48Hz,不大于62Hz; 5.长期施加在吸收器端子间的工频电压应不超过吸收器的额定电压; 6.地震烈度7度及以下地区; 7.相对湿度不大于90%(25℃)。

实用可靠地阻容降压电路分析

以前在论坛上看到阻容降压电路,很多人都说不稳定,不可靠,比较危险,但是仔细想想声控开关、触摸开关、定时插座等等那么小的东西,如果不采用阻容降压的方式,怎么取电呢?那么多大量实际应用,足以说明阻容降压电路可以设计的稳定可靠。当然如果是电力行业、工业领域等要求比较严格的场合,那就另当别论了。 先转载一下阻容降压电路的原理吧: 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏V;Zc=2*Pi*f*C为阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电容降压式电源将交流式电转换为低压直流 电容降压原理

阻容降压原理设计详解

阻容降压原理设计详解 一、概述 普通的线性直流稳压电源电路效率比较低,电源的变压器体积大,重量重,成本较高。 开关电源电路结构较复杂,成本高,电源纹波大,RFI和EMI干扰是难以解决的。 下文介绍的是一种新颖的电容降压型直流稳压电源电路。 这种电路无电源变压器,结构非常简单,具体有:体积小、重量轻、成本低廉、动态响应快、稳定可靠、高效(可达90%以上)等特点。 二、电容降压原理 当一个正弦交流电源U(如220V AC 50HZ)施加在电容电路上时,电容器两极板上的电荷,极板间的电场都是时间的函数。也就是说:电容器上电压电流的有效值和幅值同样遵循欧姆定律。 即加在电容上的电压幅值一定,频率一定时,就会流过一个稳定的正弦交流电流ic。容抗越小(电容值越大),流过电容器的电流越大,在电容器上串联一个合适的负载,就能得到一个降低的电压源,可经过整流,滤波,稳压输出。 电容在电路中只是吞吐能量,而不消耗能量,所以电容降压型电路的效率很高。 三、原理方框图 电路由降压电容,限流,整流滤波和稳压分流等电路组成。 1.降压电容:相当于普通稳压电路中的降压变压器,直接接入交流电源回路中,几乎承受全部的交流电源U,应选用无极性的金属膜电容(METALLIZED POLYESTER FILM CAPACITOR)。 2.限流电路:在合上电源的瞬间,有可能是U的正或负半周的峰_峰值,此时瞬间电流会很大,因此在回路中需串联一个限流电阻,以保证电路的安全。 3.整流滤波:有半波整流和全波整流,与普通的直流稳压电源电路的设计要求相同。 4.稳压分流:电压降压回路中,电流有效值I是稳定的,不受负载电流大小变化的影响,因此在稳压电路中,要有分流回路,以响应负载电流的大小变化。 四、设计势实例 1.桥式全波整流稳压电路:

阻容降压电源电路稳压二极管可靠性分析

阻容降压电源电路 稳压二极管可靠性分析 编制:曾招前 审核: 赖建君 审批: 刘晓峰 品质管理部产品评价与测试 二0一二年十月三十一日 发:品质管理部 送:风扇公司品质部油汀吊扇公司品质部研发中心 1、目的:品质管理部产品评价与测试在日常电路板初品评价中,稳压二极管被击穿(浪涌测试)不良占比17%。 为此,产品评价与测试对稳压二级管在电路中的位置和电压、电流波形进行分析和研究,来发现电路存在的缺陷和质量隐患,以达到改善和提升电路板质量的目的。 风扇电路板电源电路大部分采用阻容降压,如图1所示。阻容降压电路在待机状态电路所有电流流过稳压二极管;降压电容在上电、断电和电压波动瞬间会产生尖峰脉冲电流冲击稳压二极管;由于电路与市电隔离性差和电容感性特性,电路对电网中的谐波、脉冲、浪涌等干扰信号抑制能力差甚至起放大的作用,会对电源电路本身、后级电路产生冲击和伤害,尤其是稳压二级管。从以上分析可以看出,整个电源电路中对稳压二极管质量要求较高,产生故障概率也较高。 图1 阻容降压电路图 2、稳压二极管电压、电流测试:以典型风扇FS40-6DR电路板为样板,分别在正常工作、电磁炉干扰、浪涌干 扰三种工况下对稳压二极管电压、电流波形进行测试。

2.1稳压二极管正常工作电压、电流波形: 图2 电压波形图3 电流波形 小结:稳压管接在交流电源端(如图1所示),从图2波形可以看出,稳压管正向反 向轮流导通。电流波形(图3)毛刺较多,意味着电流突变较大。 2.2稳压二极管电磁炉干扰下工作电压、电流波形: 图4电压波形图5 电流波形 小结:电路板在电磁炉干扰下,稳压二极管电压、电流波形受较大,峰值功率约达1.3W,超出其额定功率1W。 2.3稳压二极管浪涌干扰下工作电流波形: 图6 电流波形 小结:电路板在浪涌(1.2/50μs-8/20μs)1000V干扰下,稳压二极管电流瞬间峰值约达到5.88A左右, 大大超出最大允许浪涌电流:0.81A。 2.4结论:电路板在正常工作状态下,稳压二极管参数在正常范围内,但在正反向轮流导通工作状态 下工作,电流突变较大,稳压二极管工作强度较高。在受到电磁炉干扰和浪涌干扰后波形变形严 重,且瞬间峰值电压和功率超出额定值,稳压管存在被击穿的质量风险。 3、改善建议:将稳压二极管移到整流二极管后面,并增加一个整流二极管旁路正半周电流,使得稳 压二极管在直流电的环境下工作,并与市电之间增加了一道屏障,在有干扰信号时可消减峰值脉 冲电压,降低稳压二极管被击穿的风险。改善后电路如图7所示。 图7改善后电路

电容加压原理

注意:只有交流电路中才能使用电容降压

电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。 二、器件选择 1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最 大允许电流Idmax小于Ic-Io时易造成稳压管烧毁。 2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。 3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。 三、设计举例 图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。 C1在电路中的容抗Xc为: Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K 流过电容器C1的充电电流(Ic)为: Ic = U / Xc = 220 / 9.65 = 22mA。 通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C的容量单位是μF,Io的单位是A。 电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电。

阻容吸收原理

阻容吸收原理 为防止系统内部瞬间过电压冲击(主要为断路器、接触器开断产生的操作过电压)对重要电气设备的损伤,通行的做法是在靠近断路器或接触器位置安装氧化锌避雷器(MOA)或阻容吸收器进行冲击保护。比较两类产品性能上的优点,氧化锌产品的优点主要在能量吸收能力强,可以用于防雷电等大电流冲击;阻容吸收器的优点主要在于起始工作电压低,可有效吸收小电流冲击对设备的影响。 由于传统避雷器或阻容吸收器是单极式,一端接母排一端接地,虽可以有效吸收相对地过电压,但起不到相间过电压的保护作用。故近年来推广三相组合式过电压吸收器,将上述两类产品做成通过中性点再接地形式,以起到相间保护作用。(见附图) 10年来三相组合式过电压吸收器的推广实践显示,以非线性氧化锌电阻片元件为主的组合式产品整体事故率较低,事故主要在于个别厂家的个别批次产品生产工艺上的失误。严格执行相关标准的产品均能安全使用多年。相反,以薄膜电容元件为主的组合式阻容吸收器事故率较高,原因不明的电容器损坏事故时有发生。因此自2002年以后,主要的组合式阻容吸收器生产厂家均在其产品电容上串联间隙或其它元件将电容器从正常系统中隔离,以防止继续出现电容烧毁事故。对于此类问题,目前通行的解释是:由于电容器为频敏元件,对系统高频谐波敏感性高。一旦系统谐波比较严重,就将使电容频繁处于工作状态,无法有效散发能量,积累导致最终烧毁。这也是后来普遍装设间隙或其它隔离元件的理论依据。 但是,据此理论做出的组合式阻容吸收器,由于存在隔离装置,使小电流区域阻容吸收器较氧化锌型产品的性能优势有所降低;而在大电流区域阻容吸收器较氧化锌型产品又有先天上的不足。那么能不能做出一种既不牺牲性能又保障安全的组合式阻容吸收器?我们对此有全新的认识。 我公司长期生产氧化锌型限压产品和阻容吸收型产品,依据我们的实际经验,认为过去电容烧毁频频的主要原因,并不能完全归罪在谐波超标,而是其它问题。只要克服这个问题,就可以生产出一种无须隔离装置依然可以长期安全使用的组合式阻容吸收产品。使组合式阻容吸收器真正在性能上远远优于氧化锌类产品。 在讨论此之前,需要先明晰氧化锌类组合式产品A、B、C、E四个模块的常规配置方式。按照业内主要生产厂家的企标和今年刚通过审批的机械部部标,通行的配置方式如下: 电压值:相模块+地模块=普通MOA 其中相模块稍高于地模块,或在相模块中装设间隙。 通流值:组合式各模块均高于普通MOA 也就是说,在氧化锌电阻片的配置数量上,任意相模块+地模块=普通MOA;在氧化锌电阻片的能量吸收能力上,组合式产品优于普通MOA。 这里存在一个技术上的争议。普通MOA一端接母线,一端接地线,系统电压正常时其承受电压为相电压。组合式产品的这种配置,表面上看是假设相模块+地模块串联后一起承受相电压。然而事实上绝非如此简单。因为A、B、C三个相模块下部连为一体,相当于电阻星型连接。在系统电压稳定时,O点为标准的中性点,电位应为零(见附图)。我们刚才假设的相+地串联共同承受相电压的情况并不成立。实际的情况是系统正常时,零电位点在地模块的上端而非下端。相模块需要单独承受持续的相电压。我们知道,氧化锌电阻片两端承受

电容降压电路原理详解

电容降压电路原理详解和案例 将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 一、电路原理 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。 二、器件选择 1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁。 2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。 3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。 三、设计举例 图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。 C1在电路中的容抗Xc为: Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K 流过电容器C1的充电电流(Ic)为:

Ic = U / Xc = 220 / 9.65 = 22mA。 通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C 的容量单位是μF,Io的单位是A。 电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电 电容降压电源原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(A V)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA 如果采用全波整流可得到双倍的电流(平均值)为: I(A V)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 采用电容降压电路是一种常见的小电流电源电路﹐由于其具有体积小﹑成本低﹑电流相对恒定等优点﹐也常应用于LED的驱动电路中。 图一为一个实际的采用电容降压的LED驱动电路﹕请注意﹐大部分应用电路中没有连接压敏电阻或瞬变电压抑制晶体管﹐建议连接上﹐因压敏电阻或瞬变电压抑制晶体管能在电压突变瞬间( 如雷电﹑大用电设备起动等)有效地将突变电流泄放﹐从而保护二级关和其它晶体管﹐它们的响应时间一般在微毫秒级。

相关主题
文本预览
相关文档 最新文档