当前位置:文档之家› 质谱分析法

质谱分析法

质谱分析法
质谱分析法

质谱分析法简介

第一节概论

从J.J. Thomson制成第一台质谱仪,到现在已有近90年了,早期的质谱仪主要是用来进行同位素测定和无机元素分析,二十世纪四十年代以后开始用于有机物分析,六十年代出现了气相色谱-质谱联用仪,使质谱仪的应用领域大大扩展,开始成为有机物分析的重要仪器。计算机的应用又使质谱分析法发生了飞跃变化,使其技术更加成熟,使用更加方便。八十年代以后又出现了一些新的质谱技术,如快原子轰击电离子源、基质辅助激光解吸电离源、电喷雾电离源、大气压化学电离源,以及随之而来的比较成熟的液相色谱-质谱联用仪,感应耦合等离子体质谱仪、付立叶变换质谱仪等。这些新的电离技术和新的质谱仪使质谱分析又取得了长足进展。目前质谱分析法已广泛地应用于化学、化工、材料、环境、地质、能源、药物、刑侦、生命科学、运动医学等各个领域。

质谱仪种类非常多,工作原理和应用范围也有很大的不同。从应用角度,质谱仪可以分为下面几类:

有机质谱仪:由于应用特点不同又分为:

①气相色谱-质谱联用仪(GC-MS)。在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极杆质谱仪,气相色谱-飞行时间质谱仪,气相色谱-离子阱质谱仪等。

②液相色谱-质谱联用仪(LC-MS)。同样,有液相色谱-四极杆质谱仪,液相色谱-离子阱质谱仪,液相色谱-飞行时间质谱仪,以及各种各样的液相色谱-质谱-质谱联用仪。

③其他有机质谱仪,主要有:

基质辅助激光解吸飞行时间质谱仪(MALDI-TOFMS)

付立叶变换质谱仪(FT-MS)

无机质谱仪,包括:

①火花源双聚焦质谱仪。

②感应耦合等离子体质谱仪(ICP-MS)。

③二次离子质谱仪(SIMS)

以上的分类并不十分严谨。因为有些仪器带有不同附件,具有不同功能。例如,一台气相色谱-双聚焦质谱仪,如果改用快原子轰击电离源,就不再是气相色谱-质谱联用仪,而称为快原子轰击质谱仪(FAB-MS)。另外,有的质谱仪既可以和气相色谱相连,又可以和液相色谱相连,因此也不好归于某一类。在以上各类质谱仪中,数量最多,用途最广的是有机质谱仪。

除上述分类外,还可以从质谱仪所用的质量分析器的不同,把质谱仪分为双聚焦质谱仪,四极杆质谱仪,飞行时间质谱仪,离子阱质谱仪,付立叶变换质谱仪等。

第二节质谱分析法原理和仪器

质谱是确定化合物分子量的有力手段,它不仅能够准确测定分子的质量而且可以确定化合物的化学式和进行结构分析。本部分内容包括质谱分析法原理、质谱图和主要离子峰以及质谱分析法的应用。质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。

一、质谱分析法基本原理

用高速电子束的撞击等不同方式使试样分子成为气态带正电离子,其中有分子离子M+和各种分子碎片阳离子。在高压

电场(电压为V)加速下,质量m的带正电粒子在磁感应强度为B的磁场中作垂直于磁场方向的圆周运动,其运动半径r与粒子的质荷比(m/e)有如下关系:

显然质荷比大小不同的正离子将按不同的曲率半径依次分散成不同离子束。当连续改变加速板极电压或磁场时,就可将不同质量的粒子依次聚焦在出射狭缝上,通过出射狭缝的离子流碰撞在收集极上,然后被转化为光电信号记录成质谱图。根据质谱图的位置可进行定性和结构分析,而根据峰的强度可进行定量分析。

二、质谱仪器

质谱仪都必须有电离装置把样品电离为离子,有质量分析装置把不同质荷比的离子分开,经检测器检测之后可以得到样品的质谱图,由于有机样品,无机样品和同位素样品等具有不同形态、性质和不同的分析要求,所以,所用的电离装置、质量分析装置和检测装置有所不同。但是,不管是哪种类型的质谱仪,其基本组成是相同的。都包括离子源、质量分析器、检测器和真空系统。

⒈高真空系统

为了降低背景以及减少离子间或离子与分子间的碰撞,离子源,质量分析器及检测器必须处于高真空状态。

⒉进样系统

有间接进样、直接进样、色谱进样三种方式

⒊离子源

使试样分子或原子离子化,同时具有聚集和准直作用,使离子汇聚成具有一定几何形状和能量的离子束。

⒋质量分析器

将离子源产生的离子按M/Z的大小分离聚集,种类较多,有单聚集质量分析器,双聚集质量分析器,四极滤质器。

第三节质谱图和主要离子峰

一、质谱图与质谱表

质谱图是以质荷比m/z为横坐标,离子强度为纵坐标来表示质谱数据。

质谱表是用表格形式表示质谱数据。

二、质谱中主要离子峰

⒈分子离子峰

分子受电子束轰击后,失去一个电子而生成的离子称为分子离子。

⒉碎片离子峰

当电子轰击的能量超过分子离子电所需要的能量时,可能使分子离子的化学键进一步断裂,产生质量数较低的碎片称为碎片离子。

⒊同位素离子峰

⒋重排离子峰

有些碎片离子不是仅仅通过键的简单断裂,有时还会通过分子内某些原子或基团的重新排裂或转移而形成离子这种碎片离子称为重排离子。

第二节质谱分析法原理和仪器

质谱是确定化合物分子量的有力手段,它不仅能够准确测定分子的质量而且可以确定化合物的化学式和进行结构分析。本部分内容包括质谱分析法原理、质谱图和主要离子峰以及质谱分析法的应用。质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定

量结果。

一、质谱分析法基本原理

用高速电子束的撞击等不同方式使试样分子成为气态带正电离子,其中有分子离子M+和各种分子碎片阳离子。在高压

电场(电压为V)加速下,质量m的带正电粒子在磁感应强度为B的磁场中作垂直于磁场方向的圆周运动,其运动半径r与粒子的质荷比(m/e)有如下关系:

显然质荷比大小不同的正离子将按不同的曲率半径依次分散成不同离子束。当连续改变加速板极电压或磁场时,就可将不同质量的粒子依次聚焦在出射狭缝上,通过出射狭缝的离子流碰撞在收集极上,然后被转化为光电信号记录成质谱图。根据质谱图的位置可进行定性和结构分析,而根据峰的强度可进行定量分析。

二、质谱仪器

质谱仪都必须有电离装置把样品电离为离子,有质量分析装置把不同质荷比的离子分开,经检测器检测之后可以得到样品的质谱图,由于有机样品,无机样品和同位素样品等具有不同形态、性质和不同的分析要求,所以,所用的电离装置、质量分析装置和检测装置有所不同。但是,不管是哪种类型的质谱仪,其基本组成是相同的。都包括离子源、质量分析器、检测器和真空系统。

⒈高真空系统

为了降低背景以及减少离子间或离子与分子间的碰撞,离子源,质量分析器及检测器必须处于高真空状态。

⒉进样系统

有间接进样、直接进样、色谱进样三种方式

⒊离子源

使试样分子或原子离子化,同时具有聚集和准直作用,使离子汇聚成具有一定几何形状和能量的离子束。

⒋质量分析器

将离子源产生的离子按M/Z的大小分离聚集,种类较多,有单聚集质量分析器,双聚集质量分析器,四极滤质器。

第三节质谱图和主要离子峰

一、质谱图与质谱表

质谱图是以质荷比m/z为横坐标,离子强度为纵坐标来表示质谱数据。

质谱表是用表格形式表示质谱数据。

二、质谱中主要离子峰

⒈分子离子峰

分子受电子束轰击后,失去一个电子而生成的离子称为分子离子。

⒉碎片离子峰

当电子轰击的能量超过分子离子电所需要的能量时,可能使分子离子的化学键进一步断裂,产生质量数较低的碎片称为碎片离子。

⒊同位素离子峰

⒋重排离子峰

有些碎片离子不是仅仅通过键的简单断裂,有时还会通过分子内某些原子或基团的重新排裂或转移而形成离子这种碎片离子称为重排离子。

第四节质谱分析应用

质谱分析法的特点与应用范围是:

(1)主要用以确定分子量。广泛用于有机物的分析,也可作为结构分析之用,因此是很好的定性分析的工具,在质谱图上利用分子峰的m/z可以准确地确定该化合物的村相对分子质量,通过同位素峰相对强度法来确定有机化合物的化学式。

(2)灵敏度高。目前用于有机物分析的质谱仪的灵敏度可达到100pg数量级。

(3)操作简单,分析时间短,准确度高。

(4)与色谱仪联用,对混合物试样可以同时进行分离和鉴定,从而可快速获取有关信息。(5)质谱仪器较为精密,价格较贵,工作环境要求较高,给普及带来一定的限制。

质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。

质谱仪一般由四部分组成:进样系统——按电离方式的需要,将样品送入离子源的适当部位;离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束;质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;检测器——用来接受、检测和记录被分离后的离子信号。一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。

一、进样系统和接口技术

将样品导入质谱仪可分为直接进样和通过接口两种方式实现。

1. 直接进样

在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。

对于固体样品,常用进样杆直接导入。将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。

目前质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。

2. 电喷雾接口

带有样品的色谱流动相通过一个带有数千伏高压的针尖喷口喷出,生成带电液滴,经干燥气除去溶剂后,带电离子通过毛细管或者小孔直接进入质量分析器。传统的电喷雾接口只适用于流动相流速为1~5μl/min的体系,因此电喷雾接口主要适用于微柱液相色谱。同时由于离子可以带多电荷,使得高分子物质的质荷比落入大多数四极杆或磁质量分析器的分析范围(质荷比小于4000),从而可分析分子量高达几十万道尔顿(Da)的物质。

3. 热喷雾接口

存在于挥发性缓冲液流动相(如乙酸铵溶液)中的待测物,由细径管导入离子源,同时加热,溶剂在细径管中除去,待测物进入气相。其中性分子可以通过与气相中的缓冲液离子(如NH4+)反应,以化学电离的方式离子化,再被导入质量分析器。热喷雾接口适用的液体流量可达2ml/min,并适合于含有大量水的流动相,可用于测定各种极性化合物。由于在溶剂挥发时需要利用较高温度加热,因此待测物有可能受热分解。

4. 离子喷雾接口

在电喷雾接口基础上,利用气体辅助进行喷雾,可提高流动相流速达到1ml/min。电喷雾和离子喷雾技术中使用的流动相体系含有的缓冲液必须是挥发性的。

5. 粒子束接口

将色谱流出物转化为气溶胶,于脱溶剂室脱去溶剂,得到的中性待测物分子导入离子源,使用电子轰击或者化学电离的方式将其离子化,获得的质谱为经典的电子轰击电离或者化学电离质谱图,其中前者含有丰富的样品分子结构信息。但粒子束接口对样品的极性,热稳定性和分子质量有一定限制,最适用于分子量在1000Da以下的有机小分子测定。

6. 解吸附技术

将微柱液相色谱与粒子诱导解吸技术(快原子轰击,液相二次粒子质谱)结合,一般使用的流速在1~10μl/min之间,流动相须加入微量难挥发液体(如甘油)。混合液体通过一根毛细管流到置于离子源中的金属靶上,经溶剂挥发后形成的液膜被高能原子或者离子轰击而离子化。得到的质谱图与快原子轰击或者液相二次离子质谱的质谱图类似,但是本底却大大降低。

二、离子源

离子源的性能决定了离子化效率,很大程度上决定了质谱仪的灵敏度。常见的离子化方式有两种:一种是样品在离子源中以气体的形式被离子化,另一种为从固体表面或溶液中溅射出带电离子。在很多情况下进样和离子化同时进行。

1. 电子轰击电离(EI)

气化后的样品分子进入离子化室后,受到由钨或铼灯丝发射并加速的电子流的轰击产生正离子。离子化室压力保持在10-4~10-6mmHg。轰击电子的能量大于样品分子的电离能,使样品分子电离或碎裂。电子轰击质谱能提供有机化合物最丰富的结构信息,有较好的重现性,其裂解规律的研究也最为完善,已经建立了数万种有机化合物的标准谱图库可供检索。其缺点在于不适用于难挥发和热稳定性差的样品。

2. 化学电离(CI)

引入一定压力的反应气进入离子化室,反应气在具有一定能量的电子流的作用下电离或者裂解。生成的离子和反应气分子进一步反应或与样品分子发生离子分子反应,通过质子交换使样品分子电离。常用的反应气有甲烷,异丁烷和氨气。化学电离通常得到准分子离子,如果样品分子的质子亲和势大于反应气的质子亲和势,则生成[M+H]+,反之则生成[M-H]+。根据反应气压力不同,化学电离源分为大气压、中气压(0.1~10mmHg)和低气压(10-6mmHg)三种。大气压化学电离源适合于色谱和质谱联用,检测灵敏度较一般的化学电离源要高2~3个数量级,低气压化学电离源可以在较低的温度下分析难挥发的样品,并能使用难挥发的反应试剂,但是只能用于傅里叶变换质谱仪。

3. 快原子轰击(FAB)

将样品分散于基质(常用甘油等高沸点溶剂)制成溶液,涂布于金属靶上送入FAB离子源中。将经强电场加速后的惰性气体中性原子束(如氙)对准靶上样品轰击。基质中存在的缔合离子及经快原子轰击产生的样品离子一起被溅射进入气相,并在电场作用下进入质量分析器。如用惰性气体离子束(如铯或氩)来取代中性原子束进行轰击,所得质谱称为液相二次离子质谱(LSIMS)。

此法优点在于离子化能力强,可用于强极性、挥发性低、热稳定性差和相对分子质量大的样品及EI和CI难于得到有意义的质谱的样品。FAB比EI容易得到比较强的分子离子或准分子离子;不同于CI的一个优势在于其所得质谱有较多的碎片离子峰信息,有助于结构解析。缺点是对非极性样品灵敏度下降,而且基质在低质量数区(400以下)产生较多干扰峰。FAB 是一种表面分析技术,需注意优化表面状况的样品处理过程。样品分子与碱金属离子加合,

如[M+Na]和[M+K],有助于形成离子。这种现象有助于生物分子的离子化。因此,使用氯化钠溶液对样品表面进行处理有助于提高加合离子的产率。在分析过程中加热样品也有助于提高产率。

在FAB离子化过程中,可同时生成正负离子,这两种离子都可以用质谱进行分析。样品分子如带有强电子捕获结构,特别是带有卤原子,可以产生大量的负离子。负离子质谱已成功用于农药残留物的分析。

4. 场电离(field ionization,FI)和场解吸(field desorption,FD)

FI离子源由距离很近的阳极和阴极组成,两极间加上高电压后,阳极附近产生高达10+7~10+8V/cm的强电场。接近阳极的气态样品分子产生电离形成正分子离子,然后加速进入质量分析器。对于液体样品(固体样品先溶于溶剂)可用FD来实现离子化。将金属丝浸入样品液,待溶剂挥发后把金属丝作为发射体送入离子源,通过弱电流提供样品解吸附所需能量,样品分子即向高场强的发射区扩散并实现离子化。FD适用于难气化,热稳定性差的化合物。FI和FD均易得到分子离子峰。

5. 大气压电离源(API)

API是液相色谱/质谱联用仪最常用的离子化方式。常见的大气压电离源有三种:大气压电喷雾(APESI),大气压化学电离(APCI)和大气压光电离(APPI)。电喷雾离子化是从去除溶剂后的带电液滴形成离子的过程,适用于容易在溶液中形成离子的样品或极性化合物。因具有多电荷能力,所以其分析的分子量范围很大,既可用于小分子分析,又可用于多肽、蛋白质和寡聚核苷酸分析。APCI是在大气压下利用电晕放电来使气相样品和流动相电离的一种离子化技术,要求样品有一定的挥发性,适用于非极性或低、中等极性的化合物。由于极少形成多电荷离子,分析的分子量范围受到质量分析器质量范围的限制。APPI是用紫外灯取代APCI的电晕放电,利用光化作用将气相中的样品电离的离子化技术,适用于非极性化合物。由于大气压电离源是独立于高真空状态的质量分析器之外的,故不同大气压电离源之间的切换非常方便。

6. 基质辅助激光解吸离子化(MALDI)

将溶于适当基质中的样品涂布于金属靶上,用高强度的紫外或红外脉冲激光照射可实现样品的离子化。此方式主要用于可达100000Da质量的大分子分析,仅限于作为飞行时间分析器的离子源使用。

7. 电感耦合等离子体离子化(ICP)

等离子体是由自由电子、离子和中性原子或分子组成,总体上成电中性的气体,其内部温度高达几千至一万度。样品由载气携带从等离子体焰炬中央穿过,迅速被蒸发电离并通过离子引出接口导入到质量分析器。样品在极高温度下完全蒸发和解离,电离的百分比高,因此几乎对所有元素均有较高的检测灵敏度。由于该条件下化合物分子结构已经被破坏,所以ICP 仅适用于元素分析。

三、质量分析器

质量分析器将带电离子根据其质荷比加以分离,用于纪录各种离子的质量数和丰度。质量分析器的两个主要技术参数是所能测定的质荷比的范围(质量范围)和分辨率。

1. 扇形磁分析器

离子源中生成的离子通过扇形磁场和狭缝聚焦形成离子束。离子离开离子源后,进入垂直于其前进方向的磁场。不同质荷比的离子在磁场的作用下,前进方向产生不同的偏转,从而使离子束发散。由于不同质荷比的离子在扇形磁场中有其特有的运动曲率半径,通过改变磁场强度,检测依次通过狭缝出口的离子,从而实现离子的空间分离,形成质谱。

2. 四极杆分析器

因其由四根平行的棒状电极组成而得名。离子束在与棒状电极平行的轴上聚焦,一个直流固

定电压(DC)和一个射频电压(RF)作用在棒状电极上,两对电极之间的电位相反。对于给定的直流和射频电压,特定质荷比的离子在轴向稳定运动,其他质荷比的离子则与电极碰撞湮灭。将DC和RF以固定的斜率变化,可以实现质谱扫描功能。四极杆分析器对选择离子分析具有较高的灵敏度。

3. 离子阱分析器

由两个端盖电极和位于它们之间的类似四极杆的环电极构成。端盖电极施加直流电压或接地,环电极施加射频电压(RF),通过施加适当电压就可以形成一个势能阱(离子阱)。根据RF电压的大小,离子阱就可捕获某一质量范围的离子。离子阱可以储存离子,待离子累积到一定数量后,升高环电极上的RF电压,离子按质量从高到低的次序依次离开离子阱,被电子倍增监测器检测。目前离子阱分析器已发展到可以分析质荷比高达数千的离子。离子阱在全扫描模式下仍然具有较高灵敏度,而且单个离子阱通过时间序列的设定就可以实现多级质谱(MSn)的功能。

4. 飞行时间分析器

具有相同动能,不同质量的离子,因其飞行速度不同而分离。如果固定离子飞行距离,则不同质量离子的飞行时间不同,质量小的离子飞行时间短而首先到达检测器。各种离子的飞行时间与质荷比的平方根成正比。离子以离散包的形式引入质谱仪,这样可以统一飞行的起点,依次测量飞行时间。离子包通过一个脉冲或者一个栅系统连续产生,但只在一特定的时间引入飞行管。新发展的飞行时间分析器具有大的质量分析范围和较高的质量分辨率,尤其适合蛋白等生物大分子分析。

5. 傅里叶变换分析器

在一定强度的磁场中,离子做圆周运动,离子运行轨道受共振变换电场限制。当变换电场频率和回旋频率相同时,离子稳定加速,运动轨道半径越来越大,动能也越来越大。当电场消失时,沿轨道飞行的离子在电极上产生交变电流。对信号频率进行分析可得出离子质量。将时间与相应的频率谱利用计算机经过傅里叶变换形成质谱。其优点为分辨率很高,质荷比可以精确到千分之一道尔顿。

四、串联质谱及联用技术

1. 串联质谱

两个或更多的质谱连接在一起,称为串联质谱。最简单的串联质谱(MS/MS)由两个质谱串联而成,其中第一个质量分析器(MS1)将离子预分离或加能量修饰,由第二级质量分析器(MS2)分析结果。最常见的串联质谱为三级四极杆串联质谱。第一级和第三级四极杆分析器分别为MS1和MS2,第二级四极杆分析器所起作用是将从MS1得到的各个峰进行轰击,实现母离子碎裂后进入MS2再行分析。现在出现了多种质量分析器组成的串联质谱,如四极杆-飞行时间串联质谱(Q-TOF)和飞行时间-飞行时间(TOF-TOF)串联质谱等,大大扩展了应用范围。离子阱和傅里叶变换分析器可在不同时间顺序实现时间序列多级质谱扫描功能。

MS/MS最基本的功能包括能说明MS1中的母离子和MS2中的子离子间的联系。根据MS1和MS2的扫描模式,如子离子扫描、母离子扫描和中性碎片丢失扫描,可以查明不同质量数离子间的关系。母离子的碎裂可以通过以下方式实现:碰撞诱导解离,表面诱导解离和激光诱导解离。不用激发即可解离则称为亚稳态分解。MS/MS在混合物分析中有很多优势。在质谱与气相色谱或液相色谱联用时,即使色谱未能将物质完全分离,也可以进行鉴定。MS/MS可从样品中选择母离子进行分析,而不受其他物质干扰。

MS/MS在药物领域有很多应用。子离子扫描可获得药物主要成分,杂质和其他物质的母离子的定性信息,有助于未知物的鉴别,也可用于肽和蛋白质氨基酸序列的鉴别。

在药物代谢动力学研究中,对生物复杂基质中低浓度样品进行定量分析,可用多反应监测模式(multiple reaction monitoring,MRM)消除干扰。如分析药物中某特定离子,而来自基质中其他化合物的信号可能会掩盖检测信号,用MS1/MS2对特定离子的碎片进行选择监测可以消除干扰。MRM也可同时定量分析多个化合物。在药物代谢研究中,为发现与代谢前物质具有相同结构特征的分子,使用中性碎片丢失扫描能找到所有丢失同种功能团的离子,如羧酸丢失中性二氧化碳。如果丢失的碎片是离子形式,则母离子扫描能找到所有丢失这种碎片的离子。

2. 联用技术

色谱可作为质谱的样品导入装置,并对样品进行初步分离纯化,因此色谱/质谱联用技术可对复杂体系进行分离分析。因为色谱可得到化合物的保留时间,质谱可给出化合物的分子量和结构信息,故对复杂体系或混合物中化合物的鉴别和测定非常有效。在这些联用技术中,芯片/质谱联用(Chip/MS)显示了良好前景,但目前尚不成熟,而气相色谱/质谱联用和液相色谱/质谱联用等已经广泛用于药物分析。

(1)气相色谱/质谱联用(GC/MS)

气相色谱的流出物已经是气相状态,可直接导入质谱。由于气相色谱与质谱的工作压力相差几个数量级,开始联用时在它们之间使用了各种气体分离器以解决工作压力的差异。随着毛细管气相色谱的应用和高速真空泵的使用,现在气相色谱流出物已可直接导入质谱。

(2)液相色谱/质谱联用(HPLC/MS)

液相色谱/质谱联用的接口前已论及,主要用于分析GC/MS不能分析,或热稳定性差,强极性和高分子量的物质,如生物样品(药物与其代谢产物)和生物大分子(肽、蛋白、核酸和多糖)。

(3)毛细管电泳/质谱联用(CE/MS)和芯片/质谱联用(Chip/MS)

毛细管电泳(CE)适用于分离分析极微量样品(nl体积)和特定用途(如手性对映体分离等)。CE流出物可直接导入质谱,或加入辅助流动相以达到和质谱仪相匹配。微流控芯片技术是近年来发展迅速,可实现分离、过滤、衍生等多种实验室技术于一块芯片上的微型化技术,具有高通量、微型化等优点,目前也已实现芯片和质谱联用,但尚未商品化。

(4)超临界流体色谱/质谱联用(SFC/MS)

常用超临界流体二氧化碳作流动相的SFC适用于小极性和中等极性物质的分离分析,通过色谱柱和离子源之间的分离器可实现SFC和MS联用。

(5)等离子体发射光谱/质谱联用(ICP/MS)

由ICP作为离子源和MS实现联用,主要用于元素分析和元素形态分析。

五、数据处理和应用

检测器通常为光电倍增器或电子倍增器,所采集的信号经放大并转化为数字信号,计算机进行处理后得到质谱图。质谱离子的多少用丰度表示(abundance)表示,即具有某质荷比离子的数量。由于某个具体离子的“数量”无法测定,故一般用相对丰度表示其强度,即最强的峰叫基峰(base peak),其他离子的丰度用相对于基峰的百分数表示。在质谱仪测定的质量范围内,由离子的质荷比和其相对丰度构成质谱图。在LC/MS和GC/MS中,常用各分析物质的色谱保留时

间和由质谱得到其离子的相对强度组成色谱总离子流图。也可确定某固定的质荷比,对整个色谱流出物进行选择离子检测(selected ion monitoring,SIM),得到选择离子流图。质谱仪分离离子的能力称为分辨率,通常定义为高度相同的相邻两峰,当两峰的峰谷高度为峰高的10%时,两峰质量的平均值与它们的质量差的比值。对于低、中、高分辨率的质谱,分别是指其分辨率在100~2000、2000~10000和10000以上。

质谱在药物领域的主要应用为药物的定性鉴别、定量分析和结构解析。

如果一个中性分子丢失或得到一个电子,则分子离子的质荷比与该分子质量数相同。使用高分辨率质谱可得到离子的精确质量数,然后计算出该化合物的分子式,或者用参照物作峰匹配可以确证分子量和分子式。分子离子的各种化学键发生断裂后形成碎片离子,由此可推断其裂解方式,得到相应的结构信息。

质谱用于定量分析,其选择性、精度和准确度较高。化合物通过直接进样或利用气相色谱和液相色谱分离纯化后再导入质谱。质谱定量分析用外标法或内标法,后者精度高于前者。定量分析中的内标可选用类似结构物质或同位素物质。前者成本低,但精度和准确度以使用同位素物质为高。使用同位素物质为内标时,要求在进样、分离和离子化过程中不会丢失同位素物质。在使用FAB质谱和LC/MS (热喷雾和电喷雾)进行定量分析时,一般都需要用稳定的同位素内标。分析物和内标离子的相对丰度采用选择离子监测(只监测分析物和内标的特定离子)的方式测定。选择离子监测相对全范围扫描而言,由于离子流积分时间长而增加了选择性和灵敏度。利用分析物和内标的色谱峰面积或峰高比得出校正曲线,然后计算样品中分析物的色谱峰面积或它的量。

解析未知样的质谱图,大致按以下程序进行。

(一)解析分子离子区

(1) 标出各峰的质荷比数,尤其注意高质荷比区的峰。

(2) 识别分子离子峰。首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。若二者均相符,可认为是分子离子峰。

(3) 分析同位素峰簇的相对强度比及峰与峰间的Dm值,判断化合物是否含有C1、Br、S、Si等元素及F、P、I等无同位素的元素。

(4) 推导分子式,计算不饱和度。由高分辨质谱仪测得的精确分子量或由同位素峰簇的相对强度计算分子式。若二者均难以实现时,则由分子离子峰丢失的碎片及主要碎片离子推导,或与其它方法配合。

(5) 由分子离子峰的相对强度了解分子结构的信息。分子离子峰的相对强度由分子的结构所决定,结构稳定性大,相对强度就大。对于分子量约200的化合物,若分子离子峰为基峰或强蜂,谱图中碎片离子较少、表明该化合物是高稳定性分子,可能为芳烃或稠环化合物。

例如:萘分子离子峰m/z 128为基峰,蒽醌分子离子峰m/z 208也是基峰。分子离子峰弱或不出现,化合物可能为多支链烃类、醇类、酸类等。

(二)、解析碎片离子

(1) 由特征离子峰及丢失的中性碎片了解可能的结构信息。

若质谱图中出现系列CnH2n+1峰,则化合物可能含长链烷基。若出现或部分出现m/z 77,66,65,51,40,39等弱的碎片离子蜂,表明化合物含有苯基。若m/z 91或105为基峰或强峰,表明化合物含有苄基或苯甲酰基。若质谱图中

基峰或强峰出现在质荷比的中部,而其它碎片离子峰少,则化合物可能由两部分结构较稳定,其间由容易断裂的弱键相连。

(2) 综合分析以上得到的全部信息,结合分子式及不饱和度,提出化合物的可能结构。

(3) 分析所推导的可能结构的裂解机理,看其是否与质谱图相符,确定其结构,并进一步解释质谱,或与标准谱图比较,或与其它谱(1H NMR、13C NMR、IR)配合,确证结构。

质谱分析法主要是通过对样品的离子的质荷比的分析而实现对样品进行定性和定量的一种方法。因此,质谱仪都必须有电离装置把样品电离为离子,有质量分析装置把不同质荷比的离子分开

电子电离源又称EI源,是应用最为广泛的离子源,它主要用于挥发性样品的电离。图9.1是电子电离源的原理图,由GC或直接进样杆进入的样品,以气体形式进入离子源,由灯丝F发出的电子与样品分子发生碰撞使样品分子电离。一般情况下,灯丝F与接收极T之间的电压为70伏,所有的标准质谱图都是在70ev下做出的。在70ev电子碰撞作用下,有机物分子可能被打掉一个电子形成分子离子,也可能会发生化学键的断裂形成碎片离子。由分子离子可以确定化合物分子量,由碎片离子可以得到化合物的结构。对于一些不稳定的化合物,在70ev的电子轰击下很难得到分子离子。为了得到分子量,可以采用1020ev的电子能量,不过此时仪器灵敏度将大大降低,需要加大样品的进样量。而且,得到的质谱图不再是标准质谱图。

离子源中进行的电离过程是很复杂的过程,有专门的理论对这些过程进行解释和描述。在电子轰击下,样品分子可能有四种不同途径形成离子:

样品分子被打掉一个电子形成分子离子。

分子离子进一步发生化学键断裂形成碎片离子。

分子离子发生结构重排形成重排离子。

通过分子离子反应生成加合离子。

此外,还有同位素离子。这样,一个样品分子可以产生很多带有结构信息的离子,对这些离子进行质量分析和检测,可以得到具有样品信息的质谱图。

电子电离源主要适用于易挥发有机样品的电离,GC-MS联用仪中都有这种离子源。其优点是工作稳定可靠,结构信息丰富,有标准质谱图可以检索。缺点是只适用于易汽化的有机物样品分析,并且,对有些化合物得不到分子离子。

化学电离源(Chemical Ionization , EI )。

有些化合物稳定性差,用EI方式不易得到分子离子,因而也就得不到分子量。为了得到分子量可以采用CI电离方式。CI和EI在结构上没有多大差别。或者说主体部件是共用的。其主要差别是CI源工作过程中要引进一种反应气体。反应气体可以是甲烷、异丁烷、氨等。反应气的量比样品气要大得多。灯丝发出的电子首先将反应气电离,然后反应气离子与样品分子进行离子-分子反应,并使样品气电离。现以甲烷作为反应气,说明化学电离的过程。在电子轰击下,甲烷首先被电离:

CH4+e CH4+ + CH3+ + CH2+ + CH++ C+ + H+

甲烷离子与分子进行反应,生成加合离子:

CH4+ + CH4 CH5+ + CH3

CH3 + + CH4 C2H5+ + H2

加合离子与样品分子反应:

CH5+ + XH XH2+ + CH4

C2H5+ + XH X+ +C2H6

生成的XH2+ 和X+ 比样品分子XH多一个H或少一个H,可表示为(M1),称为准分子离子。事实上,以甲烷作为反应气,除(M+1)+之外,还可能出现(M+17)+,(M+29)+ 等离子,同时还出现大量的碎片离子。化学电离源是一种软电离方式,有些用EI方式得不到分子离子的样品,改用CI后可以得到准分子离子,因而可以求得分子量。对于含有很强的吸电子基团的化合物,检测负离子的灵敏度远高于正离子的灵敏度,因此,CI源一般都有正CI和负CI,可以根据样品情况进行选择。由于CI得到的质谱不是标准质谱,所以不能进行库检索。

EI和CI源主要用于气相色谱-质谱联用仪,适用于易汽化的有机物样品分析。四极杆分析器由四根棒状电极组成。电极材料是镀金陶瓷或钼合金。相对两根电极间加有电压(Vdc+Vrf),另外两根电极间加有-(Vdc+Vrf)。其中Vdc为直流电压,Vrf为射频电压。四个棒状电极形成一个四极电场。图9.8是这种分析器示意图:

离子从离子源进入四极场后,在场的作用下产生振动,如果质量为m,电荷为e的离子从Z方向进入四极场,在电场作用下其运动方程是:

离子运动轨迹可由方程9.2的解描述,数学分析表明,在a, q取某些数值时,运动方程有稳定的解,稳定解的图解形式通常用a, q参数的稳定三角形表示。(图9.9)当离子的a, q值处于稳定三角形内部时,这些离子振幅是有限的,因而可以通过四极场达到检测器。在保持Vdc/Vrf不变的情况下改变Vrf值,对应于一个Vrf值,四极场只允许一种质荷比的离子通过,其余离子则振幅不断增大,最后碰到四极杆而被吸收。通过四极杆的离子到达检测器被检测。改变Vrf值,可以使另外质荷比的离子顺序通过四极场实

现质量扫描。设置扫描范围实际上是设置Vrf值的变化范围。当Vrf值由一个值变化到另一个值时,检测器检测到的离子就会从m1变化到m2,也即得到m1到m2的质谱。

Vrf的变化可以是连续的,也可以是跳跃式的。所谓跳跃式扫描是只检测某些质量的离子,故称为选择离子监测(select ion monitoring SIM)。当样品量很少,而且样品中特征离子已知时,可以采用选择离子监测。这种扫描方式灵敏度高,而且,通过选择适当的离子使干扰组份不被采集,可以消除组分间的干扰。SIM适合于定量分析,但因为这种扫描方式得到的质谱不是全谱,因此不能进行质谱库检索和定性分析。

.2.2.1 气相色谱-质谱联用仪(Gas chromatography-Mass spectrometer, GC-MS) GC-MS主要由三部分组成:色谱部分、质谱部分和数据处理系统。色谱部分和一般的色谱仪基本相同,包括有柱箱、汽化室和载气系统,也带有分流/不分流进样系统,程序升温系统、压力、流量自动控制系统等,一般不再有色谱检测器,而是利用质谱仪作为色谱的检测器。在色谱部分,混合样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。

色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置一分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,则可以将毛细管直接插入质谱仪离子源,因为毛细管载气流量比填充柱小得多,不会破坏质谱仪真空。

GC-MS的质谱仪部分可以是磁式质谱仪、四极质谱仪,也可以是飞行时间质谱仪和离子阱。目前使用最多的是四极质谱仪。离子源主要是EI源和CI源。

GC-MS的另外一个组成部分是计算机系统。由于计算机技术的提高,GC-MS 的主要操作都由计算机控制进行,这些操作包括利用标准样品(一般用FC-43)校准质谱仪,设置色谱和质谱的工作条件,数据的收集和处理以及库检索等。这样,一个混合物样品进入色谱仪后,在合适的色谱条件下,被分离成单一组成并逐一进入质谱仪,经离子源电离得到具有样品信息的离子,再经分析器、检测器即得每个化合物的质谱。这些信息都由计算机储存,根据需要,可以得到混合物的色谱图、单一组分的质谱图和质谱的检索结果等。根据色谱图还可以进行定量分析。因此,GC-MS是有机物定性、定量分析的有力工具。

作为GC-MS联用仪的附件。还可以有直接进样杆和FAB源等。但是FAB 源只能用于磁式双聚焦质谱仪。直接进样杆主要是分析高沸点的纯样品,不经过GC进样,而是直接送到离子源,加热汽化后,由EI电离。另外,GC-MS的数据系统可以有几套数据库,主要有NIST库,Willey库,农药库,毒品库等。9.2.2.2 液相色谱-质谱联用仪(Liquid chromatography Mass spectrometer,LC-MS)

LC-MS联用仪主要由高效液相色谱,接口装置(同时也是电离源),质谱仪组成。高效液相色谱与一般的液相色谱相同,其作用是将混合物样品分离后进入质谱仪。此处从略。仅介绍接口装置和质谱仪部分。

LC-MS接口装置

LC-MS联用的关键是LC和MS之间的接口装置。接口装置的主要作用是去除溶剂并使样品离子化。早期曾经使用过的接口装置有传送带接口,热喷雾接口,粒子束接口等十余种,这些接口装置都存在一定的缺点,因而都没有得到广泛推广。20世纪80年代,大气压电离源用作LC和MS联用的接口装置和电离装置之后,使得LC-MS联用技术提高了一大步。目前,几乎所有的LC-MS联用仪都使用大气压电离源作为接口装置和离子源。大气压电离源(Atmosphere pressure Ionization,API)包括电喷雾电离源(Electrospray Ionization,ESI) 和大气压化学电离源(Atmospheric Pressure Chemicel Ionization,APCI)两种,二者之中电喷雾源应用最为广泛。电喷雾电离源的原理与特点请参见本书第9.2.1节。

除了电喷雾和大气压化学电离两种接口之外,极少数仪器还使用粒子束喷雾和电子轰击相结合的电离方式,这种接口装置可以得到标准质谱,可以库检索、但只适用于小分子,应用也不普遍,故不详述。以外,还有超声喷雾电离接口。也因使用不普遍,故从略

GC-MS灵敏度

GC-MS灵敏度表示在一定的样品(如八氟萘或六氯苯),在一定的分辨率下,产生一定信噪比的分子离子峰所需的样品量。具体测量方法如下:通过GC 进标准测试样品(八氟萘)1pg,质谱采用全扫描方式从m/z200扫到m/z300,扫描完成后,用八氟萘的分子离m/z272做质量色谱图并测定m/z 272离子的信噪比,如果信噪比为20,则该仪器的灵敏度可表示为1pg八氟萘(信噪比20:1)。有的仪器用六氯苯作测试样品,那么测量时要改用六氯苯的分子离子m/z288.如果仪器灵敏度达不到1pg。则要加大进样量,直到有合适大小的信噪比为止。用此时的进样量及信噪比规定灵敏度指标。

LC-MS的灵敏度测定常采用利血平作为测试样品,测试方法如下:配置一定浓度的利血平(如10pg/μl),通过LC进一定量样品,以水和甲醇各50%为流动相(加入1%醋酸),全扫描,做利血平质子化分子离子峰m/z 609的质量色谱图。用进样量和信噪比规定灵敏度指标。

9.2.3.2 分辨率10万以上。质量范围的大小取决于质量分析器。四极杆分析器的质量范围上限一般在1000左右,也有的可达3000,而飞行时间质量分析器可达几十万。由于质量分离的原理不同,不同的分析器有不同的质量范围。彼此间比较没任何意义。同类型分析器则在一定程度上反映质谱仪的性能。当然,了解一台仪器的质量范围,主要为了知道它能分析的样品分子量范围。不能简单认为质量范围宽仪器就好。对于GC-MS来说,分析的对象是挥发性有机物,其分子量一般不超过500,最常见的是300以下。因此,对于GC-MS的质谱仪来说,质量范围达到800应该就足够了,再高也不一定就肯定好。如果是LC-MS用质谱仪,因为分析的很多是生物大分子,质量范围宽一点会好一些。

质谱仪的分辨率表示质谱仪把相邻两个质量分开的能力。常用R表示。其定义是,如果某质谱仪在质量M处刚刚能分开M和M+ΔM两个质量的离子。则该质谱仪的分辨率为。例如某仪器能刚刚分开质量为27.9949和28.0061两个离子峰。则该仪器的分辨率为这里有两点需说明:所谓两峰刚刚分开,一般是指两峰间的“峰谷”是峰高的10%(每个峰提供5%)。另外,在实际测量时,很难找到刚刚分开的两个峰,这时可采用下面方法进行分辨率的测量:如果两个质谱峰M1和M2的中心距离为a,峰高5%处的峰宽为b(见图9-18),则该仪器的分辨率为:

(9-7)

还有一种定义分辨的方式:如果质量为M的质谱峰其峰高50%处的峰宽(半峰宽)为ΔM。则分辨率为,这后一种表示方法测量时比较方便。目前,FT-MS 和TOF-MS采用这种分辨率表示方式。对于磁式质谱仪,质量分离是不均匀的,在低质量端离子分散大,高质量端离子分散小,或者说M小时ΔM小,M大时ΔM也大。因此,仪器的分辨率数值基本不随M变化。在四极质谱仪中。质量排列是均匀的,若在M=100处,ΔM=1,则R=100,

在M=1000时,也是ΔM=1,则R=1000,分辨率随质量变化。为了对不同M处的分辨率都有一个共同的表示法,四极质谱仪的分辨率一般表示为M的倍数,如R=1.7M或R=2M等。如果是R=2M,表示在M=100时,R=200;M=1000

时,R=2000。

质量范围是质谱仪所能测定的离子质荷比的范围。对于多数离子源,电离得到的离子为单电荷离子。这样,质量范围实际上就是可以测定的分子量范围;对于电喷雾源,由于形成的离子带有多电荷,尽管质量范围只有几千,但可以测定的分子量可达

9.2.3.4 质量稳定性和质量精度

质量稳定性主要是指仪器在工作时质量稳定的情况,通常用一定时间内质量漂移的质量单位来表示。例如某仪器的质量稳定性为:0.1amu/12hr,意思是该仪器在12小时之内,质量漂移不超过0.1amu。

质量精度是指质量测定的精确程度。常用相对百分比表示,例如,某化合物的质量为152,0473amu,用某质谱仪多次测定该化合物,测得的质量与该化合物理论质量之差在0.003 amu之内,则该仪器的质量精度为百万分之二十(20ppm)。质量精度是高分辨质谱仪的一项重要指标,对低分辨质谱仪没有太大意义。

9.3.1EI质谱中的各种离子

分子离子

在电子轰击下,有机物分子失去一个电子所形成的离子叫分子离子。

M+e →M++2e

式中M+是分子离子。由于分子离子是化合物失去一个电子形成的,因此,分子离子是自由基离子。通常把带有未成对电子的离子称为奇电子离子(OE),并标以"",把外层电子完全成对的离子称为偶电子离子(EE),并标以"+",分子离子一定是奇电子离子。关于离子的电荷位置,一般认为有下列几种情况:如果分子中含有杂原子,则分子易失去杂原子的未成键电子而带电荷,电荷位置可表示在杂原子上,如CH3CH2O+H。如果分子中没有杂原子而有双键,则双键电子较易失去,则正电荷位于双键的一个碳原子上。如果分子中既没有杂原子又没有双键,其正电荷位置一般在分支碳原子上。如果电荷位置不确定,或不需要确定电荷的位置,可在分子式的右上角标:"┒+",例如CH3COOC2H5┒+。

在质谱中,分子离子峰的强度和化合物的结构有关。环状化合物比较稳定,不易碎裂,因而分子离子较强。支链较易碎裂,分子离子峰就弱,有些稳定性差的化合物经常看不到分子离子峰。一般规律是,化合物分子稳定性差,键长,分子离子峰弱,有些酸醇及支键烃的分子离子峰较弱甚至不出现,相反,芳香化合物往往都有较强的分子离子峰。分子离子峰强弱的大致顺序是:芳环>共轭烯>烯>酮>不分支烃>醚>酯>胺>酸>醇>高分支烃。

分子离子是化合物分子失去一个电子形成的,因此,分子离子的质量就是化合物的分子量,所以分子离子在化合物质谱的解释中具有特殊重要的意义。

碎片离子

碎片离子是分子离子碎裂产生的。当然,碎片离子还可以进一步碎裂形成更小的离子。碎片离子形成的机理有下面几种情况:

游离基引发的断裂(α断裂)

游离基对分子断裂的引发是由于电子的强烈成对倾向造成的。由游离基提供一个奇电子与邻接原子形成一个新键,与此同时,这个原子的另一个键(α键)断裂。这种断裂通常称为α断裂。α断裂主要有下面几种情况:

A.含饱和杂原子:

上式中是单箭头,表示单电子转移,Y为杂原子。现以乙醇的断裂进一步说明。

因为α断裂比较容易发生,因此,在乙醇质谱中,m/z 31的峰比较强。B.含不饱和杂原子

以丙酮为例,说明断裂产生机理:

C.烯烃(烯丙断裂)

烯丙断裂生成稳定的烯丙离子(m/z41).

D.烷基苯(苄基断裂)

断裂后生成很强的苄基离子(m/z 91),m/z 91离子是烷基苯类化合物的特征离子。

以上几种断裂都是由游离基引发的。游离基电子与转移的电子形成新键,同时伴随着相近键的断裂,形成相应的离子。断裂发生的位置都是电荷定位原子相邻的第一个碳原子和第二个碳原子之间的键,这个键称为α键,因此,这类自由基引发的断裂统称α断裂。

正电荷引发的断裂(诱导断裂或i断裂)

诱导断裂是由正电荷诱导、吸引一对电子而发生的断裂,其结果是正电荷的转移。诱导断裂常用i来表示。双箭头表示双电子转移。

一般情况下,电负性强的元素诱导力也强。在有些情况下,诱导断裂和α

断裂同时存在,由于i断裂需要电荷转移,因此,i断裂不如α断裂容易进行。表现在质谱中,相应α断裂的离子峰强,i断裂产生的离子峰较弱。例如乙醚的断裂:

i断裂和α断裂同时存在, α断裂的几率大于i断裂。但由于α断裂生成的m/z 59还有进一步的断裂,因此,在乙醚的质谱中,m/z 59 并不比m/z 29强。σ断裂

如果化合物分子中具有σ键,如烃类化合物,则会发生σ键断裂。σ键断裂需要的能量大,当化合物中没有π电子和n电子时,σ键的断裂才可能成为主要的断裂方式。断裂后形成的产物越稳定,这样的断裂就越容易进行,阳碳离子的稳定性顺序为叔>仲>伯>,因此,碳氢化合物最容易在分支处发生键的断裂。并且,失去最大烷基的断裂最容易进行。例如

环烯的断裂--逆狄尔斯-阿德尔反应

利用有机合成中的狄尔斯-阿德尔反应,可以由丁二烯和乙烯制备环己烯:在质谱的分子离子断裂反应中,环己烯可以生成丁二烯和乙烯,正好与上面反应相反,所以称为逆狄尔斯--阿德尔(Retro-Diels-Alder)反应,简称RDA。

现在,RDA反应已广泛用来解释含有环己烯结构的各类化合物。例如,萜烯化合物的裂解:

这类裂解反应的特点是,环己烯双键打开,同时引发两个α键断开,形成两个新的双键,电荷处在带双键的碎片上。

同位素离子

同位素离子

大多数元素都是由具有一定自然丰度的同位素组成。表9.3是有机物中各元素的自然丰度。这些元素形成化合物后,其同位素就以一定的丰度出现在化合物中。因此,化合物

表9.3有机物中各元素的同位素丰度

元素C H N O

同位素12C13C 1H2H 14N15N 16O 17O 18O

丰度100 1.08 1000.016 1000.38 100 0.04 0.20

元素P S F Cl Br

同位素31P 32S 33S 34S 19F 35CI37CI 79Br81Br

丰度100 100 0.78 4.4 100 10032.5 10098

的质谱中就会有不同同位素形成的离子峰,通常把由重同位素形成的离子峰叫同位素峰。例如,在天然碳中有两种同位素,12C和13C。二者丰度之比为100:1.1,如果由12C组成的化合物质量为M,那么,由13C组成的同一化合物的质量则为M+1。同样一个化合物生成的分子离子会有质量为M和M+1的两种离子。如果化合物中含有一个碳,则M+1离子的强度为M离子强度的1.1%;如果含有二个碳,则M+1离子强度为M离子强度的2.2%。这样,根据M与M+1离子强度之比,可以估计出碳原子的个数。氯有两个同位素35Cl和37Cl,两者丰度比为100:32.5,或近似为3:1。当化合物分子中含有一个氯时,如果由35Cl形成的分子质量为M,那么,由37Cl形成的分子质量为M+2。生成离子后,离子质量分别为M和M+2,离子强度之比近似为3:1。如果分子中有两个氯,其组成方式可以有R35Cl35Cl、R35Cl37Cl、R37Cl37Cl,分子离子的质量有M,M+2,M+4,

离子强度之比为9:6:1。同位素离子的强度之比,可以用二项式展开式各项之比来表示:

(a+b)n (9.8)

式中:a-某元素轻同位素的丰度;

b-某元素重同位素的丰度;

n-同位素个数。

例如,某化合物分子中含有两个氯,其分子离子的三种同位素离子强度之比,由上式计算得:(a+b)n=(3+1)2=9+6+1

即三种同位素离子强度之比为9:6:1。这样,如果知道了同位素的元素个数,可以推测各同位素离子强度之比。同样,如果知道了各同位素离子强度之比,可以估计出元素的个数。

重排离子

有些离子不是由简单断裂产生的,而是发生了原子或基团的重排,这样产生的离子称为重排离子。当化合物分子中含有C=X(X为O、N、S、C)基团,而且与这个基团相连的链上有γ氢原子,这种化合物的分子离子碎裂时,此γ氢原子可以转移到X原子上去,同时β键断裂。例如,

这种断裂方式是Mclafferty在1956年首先发现的,因此称为Mclafferty 重排,简称麦氏重排。对于含有象羰基这样的不饱和官能团的化合物,γ氢是通过六员环过渡态转移的。凡是具有γ的氢的醛、酮、酯、酸及烷基苯、长链烯等,都可以发生麦氏重排。例如:

麦氏重排的特点如下:同时有两个以上的键断裂并丢失一个中性小分子,生成的重排离子的质量数为偶数。

除麦氏重排外,重排的种类还很多,经过四元环,五元环都可以发生重排。重排既可以是自由基引发的,也可以是电荷引发的。

自由基引发的重排:

9.3.2EI质谱的解释

一张化合物的质谱包含着有关化合物的很丰富的信息。在很多情况下,仅依靠质谱就可以确定化合物的分子量、分子式和分子结构。而且,质谱分析的样品用量极微,因此,质谱法是进行有机物鉴定的有力工具。当然,对于复杂的有机化合物的定性,还要借助于红外光谱,紫外光谱,核磁共振等分析方法。

质谱的解释是一种非常困难的事情。自从有了计算机联机检索之后,特别是数据库越来越大的今天,尽管靠人工解释EI质谱已经越来越少,但是,作为对化合物分子断裂规律的了解,作为计算机检索结果的检验和补充手段,质谱图的人工解释还有它的作用,特别是对于谱库中不存在的化合物质谱的解释。另外,在MS-MS分析中,对子离子谱的解释,目前还没有现成的数据库,主要靠人工解释。因此,学习一些质谱解释方面的知识,在目前仍然是有必要的。

分子量确定

分子离子的质荷比就是化合物的分子量。因此,在解释质谱时首先要确定分子离子峰,通常判断分子离子峰的方法如下:

分子离子峰一定是质谱中质量数最大的峰,它应处在质谱的最右端。

分子离子峰应具有合理的质量丢失。也即在比分子离子小4-14及20-25个质量单位处,不应有离子峰出现。否则,所判断的质量数最大的峰就不是分子离子峰。因为一个有机化合物分子不可能失去4-14个氢而不断链。如果断键,失去的最

小碎片应为CH3,它的质量是15个质量单位。同样,也不可能失去20-25个质量单位。

分子离子应为奇电子离子,它的质量数应符合氮规则。所谓氮规则是指在有机化合物分子中含有奇数个氮时,其分子量应为奇数。含有偶数个(包括0个)氮时,其分子量应为偶数。这是因为组成有机化合物的元素中,具有奇数价的原子具有奇数质量,具有偶数价的原子具有偶数质量,因此,形成分子之后,分子量一定是偶数。而氮则例外,氮有奇数价而具有偶数质量,因此,分子中含有奇数个氮,其分子量是奇数,含有偶数个氮,其分子量一定是偶数。

如果某离子峰完全符合上述三项判断原则,那么这个离子峰可能是分子离子峰;如果三项原则中有一项不符合,这个离子峰就肯定不是分子离子峰。应该特别注意的是,有些化合物容易出现M-1峰或M+1峰,另外,在分子离子很弱时,容易和噪音峰相混,所以,在判断分子离子峰时要综合考虑样品来源,性质等其他因素。如果经判断没有分子离子峰或分子离子峰不能确定,则需要采取其它方法得到分子离子峰,常用的方法有:

降低电离能量

通常EI源所用电离电压为70V,电子的能量为70eV,在这样高能量电子的轰击下,有些化合物就很难得到分子离子。这时可采用12eV左右的低电子能量,虽然总离子流强度会大大降低,但有可能得到一定强度的分子离子峰。

制备衍生物

有些化合物不易挥发或热稳定差,这时可以进行衍生化处理。例如有机酸可以制备成相应的酯,酯类容易汽化,而且容易得到分子离子峰,可以由此再推断有

机酸的分子量。

采取软电离方式

软电离方式很多,有化学电离源、快原子轰击源、场解吸源及电喷雾源等。要根据样品特点选用不同的离子源。软电离方式得到的往往是准分子离子,然后由准分子离子推断出真正的分子量。

分子式确定

利用一般的EI质谱很难确定分子式。在早期,曾经有人利用分子离子峰的同位素峰来确定分子组成式。有机化合物分子都是由C、H、O、N……等元素组成的,这些元素大多具有同位素,由于同位素的贡献,质谱中除了有质量为M的分子离子峰外,还有质量为M+1,M+2的同位素峰。由于不同分子的元素组成不同,不同化合物的同位素丰度也不同,贝农(Beynon)将各种化合物(包括C,H,O,N的各种组合)的M、M+1、M+2的强度值编成质量与丰度表,如果知道了化合物的分子量和M、M+1、M+2的强度比,即可查表确定分子式。例如,某化合物分子量为M=150(丰度100%)。M+1的丰度为9.9%,M+2的丰度为0.88%,求化合物的分子式。根据Beynon表可知,M=150化合物有29个,其中与所给数据相符的为C9H10O2。这种确定分子式的方法要求同位素峰的测定十分准确。而且只适用于分子量较小,分子离子峰较强的化合物,如果是这样的质谱图,利用计算机进行库检索得到的结果一般都比较好,不需再计算同位素峰和查表。因此,这种查表的方法已经不再使用。

利用高分辨质谱仪可以提供分子组成式。因为碳、氢、氧、氮的原子量分别为12.000000,10.07825,15.994914,14.003074,如果能精确测定化合物的分子量,可以由计算机轻而易举的计算出所含不同元素的个数。目前傅立叶变换质谱仪、双聚焦质谱仪、飞行时间质谱仪等都能给出化合物的元素组成。

分子结构的确定

从前面的叙述可以知道,化合物分子电离生成的离子质量与强度,与该化合物分子的本身结构有密切关系。也就是说,化合物的质谱带有很强的结构信息,通过对化合物质谱的解释,可以得到化合物的结构。下面就质谱解释的一般方法做一说明。

谱图解释的一般方法

一张化合物的质谱图包含有很多的信息,根据使用者的要求,可以用来确定分子量、验证某种结构、确认某元素的存在,也可以用来对完全未知的化合物进行结构鉴定。对于不同的情况解释方法和侧重点不同。质谱图一般的解释步骤如下:

由质谱的高质量端确定分子离子峰,求出分子量,初步判断化合物类型及是否含有Cl、Br、S等元素。

根据分子离子峰的高分辨数据,给出化合物的组成式。

由组成式计算化合物的不饱和度,即确定化合物中环和双键的数目。计算方法为:

不饱和度U=四价原子数-

例如,苯的不饱和度

不饱和度表示有机化合物的不饱和程度,计算不饱和度有助于判断化合物的结构。

研究高质量端离子峰。质谱高质量端离子峰是由分子离子失去碎片形成的。从分子离子失去的碎片,可以确定化合物中含有哪些取代基。常见的离子失去碎片的情况有:

M-15(CH3)

M-17(OH,NH3)

M-19(F)

M-27(HCN,C2H3)

M-29(CHO,C2H5)

M-31(CH2OH,OCH3)

M-35(Cl)

M-43(CH3CO,C3H7)

M-45(OC2H5,COOH)

M-79(Br) M-16(O,NH2)M-18(H2O) M-26(C2H2)M-28(CO,C2H4) M-30(NO)M-32(S,CH3OH) M-42(CH2CO,CH2N2)M-44(CO2,CS2) M-46(NO2,C2H5OH)M-127(I)……

研究低质量端离子峰,寻找不同化合物断裂后生成的特征离子和特征离子系列。例如,正构烷烃的特征离子系列为m/z15、29、43、57、71等,烷基苯的特征离子系列为m/z91、77、65、39等。根据特征离子系列可以推测化合物类型。

通过上述各方面的研究,提出化合物的结构单元。再根据化合物的分子量、分子式、样品来源、物理化学性质等,提出一种或几种最可能的结构。必要时,可根据红外和核磁数据得出最后结果。

验证所得结果。验证的方法有:将所得结构式按质谱断裂规律分解,看所得离子和所给未知物谱图是否一致;查该化合物的标准质谱图,看是否与未知谱图相同;寻找标样,做标样的质谱图,与未知物谱图比较等各种方法。

由元素分析测得某化合物的组成式为C8H8O2,其质谱图如图9.19,确定化合物结构式:

[解]

该化合物分子量M=136

该化合物的不饱和度

由于不饱和度为5,而且质谱中存在m/z 77,51等峰,可以推断该化合物中含有苯环。

高质量端质谱峰m/z105是m/z 136失去质量为31的碎片(-CH2OH或-OCH3)产生的,m/z 77(苯基)是m/z 105失去质量为28的碎片(-CO或-C2H4)产生的。因为质谱中没有m/z 91离子,所以m/z105对应的是136失去CO,而不136失去C2H4。

推断化合物的结构为

最后,可以用标样确定未知物属于哪种结构。对于本例也可用红外光谱法进一步确证。

[例2] 图9.20是某未知物质谱图,试确定其结构。

[解]

由质谱图可以确定该化合物的分子量M=154。M/z 156是m/z 154的同位素峰。

由m/z154和m/z156之比约为3:1,可以推测化合物中含有一个Cl原子。

m/z154失去15个质量单位(CH3)得m/z139离子。

m/z139失去28个质量单位(CO,C2H4)得m/z111离子。

m/z77、m/z 76、m/z 51是苯环的特征离子。

m/z 43可能是-C3H7或-COCH3生成的离子。

由以上分析,该化合物存在的结构单元可能有:

根据质谱图及化学上的合理性,提出未知物的可能结构为:

(a) (b) (c)

上述三种结构中,如果是(b),则质谱中必然有很强的m/z 125离子,这与所给谱图不符;如果是(c),根据一般规律,该化合物也应该有m/z125离子,尽管离子强度较低。所以,是这种结构的可能性较小;如果是(a),其断裂情况与谱图完全一致。

如果只依靠质谱图的解释,可能给出(a)和(c)两种结构式。然后用下面的方法进一步判断:

①查(a)、(c)的标准质谱图。看哪个与未知谱图相同。

②利用标样做质谱图。看哪个谱图与未知物谱图相同。

③利用MS-MS联用技术,确定离子间的相互关系,进一步分析谱图,最后确定未知

物结构

质谱仪种类很多,不同类型的质谱仪的主要差别在于离子源。离子源的不同决定了对被测样品的不同要求,同时所得到信息也不同。质谱仪的分辨率也非常重要,高分辨质谱仪可以给出化合物的组成式,这对于未知物定性是至关重要的。因此,在进行质谱分析前,要根据样品状况和分析要求选择合适的质谱仪。目前,有机质谱仪主要有两大类:气相色谱-质谱联用仪和液相色谱-质谱联用仪,现就这两类仪器的分析方法叙述如下:

9.4.1GC-MS分析方法

9.4.1.1 GC-MS分析条件的选择

在GC-MS分析中,色谱的分离和质谱数据的采集是同时进行的。为了使每个组分都得到分离和鉴定,必须设备合适的色谱和质谱分析条件。

色谱条件包括色谱柱类型(填充柱或毛细管柱),固定液种类,汽化温度,载气流量,分流比,温升程序等。设置的原则是:一般情况下均使用毛细管柱,极性样品使用极性毛细管柱,非极性样品采用非极性毛细管柱,未知样品可先用

中等极性的毛细管柱,试用后再调整。当然,如果有文献可以参考,就采用文献所用条件。

质谱条件包括电离电压,电子电流,扫描速度,质量范围,这些都要根据样品情况进行设定。为了保护灯绿和倍增器,在设定质谱条件时,还要设置溶剂去除时间,使溶剂峰通过离子源之后再打开灯绿和倍增器。

在所有的条件确定之后,将样品用微量注射器注入进样口,同时启动色谱和质谱,进行GC-MS分析。

9.4.1.2 GC-MS数据的采集

有机混合物样品用微量注射器由色谱仪进样口注入,经色谱柱分离后进入质谱仪离子原在离子源被电离成离子。离子经质量分析器,检测器之后即成为质谱仪号并输入计算机。样品由色谱柱不断地流入离子源,离子由离子源不断的进入分析器并不断的得到质谱,只要没定好分析器扫描的质量范围和扫描时间,计算机就可以采集到一个个的质谱。如果没有样品进入离子源,计算机采集到的质谱各离子强度均为0。当有样品过入离子源时,计算机就采集到具有一定离子强度的质谱。并且计算机可以自动将每个质谱的所有离子强度相加。显示出总离子强度,总离子强度随时间变化的曲线就是总离子色谱图,总离子色谱图的形状和普通的色谱图是相一致的。它可以认为是是用质谱作为检测器得到的色谱图。

质谱仪扫描方式有两种:全扫描和选择离子扫描。全扫描是对指定质量范围内的离子全部扫描并记录,得到的是正常的质谱图,这种质谱图可以提供未知物的分子量和结构信息。可以进行库检索。质谱仪还有另外一种扫描方式叫选择离子监测(select ion Moniring SIM)。这种扫描方式是只对选定的离子进行检测,而其它离子不被记录。它的最大优点一是对离子进行选择性检测,只记录特征的、感兴趣的离子,不相关的,干扰离子统统被排除,二是选定离子的检测灵敏度大大提高。在正常扫描情况下,假定一秒钟扫描2-500个质量单位,那么,扫过每个质量所花的时间大约是1/500秒,也就是说,在每次扫描中,有1/500秒的时间是在接收某一质量的离子。在选择离子扫描的情况下,假定只检测5个质量的离子,同样也用一秒,那么,扫过一个质量所花的时间大约是1/5秒。也就是说,在每次扫描中,有1/5秒的时间是在接收某一质量的离子。因此,采用选择离子扫描方式比正常扫描方式灵敏度可提高大约100倍。由于选择离子扫描只能检测有限的几个离子,不能得到完整的质谱图,因此不能用来进行未知物定性分析。但是如果选定的离子有很好的特征性,也可以用来表示某种化合物的存在。选择离子扫描方式最主要的用途是定量分析,由于它的选择性好,可以把由全扫描方式得到的非常复杂的总离子色谱图变得十分简单。消除其它组作造成的干扰。

9.4.1.3 GC-MS得到的信息

总离子色谱图

计算机可以把采集到的每个质谱的所有离子相加得到总离子强度,总离子强度随时间变化的曲线就是总离子色谱图(图9.21),总离子色谱图的横座标是出峰时间,纵座标是峰高。图中每个峰表示样品的一个组份,由每个峰可以得到相应化合物的质谱图;峰面积和该组份含量成正比,可用于定量。由GC-MS得到的总离子色谱图与一般色谱仪得到的色谱图基本上是一样的。只要所用色谱柱相同,样品出峰顺序就相同。其差别在于,总离子色谱图所用的检测器是质谱仪,而一般色谱图所用的检测器是氢焰、热导等。两种色谱图中各成分的校正因子不同。质谱图

仪器分析第9章 质谱分析法

第9章质谱分析法(MS) 1概述 质谱法是通过将样品转化为运动的气态离子并按质荷比(M/Z)大小进行分离并记录其信息的分析方法。 ?分析对象:样品离子 ?质谱不是光谱,而是带电离子的质量谱。 根据质谱图提供的信息可以进行多种有机物及无机物的定性和定量分析、复杂化合物的结构分析、样品中各种同位素比的测定及固体表面的结构和组成分析等 1.1分类 1有机质谱仪: 1)气相色谱-质谱联用仪 2)液相色谱-质谱联用仪 3)其他质谱仪:傅立叶变换质谱仪、基质辅助激光解吸-飞行时间变质谱仪 2无机质谱仪:ICP-MS 3同位素质谱仪:轻元素同位素,重元素同位素 4气体分析质谱仪 1.2质谱分析基本术语 1.2.1质量数和质量范围 ?在质谱分析中,被测定的分子和原子都是以离子形式记录的,如果离 子只带一个电荷,则离子的质荷比在数值上就等于它的质量数 ?质谱仪的质量范围是指仪器所能测量的离子质荷比范围.气体分析用 质谱仪的质量范围一般从2~100,而有机质谱仪的质量范围一般从几 十到几千,如果离子带的电荷增多,则,质量范围也增大。 1.2.2分辨率:表示仪器分开两个相邻质量数离子的能力 对两个相等强度的相邻峰,当两峰间的峰谷不大于其峰高的10%时,可认 为此两峰已经分开(图9-6),这时,仪器的分辨率R用下式计算 1.2.3灵敏度: ?灵敏度对于不同用途的质谱仪有不同的表示方法.有机质谱常用绝对 灵敏度,无机质谱常用相对灵敏度,而同位素分析质谱常用丰度灵敏 度。 ?绝对灵敏度是指仪器能检测的最小样品量.目前,有机质谱仪灵敏度 可优于10-10g

?相对灵敏度:仪器可以同时检测的大组分与小组分含量之比 ?分析灵敏度:输入仪器的样品量和输出仪器的信号之比 1.3质谱基本原理: 加速电场中所获得的势能转化为动能:Vz=v2 在磁场中运动,向心力等于离心力:Hzv= 联立上述两式,可得: 质核比:,运动半径R:R2= 加速电压V,磁场强度H,离子电荷z,离子速度v,离子质量m,R离子运动半径 (1)固定H、V,改变R:离子的m/z大,偏转半径也大,通过磁场可以把不同离子分开 (2)固定R,连续改变H、V。在一定磁感应强度B下,改变加速电压V可以使不同离子先后通过检测器,实现质量扫描,得到质谱。 2质谱仪器——质谱仪 质谱分析的一般过程:通过合适的进样装置将样品引入并进行气化,气化后的样品进入离子源进行电离,电离后的离子经过适当加速后进入质量分析器,按不同质核比进行分离,然后到达检测系统,将生成的离子流变成放大的电信号,并按照对应的质核比记录下来。 2.1进样系统 ?进样系统一般由管道、阀门、压力表、样品贮存器和漏口组成. ?它适用于室温下气体或易挥发液体样品的分析 ?有机质谱仪常与色谱仪联用.色谱仪是质谱仪的进样系统,由色谱柱流出的 样品经喷射式分子分离装置将载气分离后进入质谱仪 ?用于无机物分析的质谱仪,没有专门的进样系统,一般是把要分析的样品制 成电极,置于离子源中,靠高频高压使它电离 2.2离子源:用于产生离子的装置(把样品分子或原子电离成离子) 主要有电子电离源、化学电离源、火花电离源和高频火花源等

质谱分析法简介及其在检测认证领域中的应用

质谱分析法简介及其在检测认证领域中的应用 摘要:从1910年第一台质谱仪的研制成功,到今天100年的时间里,质谱经历了快速的发展,而质谱的应用也越来越广泛,它发挥的作用也越来越重要。本文对有机质谱的基本知识进行简单阐述,重点介绍了离子源和质量分析器部分。此外,本文还介绍了质谱分析法在食品安全、环境检测及一些环保法令要求等检测领域的应用。 关键词:质谱检测认证应用 一、前言 质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法[1]。 随着质谱分析法的发展,此方法已经在很多科学研究以及生产领域得到广发应用,并促进了科学研究及生活生产力的发展。按研究对象划分,质谱分析法大致可分为同位素质谱分析、无机质谱分析以及有机质谱分析。本文将重点介绍有机质谱的基本知识及其在化学检测认证领域的应用。 二、有机质谱的基本介绍 对于一台质谱仪,主要由进样系统、离子源、质量分析器、检测器、计算机-数据系统、真空系统组成。离子源、质量分析器为质谱仪的核心部分。 2.1 离子源[2] 离子源是质谱仪最主要的组成部件之一,其作用是使被分析的物质电离成离子,并将离子会聚成一定能量和一定几何形状的离子束。由于被分析物质的多样性和分析要求的差异,物质电离的方法和原理也各不相同。常见的电离方法有电子轰击电离(EI)、化学电离(CI)、场电离(FI)和场解析(FD)、快原子轰击(FAB)、基质辅助激光解析电离(MALDI)、电喷雾电离(ESI)和大气压化学电离(APCI)。上述电离方式中,电子轰击电离在化学检测认证领域应用最为广泛。为了克服电子轰击电离中碎片离子峰太多而分子离子峰强度太低甚至没有的缺点,有时需要软电离(Soft Ionization)的数据相配合,其中化学电离、场电离和场解析、快原子轰击以及基质辅助激光解析电离都为软电离。电喷雾电离和大气压化学电离主要应用于高效液相色谱和质谱联用。 2.2 质量分析器[2] 质量分析器是质谱仪的主体部分。质量分析仪包括:单聚焦(Single-Focusing)和双聚焦(Duoble-Focusing)质量分析器、四级杆质量分析器(Quadrupole Mass Analyzer)、离子阱(Ion Trap)、飞行时间质谱计(Time of Flight)、傅立叶变换质谱计(Fourier Transform Mass Spectrometer)。单聚焦质量分析器使用扇形磁场,双聚焦质量分析器使用扇形电场和扇形磁场。这样的质量分析器曾经是有机质谱的主体,现在也仍然发挥作用。四极杆质量分析器的优点比较突出,现处于大力应用阶段。离子阱可实现“时间上”的多级串联质谱。飞行时间质谱计特别适合生物大分子的测定,以及做串联质谱的第二级。傅立叶变换质谱计的分辨率极高,远远超过其它质谱计。 三、在化学检测认证领域的应用 随着社会的发展,环境污染、食品安全等问题越受关注。本文着重从食品安全、环境检测以及环保指令等三方面介绍质谱技术的应用。 3.1 食品安全检测领域应用 民与食为天,食品安全问题是关系到国计民生的头等大事。特别是随着人们生活水平的

第九章 质谱法

第九章质谱法 9.1 概述 质谱分析法(mass spectrometry)是通过样品离子的质量和强度的测定,来进行成分和结构分析的一种分析方法。 1.质谱过程与光谱过程对比 图9-1 质谱过程与光谱过程对比 质谱与光谱的过程类似,但基本原理不同(图9-1) 图9-1(3)显示了质谱的全过程:样品通过进样系统进入离子源,由于结构性质不同而电离为各种不同质荷比(m/z)的离子碎片,而后带有样品信息的离子碎片被加速进入质量分析器,在其磁场作用下,离子的运动半径与其质荷比的平方根成正比,因而使不同质荷比的离子在磁场中被分离,并按质荷比大小依次抵达检测器,经记录即得样品的质谱(mass spectrum MS)。 2.质谱分析法的特点和用途 质谱是定性鉴定与研究分子结构的有效方法。主要特点是: (1)灵敏度高,样品用量少:目前有机质谱仪的绝对灵敏度可达5 pg(pg为10-12 g),有微克量级的样品即可得到分析结果。 (2)分析速度快:扫描1~1000u①一般仅需1~几秒,最快可达1/1000秒,因此,可实现色谱-质谱在线联接。 (3)测定对象广:不仅可测气体、液体,凡是在室温下具有10-7Pa蒸气压的固体,如低熔点金属(如锌等)及高分子化合物(如多肽等)都可测定。 质谱法的用途: (1)求准确的分子量:由高分辨质谱获得分子离子峰的质量,可测出精确的分子量。 (2)鉴定化合物:如果事先可估计出样品的结构,用同一装置,同样操作条件测定标准样品及未知样品,比较它们的谱图可进行鉴定。 ①u=原子质量单位,1u=1.6605655×10-27kg

(3)推测未知物的结构:从离子碎片获得的信息可推测分子结构。 (4)测定分子中Cl 、Br 等的原子数:同位素含量比较多的元素(Cl 、Br 等),可通过同位素峰强度比及其分布特征推算出这些原子的数目。 9.2 质谱仪及其工作原理 9.2.1 原理 图9-2是质谱仪的示意图。质谱仪由离子化、质量分离和离子检测等三部分组成。 被气化的分子,受到高能电子流(~70eV )的轰击,失去一个电子,变成带正电的分子离子。这些分子在极短的时间内,又碎裂成各种不同质量的碎片离子、中性分子或自由基。 在离子化室被电子流轰击而生成的各种正离子,受到电场的加速,获得一定的动能,该动能与加速电压之间的关系为: zV mv 212 = (9.1) m ——正离子质量,v ——正离子速度 z ——正离子电荷,V ——加速电压 图9-2 质谱分析仪示意图 加速后的离子在质量分析器中,受到磁场力(Lorentz 力)的作用,作圆周运动时,运动轨迹发生偏转。而圆周运动的离心力等于磁场力: m · R v 2 =Hzv (9.2) 式中H —磁场强度,R —离子偏转半径。 经整理: V 2H R z m 2 2= / (9.3) z m H V 2R 2 ? = (9.4) 后边两式,为磁偏转分析器的质谱仪方程。式中单位m ,原子质量单位;z ,离子所带电荷的数目;H ,高斯;V ,伏特;R ,厘米。 在上式,依次改变磁场强度H 或加速电压V ,就可以使具有不同质荷比m/z 的离子按次序沿半径为R 的轨迹飞向检测器,从而得到一按m/z 大小依次排列的谱—质谱。 9.2.2 离子源 离子源的功用是将样品分子或原子电离成离子。质谱仪的离子源种类很多,其原理和用途各不相同,离子源的选择对样品测定的成败至关重要,尤其当分子离子不易出峰时,选择适当的离子源,就能得到响应较好的质谱信息。下边简单介绍几种常用的离子源。 1.电子轰击源(Electron impact Source EI ) 电子轰击源由离子化区和离子加速区组成(见图9-3)。在外电场的作用下,用(8~100ev )的热电子流去轰击样品,产生各种离子,然后在加速区被加速而进入质量分析器。这是一种最常用的离子化方法。

第十五章 质谱法 - 章节小结

1.基本概念及术语 质谱分析法:质谱分析法是利用多种离子化技术,将物质分子转化为离子,选择其中带正电荷的离子使其在电场或磁场的作用下,按其质荷比m/z的差异进行分离测定,从而进行物质成分和结构分析的方法。 相对丰度:以质谱中基峰(最强峰)的高度为100%,其余峰按与基峰的比例加以表示的峰强度为相对丰度,又称相对强度。 离子源:质谱仪中使被分析物质电离成离子的部分。常见的有电子轰击源EI、化学电离源CI、快原子轰击源FAB等。 分子离子:分子通过某种电离方式,失去一个外层价电子而形成带正电荷的离子,用m·+表示。 碎片离子:当分子在离子源中获得的能量超过其离子化所需的能量时,分子中的某些化学键断裂而产生的离子。 亚稳离子:离子(m1+)脱离离子源后,在飞行过程中发生裂解而形成的低质量离子(m2+),通常用m+表示。 同位素离子:质谱图中含有同位素的离子。 单纯开裂:仅一个键发生开裂并脱去一个游离基,称单纯开裂。 重排开裂:通过断裂两个或两个以上化学键,进行重新排列的开裂方式。重排开裂一般脱去一中性分子,同时发生重排,生成重排离子。 2.重点和难点 (1)离子化机理及其特点 ①电子轰击电离(EI):气化后的样品分子进入离子化室后,受到由钨或铼灯丝发射并加速的电子流的轰击产生正离子。轰击电子的能量大于样品分子的电离能,使样品分子电离或碎裂。电子轰击质谱能提供有机化合物最丰富的结构信息,有较好的重现性,其裂解规律的研究也最为完善,已经建立了数万种有机化合物的标准谱图库可供检索。其主要缺点在于不适用于分析难挥发和热稳定性差的样品。 ②化学电离(CI):引入一定压力的反应气进入离子化室,反应气在具有一定能量的电子流的作用下电离或者裂解。生成的离子和反应气分子进一步反应或与样品分子发生离子-分子反应,通过质子交换使样品分子电离。化学电离属于软电离方式,通常准分子离子峰强度大,易获得有关化合物基团的信息。其主要缺点是重现性较差,且不适合于难挥发、热不稳定样品的分析。 ③快原子轰击(FAB):将样品分散于基质(常用甘油等高沸点溶剂)制成溶液,涂布于金属靶上送入FAB离子源中。将经强电场加速后的惰性气体中性原子束(如氙)对准靶上样品轰击。基质中存在的缔合离子及经快原子轰击产生的样品离子一起被溅射进入气相,并在电场作用下进入质量分析器。此法优点在于离子化能力强,可用于强极性、挥发性低、热稳定性差和相对分子质量大的样品及EI和CI难于得到有意义的质谱的样品。FAB比EI容易得到比较强的分子离子或准分子离子;不同于CI的一个优势在于其所得质谱有较多的碎片离子峰信息,有助于结构解析。缺点是对非极性样品灵敏度下降,而且基质在低质量数区(400以下)产生较多干扰峰。FAB是一种表面分析技术,应注意优化表面状况的样品处理过程。 值得一提的是,在FAB离子化过程中,可同时生成正负离子,这两种离子都可以用质谱进行分析。样品分子如带有强电子捕获结构,特别是带有卤原子,可以产生大量的负离子。负离子质谱已成功用于农药残留物的分析。 (2)质谱中的主要离子及其在质谱解析中的作用 ①分子离子:大多数有机化合物分子通过某种电离方式,在离子源中失去一个电子而形成带正电荷的离子(z=1),即分子离子。由于确认了分子离子即可确定化合物的相对分子质量,因而分子离子峰的正确识别十分重要。由CI、FAB等软电离方式获得的准分子离子,其作用与分子离子相当。分子离子峰一般位于质谱图中质荷比的最高端,但有时最高质荷比峰不一定是分子离子峰。其原因为: M+n(n=1、2…)同位素峰可能出现在质荷比最高处;杂质峰可能出现在最高质荷比处;当样品分子的稳定性差时,分子离子峰很弱甚至不出现,此时最高质荷比的离子是碎片离峰子。 确认分子离子峰时应依据分子离子的稳定性规律及质量数的奇偶规律,即由C、H、O组成的化合物,

质谱介绍及质谱图的解析(来源小木虫)

质谱介绍及质谱图的解析(来源:小木虫)质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。 质谱仪一般由四部分组成:进样系统——按电离方式的需要,将样品送入离子源的适当部位;离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束;质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;检测器——用来接受、检测和记录被分离后的离子信号。一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。 一、进样系统和接口技术 将样品导入质谱仪可分为直接进样和通过接口两种方式实现。 1. 直接进样 在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。 对于固体样品,常用进样杆直接导入。将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。 目前质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。

质谱分析方法要点解析

质谱分析方法解析 质谱仪种类很多,不同类型的质谱仪主要差别在于离子源。离子源的不同决定了对被测样品的不同要求,同时,所得信息也不同。质谱仪的分辨率同样十分重要,高分辨质谱仪可给出化合物的组成式,对于未知物定性至关重要。因此,在进行质谱分析前,要根据样品状况和分析要求选择合适的质谱仪。 目前,有机质谱仪主要有两大类: 气相色谱-质谱联用仪与液相色谱-质谱联用仪,现就这两类仪器的分析方法叙述如下: GC-MS分析条件的选择 在GC-MS分析中,色谱的分离与质谱数据的采集同时进行,为了使每个组分都得到分离和鉴定,必须设备合适的色谱和质谱分析条件: 色谱条件包括色谱柱类型(填充柱或毛细管柱),固定液种类,汽化温度,载气流量,分流比,温升程序等。 设置原则是: 一般情况下均使用毛细管柱,极性样品使用极性毛细管柱,非极性样品采用非极性毛细管柱,未知样品可先用中等极性毛细管柱,试用后再调整。当然,如果有文献可以参考,就采用文

献所用条件。 质谱条件包括: 电离电压,电子电流,扫描速度,质量范围,这些都要根据样品情况进行设定。为了保护灯绿和倍增器,在设定质谱条件时,还要设置溶剂去除时间,使溶剂峰通过离子源之后再打开灯绿和倍增器。在所有的条件确定之后,将样品用微量注射器注入进样口,同时,启动色谱与质谱,进行GC-MS分析。 GC-MS数据采集 有机混合物样品用微量注射器由色谱仪进样口注入,经色谱柱分离后进入质谱仪离子原在离子源被电离成离子。离子经质量分析器,检测器之后即成为质谱仪信号并输入计算机。样品由色谱柱不断流入离子源,离子由离子源不断进入分析器并不断得到质谱,只要没定好分析器扫描的质量范围和扫描时间,计算机就可以采集到一个个的质谱。如果没有样品进入离子源,计算机采集到的质谱各离子强度均为0。当有样品过入离子源时,计算机就采集到具有一定离子强度的质谱。并且计算机可以自动将每个质谱的所有离子强度相加。显示出总离子强度,总离子强度随时间变化的曲线就是总离子色谱图,总离子色谱图的形状和普通的色谱图是相一致的,它可以认为是是用质谱作为检测器得到的色谱图。

质谱原理简介

质谱原理简介: 质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。 常见术语: 质荷比: 离子质量(以相对原子量单位计)与它所带电荷(以电子电量为单位计)的比值,写作m/Z. 峰: 质谱图中的离子信号通常称为离子峰或简称峰. 离子丰度: 检测器检测到的离子信号强度. 基峰: 在质谱图中,指定质荷比范围内强度最大的离子峰称作基峰. 总离子流图;质量色谱图;准分子离子;碎片离子;多电荷离子;同位素离子 总离子流图: 在选定的质量范围内,所有离子强度的总和对时间或扫描次数所作的图,也称TIC图. 质量色谱图 指定某一质量(或质荷比)的离子其强度对时间所作的图. 利用质量色谱图来确定特征离子,在复杂混合物分析及痕量分析时是LC/MS测定中最有用的方式。当样品浓度很低时LC/MS的TIC上往

往看不到峰,此时,根据得到的分子量信息,输入M+1或M+23等数值,观察提取离子的质量色谱图,检验直接进样得到的信息是否在LC/MS上都能反映出来,确定LC条件是否合适,以后进行MRM等其他扫描方式的测定时可作为参考。 1.0 指与分子存在简单关系的离子,通过它可以确定分子量.液质中最常见的准分子离子峰是[M+H]+ 或[M-H]- . 在ESI中, 往往生成质量大于分子量的离子如 M+1,M+23,M+39,M+18......称准分子离子,表示为:[M+H]+,[M+Na]+等碎片离子: 准分子离子经过一级或多级裂解生成的产物离子. 碎片峰的数目及其丰度则与分子结构有关,数目多表示该分子较容易断裂,丰度高的碎片峰表示该离子较稳定,也表示分子比较容易断裂生成该离子。 Ephedrine, MW = 165 多电荷离子: 指带有2个或更多电荷的离子,常见于蛋白质或多肽等离子.有机质谱中,单电荷离子是绝大多数,只有那些不容易碎裂的基团或分子结构-如共轭体系结构-才会形成多电荷离子.它的存在说明样品是较稳定的.采用电喷雾的离子化技术, 可产生带很多电荷的离子,最后经计算机自动换算成单质/荷

(完整版)质谱法

第九章质谱法 一.教学内容 1.质谱分析法的基本概念、发展概况及特点 2.由质谱仪器结合质谱法的基本 质谱仪的工作流程 各主要部件的基本结构、基本原理及性能 掌握联用技术 3.质谱峰的类型、离子碎裂途径及有机化合物的质谱 4.质谱法的图谱解析及基本应用 二.重点与难点 1.各种离子源的基本原理、特点及适应性 2.各种重量分析器的基本结构、分析原理、特点及适用性 3.各类离子的碎裂机理及规律 4.质谱法的基本应用(分子量、分子式、结构式的确定) 三.教学要求 1.较好地掌握质谱分析法的基本基本 2.掌握掌握仪的基本结构、工作流程及性能指标 3.在较深入掌握单、双聚焦质量分析器的基础上,比较其它质量分析器的基本原理及特点 4.一般了建质谱联用技术 5.掌握简单图谱的解析,进行较简单化合物分子量、分子式及结构式的分析 四.学时安排3学时

质谱法是通过将样品转化为运动的气态离子并按质荷比 (m/z)大小进行分离记录的分析方法。所获得结果即为质谱图(亦称质谱)。根据质谱图提供的信息可以进行多种有机物及无机物的定性和定量分析、复杂化合物的结构分析、样品中各种同位素比的测定及固体表面的结构和组成分析等。 质谱仪早期主要用于原子量的测定和定量测定某些复杂碳氢混合物中的各组分等。1960年以后,才开始用于复杂化合物的鉴定和结构分析。实验证明,质谱法是研究有机化合物结构的有力工具。 第一节质谱仪 一、质谱仪的工作原理 质谱仪是利用电磁学原理,使带电的样品离子按质荷比进行分离的装置。离子电离后经加速进入磁场中,其动能与加速电压及电荷z有关,即 z e U = 1/2 mν2 其中z为电荷数,e为元电荷(e=1.60×10-19C),U为加速电压,m为离子的质量,ν为离子被加速后的运动速度。 具有速度ν的带电粒子进入质谱分析器的电磁场中,根据所选择的分离方式,最终实现各种离子按m/z进行分离。根据质量分析器的工作原理,可以将质谱仪分为动态仪器和静态仪器两大类。 在静态仪器中用稳定的电磁场,按空间位置将m/z不同的离子分开,如单聚焦和双聚焦质谱仪。 在动态仪器中采用变化的电磁场,按时间不同来区分m/z不同的离子,如飞行时间和四极滤质器式的质谱仪。 二、质谱仪的主要性能指标 (1)质量测定范围 质谱仪的质量测定范围表示质谱仪所能进行分析的

质谱分析法

质谱分析法简介 第一节概论 从J.J. Thomson制成第一台质谱仪,到现在已有近90年了,早期的质谱仪主要是用来进行同位素测定和无机元素分析,二十世纪四十年代以后开始用于有机物分析,六十年代出现了气相色谱-质谱联用仪,使质谱仪的应用领域大大扩展,开始成为有机物分析的重要仪器。计算机的应用又使质谱分析法发生了飞跃变化,使其技术更加成熟,使用更加方便。八十年代以后又出现了一些新的质谱技术,如快原子轰击电离子源、基质辅助激光解吸电离源、电喷雾电离源、大气压化学电离源,以及随之而来的比较成熟的液相色谱-质谱联用仪,感应耦合等离子体质谱仪、付立叶变换质谱仪等。这些新的电离技术和新的质谱仪使质谱分析又取得了长足进展。目前质谱分析法已广泛地应用于化学、化工、材料、环境、地质、能源、药物、刑侦、生命科学、运动医学等各个领域。 质谱仪种类非常多,工作原理和应用范围也有很大的不同。从应用角度,质谱仪可以分为下面几类: 有机质谱仪:由于应用特点不同又分为: ①气相色谱-质谱联用仪(GC-MS)。在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极杆质谱仪,气相色谱-飞行时间质谱仪,气相色谱-离子阱质谱仪等。 ②液相色谱-质谱联用仪(LC-MS)。同样,有液相色谱-四极杆质谱仪,液相色谱-离子阱质谱仪,液相色谱-飞行时间质谱仪,以及各种各样的液相色谱-质谱-质谱联用仪。 ③其他有机质谱仪,主要有: 基质辅助激光解吸飞行时间质谱仪(MALDI-TOFMS) 付立叶变换质谱仪(FT-MS) 无机质谱仪,包括: ①火花源双聚焦质谱仪。 ②感应耦合等离子体质谱仪(ICP-MS)。 ③二次离子质谱仪(SIMS) 以上的分类并不十分严谨。因为有些仪器带有不同附件,具有不同功能。例如,一台气相色谱-双聚焦质谱仪,如果改用快原子轰击电离源,就不再是气相色谱-质谱联用仪,而称为快原子轰击质谱仪(FAB-MS)。另外,有的质谱仪既可以和气相色谱相连,又可以和液相色谱相连,因此也不好归于某一类。在以上各类质谱仪中,数量最多,用途最广的是有机质谱仪。 除上述分类外,还可以从质谱仪所用的质量分析器的不同,把质谱仪分为双聚焦质谱仪,四极杆质谱仪,飞行时间质谱仪,离子阱质谱仪,付立叶变换质谱仪等。 第二节质谱分析法原理和仪器 质谱是确定化合物分子量的有力手段,它不仅能够准确测定分子的质量而且可以确定化合物的化学式和进行结构分析。本部分内容包括质谱分析法原理、质谱图和主要离子峰以及质谱分析法的应用。质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。 一、质谱分析法基本原理 用高速电子束的撞击等不同方式使试样分子成为气态带正电离子,其中有分子离子M+和各种分子碎片阳离子。在高压

相关主题
文本预览
相关文档 最新文档