当前位置:文档之家› 泥蛙神经干动作电位的引导传导速度的测定实验报告.

泥蛙神经干动作电位的引导传导速度的测定实验报告.

泥蛙神经干动作电位的引导传导速度的测定实验报告.
泥蛙神经干动作电位的引导传导速度的测定实验报告.

神经干动作电位传导速度的测定

一实验目的

一掌握坐骨神经标本的制备方法。

二掌握引导神经干复合动作电位和测定其传导速度的基本原理。二相关知识

(一)兴奋及兴奋性的概念

(二)动作电位的潜伏期、动作电位时程和幅值

1、动作电位:各种可兴奋细胞在受到刺激而兴奋时,可以在

细胞膜静息电位的基础上发生一次短暂的,可向周围扩布的电位波动。这种电位波动称为动作电位。

(三)、动作电位的传导

局部电流的形式

(一)、细胞外记录

(二)、神经干的动作电位

神经干是由许多粗细不等的有髓和无髓神经纤维组成的

混合神经,故神经干动作电位与单根神经纤维的动作电位不同,它是由许多神经纤维的动作电位合成的一种复合电位。

四实验原理

(一)、单根神经纤维动作电位的引导及其传导

1、记录出了一个先升后降的双相动作电位的原理

当神经纤维未受刺激时,膜外与电极所接触的两点之间没有电位差,所以两电极之间也无电位差存在,扫描线为一水平基线。

在神经干左端给予电刺激后,则产生一个向右传导的冲动(负电位),当冲动传到1电极(负电极)下方时,此处电位较2处为低,产生了电位差,扫描线向上偏转,记录出一个向上的波形(在电生理实验中,为了便于观察,习惯上规定负波向上)。随后,冲动继续向右侧传导,离开1电极传向2电极处。当它到达2

电极(正电极)下方时,因1电极处神经差不多已恢复到原来的状态,于是2电极处又较1电极处为负,引起扫描线向下偏转,记录出一个向下的波形。这样,在神经冲动向右传导的过程中,就记录出了一个先升后降的双相动作电位。

负电极在前时,它首先记录到神经干表面由正变负的电位变化,经历了由正到负再到正的过程,因此记录出动作电位的上相。当在后的正电极记录到这种同样的电位变化过程时,显示相反的情况,记录出动作电位的下相。如果互换正、负电极的位置,则记录到先降后升的双相动作电位。

C. A点神经纤维多于B点(次要原因)。

(二)、神经干动作电位的引导及其传导

五实验步骤

(一)、制备蛙类坐骨神经-胫腓神经标本

通过观看录象让学生学习制作方法

(二)、连接实验装置

注意电极的安装,正负不要接反。

(三)、实验参数设置:

(四)、实验观察、记录和测量

启动刺激器,逐渐增大刺激强度,确定阈刺激(阈强度)和最大刺激强度。

调节刺激强度至图形最佳并记录双相动作电位。

将通道1的引导电极的正、负极互换,观察波形的变化。

夹伤1和2之间,记录单相动作电位

一、蟾蜍坐骨神经干动作电位引导及传导速度测定

实验目的:加强理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。

熟悉仪器设备的操作。

实验原理:通过测出示波器上动作电位传导的距离和传导所需的时间,计算传导

速度,可以了解神经的兴奋状态。

1. 潜伏期法:测量第一个通道动作电位潜伏期的时间t,输入刺激电极到第

一个引导电极间的距离s,v=s/t。

2. 潜峰法:测量两个通道的动作电位波峰间的时间差和两对引导电极间的

距离,v= (s2-s1)/(t2-t1)。

实验步骤:1.制备坐骨神经-腓神经标本,放入神经屏蔽

盒。 2.连接仪器,引导动作电位波形。

3.剪裁编辑图形,计算传导速度。

实验结果:1.(见图)

2.计算

S=10mm, t=0.33ms, v=10mm/0.33ms=33m/s 分析讨论:

1.我们通过对潜伏期法和潜峰法测定结果的比较,结合神经干的特性进行分析:动作电位的起点本质是神经干中传导速度最快的一类神经纤维传导兴奋到达记录点引起的,潜伏期法测量的速度本质是此类神经纤维的传导速度。而潜峰法的形成本质是各种神经纤维兴奋相互叠加后最强的部分。如果采用潜峰法测量,由于“迁延效应”代表的时间不够准确,不能代表神经干的传导速度,故应该采用潜伏期测量才更准确。

2,.兴奋以局部电流的方式沿着神经干表面传导,兴奋传播过程中造成引导电极下电位改变,故可记录到双相动作电位.通过两对引导电极可观察到兴奋由一对引导电极下传至另一对引导电极下所需时间,根据兴奋传播的距离和所需时间即可计算出传导速度.

实验结论:本实验中测出神经干动作电位的传导速度为33m/s。由实验可知,神

经纤维在静息状态下受到有效刺激可产生动作电位,同一条神经干中不同的神经纤维兴奋性不完全相同,且在一次兴奋后兴奋性发生改变,兴奋以一定的速度在神经干表面传导,神经兴奋的传导依赖于神经纤维的完整性。

二、兴奋性不应期的测定

实验目的:了解测定不应期的方法和原理,并加深对兴奋性在兴奋过程中的变化

过程的理解。实验原理:神经纤维受到适宜刺激后,产生兴奋,即动作电位。一次兴奋产生后,

必须经绝对不应期、相对不应期、超常期等变化后,兴奋性才能恢复。本实验中先给一个条件刺激,再用另一个检验刺激在兴奋的不同时期给予刺

激,检查神经对检验性刺激反应的兴奋阈值及所引起动作电位的幅度。即可观察到神经组织兴奋性的变化过程。实验步骤:1.制备坐骨神经-腓神经标本,并浸在任氏液中,待其兴奋性稳定后实验。 2.连接仪器,设置实验参数,观察并测量神经干的不应期。

实验结果:(见图)分析讨论:

1. 刺激引起组织兴奋必须在三方面达一定值,即一定的刺激强度,一定刺激持续时间及强度/时间变化率,本实验固定时间和强度/时间变化率,用连续两次同样的刺激作用神经干,观察第二次

实验一 神经干动作电位的引导,兴奋传导速度及不应期的测定

神经干动作电位、传导速度及不应期的测定 【目的和原理】 神经纤维的兴奋表现为动作电位的产生和传导,神经纤维上传导的动作电位通常称为神经冲动。在神经细胞外表面,已兴奋部位带“负电”,未兴奋部位带“正电”,用引导电极引导出此电位差,输入到示波器,则可记录到动作电位的波形。本实验用细胞外记录法,可引导出坐骨神经的复合动作电位。 神经纤维兴奋的标志是产生一个可以传导的动作电位,它依局部电流或跳跃传导的方式沿神经纤维传导。其传导速度取决于神经纤维的直径、内阻、有无髓鞘等因素,可用电生理学方法来记录和测量。 神经纤维在一次兴奋过程中,其兴奋性可发生周期性变化,包括绝对不应期、相对不应期、超常期和低常期。本实验主要目的是学习电生理仪器的使用方法,掌握离体神经干动作电位的细胞外记录法及其基本波形的判断和测量。掌握神经干动作电位传导速度及其不应期的测定方法,通过调整条件刺激和测试刺激之间的时间间隔,来测定坐骨神经干的绝对不应期。 【实验对象】 蟾蜍或蛙。 【实验器材和药品】 蛙类手术器械一套、电子刺激器、示波器(或计算机实时分析系统)、神经屏蔽盒、任氏液。 【实验步骤】 1.制备坐骨神经——胫、腓神经标本操作方法详见3.8。 2.连接装置(见图8-1-1)。 3.准备仪器: (1)刺激器:调节刺激器各项参数:刺激方式连续刺激,频率16Hz,刺激强度0.5v,波宽0.1ms。调节延迟使动作电位的图像位于示波器荧光屏的中央。 (2)示波器:灵敏度:1~2mv/cm,扫描速度:1~2ms/cm,引导电极输入到示波器的“AC”端,双边输入,刺激器的“同步输出”接示波器“外触发输入”,触发选择设置为“同步触发”。 4.观察项目:

蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告

实验二蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定 一、蟾蜍坐骨神经干动作电位引导及传导速度测定 实验目的:加强理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。 熟悉仪器设备的操作。 实验原理:通过测出示波器上动作电位传导的距离和传导所需的时间,计算传导速度,可以了解神经的兴奋状态。 1.潜伏期法:测量第一个通道动作电位潜伏期的时间t,输入刺激电极到第一个引导电极间的距离s,v=s/t。 2.潜峰法:测量两个通道的动作电位波峰间的时间差和两对引导电极间的距离,v=(s2-s1)/(t2-t1)。 实验步骤:1.制备坐骨神经-腓神经标本,放入神经屏蔽盒。 2.连接仪器,引导动作电位波形。 3.剪裁编辑图形,计算传导速度。 实验结果:1.(见图) 2.计算 S=10mm,t=0.33ms,v=10mm/0.33ms=33m/s 分析讨论: 1.我们通过对潜伏期法和潜峰法测定结果的比较,结合神经干的特性进行分析:动作电位的起点本质是神经干中传导速度最快的一类神经纤维传导兴奋到达记录点引起的,潜伏期法测量的速度本质是此类神经纤维的传导速度。而潜峰法的形成本质是各种神经纤维兴奋相互叠加后最强的部分。如果采用潜峰法

测量,由于“迁延效应”代表的时间不够准确,不能代表神经干的传导速度,故应该采用潜伏期测量才更准确。 2,.兴奋以局部电流的方式沿着神经干表面传导,兴奋传播过程中造成引导电极下电位改变,故可记录到双相动作电位.通过两对引导电极可观察到兴奋由一对引导电极下传至另一对引导电极下所需时间,根据兴奋传播的距离和所需时间即可计算出传导速度. 实验结论:本实验中测出神经干动作电位的传导速度为33m/s。由实验可知,神经纤维在静息状态下受到有效刺激可产生动作电位,同一条神经干中不同的神经纤维兴奋性不完全相同,且在一次兴奋后兴奋性发生改变,兴奋以一定的速度在神经干表面传导,神经兴奋的传导依赖于神经纤维的完整性。 二、兴奋性不应期的测定 实验目的:了解测定不应期的方法和原理,并加深对兴奋性在兴奋过程中的变化过程的理解。 实验原理:神经纤维受到适宜刺激后,产生兴奋,即动作电位。一次兴奋产生后,必须经绝对不应期、相对不应期、超常期等变化后,兴奋性才能恢复。本实验中先给一个条件刺激,再用另一个检验刺激在兴奋的不同时期给予刺 激,检查神经对检验性刺激反应的兴奋阈值及所引起动作电位的幅度。即可观察到神经组织兴奋性的变化过程。 实验步骤: 1.制备坐骨神经-腓神经标本,并浸在任氏液中,待其兴奋性稳定后实验。 2.连接仪器,设置实验参数,观察并测量神经干的不应期。 实验结果:(见图) 分析讨论:

实验报告神经干动作电位妇人实验报告_0986文档

2020 实验报告神经干动作电位妇人实验报告_0986文档 EDUCATION WORD

实验报告神经干动作电位妇人实验报告_0986文档 前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰富自己的人生体验,也支撑整个社会的运作和发展。 本文内容如下:【下载该文档后使用Word打开】 1.捣毁脑脊髓 2.分离坐骨神经 3.安放引导电极 4.安放刺激电极 5.启动试验系统 6.观察记录 7.保存 8.编辑输出 1.观察神经干双相动作电位引导(单通道,单刺激) 如图,观察到一个双相动作电位波形。 2.神经干双相动作电位传导速度测定(双通道,单刺激) (1)选择“神经骨骼肌实验”―“传导速度测定”

(2)改变单刺激强度 (3)传导速度=传导距离(R1--R2-)/传导时间(t2-t1) 如图所示,两个波峰之间的传导时间△t=(t2-t1)=0.66ms 实验中,我们设定在引导电极1和3之间的距离△R=(R1--R2-)=1cm 故传导速度v=△R/△t=1cm/0.66ms=15.2m/s 3.神经干双相动作电位不应期观察 由上图可知,当刺激间隔时间为 4.61ms时,两双相动作电位开始融合,此时为总不应期;当刺激间隔时间为1.05ms时,双相动作电位完全融合,此时为绝对不应期。 故相对不应期=总不应期?C绝对不应期=4.61ms?C1.05ms=3.56ms 4.普鲁卡因对神经冲动传导的阻滞作用 如图所示,在两通道之间滴加普鲁卡因后,两双相电位间的波峰间隔时间为 1.03ms,由引导电极之间的间隔距离1cm,得此时传导速度: V1=1cm/1.03ms=9.71m/s 5.机械损伤对坐骨神经干双向动作电位的影响 由图可知,当剪断两引导电极之间的神经干时,第二通道的双相动作电位消失。故机械损伤对神经动作电位传导的阻滞作用比局麻药强。 6.实验注意事项 a)牛蛙腓肠肌后的神经干分支较难找,可以适当剪开周围软

人体解剖及动物生理学实验报告神经干复合动作电位

人体解剖及动物生理学实验报告 神经干复合动作电位 【实验题目】 神经复合动作电位 1、蟾蜍坐骨神经干复合动作电位(CAP)阈值和最大幅度的测定 2、蟾蜍坐骨神经干复合动作电位(CAP)传导速度的测定 3、蟾蜍坐骨神经干复合动作电位(CAP)不应期的测定 【实验目的】 确定蟾蜍坐骨神经干复合动作电位(CAP)的 1、临界值和最大值 2、传导速度 3、不应期(包括绝对不应期和相对不应期) 【实验原理】 神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号。多个神经元的轴突集结成束形成神经,APs沿感觉神经经外周传向中枢或沿运动神经由中枢传向外周。坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。一个CAP是一系列具有不同兴奋性的神经纤维产生的多个AP的总和。刺激强度越大,兴奋的神经纤维数目就越多,CAP的幅度也就越大。与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。 阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。在一定范围内增加刺激强度,CAP幅度相应增大。最大CAP所对应的最小刺激电位即最大刺激。 动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。它们包括神经的直径、有无髓鞘、温度等等。

神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。不应期的产生依赖于细胞膜上特定离子通道的特点,如钠、钾离子通道。 【实验方法】 1、制作蟾蜍坐骨神经干标本 (1)双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经干及其下行到小腿的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。注意保持神经湿润。 (2)将神经搭于标本盒内,保证神经与电极充分接触,中枢端接触刺激电极S1和S2,外周端接触记录电极R1-R5,之间接触接地电极。 (3)刺激输出线两夹子分别连接标本盒的刺激电极S1和S2,插头接生物信号采集系统RM6240的刺激输出插口;信号输入倒显得红色和绿色夹子分别连接记录电极(绿色夹子在前,引导出正向波形,即出现的第一个波峰向上),黑色夹子连接接地电极,插头接通道A、蟾蜍坐骨神经干复合动作电位(CAP)临界和最大幅度的确定 (1)打开信号采集软件,从“实验”菜单中选取“神经干动作电位”,出现自动设置的界面,各项参数已设置好,界面中只有一个采集通道,对应仪器面板上的通道1(因此信号输入线应连接在通道1)。 (2)检查装置链接正确,确定装置是否正常工作,以及神经是否具有活性。采用刺激强度1V,刺激时程0.2ms,延时5ms,刺激模式为单刺激。选择“同步触发”,按下“开始刺激”后,正常情况下屏幕上会出现一个双相电位即CAP。 (3)降低刺激强度,确定CAP的阈电位。记录刺激阈值及CAP幅度(波峰与波谷之间的差值)。 (4)以0.05V或更小的间隔,逐渐增大刺激强度,观察CAP幅度的变化,同时,记录刺激电位及对应的CAP幅度,直到CAP达到稳定,即最大值(神经标本在正常生理活性时,1V 以内的刺激强度即可引起最大的CAP)。

生理实验报告神经干复合动作电位

人体解剖及动物生理学实验报告 实验名称神经干复合动作电位 姓名 学号 系别 组别 同组姓名

实验室温度20℃ 实验日期2015年4月24日 一、实验题目 蟾蜍坐骨神经干复合动作电位(CAP) A蟾蜍坐骨神经干CAP阈值和最大幅度的确定 B蟾蜍坐骨神经干CAP传导速度的确定 C蟾蜍坐骨神经干CAP不应期的确定 二、实验目的 确定蟾蜍坐骨神经干复合动作电位(CAP)的 (1)临界值和最大值 (2)传导速度 (3)不应期(相对不应期、绝对不应期) 三、实验原理 神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号,多个神经元的轴突集结成束形成神经,APs沿感觉神经有外周传向中枢或沿运动神经由中枢传向外周。坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。一个CAP是一系列具有不同兴奋

性的神经纤维产生的多个AP的总和。刺激强度越爱,兴奋的神经纤维数目就越多,CAP 的幅度也就越大。与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。 阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。在一定范围内增加刺激强度,CAP幅度相应增大。最大CAP所对应的最小刺激电位即最大刺激。 动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。它们包括神经的直径、有无髓鞘、温度等等。 神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。不应期的产生依赖于细胞膜上特定离子通道的特点,如钠、钾离子通道。 四、实验方法 蟾蜍坐骨神经标本的制作 1.双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经 干及其下行到小腿的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。注意保持神经湿润。 2. 将神经搭于标本盒内,保证神经与电极充分接触,中枢端接触刺激电极S1和S2, 外周端接触记录电极R1-R2,之间接触接地电极。 3. 刺激输出线两夹子分别连接标本盒的刺激电极S1和S2,插头接生物信号采集系 统RM6240的刺激输出插口;信号输入倒显得红色和绿色夹子分别连接记录电极(绿色夹子在前,引导出正向波形,即出现的第一个波峰向上),黑色夹子连接接地电极,插头接通道1.

生理实验报告神经干复合动作电位

人体解剖及动物生理学实验报告实验名称神经干复合动作电位 姓名 学号 系别 组别 同组姓名 实验室温度20℃ 实验日期2015年4月24日一、实验题目 蟾蜍坐骨神经干复合动作电位(CAP) A蟾蜍坐骨神经干CAP阈值和最大幅度的确定 B蟾蜍坐骨神经干CAP传导速度的确定 C蟾蜍坐骨神经干CAP不应期的确定 二、实验目的 确定蟾蜍坐骨神经干复合动作电位(CAP)的 (1)临界值和最大值

(2)传导速度 (3)不应期(相对不应期、绝对不应期) 三、实验原理 神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号,多个神经元的轴突集结成束形成神经,APs沿感觉神经有外周传向中枢或沿运动神经由中枢传向外周。坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。一个CAP是一系列具有不同兴奋性的神经纤维产生的多个AP的总和。刺激强度越爱,兴奋的神经纤维数目就越多,CAP的幅度也就越大。与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。 阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。在一定范围内增加刺激强度,CAP幅度相应增大。最大CAP所对应的最小刺激电位即最大刺激。 动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。它们包括神经的直径、有无髓鞘、温度等等。 神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。不应期的产生依赖于细胞膜上特定离子通道的特点,如钠、钾离子通道。 四、实验方法 蟾蜍坐骨神经标本的制作 1.双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经干及其下行到小腿 的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。注意保持神经湿润。 2. 将神经搭于标本盒内,保证神经与电极充分接触,中枢端接触刺激电极S1和S2,外周端接触记录 电极R1-R2,之间接触接地电极。

离子与药物对离体蛙心活动的影响

离子与药物对离体蛙心活动的影响 Effects of Several Drugs and Extracellular Ions on Isolated Toad Heart [摘要]目的学习Straub氏法灌流蟾蜍离体心脏方法,研究离子和药物对离体蛙心活动的影响以及作用机制。方法制备离体蛙心标本,采用Straub氏法完成蛙心插管,分别灌流低钙、高钙、高钾溶液,肾上腺素以及普萘洛尔、乙酰胆碱以及阿托品,用张力换能器和RM6240生物信号采集处理系统描记心搏曲线并测量记录数据。结果:无钙任氏液灌流,心脏舒张末期张力增大,而收缩末期张力明显减小,心率无显著改变;高钙任氏夜灌流,心脏舒张末期张力减小,而收缩期张力明显增大,心率无明显改变;高钾任氏夜灌流,心脏舒张末期张力增大,而收缩期张力明显减小,心率无明显改变;灌流液中加Ach,心脏舒张末期张力增大,收缩末期张力减小,心率减慢;加入Ach后滴加atp,心脏舒张末期张力变小,收缩期张力变大,心率无显著改变;灌流液中加入Adr,心脏舒张期张力减小,收缩期张力增大,心率无明显改变;Pro处理后加入Adr,心脏收缩末期张力减小,舒张末期张力和心率无显著改变。结论细胞外Ca2+浓度增大,心肌的收缩性明显增强;细胞外K+浓度升高,心肌收缩力明显减弱;乙酰胆碱使心脏收缩性减弱,阿托品可拮抗乙酰胆碱减弱心肌收缩性的作用;肾上腺素使心脏收缩增强,普萘洛尔可拮抗肾上腺素加强心脏收缩性的作用。 [关键词] 蟾蜍离体心脏灌流K+Ca2+ 肾上腺素乙酰胆碱 作为蛙心起搏点的静脉窦能按一定节律自动产生兴奋,因此,只要将离体的蛙心保持在适宜的环境中,在一定时间内仍能产生节律性兴奋和收缩活动。心脏正常的节律性活动需要一个适宜的理化环境,离体心脏也是如此,离体心脏脱离了机体的神经支配和全身体液因素的直接影响,可以通过改变灌流液的某些成分,观察其对心脏活动的作用。心肌细胞的自律性、兴奋性、传导性和收缩性,都与钠、钾及钙等离子有关。血钾浓度过高时(高于7.9mmol/L),心肌兴奋性、自律性、传导性、收缩性都下降,表现为收缩力减弱、心动过缓和传导阻滞,严重时心脏可停搏于舒张期。血钙浓度升高时,心肌收缩力增强,过高可使心室停搏于收缩期。血钙浓度降低,心肌收缩力减弱。血中钠离子浓度的轻微变化,对心肌影响不明显,只有发生明显变化时,才会影响心肌的生理特性。肾上腺素可使心率加快、传导加快和心肌收缩力增强,乙酰胆碱则与肾上腺素的作用相反。【1】心脏的正常节律性活动需要一个适宜的内环境,内环境的变化直接影响着心脏的正常活动。本实验在蛙心

机能学实验报告

机能学实验报告 实验一、小肠平滑肌生理特性的观察与分析 一、实验目的—— 1.观察温度、乙酰胆碱、肾上腺素等药物对离体家兔小肠平滑肌的作用; 2.观察消化道平滑肌的一般生理特性及分析理化环境改变对其舒缩活动的影响。 二、实验原理 消化道平滑肌和骨骼肌、心肌一样,也具有兴奋性、传导性和收缩性,有些也具有自律性。相比之下消化道平滑肌的兴奋性低,收缩慢,伸展性大,具有紧张性收缩,对化学物质、温度变化

及牵张刺激较敏感等特性。小肠离体后,置于适宜的溶液中,观察其收缩活动及环境变化的影响,观察分析上述生理特性。 三、实验材料--- 1、实验动物:家兔 2、器械、药品:电热恒温水浴锅、浴槽、张力换能器(量程为25g以下)、BL-410生物记录系统、L型通气管、道氏袋、注射器、培养皿、温度计、烧杯、螺丝夹、三维调节器、台氏液、0.01%去甲肾上腺素、0.01%乙酰胆碱、1mol/L NaOH溶液、lmol/L HCl 溶液、2%CaCI2溶液。 四、实验方法和步骤 1、标本制备流程: ①击昏家兔: 用木槌猛击兔头枕部,使其昏迷。 ②剖开腹腔快速取出肠管: 立即剖开腹腔,找出胃幽门与十二指肠交界处,快速取长20~30cm的肠管,先将与该肠管相连的肠系膜沿肠缘剪去,置于供氧台氏液中轻轻漂洗,把肠内容物基本洗净。 ③制作离体肠标本: 将肠管分成数段,每段长2-3cm,两端各系一条

线,保存于供氧的38C左右的台氏液中 2、仪器安装与调试实验安装(如图): 恒温水浴锅控制加热,恒温工作点定在38C。 将充满氧气的道氏袋与通气钩相连接,将肠段一端系在通气管钩上,另一端与张力换能器相连。控制通气量,使氧气从通气管前端呈单个而不是成串逸出。 仪器调试:BL-410系统的使用,选择“实验项目”中的“消化实验”选中“消化道平滑肌生理特性”。相关参数设置的参考值:时间常数t -DC 高频滤波 F —30Hz,显速—4.00s/div,增益—100g。用鼠标左键单击工具条上的“开始” 按钮,调节参数至波形幅度、密度适当,待收缩曲线稳定后,单击记录按钮。 观察项目现象及解释 1.待标本稳定后,记录小肠平滑肌收缩的对照曲线。 2?乙酰胆碱的作用用滴管吸入0.01%乙酰胆碱向灌流浴槽内滴1~2滴。观察到明显效应后,立即从排水管放出浴槽内含乙酰胆碱的台氏液,加入新鲜温台氏液,由此反复3次,以洗涤或稀释残留的乙酰胆碱,使之达到无效浓度,待小肠运动恢复后进行

神经干动作电位与神经纤维动作电位比较

2.神经干动作电位是神经兴奋的客观标志,给具有兴奋性的神经干以一定强度的刺激,会产生动作电位并传导。在神经细胞外面,已兴奋部位的膜外电位负于静息部位。当神经冲动通过后,兴奋处的膜外电位又恢复到静息时的水平。所以兴奋部位和邻近部位之间可出现电位差,用引导电极引导出此电位差,输入到示波器,则可记录到动作电位的波形。本实验采用细胞外记录法,可引导出坐骨神经的复合动作电位。 3.经纤维兴奋的标志是产生一个可以传导的动作电位,它以局部电流或跳跃式传导的方式沿神经纤维传导。其传导速度取决于神经纤维的直径、内阻、有无髓鞘等因素。坐骨神经-腓神经为一混合神经干,其动作电位是由一群不同兴奋阈值、传导速度和幅值的电位总和而成,为复合动作电位。蛙类坐骨神经干中以Aa类纤维为主,传导速度大约35~40m/s。测定神经冲动在神经干上传导的距离和通过这些距离所需的时间,即可计算出该神经干兴奋传导的速度。 4.动作电位在神经纤维上的传导有一定的速度。不同类型的神经纤维,其传导速度各不相同,取决于神经纤维的直径、有无髓鞘、环境温度等因素。蛙类坐骨神经干中以Aα类纤维为主,传导速度大约35~40m/s。测定神经冲动在神经干上传导的距离(d)与通过这一距离所需的时间(t),即可根据V=d/t 求出神经冲动的传导速度。 5.神经纤维的兴奋部位相对于未兴奋部位来说呈负电位,两点之间存在电位差,通过单极或双极电极的引导在记录系统上进行显示和分析。由于采用的是胞外记录的方法,因而在单极记录时,测得的动作电位实际上是组成神经干中的每根神经纤维兴奋后的超射值在神经干表面的叠加。即此动作电位是一复合波,其上升相、下降相及峰值不是相应的单一动作电位波形的去极化相、复极化相及峰电位。在双极记录时,测得的波形实际上是两个记录电极的电位差,与单一动作电位波形相差更大,这使问题的分析更加复杂。动物实验制作的坐骨神经 腓肠肌标本中,神经干是由具有不同生理特性的不同种类神经纤维所组成,故复合动作电位记录的是复合波。然而,每种纤维兴奋后传导速度各不一样,波长也各不相等,加上引导方式不同,这也增加了我们分析复合双相动作电位的复杂性及带来传导速度测定的困难。 6.对于单根神经纤维,其兴奋后产生负波。对于某一点,负波的产生和终止不是突然的,而需要一定的时间才能达到最高点,故记录曲线的上升和下降都具有一定的斜率。神经干受刺激后,由于不同神经纤维兴奋产生了不同的负波,它们波长不等,传导速度也不相等,所以

实验二 离体蛙心灌流

实验二蛙心灌流观察体液因素对心脏活动的影响 [原理] 心脏的正常节律性活动需要一个适宜的内环境(如Na+,K+,Ca2+等的浓度及比例、pH值和温度),而内环境的变化则直接影响到心脏的正常节律性活动。在体心脏还受交感神经和迷走神经的双重支配,交感神经末梢释放递质去甲肾上腺素,使心肌收缩力加强,传导速度加快,心率加快;迷走神经末梢释放乙酰胆碱,使心肌收缩力减弱,心肌传导速度减慢,心率减慢。将失去神经支配的离体心脏保持于适宜的理化环境中(如任氏液),在一定时间内仍能产生自动节律性兴奋和收缩。而改变任氏液的组成成分,离体心脏的活动就会受到影响。用受体阻断剂阻断受体,则相应的受体不能发挥作用。 本实验通过观察内环境理化因素对维持心脏正常节律性活动的重要作用,了解Na+,K+,Ca2+离子以及肾上腺素(β受体激动剂)、乙酰胆碱(M受体激动剂)等激素对心脏活动的调节意义。各种体液因素都是通过影响细胞质内钙离子浓度来起作用。钙离子浓度升高,心肌收缩力量增强,反之减弱。 [目的] 学习离体蛙心灌流的方法; 观察钠、钾、钙三种离子对心脏活动的影响; 观察肾上腺素、乙酰胆碱等因素对心脏活动的影响。 [材料及设备] BL-420型生物机能试验系统,蛙,蛙心套管,蛙心夹,任氏液(与蛙心内环境相似的溶液),0.65%氯化钠,2%氯化钙,1%氯化钾,0.01%肾上腺素,0.0 1%乙酰胆碱,滴管,万能支架,张力换能器。 [方法及步骤] (一)制备离体蛙心

1.用探针破坏蟾蜍的脑和脊髓。 2.蟾蜍固定。将蟾蜍仰卧位固定于蛙板上。 3.打开蟾蜍胸腔。用剪刀剪开胸骨表面皮肤并游离、去掉胸骨,再用眼科剪剪开心包以暴露心脏。 4.蟾蜍心脏插管。用小剪刀在主动脉的根部朝心室的方向剪一小口,以灌有任氏液的蛙心滴管的尖端,由此口插入动脉球。然后将插管稍向后退,再转向心室中央的方向,插入心腔内。如确实插入心室,即以另一线将动脉球与套管的尖端一起结扎固定,然后将结扎剩下的线头结扎在套管侧壁的小玻璃钩上,并固定之,以免心脏滑脱。注意:插套管时要特别小心,应逐渐试探插入,以免损伤心肌,然后滴入少量任氏液。套管插好后的斜口应向心室腔,以免心室收缩时堵塞斜口。如果其深度和位置合适,则套管中的液面随心脏的跳动而上升和下降。于是可将与心脏相连的血管和其他组织剪断,摘出心脏,但切勿损伤静脉窦。然后用任氏液洗涤心脏内外,并经常保持其湿润。 (二)仪器连接 将两个双凹夹固定于万能支架上,将连有分离好的离体蛙心的蛙心滴管固定在上方的双凹夹上,将张力换能器置于下方双凹夹,用连有丝线的蛙心夹于心舒期夹住心尖;再将丝线连结在张力感受器上(张力感受器事先接在计算机的3 通道上)。即可在显示屏上显示出心博曲线,根据屏幕显示信号适当调整扫描速度和灵敏度等,等得到满意的图形就开始试验。 [实验项目] ?正常心脏收缩的曲线:用滴管向蛙心套管中注入1—3毫升任氏液(以后的溶液量均应与第一次相同)。注意观察心跳频率和收缩强度。 ?钠离子的影响:向套管中加入2%氯化钠数滴,观察心脏活动有何变化? 待心脏活动发生明显改变时,添加新鲜的任氏液进行洗涤,反复数次, 直至心脏恢复正常活动后,再加入其它溶液(以下实验皆同此)。

神经干动作电位实验报告

神经干动作电位实验报Experimental report of neUhtstem action potential 告 Intern ship report 实验报告

一、实验目的: 1. 学习蛙坐骨神经干标本的制备 2. 观察坐骨神经干的双相动作电位波形,并测定最大刺激强度 3. 测定坐骨神经干双相动作电位的传导速度 4. 学习绝对不应期和相对不应期的测定方法 5. 观察机械损伤或局麻药对神经兴奋和传导的影响 二、实验材料 1. 实验对象:牛蛙 2. 实验药品和器材:任氏液,2%普鲁卡因,各种带USB接口或插头的连接导线,神经屏 蔽盒,蛙板,玻璃分针,粗剪刀,眼科剪,眼科镊,培养皿,烧杯,滴管,蛙毁髓探针,BL-420N 系统 三、主要方法和步骤: 1. 捣毁脑脊髓 2. 分离坐骨神经 3. 安放引导电极 4. 安放刺激电极 5. 启动试验系统 6. 观察记录 7. 保存 8. 编辑输出 四、实验结果和讨论 1.观察神经干双相动作电位引导(单通道,单刺激) 如图,观察到一个双相动作电位波形。

Pm驴:i SQOQOKi 2.0 ms 7 射¥ 也00z 时间 一—j .................... : .................. 频率: 最大值- ...... ' ........ ' ......... [ ........ ;...... [协小值: -15 - -20 _ 1 OOY oo: oo. m兀卫EQ创 2.神经干双相动作电位传导速度测定(双通道,单刺激) -ID kUUUChz L.U ns ZlT m¥ii J.ttmz j ................. ■:- I 2? 1. WV 1 I --------------- 14 I I 4 I I I ooTio mo oa nr iins on oo oru oom coe co nr n o日on m nn oo oo ni2 DO on rtu OO CIJ ri^ oo oc OIA (1) 选择“神经骨骼肌实验”一“…传导速度测定” (2) 改变单刺激强度 (3) 传导速度=传导距离(R1--R2-)/传导时间(t 2-t 1) 如图所示,两个波峰之间的传导时间△ t = (t 2-t 1) = 0.66ms 实验中,我们设定在引导电极1和3之间的距离△ R = (R 1--R2-) = 1cm 故传导速度v = △ R/ △ t = 1cm / 0.66ms = 15.2 m/s 释: 最 大ii; ■小 值: 平均值: 嶂赠但? 面租 BJ祠; 最知宜. 环值: 平均值: 而租

离体蛙心灌流(精)

离体蛙心灌流 实验目的 学习离体蛙心灌流的方法; 观察钠、钾、钙三种离子对心脏活动的影响。 观察肾上腺素、乙酰胆碱等因素对心脏活动的影响。 实验器材 动物:蟾蜍 器材:斯氏蛙心套管、套管夹、常用手术器械、任氏液、张力换能器、蛙心夹、0.65%NaCl 溶液、5%NaCl溶液、2%CaCl2溶液、1%KCl溶液、1:5000肾上腺素溶液、1:10000乙酰胆碱溶液、300u/ml肝素溶液 实验方法与步骤 1、离体蛙心的制备:双毁髓→左主动脉结扎→左右两主动脉下方活结备用→剪口,插 管(管内盛任氏液与肝素)→结扎备用线(套管+左右主动脉)→剪断动脉→结扎并剪断静脉。 2、固定套管并用任氏液换洗血液;进入RM6240系统。 3、观察并记录正常心搏曲线; 4、向套管内分别加入以下溶液(0.65%NaCl溶液2d 、5%NaCl溶液2d 、1%KCl溶 液1-2d 、2%CaCl2溶液1d 、1:5000肾上腺素溶液1-2d 、1:10000乙酰胆碱溶液1-2d ),观察并记录曲线变化。 实验结果 此图为蛙心正常心搏曲线

由波形图可知,Nacl可使心肌收缩能力减弱,心率减慢,导致心率曲线幅度减小。 有波形图可知,向任氏液中加入5%Nacl之后心搏曲线的幅度大大降低。

KCl导致心脏肌细胞收缩能力减弱,心率减慢。 此图为加入Cacl2溶液后蛙心收缩曲线的变化 可使心肌收缩能力增强,心率加快,导致心率曲线幅度由上图可知,CaCl 2 增加。

由波形图可知,肾上腺素可使心肌收缩力增强,心率加快。 此图为加入乙酰胆碱后蛙心收缩曲线的变化 由上图可知,乙酰胆碱可使心肌收缩能力减弱,心率减慢,导致心率曲线幅度降低。 实验结果分析 离体蛙心仍可具有揭露性收缩,是因为作为蛙心正常起搏点的经脉都(其功能相当于人体心脏的窦房结)能产生自动节律,通过传导系统维持心脏的波动,心脏正常德节律性兴奋和收缩活动必须在适宜的礼花环境才能维持,一旦适宜 的环境被干扰或破坏,心脏后东就会受到影响。

完整word版,人体机能 蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告

神经干双向动作电位的引导传导速度及不应期的测定作者:2011222681宋利婷组员:2011222702曾惜2011222709张芮2011222698杨袁虹 一、实验对象:蟾蜍 二、实验目的:观察蟾蜍坐骨神经动作电位的基本波形,掌握坐骨神经制备方法与引导动作电位的方法,理解与刺激和最大刺激强度的概念测定潜伏期时程和波幅,学会通过潜伏期法和潜峰法测定神经冲动的传导速度,通过测定神经干不应期理解兴奋性在兴奋过程中的变化过程。 三、实验内容 图一:阈刺激和最大刺激强度的测定 由上图可知,以0.100v为起始刺激强度,在0.100到0.300v的刺激时,不产生动作电位,

逐渐增大强度,一直到当刺激强度为0.4V时,刚好引产生动作电位,即阈刺激为0.4V,当刺激强度达到1.4V后,即使再增加刺激强度,动作电位的幅也不再改变,即最大(适)刺激强度为1.4V. 图二:潜伏期波幅时程及速度的测定 由在最适刺激强度时动作电位原图上进行区间测量可知,潜伏期为0.60ms,时程t1为2.84ms ,波幅为2.72mV,输入刺激电极到第一个引导电极间距离s=1.3cm,以传导速度和根据速度的公式计算传导速度v1=s/t1,求得的速度v1=45m/s 图三:潜峰法测量速度

如图是通过测量两个通道的动作电位波峰间的时间差,为(t1-t2),测量并输入两对引导电极间的距离为(s2-s1),s2=4.7cm,s1=3.8cm,t1-t2=0.28ms,由传导速度和用公式计算传导速度:v2=(s2-s1)/(t1-t2),v2=321m/s 图四:绝对不应期和相对不应期的测定

神经干动作电位传导速度的测定

For personal use only in study and research; not for commercial use 神经干动作电位传导速度的测定 实验对象:蟾蜍 一实验目的 掌握坐骨神经标本的制备方法。 掌握引导神经干复合动作电位和测定其传导速度的基本原理。 二相关知识 (一)兴奋及兴奋性的概念 (二)动作电位的潜伏期、动作电位时程和幅值 1、动作电位:各种可兴奋细胞在受到刺激而兴奋时,可以在细胞膜静息电位的基础 上发生一次短暂的,可向周围扩布的电位波动。这种电位波动称为动作电位。(三)、动作电位的传导 局部电流的形式 1、细胞外记录 2、神经干的动作电位 神经干是由许多粗细不等的有髓和无髓神经纤维组成的混合神经,故神经干动作电位与单根神经纤维的动作电位不同,它是由许多神经纤维的动作电位合成的一种复合电位。 三实验原理 (一)、单根神经纤维动作电位的引导及其传导 1、记录出了一个先升后降的双相动作电位的原理 当神经纤维未受刺激时,膜外与电极所接触的两点之间没有电位差,所以两电极之间也无电位差存在,扫描线为一水平基线。在神经干左端给予电刺激后,则产生一个向右传导的冲动(负电位),当冲动传到1电极(负电极)下方时,此处电位较2处为低,产生了电位差,扫描线向上偏转,记录出一个向上的波形(在电生理实验中,为了便于观察,习惯上规定负波向上)。随后,冲动继续向右侧传导,离开1电极传向2电极处。当它到达2电极(正电极)下方时,因1电极处神经差不多已恢复到原来的状态,于是2电极处又较1电极处为负,引起扫描线向下偏转,记录出一个向下的波形。这样,在神经冲动向右传导的过程中,就记录出了一个先升后降的双相动作电位。 负电极在前时,它首先记录到神经干表面由正变负的电位变化,经历了由正到负再到正的过程,因此记录出动作电位的上相。当在后的正电极记录到这种同样的电位变化过程时,显示相反的情况,记录出动作电位的下相。如果互换正、负电极的位置,则记录到先降后升的双相动作电位。 C.?? A点神经纤维多于B点(次要原因)。 (二)、神经干动作电位的引导及其传导 四实验步骤 (一)、制备蛙类坐骨神经-胫腓神经标本 通过观看录象让学生学习制作方法

实验一_神经干动作电位的引导及其传导速度和不应期的测定

一目的要求: 1.学习蛙类动物单毁髓与双毁髓的方法。 2.学习并掌握蛙类坐骨神经干标本的制备方法。 3.学习电生理学实验方法。 4.观察蟾蜍坐骨神经干复合动作电位的波形,了解其产生的基本原理。 二基本原理: 神经干在受到有效刺激后,可以产生动作电位,标志着神经发生兴奋。如果在神经干另一端引导传来的兴奋冲动,可以引导出双相的动作电位,如在两个引导电极之间将神经麻醉或损坏,则引导出的动作电位即为单相向动作电位。 神经细胞的动作位是以”全或无”方式发生的。坐骨神经干是由很多不同类型的神经纤维组成的,所以,神经干的动作电位是复合动作电位。复合动作电位的幅值在一定刺激强度下是随刺激强度的变化而变化的。 三动物与器材: 蟾蜍、常用手术器械(手术剪、手术镊、金冠剪、眼科剪、毁髓针和玻璃分针)、蛙板、固定针、不锈钢盘、污物缸、粗棉线、任氏液、计算机生理信号处理系统、神经屏蔽盒。 四方法步骤: 1.蟾蜍的单毁髓与双毁髓 一手握住蛙或蟾蜍(可用纱布包裹蟾蜍躯干部),背部向上。用拇指压住蛙或蟾蜍的背部,食指按压其头部前端,使头端向下低垂; 另一手持毁髄针,由两眼之间沿中线向后触划,当触及到两耳中间的凹陷处(此处与两眼的联机成等边三角形)时,持针手即感觉针尖下陷,此处即是枕骨大孔的位置。将毁髄针由凹陷处垂直刺入,即可进入枕骨大孔(图t-1)。然后将针尖向前刺入颅腔,在颅腔内搅动,以捣毁脑组织。如毁髄针确在颅腔内,实验者可感到针尖触及颅骨。此时的动物为单毁髓动物。再将毁髓针退至枕骨大孔,针尖转冋后方,与脊柱平行刺入椎管,以捣毁脊髓。彻底捣毁脊髓时,可看到动物的后肢突然蹬直,而后瘫痪如棉(图t-2),此时的动物为双毁髓动物。如动物仍表现肢肌肉紧张或活动自如,必须重新毁髓。操作过程中应注意使蟾蜍头部向外侧(不要挤压耳后腺),防止耳后腺分泌物射入实验者眼内(如被射入,则需立即手生理盐水冲洗眼睛)。 2.坐骨神经干标本制备 (1) 剥制后肢标本(图t-3) (2) 分离两后肢(图t-4)

【实验报告】骨骼肌的单收缩与复合收缩及神经干动作电位、神经冲动传导速度、神经干不应期的测定

实验二:骨骼肌的单收缩与复合收缩及 神经干动作电位、神经冲动传导速度、神经干不应期的测定 实验人: 同组人: 【实验目的】 ?了解肌肉收缩过程的时相变化 ?观察刺激强度和频率对骨骼肌收缩形式的影响 ?掌握离体神经干动作电位的细胞外记录法及其基本波形的判断和测量。 ?掌握神经干动作电位传导速度及其不应期的测定方法。 【实验原理】 ?骨骼肌的单收缩与复合收缩 肌肉兴奋的外在表现是收缩。 当其受到一个阈上强度的刺激时,爆发一次动作电位,迅速发生一次收缩反应,叫单收缩。单收缩曲线分为潜伏期、收缩期、舒张期三个时期。 在一定范围内,肌肉收缩的幅度随刺激强度的增加而增大。 当相继受到两个以上同等强度的阈上刺激时,因频率不同,下一次刺激可能落在前一刺激所引起的单收缩的不同时期内,造成: ?几个分离的单收缩:频率低于单收缩频率,间隔大于单收缩时间 ?收缩的总和(强直收缩): 不完全强直收缩:后一收缩发生在前一收缩的舒张期 完全强直收缩:后一收缩发生在前一收缩的收缩期内,各收缩不能 分开,肌肉维持稳定的收缩状态。 ?神经干动作电位、神经冲动传导速度、神经干不应期的测定 ?神经干是由许多神经纤维组成的,神经兴奋的标志是动作电位。在一定范围内神经 干动作电位的幅度随刺激强度的增加而增大,这是由于各神经纤维兴奋性的不同, 虽然每条纤维动作电位产生都遵守“全或无”的方式,但神经干动作电位记录到的是 多个兴奋阈值、传导速度和振幅各不相同的动作电位的总和,为一个复合动作电位,所以不存在阈强度,也不表现为“全或无”的特征。根据引导方法的不同(双极引导 或单极引导),可分别得到双相、单相动作电位。 ?动作电位在神经纤维上的传导有一定的速度。不同类型的神经纤维其传导速度各不 相同,主要取决于神经纤维的直径、有无髓鞘、环境温度等因素。蛙类坐骨神经干 传导是速度约为35-40 m/S, 神经纤维在一次兴奋过程中,其兴奋性可发生周期性变 化,包括绝对不应期、相对不应期、超常期和低常期。 ?为了测定神经一次兴奋之后兴奋性的变化,可先给神经施加一个条件性刺激,引起 神经兴奋,然后再用一个检验性刺激在前一兴奋过程的不同时相给予刺激,检查神 经对检验性刺激反应的兴奋阈值,以及所引起的动作电位的幅度变化,来判断神经 组织兴奋性的变化。 本次实验中所给条件性刺激和检验性刺激系两个参数完全相同的刺激,用在不同时

实验报告:蟾蜍坐骨神经干动作电位引导及传导速度测定

一、蟾蜍坐骨神经干动作电位引导及传导速度测定 实验目的:加强理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。熟悉仪器设备的操作。 实验原理:通过测出示波器上动作电位传导的距离和传导所需的时间,计算传导速度。 1.潜伏期法:测量第一个通道动作电位潜伏期的时间t,输入刺激电极到第一个引导 电极间的距离s,v=s/t。 2.潜峰法:测量两个通道的动作电位波峰间的时间差和两对引导电极间的距离,v= (s2-s1)/(t2-t1)。 实验步骤:1.制备坐骨神经-腓神经标本,放入神经屏蔽盒。 2.连接仪器,引导动作电位波形。 3.剪裁编辑图形,计算传导速度。 实验结果:1.图形 2.计算 S=10mm, t=0.33ms, v=10mm/0.33ms=33m/s 分析讨论: 1. 当刺激端和记录端离得较远时,引导的复合动作电位波形会发生什么改变,为什么? 2.用什么方法可使复合动作电位传导速度的测量更准确? 实验结论:神经干动作电位的传导速度为33m/s.

二、兴奋性不应期的测定 实验目的:了解测定不应期的方法和原理,并加深对兴奋性在兴奋过程中的变化过程的理解。 实验原理:神经纤维受到适宜刺激后,产生兴奋,即动作电位。一次兴奋产生后,必须经绝对不应期、相对不应期、超常期等变化后,兴奋性才能恢复。本实验通过生物电放大器引导并记录神经干复合动作电位,验证和测量动作电位的不应期。先给一个条件刺激,再用另一个检验刺激在兴奋的不同时期给予刺激,检查兴奋未阈值及所引起动作电位的幅度。 实验步骤: 1.制备坐骨神经-腓神经标本,并浸在任氏液中约5分钟,待其兴奋性稳定后实验。 2.连接仪器,设置实验参数,观察并测量神经干的不应期。 实验结果:(见图) 分析讨论: 1.为什么要先引导神经纤维的单向复合动作电位,然后再测量其兴奋性的不应期? 2.神经干不应期与单根神经纤维的不应期有何不同? 实验结论:兴奋性的不应期包括绝对不应期、相对不应期、超常期、低常期。

神经干动作电位

反射时测定和反射弧分析 神经干动作电位的测定 2013级生命科学3班张柏辉学号:20132501076 1.实验目的 1.观察蛙坐骨神经干动作电位的基本波形,并了解其产生的基本原理; 2.学习测定反射时的方法,了解反射弧的组成; 3.了解脊髓反射的功能特性。 2.实验原理 (一)反射时测定和反射弧分析 反射是指对某一刺激无意识的应答。反射活动的结构基础称为反射弧,包括感受器、传入神经、神经中枢、传出神经和效应器。从皮肤接受刺激至机体出现反应的时间称为反射时。反射时是反射通过反射弧所用的时间。反射弧的任何一部分缺损,原有的反射不再出现。中枢的兴奋和抑制同时存在又相互影响。在脊髓反射的中枢之间或高位脑和脊髓对低位脊髓反射中枢均存在抑制作用,这些抑制作用保证了机体活动的协调性。 (二)神经干动作电位的测定 神经干在受到有效刺激后可以产生复合动作电位,标志着兴奋的产生。如果在立体神经干的一端施加刺激,从另一端引导传来的兴奋冲动可以记录出双相动作电位,假如在引导的两个电极之间将神经干麻醉或损坏,阻断其兴奋传导能力,此时可以记录到单相动作电位。 3.实验对象与实验材料 (一)材料:虎纹蛙 (二)器具:手术剪、手术镊、手术刀、金冠剪、眼科剪、毁髓针、玻璃分针、木质蛙板、固定针、锌铜弓、瓷盘、污物缸、滴管、纱布、粗棉线、滤纸片、支架、蛙嘴夹、小烧杯、秒表、神经屏蔽盒、PowerLab、刺激线、USB线、电脑 (三)试剂:任氏液、2%普鲁卡因、0.5%及1%硫酸溶液 4.实验方法与步骤 (一)反射时与反射弧的测定 1. 屈反射

取一只虎纹蛙,只毁脑髓制成脊蛙(只毁脑),用蛙嘴夹夹住蛙下颌悬挂在支架上,右后肢最长趾浸入0.5%硫酸溶液中2~3mm(<10s),同时开始计时。当出现屈反射时立即停止计时,并用清水冲洗受刺激皮肤,纱布擦干,重复测屈反射时3次。同样方法测左后肢最长趾的屈反射时。 2.损毁感受器 用手术剪自后肢最长趾基部环切皮肤,后用手术镊剥净长趾上的皮肤,用0.5%硫酸溶液刺激去皮皮肤,并记录侧时结果。 3.对照没损毁感受器 改换同侧后趾有皮肤趾,将其浸入0.5%硫酸溶液中,测定反射时。 4.擦或抓反射 取一浸有0.5%硫酸溶液的滤纸片贴于虎纹蛙腹部,记录抓或擦反射的反射时。 5.麻醉神经 右侧坐骨神经滴加普鲁卡因液,加药同时开始计时,每2min重复步骤3,并记录加药时间。 屈反射消失后,重复步骤4,记录加药时间。 6.测左后肢最长趾屈反射时,并与步骤1比较。 7.毁坏脊髓,重复步骤7. (二)神经干动作电位的测定 1. 标本制备:坐骨神经干(双毁髓->剥制后肢->分离两后肢),分离坐骨神经到踝关节附近,将标本搭置在神经屏蔽盒各金属极上; 2.设置实验装置:连接神经屏蔽盒各接线; 3.设置CH3 BioAmp和Stimulator:打开PowerLab电源,打开Scope软件(或Chart5),设置通道3: Ch3 BioAmp:Range 5mV, Filter 20Hz,High Pass 10Hz (调零用DC档);设置Stimulator:单刺激Delay 120ms ,波宽Duration:10mS,振幅Ampt:100mV;设置Overlay on Top 点右下角Start ,即可看到刺激输出后得到的动作电位波形图。每点一次START,记录号增加在图下方,调节单刺激持续时间Duration和振幅大小,以及调节放大器HighPass等参数,均对实验结果有影响。得到双相电位后,以普鲁卡因液或棉线结扎法损伤神经,调参数至振幅Amp5.000mV,,观察单相电位。

相关主题
文本预览
相关文档 最新文档