当前位置:文档之家› 常微分第三章

常微分第三章

常微分第三章
常微分第三章

常微分方程四、五章作业答案 (1)

《常微分方程》第四、五章作业答案 第四章 1.证明:由题可知()t x 1,()t x 2分别是方程(1),(2)的解 则:()()() ()()()t f t x t a dt t x d t a dt t x d n n n n n 111 1111=+++--Λ (3) ()()() ()()()t f t x t a dt t x d t a dt t x d n n n n n 221 2112=+++--Λ (4) 那么由(3)+(4)得: ()()()()()()() ()()()()=++++++--t x t x t a dt t x t x d t a dt t x t x d n n n n n 211 211121Λ()t f 1+()t f 2 即()t x 1+()t x 2是方程是()()=+++--x t a dt x d t a dt x d n n n n n Λ111()t f 1+()t f 2的解。 2.(1)特征方程为:42540λλ-+= 特征根为12341,1,2,2λλλλ==-==- 原方程通解为:221234()t t t t x t c e c e c e c e --=+++ (2)特征方程为:5340λλ-= 特征根为1230,2,2λλλ===-,其中10λ=是三重根 原方程通解为:22212345()t t x t c c t c t c e c e -=++++ (3)特征方程为: 22100λλ++= 特征根为:1,213i λ=-± 通解为:12()(cos3sin 3)t x t c t c t e -=+ (4)原方程对应的齐线性方程的通解为: 123456*()()cos ()sin t t x t c e c e c c t t c c t t -=+++++ 下求原方程的特解. 设原方程的特解为:2()x t At Bt C =++ 代入方程有: 2243A At Bt C t -+++=- 故1,0A C B ===

高数第三章一元函数的导数和微分

第三章一元函数的导 数和微分【字体:大中小】【打印】 3.1 导数概念 一、问题的提出 1.切线问题 割线的极限位置——切线位置 如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即 切线MT的斜率为 2.自由落体运动的瞬时速度问题

二、导数的定义 设函数y=f(x)在点的某个邻域内有定义,当自变量x在处取得增量Δx(点仍在该邻域内)时,相应地函数y取得增量;如果Δy与Δx之比当Δx→0时的极限存在,则称函数y=f(x)在点处可导,并称这个极限为函数 y=f(x)在点处的导数,记为 即 其它形式 关于导数的说明: 在点处的导数是因变量在点处的变化率,它反映了因变量随自变量的变化而变化的快慢程度。 如果函数y=f(x)在开区间I内的每点处都可导,就称函数f(x)在开区间I内可导。 对于任一,都对应着f(x)的一个确定的导数值,这个函数叫做原来函数f(x)

的导函数,记作 注意: 2.导函数(瞬时变化率)是函数平均变化率的逼近函数. 导数定义例题: 例1、115页8 设函数f(x)在点x=a可导,求: (1) 【答疑编号11030101:针对该题提问】 (2) 【答疑编号11030102:针对该题提问】

三、单侧导数 1.左导数: 2.右导数: 函数f(x)在点处可导左导数和右导数都存在且相等. 例2、讨论函数f(x)=|x|在x=0处的可导性。 【答疑编号11030103:针对该题提问】 解

闭区间上可导的定义:如果f(x)在开区间(a,b)内可导,且及都存在,就说f(x)在闭区间[a,b]上可导. 由定义求导数 步骤: 例3、求函数f(x)=C(C为常数)的导数。 【答疑编号11030104:针对该题提问】 解 例4、设函数 【答疑编号11030105:针对该题提问】 解

常微分方程教学大纲

《常微分方程》课程教学大纲 课程代码: 090131009 课程英文名称:Ordinary Differential Equations 课程总学时:48 讲课:48 实验:0 上机:0 适用专业:信息与计算科学 大纲编写(修订)时间:2017.11 一、大纲使用说明 (一)课程的地位及教学目标 本课程是信息与计算科学专业的一门专业基础课,通过本课程的学习,可以使学生获得关于常微分方程的基本理论知识,掌握普通的线性微分方程的求解办法,为对非线性微分方程的求解打下一定的基础,同时,使学生能够简单地利用数学手段去研究自然现象和社会现象,或解决工程技术问题, 是进一步学习偏微分方程、微分几何、泛函分析等后继课程的基础。 通过本课程的学习,学生将达到以下要求: 1. 掌握一阶线性微分方程的初等解法及理论、高阶线性微分方程的解法及理论,线性微分方程组理论,着重培养学生解决问题的基本技能。 2. 熟悉和掌握本课程所涉及的现代数学中的重要思想方法,提高其抽象思维、逻辑推理和代数运算的能力。 (二)知识、能力及技能方面的基本要求 1.基本知识:要求学生掌握一阶微分方程的初等解法;一阶微分方程解的存在唯一性定理、解对初值的连续性和可微性定理及解的延拓;高阶微分方程理论、常系数线性微分方程的解法、以及高阶微分方程的降阶和幂级数解法;求矩阵指数,求解常系数线性微分方程组;非线性微分方程的稳定性、V函数方法。 2.基本理论和方法:掌握一阶和高阶线性微分方程以及方程组的求解方法,理解解的存在唯一性定理及解的延拓、解对初值的连续依赖定理等理论,并能应用到具体的证明题中。了解非线性微分方程的基本理论,会对稳定性等做出讨论。培养学生逻辑推理能力和抽象思维能力;对微分方程的建模、求解的分析能力;利用微分方程理论解决实际问题的能力。 3.基本技能:使学生获得求解一阶和高阶微分方程、线性微分方程组的运算技能。 (三)实施说明 1.教学方法:课堂讲授中要重点对基本概念、基本方法和解题思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;讲课要联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于专业基础课,在教学中采用多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 (四)对先修课的要求 本课程的教学必须在完成先修课程之后进行。本课程主要的先修课程有数学分析3、高等代数2。 (五)对习题课、实践环节的要求 1. 至少两章安排一次习题课,总学时在6学时左右。 2. 习题课的教学内容要配合主讲课程的教学进度,由老师和同学在课堂上通过讲、练结合的方式进行。主讲教师通过批改学生的作业,将作业情况反馈给学生,要补充有一定难度和综合度的练习题,以拓宽同学们的思路。

常微分方程第一章

第一章一阶微分方程 1、1学习目标: 1、理解微分方程有关得基本概念,如微分方程、方程阶数、解、通解、初始条件、初值问题等得定义与提法、掌握处理微分方程得三种主要方法: 解析方法, 定性方法与数值方法、 2、掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程得猜测检验法, 常数变易法与积分因子法, 灵活运用这些方法求解相应方程, 理解与掌握一阶线性方程得通解结构与性质、 3、能够大致描述给定一阶微分方程得斜率场, 通过给定得斜率场描述方程解得定性性质; 理解与掌握欧拉方法, 能够利用欧拉方法做简单得近似计算、 4、理解与掌握一阶微分方程初值问题解得存在唯一性定理, 能够利用存在唯一性定理判别方程解得存在性与唯一性并解决与之相关得问题, 了解解对初值得连续相依性与解对初值得连续性定理, 理解适定性得概念、 5、理解自治方程平衡点, 平衡解, 相线得概念, 能够画出给定自治方程得相线, 判断平衡点类型进而定性分析满足不同初始条件解得渐近行为、 6、理解与掌握一阶单参数微分方程族得分歧概念, 掌握发生分歧得条件, 理解与掌握各种分歧类型与相应得分歧图解, 能够画出给定单参数微分方程族得分歧图解, 利用分歧图解分析解得渐近行为随参数变化得状况、 7、掌握在给定得假设条件下, 建立与实际问题相应得常微分方程模型, 并能够灵活运用本章知识进行模型得各种分析、 1、2基本知识: (一)基本概念 1.什么就是微分方程: 联系着自变量、未知函数及它们得导数(或微分)间得关系式(一般就是 指等式),称之为微分方程、 2.常微分方程与偏微分方程: (1)如果在微分方程中,自变量得个数只有一个,则称这种微分方程为常微分方程,例 如, 、 (2)如果在微分方程中,自变量得个数为两个或两个以上,则称这种微分方程为偏微 分方程、例如, 、 本书在不特别指明得情况下, 所说得方程或微分方程均指常微分方程、 3.微分方程得阶数: 微分方程中出现得未知函数最高阶导数得阶数、例如, 就是二阶常微分方程; 与就是二阶偏微分方程、 4.n阶常微分方程得一般形式: , 这里就是得已知函数,而且一定含有得项;就是未知函数,就是自变量、 5.线性与非线性: (1) 如果方程得左端就是及得一次有理式,则称为n阶线性微分方程、

常微分方程第四章考试卷

常微分方程第四章测试试卷(3) 班级 姓名 学号 得分 一、 填空(20分) 1.——————称为n 阶齐线性微分方程。 2.1x )(t 非零为二阶齐线性方程''x 1a +)(t 2'a x +x t )(≡0的解,这里 ()t a 1 和()t a 2于区间[]b a ,上连续,则()t x 2 是方程解的冲要条件是― ——————。 3.常系数非齐线性方程中,若()()t m m m m e b t b t b t b t f λ++++=--1110 , 其中λ与i b 为实常数,那么方程有形如————的特解。 4.在n 阶常系数齐线性方程中,n a a a ,2,1 为常数,则它的特征方程为——————。 5.若方程()()022=++y x q dx dy x p dx y d 中满足————条件,则方程有形 如∑∞ ==0 n n n x a y 的特解。 6.微分方程03'2'''4=++y y xy 的阶数为——。 7.设()01≠t x 是二阶齐线性方程()()0'''21=++x t a x t a x 的一个解,则方程的通解可表为________ 8.解线性方程的常用方法有____、_____、_____、_____ 9.若())2,1,0(n i t x i =为齐线性方程的n 个线性无关解,则这一齐线性方程的通解可表为__________. 10.若()),,2,1(n i t x i =为齐线性方程的一个基本解组,()t x 为非齐线性方程的一个特解,则非齐线性方程的所有解可表___.

二. 计算(30分) 1. 求通解y y y 2'1''2 += 2. 求特解x x e xe y y y -=+-'2'',()()11'1==y y 3. 设二阶非齐线性方程的三个特解为 x x y x x y x y cos ,sin ,321+=+== 求其通解 4. 求解方程()()o y x y x xy =+++-2'12'' ()0≠x 5. 求方程2233'4'''''x xy y x y x =-+的通解 6. 求方程0'''=--y xy y 的解、 三.设可导函数()x φ满足()()1sin 2cos 0+=+?x tdt t x x x φφ,求()x φ 四.证明题(20分) 1.若函数()()()t x t x t x n ,,,21 为n 阶齐线性方程的n 个线性相关解,则它们的伏朗斯基行列式()0=t w 2.试证n 阶非齐线性方程存在且最多存在n+1个线性无关解。

高等数学第七章微分方程试题及复习资料

第七章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程, 通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α -=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性 非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。

常微分方程教案(王高雄)第二章

第二章目录 内容提要及其它 (1) 第二章一阶微分方程的初等解法(初等积分) (2) 第一节变量分离方程与变量变换 (2) 一、变量分离方程 (2) 二、可化为变量分离方程的类型 (6) 1、齐次方程 (6) 2、可化为变量分离方程 (7) 三、应用例题选讲 (10) 第二节线性方程与常数变易法 (11) 第三节恰当方程与积分因子 (15) 一、恰当方程 (15) 二、积分因子 (20) 第四节一阶隐含方程与参数表示 (23) 一、可以解出y(或x)的方程 (24) 二、不显含y(或x)的方程 (25) 本章小结及其它 (27)

内容提要及其它 授课题目 (章、节) 第二章:一阶微分方程的初等解法 教材及主要参考书(注明页数)教材:常微分方程(第三版),王高雄等,高等教育出版社,2006年,p30-74 主要参考书: [1]常微分方程,东北师范大学微分方程教研室编,高等教育出版社,2005, p1-70 [2]常微分方程教程,丁同仁等编,高等教育出版社,1991,p1-20 [3]偏微分方程数值解法(第2版),陆金甫关治,清华大学出版社,2004, p1-12 [4]常微分方程习题解,庄万主编,山东科学技术出版社,2003,p28-169 [5]微分方程模型与混沌,王树禾编著,中国科学技术大学出版社,1999, p15-158 [6]差分方程和常微分方程,阮炯编著,复旦大学出版社,2002,p38-124 目的与要求: 掌握变量分离方程、齐次方程、线性方程、伯努利方程和恰当方程的解法.理解变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.掌握四类典型的一阶隐方程的解法. 能熟练求解变量分离方程、齐次方程、线性方程、伯努利方程、恰当方程和四类典型的一阶隐方程.领会变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程. 教学内容与时间安排、教学方法、教学手段: 教学内容: 第1节变量分离方程与变量变换; 第2节线性方程与常数变易法; 第3节恰当方程与积分因子; 第4节一阶隐方程与参数表示:可以解出(或 y x)的方程、不显含(或 y x)的方程.时间安排:8学时 教学方法:讲解方法 教学手段:传统教学方法与多媒体教学相结合。 教学重点分析: 熟悉各种类型方程的初等解法,并且能正确而又敏捷地判断方程的类型,从而用初等方法求解。 教学难点分析: 本章的教学难点是判断微分方程的类型,以及方程的转化(即把能转化为用初等方法求解的方程)。

03第三章-导数与微分

第三章 导数与微分 一、本章学习要求与内容提要 (一)学习要求 1. 理解导数和微分的概念及其几何意义,会用导数(变化率)描述一些简单的实际问题. 2.熟练掌握导数和微分的四则运算法则和基本初等函数的求导公式. 3.熟练掌握复合函数、隐函数以及由参数方程所确定的函数的一阶导数的求法. 4.了解高阶导数的概念,熟练掌握初等函数的二阶导数的求法. 5.了解可导、可微、连续之间的关系. 重点 导数的概念及其几何意义,计算导数的方法,初等函数的二阶导数的求法. 难点 求复合函数和隐函数的导数的方法. (二) 内容提要 1.导数的概念 ⑴导数 设函数)(x f y =在点0 x 的某一邻域内有定义,当自变量x 在点0 x 处有增量)0(≠??x x ,x x ?+0 仍在该邻域内时,相应地,函数有增量)()(0 x f x x f y -?+=?,若极限 000 0()()lim lim x x f x x f x y x x ?→?→+?-?=?? 存在,则称)(x f 在点0 x 处可导,并称此极限值为)(x f 在点0 x 处的导数,记为)(0 x f ',也可记为0 00 0d d d d , ,)(x x x f x x x y x x y x y ===' '或,即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000. 若极限不存在,则称)(x f y =在点0 x 处不可导. 若固定0 x ,令x x x =?+0 ,则当0→?x 时,有0x x →,所以函数)(x f 在 点0 x 处的导数)(0 x f '也可表示为 00 ) ()(lim )(x x x f x f x f x --='→.

常微分方程第4章习题答案

习 题 4—1 1.求解下列微分方程 1) 22242x px p y ++= )(dx dy p = 解 利用微分法得 0)1)( 2(=++dx dp p x 当 10dp dx +=时,得p x c =-+ 从而可得原方程的以P 为参数的参数形式通解 22 242y p px x p x c ?=++?=-+? 或消参数P ,得通解 )2(2 122x cx c y -+= 当 20x p +=时,则消去P ,得特解 2x y -= 2)2()y pxlnx xp =+; ??? ? ?=dx dy p 解 利用微分法得 (2)0dp lnx xp x p dx ??++= ??? 当0=+p dx dp x 时,得 c px = 从而可得原方程以p 为参数的参数形式通解: 2 ()y pxln xp px c ?=+?=? 或消p 得通解 2y Clnx C =+ 当20lnx xp +=时,消去p 得特解 21()4 y lnx =- 3)() 21p p x y ++= ??? ??=cx dy p 解 利用微分法,得 x dx p p p - =+++22 11 两边积分得 () c x P P P =+++2211

由此得原方程以P 为参数形式的通解: 21(p p x y ++= ,() .11222c x p p p =+++ 或消去P 得通解 222)(C C X y =-+ 1. 用参数法求解下列微分方程 1)45222=?? ? ??+dx dy y 解 将方程化为 2215 42=??? ??+dx dy y 令2sin y t = 2cos 5 dy t dx = 由此可推出 1 515(2sin )22cos 2 cos 5dx dy d t dt t t ===从而得 c t x +=25 因此方程的通解为 52x t c = + ,2sin y t = 消去参数t ,得通解 22sin ()5 y x C =- 对于方程除了上述通解,还有2±=y , 0=dx dy ,显然 2=y 和2-=y 是方程的两个解。 2)223()1dy x dx -= 解:令u x csc =, u dx dy cot 31-= 又令tan 2 u t = 则t t u x 21sin 12+==

第三章导数与微分习题解答

P61 习题3-1 1、根据定义求导数: (1)cos y x = 00000cos()cos lim 2sin sin 22lim sin()sin 22lim 2 sin 2lim sin()lim 22 sin x x x x x x x x y x x x x x x x x x x x x x x x x ?→?→?→?→?→+?-'=?+?++?--=???+=-???=-+?=- 12 (2)y x = 112 2 012()lim lim lim 12x x x x x x y x x ?→?→?→-+?-'=?==== (3)y = 033 223 2 2 2(lim lim lim lim x x x x x x y x ?→?→?→?→+?'=?==== =(4)x y a = 001lim lim x x x x x x x a a a y a x x +???→?→--'==?? 设t x =?,则 01 lim t x t a y a t →-'= 再设t s a =,则log a t s =,于是 11 1 1 110 1 1lim log 1lim log 1 lim log [1(1)] 1log ln x s a x s s a x s s a x a x s y a s a s a s a e a a →→--→--'===+-== 2、

0000000()()(1)lim [(()]() lim () x x f x x f x x f x x f x x f x ?→-?→-?-?+-?-=--?'=- 00000000000000000000000()()(2)lim ()()()()lim ()()()()lim lim ()()()()lim lim ()[()]2() x x x x x x f x x f x x x f x x f x f x f x x x f x x f x f x f x x x x f x x f x f x x f x x x f x f x f x ?→?→?→?→?→?→+?--??+?-+--?=?+?---?=+??+?--?-=-??''=--'= 000()(3)lim ()lim (0)(0)lim (0) x x x f x x f x x f x f x f →?→?→?=?+?-=?'= 00001001 (4)lim [()()]1 ()() lim 1() n n n f x f x n f x f x n n f x →∞→+-+-='= 3、证: ()f x 为偶函数且(0)0f =,则 00000(0)(0)(0)lim ()(0) lim ()(0) lim ()(0) lim ()(0) lim (0)x x x x x f x f f x f x f x f x f x f x f x f x f x f - - - - + -?→?→?→?→-?→++?-'=??-=?-?-=?-?-=--?-?-=--?'=- 又()f x 在0x =处可导,则 (0)(0)f f -+''= 即(0)(0)f f ++''=- 所以(0)0f +'= 故(0)0f '=。 4、证: (1)设()f x 为可导的奇函数,则: 0000()()()lim ()()lim ()() lim [()]() lim ()x x x x f x x f x f x x f x x f x x f x x f x x f x x f x x f x ?→?→?→-?→-+?--'-=?--?+=?-?-=-?+-?-=-?'= 所以()f x '为偶函数。 (2)设()f x 为可导的偶函数,则:

微分方程教案-精选.

第七章 微分方程 教学目的: 1.了解微分方程及其解、阶、通解,初始条件和特等概念。 2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。 4. 会用降阶法解下列微分方程:() ()n y f x =, (,)y f x y '''+和(,)y f y y '''= 5. 理解线性微分方程解的性质及解的结构定理。 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。 8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。 9.会解微分方程组(或方程组)解决一些简单的应用问题。 教学重点: 1、可分离的微分方程及一阶线性微分方程的解法 2、可降阶的高阶微分方程() ()n y f x =, (,)y f x y '''+和(,)y f y y '''= 3、二阶常系数齐次线性微分方程; 4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程; 教学难点: 1、齐次微分方程、伯努利方程和全微分方程; 2、线性微分方程解的性质及解的结构定理; 3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。

§7. 1 微分方程的基本概念 函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程. 例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程. 解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程) x dx dy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件: x =1时, y =2, 简记为y |x =1=2. (2) 把(1)式两端积分, 得(称为微分方程的通解) ? =xdx y 2, 即y =x 2+C , (3) 其中C 是任意常数. 把条件“x =1时, y =2”代入(3)式, 得 2=12+C , 由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x 2+1. 例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程? 解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式 4.02 2-=dt s d . (4) 此外, 未知函数s =s (t )还应满足下列条件: t =0时, s =0, 20== dt ds v . 简记为s |t =0=0, s '|t =0 =20. (5)

常微分方程第四章考试卷1

常微分方程第四章测验试卷(1) 班级 姓名 学号 得分 一、 填空(30分) 1、如果),...,2,1)((n i t x i =为齐线性方程的n 个线性无关解,则这 一齐线性方程的所有解可表为————————————————。 2、形如————————————————的方程称为欧拉 方程。 3、如果),...,2,1)((n i t x i =为齐线性方程的一个基本解组,)(t x i 为非齐线性方程的一个特解,则非齐线性方程的所有解可表为————————————。 4、设0)(1≠t x 是二阶齐线性方程021=+'+''x a x a x 的一个解,则方程的通解可表为—————————————————————。 5、微分方程t x x 3 sin 1 = +''的基本解组为——————————。 6、函数组t t t e e e 2,,-的伏朗基行列式为—————————。 7、若),...,2,1)((n i t x i =b t a ≤≤上线性相关,则伏朗基行列式满足——————。 8、解线性方程的常用方法有————、————、————、————。 9、n 阶齐线性方程的线性无关解的最大个数为————。 二、 计算(50分) 1、 求32254+=-'+''-'''t x x x x 的通解。 2、 求方程0)()(32='+'-''x x x x

3已知。的解,试求方程的通解是0sin 2=+'+''= x x x t t x t 4、求方程t t x x t x t ln 22=+'-''的通解。 5、的解。求方程1)0()0()0()0(,2)4(='''=''='==+x x x x e x x t 三、 证明题(20分) 1、 ),...,2,1)((n i t x i =是齐次线性方程组的n 个解,则有:当 )()......,(1t x t x n 在[a,b]上线性无关时,伏朗斯基行列式w(t)≠0, t ],[b a ∈. 2、若()(1,2)i x t i =是非齐次线性方程43sin x x x x ''''''++=的2个解,则 有:当12lim ()()n x t x t →∞ -存在。

第三章 导数与微分 习题及答案

第三章 导数与微分 同步练习 一、填空 1、若[]1cos 1)0()(lim =--→x f x f x x ,则)0(f '= 。 2、设)100()3)(2)(1()(----=x x x x x x f ,则)0(f '= 。 3、若)(x e f y -=,且x x x f ln )(=',则 1 =x dx dy = 。 4、若)()(x f x f =-,且3)1(=-'f ,则)1(f '= 。 5、设某商品的需求函数是Q=10-0.2p ,则当价格p=10时,降价10%,需求量将 。 6、设某商品的需求函数为:Q=100-2p ,则当Q=50时,其边际收益为 。 7、已知x x y ln =,则)10(y = 。 8、已知2arcsin )(),232 3( x x f x x f y ='+-=,则:0 =x dx dy = 。 9、设1 111ln 2 2++-+=x x y ,则y '= 。 10、设方程y y x =确定y 是x 的函数,则dy = 。 11、已知()x ke x f =',其中k 为常数,求()x f 的反函数的二阶导数=22dy x d 。 二、选择 1、设f 可微,则=---→1 ) 1()2(lim 1 x f x f x ( ) A 、)1(-'-x f B 、)1(-'f C 、)1(f '- D 、)2(f ' 2、若2)(0-='x f ,则=--→) ()2(lim 000 x f x x f x x ( ) A 、 41 B 、4 1 - C 、1 D 、-1 3、设?? ???=≠=0001arctan )(x x x x x f ,则)(x f 在0=x 处( ) A 、不连续 B 、极限不存在 C、连续且可导 D、连续但不可导 4、下列函数在[]1,1-上可微的有( ) A、x x y sin 3 2+= B、x x y sin =

常微分方程教学设计

常微分方程教学设计 第一讲基本概念定义1如果在一个(或者一组m(有限个))方程中,未知的(unknown)量是一个(或一组m有限个))函数,并且在方程中含有未知函数只关于某一个自变量(independentvariable)的导数或微分,则称这方程为常微分方程(ordinarydifferentialequation)(或者常微分方程组(ODE’s)),简称常微分方程(组)为微分方程(DE)(组(DE’s))或方程(组).(提示)常微分方程之例:若x是自变量t的未知函数,其他的量都是已知的,则下列方程(一阶线性齐次方程)(正规形式),(一阶线性非齐次方程)(正规形式),(二阶线性齐次方程),(二阶线性非齐次方程),(Riccati 方程)(一阶非线性方程)都是常微分方程,微分方程中可以不出现未知函数x本身,但必须实质上含有未知函数x的导数.注意,在本教程中不讨论延迟(retarded)常微分方程:常微分方程组之例:记vector),是自变量t的函数,用个变量为m维列矢量(column,其中,,简记的已知函数,(以后都这样表示,不要误解为矢量x的是常微分方程组.函数),则矢量(vector)方程n阶微分方程可以通过变换组:定义2微分方程中实质上含有的未知函数x的最高阶导数的阶数称为这微分方程关于x的阶.微分方程组中各个未知函数的最高阶导数的阶数之和称为微分方程组的阶(计算阶数时把未知函数本身认为是未知函数的零阶导数).(提示)方程组的

阶:例中的方程组是n阶方程组.注意:但是如果我们把例2中的方程组看成是一个矢量x的方程,而且其中关于x的每个分量的阶都是一阶的,因此也可称它(关于x是一阶的).n 阶微分方程的一般形式为:,其中函数F在其变量的某一区域(domain)中有定义,并且一定含有未知函数x对自变量t 的n阶导数.定义3假设有在区间I上有直到n阶的连续导数的函数:以是由隐式或参数形式决定的)在区间I上满足恒等式,(可我们就说该函数是在区间I上方程的解(solution).称区间I是解的定义区间.微分方程的解根据函数的形式可分为显式(explicit)解,隐式(implicit)解和参数形式解.(提示)n阶微分方程的解可由对方程逐次进行n 次积分得到:,其中是的n次累次积分.为n个任意独立的实常数,2例:一阶方程义区间是:当时为的通解可以写成;当时为,其中c是非零实常数.定.严格而言不能写成的形式,因为后者的定义域不是一个区间.但是可以写成在不同区间上的两个通解:,和和.如果把这些解写成形式.则称为隐式解,这种隐式解也称为方程的积分.定义4微分方程的解,或隐式解在t-x平面上的几何图形是一条曲线,称为微分方程的积分曲线(integralcurve).如果在积分曲线上函数积分(integral)定义5已就最高阶导数解出的微分方程等于常数,则也称为微分方程的一个常微分方程之例:若x 是自变量t的未知函数,其他的量都是已知的,则下列方程

常微分方程第1章教案

第一章 绪论 定义:指含有未知量的等式. 代数方程:2210x x -+ = 1=,3121x x x --=+ 超越方程:sin cos 1x x +=,221x e x x =+- 以上都是一元方程,一般形式可以写成()0F x = 二元方程2210x y +-=的一般形式可以写成(,)0F x y =,同理三元方程22210 x y z ++-=等等 根据对未知量施加的运算不同进行方程的分类,高等数学的运算主要是微分和积分运算 一、引例 例1:已知一曲线通过点(1,2),且在该曲线上任一点(,)M x y 处的切线的斜率为2x ,求这曲线的方程. 解:设所求曲线的方程为()y f x =,由题意 1d 2(1)d 2(2)x y x x y =?=???=? 由(1)得2d y x x =?,即2y x C =+ (3) 把条件“1x =时,2y =,”代入上式(3)得221 C =+,1C ∴= 把1C =代入式(3),得所求曲线方程:21y x =+ 例2:列车在平直道路上以20m/s (相当于72km/h )的速度行驶,当制动时列车获得加速度20.4m /s -.问开始制动后需要多长时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解:设列车在开始制动后t s 时行驶了s m.根据题意,反映制动阶段列车运动规律的函数()s s t =应满足关系式 00 220d 0.4(4) d d 20(5)d 0*t t t s t s v t s ===?=-???==???=??() 把式(4)两端积分一次,得1d 0.4d s v t C t = =-+ (6)

【免费下载】常微分方程教程丁同仁李承治第二版第四章 奇解

第四章 奇解习题4-11.求解下列微分方程:(通解)特解)(特解)解:221222)(222222222 2)(2101.(42202..0)1)(2(0)2()2(2222);(,242).1(C Cx y x x C x y C x p b x x x x y x p x p a x p x p x p x x p p p x px y p x px p y x C x dx dp dx dp dx dp dx dp dx dp dx dp p dx dy ++-=?++-+=?+-=?-=?=+-=+-=?-=?=+=++?=+++?+++=++= =++=+-224ln 4ln 2ln 22ln 2ln 2ln 222ln )(ln 0x .)]([ln 2ln 02ln ..0))(2(ln 22)1(ln ln );(,)(ln ).2(222C x C y x x x y p p x b y x x x y p xp x xp x a p x xp x p x xp x p x x p p xp x px y x C x C x C dx dp x x x x x x x x x dx dp dx dp dx dp dx dy +=?+=?=?=+-=+-=?-+-=?-=?-=?=+=++?++++==+=(特解)解:dy dq q y q y y dy dq q y dy dx p y p p y q y q y q x q y x y p y xp 3222222cos 2)sin (cos 222cos 12cos 123sec tan ,tan ,,tan .cos tan 22).3(-++=+===+=+=-令解:y y y y x q q y b y C x y C q y q y q a y y q y q y q y y q y y y y t y y y y y q y C dy dq dy dq q y dy dq dy dq q y dy dq dy dq q y q y y dy dq 32323232sin 2cos 231313322323232 2sin sin sin tan 0tan .sin cos tan 0tan .0 )(tan tan (0)tan ()tan (tan 0tan tan 23212cos sin cos sin cos sin cos 3cos 21cos cos cos sin cos 2=+=+=?=?=?=-+=?=?-=?=+=-+?=+-+?=-++?-(通解) 2.用参数法求解下列微分方程:、接口不严等问题,合电气设备进行调试工作案。高中资料试卷保护装置调

《常微分方程》课程大纲

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方

向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。 第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)

常微分方程第一章初等积分法

第一章 初等积分法 方程对于学过中学数学的人来说是比较熟悉的,在初等数学中就有各种各样的方程,比如线性方程、二次方程、指数方程、对数方程、三角方程和方程组等等.这些方程都是要把研究的问题中的已知量和未知量之间的关系找出来,列出包含一个未知量或几个未知量的一个或者多个方程式,然后求取方程(组)的解.这里,方程(组)的解为常数. 然而在实际生活中,常常出现一些特点和以上方程完全不同的问题.比如:求物体在一定条件下运动的规律(比如某物体做匀速直线运动,速度为5,求其位移变化的规律);求满足一定条件(比如在某曲线任意点处的斜率为该点横坐标的2倍)的曲线的方程等等. 物体运动规律、曲线方程在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数.也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求出一个或者几个未知的函数. 在数学上,解决上述问题也需要建立方程,不过建立的是含有未知函数自变量、未知函数及未知函数的导数的方程(比如上述两个问题建立的方程为: 5=dt ds ,x dx dy 2=) ,这类方程就叫做微分方程. 本章主要介绍微分方程的基本概念及几类简单的微分方程的解法. 1.1 微分方程的基本概念 300多年前,由牛顿(Newton,1642-1727)和莱布尼兹(Leibniz,1646-1716)所创立的微积分学,是人类科学史上划时代的重大发现.而微积分的产生和发展,又与求解微分方程问题密切相关.这是因为:微积分产生的一个重要动因来自于人们探求物质世界运动规律的需求.一般地,运动规律很难全靠实验观测认识清楚,因为人们不太可能观察到运动的全过程.然而,运动物体(变量)与它的瞬时变化率(导数)之间,通常在运动过程中按照某种己知定律存在着联系,我们容易捕捉到这种联系.而这种联系,用数学语言表达出来,其结果往往形成一个微分方程.一

相关主题
文本预览
相关文档 最新文档