当前位置:文档之家› 质谱分析方法要点解析

质谱分析方法要点解析

质谱分析方法要点解析
质谱分析方法要点解析

质谱分析方法解析

质谱仪种类很多,不同类型的质谱仪主要差别在于离子源。离子源的不同决定了对被测样品的不同要求,同时,所得信息也不同。质谱仪的分辨率同样十分重要,高分辨质谱仪可给出化合物的组成式,对于未知物定性至关重要。因此,在进行质谱分析前,要根据样品状况和分析要求选择合适的质谱仪。

目前,有机质谱仪主要有两大类:

气相色谱-质谱联用仪与液相色谱-质谱联用仪,现就这两类仪器的分析方法叙述如下:

GC-MS分析条件的选择

在GC-MS分析中,色谱的分离与质谱数据的采集同时进行,为了使每个组分都得到分离和鉴定,必须设备合适的色谱和质谱分析条件:

色谱条件包括色谱柱类型(填充柱或毛细管柱),固定液种类,汽化温度,载气流量,分流比,温升程序等。

设置原则是:

一般情况下均使用毛细管柱,极性样品使用极性毛细管柱,非极性样品采用非极性毛细管柱,未知样品可先用中等极性毛细管柱,试用后再调整。当然,如果有文献可以参考,就采用文

献所用条件。

质谱条件包括:

电离电压,电子电流,扫描速度,质量范围,这些都要根据样品情况进行设定。为了保护灯绿和倍增器,在设定质谱条件时,还要设置溶剂去除时间,使溶剂峰通过离子源之后再打开灯绿和倍增器。在所有的条件确定之后,将样品用微量注射器注入进样口,同时,启动色谱与质谱,进行GC-MS分析。

GC-MS数据采集

有机混合物样品用微量注射器由色谱仪进样口注入,经色谱柱分离后进入质谱仪离子原在离子源被电离成离子。离子经质量分析器,检测器之后即成为质谱仪信号并输入计算机。样品由色谱柱不断流入离子源,离子由离子源不断进入分析器并不断得到质谱,只要没定好分析器扫描的质量范围和扫描时间,计算机就可以采集到一个个的质谱。如果没有样品进入离子源,计算机采集到的质谱各离子强度均为0。当有样品过入离子源时,计算机就采集到具有一定离子强度的质谱。并且计算机可以自动将每个质谱的所有离子强度相加。显示出总离子强度,总离子强度随时间变化的曲线就是总离子色谱图,总离子色谱图的形状和普通的色谱图是相一致的,它可以认为是是用质谱作为检测器得到的色谱图。

质谱仪扫描方式有两种:

全扫描与选择离子扫描:

全扫描是对指定质量范围内的离子全部扫描并记录,得到的是正常的质谱图,这种质谱图可以提供未知物的分子量和结构信息。可以进行库检索。

质谱仪还有另外一种扫描方式叫选择离子监测(Selection Moniring SIM)。此种扫描方式是只针对选定的离子进行检测,而其它离子不被记录。

它的最大优点:

一是对离子进行选择性检测,只记录具有特征的、感兴趣的离子,不相关的,干扰离子统统被排除;

二是选定离子的检测灵敏度大大提高。在正常扫描情况下,假定一秒钟扫描2~500个质量单位。那么,扫过每个质量所花的时间大约是1/500秒,也就是说,在每次扫描中,有

1/500秒的时间是在接收某一质量的离子。在选择离子扫描的情况下,假定只检测5个质量的离子,同样,也用一秒,那么,扫过一个质量所花的时间大约是1/5秒。也就是说,在每次扫描中,有1/5秒时间是在接收某一质量的离子。因此,采用选择离子扫描方式比正常扫描方式灵敏度可提高大约100倍。由于,选择离子扫描只能检测有限的几个离子,不能得到完整的质谱图,因此,不能用来进行未知物定性分析,但是,

如果选定的离子具有很好的特征性,也可以用来表示某种化合物的存在。选择离子扫描方式最主要的用途是定量分析,由于它的选择性好,可以把由全扫描方式得到的非常复杂的总离子色谱图变得十分简单。消除其它组造成的干扰。

GC-MS得到的信息

总离子色谱图

计算机可以将采集到每个质谱的所有离子相加得到总离子强度,总离子强度随时间变化曲线就是总离子色谱图(图

9.21),总离子色谱图的横座标是出峰时间,纵座标是峰高。图中每个峰表示样品的一种组份,由每个峰可以得到相应化合物质谱图;峰面积与该组份含量成正比,可用于定量。由GC-MS得到的总离子色谱图与一般色谱仪得到的色谱图基本上一致,只要所用色谱柱相同,样品出峰顺序便相同。其差别在于,总离子色谱图运用的检测器是质谱仪,而一般色谱图所用的检测器是氢焰、热导等,两种色谱图中各成分的校正因子不同。

质谱图

由总离子色谱图可以得到任何一种组分的质谱图。一般情况下,为了提高信噪比。通常由色谱峰峰顶处得到相应质谱图,但如果两个色谱峰具有相互干扰,应尽量选择不发生干扰的位

置而得到质谱,或通过扣本底消除其他组分影响。

库检索

得到质谱图后可以通过计算机检索对未知化合物进行定性。检索结果可以给出几个可能的化合物,并以匹配度大小顺序排列出这些化合物的名称、分子式、分子量和结构式等。使用者可以根据检索结果和其它的信息,对未知物进行定性分析。目前,GC-MS联用仪有几种数据库。应用最为广泛的有NIST 库和Willey库,前者目前有标准化合物谱图13万张,后者有近30万张。此外,还有毒品库、农药库等专用谱库。

质量色谱图(或提取离子色谱图)

总离子色谱图是将每种质谱的所有离子加和得到。同样,由质谱中任何质量离子也可得到色谱图,即,质量色谱图。质量色谱图是由全扫描质谱中提取出一种质量的离子而得到的色谱图。因此,又称为提取离子色谱图。假定做质量为m的离子质量色谱图,如果某化合物质谱中不存在该种离子,那么该化合物就不会出现色谱峰。一个混合物样品中可能只有几个甚至一个化合物出峰。利用该特点可识别具有某种特征的化合物,也可通过选择不同质量的离子做质量色谱图,使正常色谱不能分开的两个峰实现分离,以便进行定量分析(见图9.22)。由于,质量色谱图是采用一种质量的离子作色谱图。因此,进行

定量分析时也需要使用同一离子得到质量色谱图测定校正因子。

选择离子监测(Selection monitoring,SIM)

一般扫描方式是连续改变Vrf,使不同质荷比的离子顺序通过分析器到达检测器,而选择离子监测则是对选定离子进行跳跃式扫描。采用该种扫描方式可提高检测灵敏度。由于该种方式灵敏度高,因此,适用于量少且不易得到的样品分析。利用选择离子方式不仅灵敏度高,而且选择性好,在许多干扰离子存在时,利用正常扫描方式所得信号值可能很小,噪音可能很大,但用选择离子扫描方式,只选择特征离子,噪音会变得很小,信噪比大大提高。在对复杂体系中某一微量成分进行定量分析时,常采用选择离子扫描方式。由于,选择离子扫描不能得到样品全谱。因此,该种谱图不能进行库检索,利用选择离子扫描方式进行GC-MS联用分析时,得到的色谱图在形式上类似质量色谱图,但实际上,二者有巨大的差别。质量色谱图利用全扫描方式得到。因此,可得到任何一个质量的质量色谱图;选择离子扫描是选择了一定m/z离子。扫描时选定哪个质量,就只能有那个质量的色谱图。如果二者选择同一质量,那么,用SIM灵敏度要高得多。

目前,色质联用仪数据库中,一般贮存有近30万个化合物标准质谱图。因此,GC-MS最主要的定性方式是库检索。由总离子色谱图可以得到任一组分的质谱图,由质谱图可以利用计算机在数据库中检索。检索结果,可以给出几种最可能的化合物。

包括:化合物名称、分子式、分子量、基峰及可靠程度。表4是由计算机给出的某未知物谱图检索结果。

利用计算机进行库检索是一种快速、方便定性方法,但是,在利用计算机检索时应注意如下几个问题:

数据库中所存质谱图有限,如果未知物是数据库中没有的化合物,检索结果也给出几个相近的化合物。显然,这种结果是错误的。由于质谱法本身的局限性,一些结构相近的化合物其质谱图也相似,这种情况也可能造成检索结果不可靠。

由于,色谱峰分离不好以及本底及噪音的影响,使得到的质谱图质量不高,这样所得到的检索结果也会很差。

因此,在利用数据库检索之前,应首先得到一张很好的质谱图,并利用质量色谱图等技术判断质谱中有没有杂质峰;得到检索结果之后,还应根据未知物的物理、化学性质以及色谱保留值、红外、核磁谱等综合考虑,才能给出定性结果。

GC-MS定量分析方法类似于色谱法定量分析,由GC-MS得到的总离子色谱图或质量色谱图,其色谱峰面积与相应组分的含量成正比,若对某一组份进行定量测定,可以采用色谱分析法中的归一化法、外标法、内标法等不同方法进行。

这时,GC-MS法可理解为将质谱仪作为色谱仪检测器。其余均与色谱法相同,与色谱法定量不同的是,GC-MS法除了可利用总离子色谱图进行定量之外,还可利用质量色谱图进行定量,这样做可最大限度去除其它组份的干扰。

值得注意的是:

质量色谱图由于运用一种质量离子做出,它的峰面积与总离子色谱图具有较大差别,在进行定量分析过程中,峰面积与校正因子等都需要使用质量色谱图。。。

为提高检测灵敏度及减少其它组分的干扰,在GC-MS定量分析过程中质谱仪经常采用选择离子扫描方式。对于待测组分,可选择一个或几种特征离子,而相邻组份不存在这些离子。用该种方式得到的色谱图,待测组份不存在干扰。同时,具有较高的灵敏度。用选择离子得到的色谱图进行定量分析,具体分析方法与质量色谱图类似,但其灵敏度比利用质量色谱图高,这是GC-MS定量分析中经常采用的方法。

质谱分析法简介及其在检测认证领域中的应用

质谱分析法简介及其在检测认证领域中的应用 摘要:从1910年第一台质谱仪的研制成功,到今天100年的时间里,质谱经历了快速的发展,而质谱的应用也越来越广泛,它发挥的作用也越来越重要。本文对有机质谱的基本知识进行简单阐述,重点介绍了离子源和质量分析器部分。此外,本文还介绍了质谱分析法在食品安全、环境检测及一些环保法令要求等检测领域的应用。 关键词:质谱检测认证应用 一、前言 质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法[1]。 随着质谱分析法的发展,此方法已经在很多科学研究以及生产领域得到广发应用,并促进了科学研究及生活生产力的发展。按研究对象划分,质谱分析法大致可分为同位素质谱分析、无机质谱分析以及有机质谱分析。本文将重点介绍有机质谱的基本知识及其在化学检测认证领域的应用。 二、有机质谱的基本介绍 对于一台质谱仪,主要由进样系统、离子源、质量分析器、检测器、计算机-数据系统、真空系统组成。离子源、质量分析器为质谱仪的核心部分。 2.1 离子源[2] 离子源是质谱仪最主要的组成部件之一,其作用是使被分析的物质电离成离子,并将离子会聚成一定能量和一定几何形状的离子束。由于被分析物质的多样性和分析要求的差异,物质电离的方法和原理也各不相同。常见的电离方法有电子轰击电离(EI)、化学电离(CI)、场电离(FI)和场解析(FD)、快原子轰击(FAB)、基质辅助激光解析电离(MALDI)、电喷雾电离(ESI)和大气压化学电离(APCI)。上述电离方式中,电子轰击电离在化学检测认证领域应用最为广泛。为了克服电子轰击电离中碎片离子峰太多而分子离子峰强度太低甚至没有的缺点,有时需要软电离(Soft Ionization)的数据相配合,其中化学电离、场电离和场解析、快原子轰击以及基质辅助激光解析电离都为软电离。电喷雾电离和大气压化学电离主要应用于高效液相色谱和质谱联用。 2.2 质量分析器[2] 质量分析器是质谱仪的主体部分。质量分析仪包括:单聚焦(Single-Focusing)和双聚焦(Duoble-Focusing)质量分析器、四级杆质量分析器(Quadrupole Mass Analyzer)、离子阱(Ion Trap)、飞行时间质谱计(Time of Flight)、傅立叶变换质谱计(Fourier Transform Mass Spectrometer)。单聚焦质量分析器使用扇形磁场,双聚焦质量分析器使用扇形电场和扇形磁场。这样的质量分析器曾经是有机质谱的主体,现在也仍然发挥作用。四极杆质量分析器的优点比较突出,现处于大力应用阶段。离子阱可实现“时间上”的多级串联质谱。飞行时间质谱计特别适合生物大分子的测定,以及做串联质谱的第二级。傅立叶变换质谱计的分辨率极高,远远超过其它质谱计。 三、在化学检测认证领域的应用 随着社会的发展,环境污染、食品安全等问题越受关注。本文着重从食品安全、环境检测以及环保指令等三方面介绍质谱技术的应用。 3.1 食品安全检测领域应用 民与食为天,食品安全问题是关系到国计民生的头等大事。特别是随着人们生活水平的

第十四章--交叉表分析法(课件)

多变量描述统计分析 交叉表分析法 一、交叉表分析法的概念 交叉表(交叉列联表) 分析法是一种以表格的形式同时描述两个或多个变量的联合分布及其结果的统计分析方法,此表格反映了这些只有有限分类或取值的离散变量的联合分布。当交叉表只涉及两个定类变量时,交叉表又叫做相依表。 交叉列联表分析易于理解,便于解释,操作简单却可以解释比较复杂的现象,因而在市场调查中应用非常广泛。 频数分布一次描述一个变量,交叉表可同时描述两个或更多变量。交叉表法的起点是单变量数据,然后依研究目的将这些数据分成两个或多个细目。 下面是一个描述交叉表法应用的例子。 某保险公司对影响保户开车事故率的因素进行调研,并对各种因素进行了交叉表分析。 表1 驾驶员的事故率 然后,在性别基础上分解这个信息,判断是否在男女驾车者之间有差别。这样就出现了二维交叉表2。 表2 男女驾驶员的事故率 高。但人们会提出这样的疑问而否定上述判断的正确性,即男士的事故多,是因为他们驾驶的路程较长。这样就引出第三个因素"驾驶距离",于是出现了三维交叉表3。 表3 不同驾驶距离下的事故率 有证明男士和女士哪个驾驶得更好或更谨慎,仅证明了驾车事故率只与驾驶距离成正比,而与驾驶者的性别无关。 二、两变量交叉列联表分析 例如,研究城镇居民在某地的居住时间与其对当地百货商场的熟悉程度之间

的关系,对“居住时间”和“熟悉程度”这两个变量进行交叉列联分析。如表4所示。 间低于30年的居民比居住时间在30年以上的居民似乎更熟悉百货商场。进一步计算出百分比,则可以看得更直观一些。见表5。 表5 居住时间与对百货商场的熟悉程度的交叉列联分析(%) 行百分比与列百分比的选择取决于哪个变量是因变量哪个变量是自变量。一般的规则是,在自变量的方向上,对因变量计算百分比。 以表5为例,居住时间为自变量,对商场的熟悉程度为因变量,因而可以对各居住时间分别计算熟悉程度的百分比。由表5可见,53.6%的居住时间低于13年的人和60.9%的居住时间在13年~30年的人都熟悉该商店,而只有32.9%的居住时间在30年以上的人熟悉该商店。看来,同样住在该地区的人,居住时间越长,对购物环境反而更不熟悉。这个结论是有一定道理的,在一个地方居住很长时间的人一般相对来说更没有动力去熟悉该商场。 如果我们在因变量的方向上对自变量计算百分比(如表6所示),则显然没意义。 表6暗示,对当地商场不熟悉会影响居民在该地的居住时间,这显然是不合理的。但是,居住时间与对百货商场的熟悉程度之间的联系可能受第三变量的影响,例如年龄。居住时间越长的人可能年龄越大。尽管分析结果表明年龄在此不是影响因素,但由此可见需要检查第三因素的影响。 三、三变量的交叉列联表分析 引入第三变量后再进行交叉列联分析,则可能出现以下四种结果: (1)剔除外部环境的影响,使原先两变量间的关系更单纯。例如,在表7中,仅分析婚姻状况和衣服支出水平这两个变量时,从数字上看未婚者在衣服支出方面比已婚者更高一些。但引入变量性别以后,发现对于男性来说,已婚者与未婚者在衣服支出方面没有显著差异,但对于女性未婚者与已婚者,在衣服支出方面的差异则很明显。见表8。

质谱介绍及质谱图的解析(来源小木虫)

质谱介绍及质谱图的解析(来源:小木虫)质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。 质谱仪一般由四部分组成:进样系统——按电离方式的需要,将样品送入离子源的适当部位;离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束;质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;检测器——用来接受、检测和记录被分离后的离子信号。一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。 一、进样系统和接口技术 将样品导入质谱仪可分为直接进样和通过接口两种方式实现。 1. 直接进样 在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。 对于固体样品,常用进样杆直接导入。将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。 目前质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。

质谱试题及答案

质谱 一、选择题 1. 在质谱仪中当收集正离子的狭缝位置和加速电压固定时,若逐渐 增加磁场强度H,对具有不同质荷比的正离子,其通过狭缝的顺序如何变化?(2) (1)从大到小(2)从小到大(3)无规律(4)不变 2. 含奇数个氮原子有机化合物,其分子离子的质荷比值为(2) (1)偶数(2)奇数(3)不一定(4)决定于电子数 3. 二溴乙烷质谱的分子离子峰M与M+2、M+4的相对强度为(3) (1)1∶1∶1 (2)2∶1∶1 (3)1∶2∶1 (4)1∶1∶2 4. 在丁酮质谱中,质荷比为29的碎片离子是发生了(2) (1)α-裂解(2)I-裂解(3)重排裂解(4)γ-H迁移 5. 在通常的质谱条件下,下列哪个碎片峰不可能出现(3) (1)M+2 (2)M-2 (3)M-8 (4)M-18 二、解答及解析题

1.样品分子在质谱仪中发生的断裂过程,会形成具有单位正电荷而质荷比(m/z)不同的正离子,当其通过磁场时的动量如何随质荷比的不同而改变?其在磁场的偏转度如何随质荷比的不同而改变?答:根据公式m/z=B2R2/2E可知,m/z越大,动量越大。 m/z值越大,偏转度越小。 2.带有电荷为e、质量为m的正离子,在加速电场中被电位V所加速,其速度达υ,若离子的位能(eV)与动能(mυ2/2)相等,当电位V 增加两倍时,此离子的运动速度υ增加多少倍? 答:由公式eV=1/2mv2,当V增加两倍时,此时的离子的运动速度v 增加为原来的√2倍。 3.在双聚焦质谱仪中,质量为m,电荷为e、速度为υ的正离子由离子源进入电位为E的静电场后,由于受电场作用而发生偏转。为实现能量聚焦,要使离子保持在半径为R的径向轨道中运动,此时的R值受哪些因素影响? 答:eV=mv2/R R=mv2/eE,由此可知,此时的R主要受静电场强度的的影响。 4.在双聚焦质谱仪中,质量为m,电荷为e、速度为υ的正离子由电场进入强度为H的磁场后,受磁场作用,再次发生偏转,偏转的半径为r,此时离子受的向心力(Heυ)和离心力(mυ2/R)相等,此时离子受的质荷比受哪些因素影响? 答:由题意有Heυ= mυ2/r,m/e=Hr/υ=H2r2/2V 此时离子受的质荷比受磁场强度、半径r以及电场电位V的影响。

质谱分析方法要点解析

质谱分析方法解析 质谱仪种类很多,不同类型的质谱仪主要差别在于离子源。离子源的不同决定了对被测样品的不同要求,同时,所得信息也不同。质谱仪的分辨率同样十分重要,高分辨质谱仪可给出化合物的组成式,对于未知物定性至关重要。因此,在进行质谱分析前,要根据样品状况和分析要求选择合适的质谱仪。 目前,有机质谱仪主要有两大类: 气相色谱-质谱联用仪与液相色谱-质谱联用仪,现就这两类仪器的分析方法叙述如下: GC-MS分析条件的选择 在GC-MS分析中,色谱的分离与质谱数据的采集同时进行,为了使每个组分都得到分离和鉴定,必须设备合适的色谱和质谱分析条件: 色谱条件包括色谱柱类型(填充柱或毛细管柱),固定液种类,汽化温度,载气流量,分流比,温升程序等。 设置原则是: 一般情况下均使用毛细管柱,极性样品使用极性毛细管柱,非极性样品采用非极性毛细管柱,未知样品可先用中等极性毛细管柱,试用后再调整。当然,如果有文献可以参考,就采用文

献所用条件。 质谱条件包括: 电离电压,电子电流,扫描速度,质量范围,这些都要根据样品情况进行设定。为了保护灯绿和倍增器,在设定质谱条件时,还要设置溶剂去除时间,使溶剂峰通过离子源之后再打开灯绿和倍增器。在所有的条件确定之后,将样品用微量注射器注入进样口,同时,启动色谱与质谱,进行GC-MS分析。 GC-MS数据采集 有机混合物样品用微量注射器由色谱仪进样口注入,经色谱柱分离后进入质谱仪离子原在离子源被电离成离子。离子经质量分析器,检测器之后即成为质谱仪信号并输入计算机。样品由色谱柱不断流入离子源,离子由离子源不断进入分析器并不断得到质谱,只要没定好分析器扫描的质量范围和扫描时间,计算机就可以采集到一个个的质谱。如果没有样品进入离子源,计算机采集到的质谱各离子强度均为0。当有样品过入离子源时,计算机就采集到具有一定离子强度的质谱。并且计算机可以自动将每个质谱的所有离子强度相加。显示出总离子强度,总离子强度随时间变化的曲线就是总离子色谱图,总离子色谱图的形状和普通的色谱图是相一致的,它可以认为是是用质谱作为检测器得到的色谱图。

质谱解析流程

质谱——质谱图解析流程 未知样的质谱图解析流程 (一)解析分子离子区 (1) 标出各峰的质荷比数,尤其注意高质荷比区的峰。 (2) 识别分子离子峰。首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。若二者均相符,可认为是分子离子峰。 (3) 分析同位素峰簇的相对强度比及峰与峰间的Dm值,判断化合物是否含有 C1、Br、S、Si等元素及F、P、I等无同位素的元素。 (4)推导分子式,计算不饱和度。由高分辨质谱仪测得的精确分子量或由同位素峰簇的相对强度计算分子式。若二者均难以实现时,则由分子离子峰丢失的碎片及主要碎片离子推导,或与其它方法配合。 (5)由分子离子峰的相对强度了解分子结构的信息。分子离子峰的相对强度由分子的结构所决定,结构稳定性大,相对强度就大。对于分子量约200的化合物,若分子离子峰为基峰或强蜂,谱图中碎片离子较少、表明该化合物是高稳定性分子,可能为芳烃或稠环化合物。例如:萘分子离子峰m/z128为基峰,蒽醌分子离子峰m/z 208也是基峰。分子离子峰弱或不出现,化合物可能为多支链烃类、醇类、酸类等。 (二)、解析碎片离子 (1) 由特征离子峰及丢失的中性碎片了解可能的结构信息。若质谱图中出现系列CnH2n+1峰,则化合物可能含长链烷基。若出现或部分出现m/z77,66,65,51,40,39等弱的碎片离子蜂,表明化合物含有苯基。若m/z91或105为基峰或强峰,表明化合物含有苄基或苯甲酰基。若质谱图中基峰或强峰出现在质荷比

的中部,而其它碎片离子峰少,则化合物可能由两部分结构较稳定,其间由容易断裂的弱键相连。 (2)综合分析以上得到的全部信息,结合分子式及不饱和度,提出化合物的可能结构。 (3)分析所推导的可能结构的裂解机理,看其是否与质谱图相符,确定其结构,并进一步解释质谱,或与标准谱图比较,或与其它谱(1HNMR、13CNMR、IR)配合,确证结构。

质谱原理简介

质谱原理简介: 质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。 常见术语: 质荷比: 离子质量(以相对原子量单位计)与它所带电荷(以电子电量为单位计)的比值,写作m/Z. 峰: 质谱图中的离子信号通常称为离子峰或简称峰. 离子丰度: 检测器检测到的离子信号强度. 基峰: 在质谱图中,指定质荷比范围内强度最大的离子峰称作基峰. 总离子流图;质量色谱图;准分子离子;碎片离子;多电荷离子;同位素离子 总离子流图: 在选定的质量范围内,所有离子强度的总和对时间或扫描次数所作的图,也称TIC图. 质量色谱图 指定某一质量(或质荷比)的离子其强度对时间所作的图. 利用质量色谱图来确定特征离子,在复杂混合物分析及痕量分析时是LC/MS测定中最有用的方式。当样品浓度很低时LC/MS的TIC上往

往看不到峰,此时,根据得到的分子量信息,输入M+1或M+23等数值,观察提取离子的质量色谱图,检验直接进样得到的信息是否在LC/MS上都能反映出来,确定LC条件是否合适,以后进行MRM等其他扫描方式的测定时可作为参考。 1.0 指与分子存在简单关系的离子,通过它可以确定分子量.液质中最常见的准分子离子峰是[M+H]+ 或[M-H]- . 在ESI中, 往往生成质量大于分子量的离子如 M+1,M+23,M+39,M+18......称准分子离子,表示为:[M+H]+,[M+Na]+等碎片离子: 准分子离子经过一级或多级裂解生成的产物离子. 碎片峰的数目及其丰度则与分子结构有关,数目多表示该分子较容易断裂,丰度高的碎片峰表示该离子较稳定,也表示分子比较容易断裂生成该离子。 Ephedrine, MW = 165 多电荷离子: 指带有2个或更多电荷的离子,常见于蛋白质或多肽等离子.有机质谱中,单电荷离子是绝大多数,只有那些不容易碎裂的基团或分子结构-如共轭体系结构-才会形成多电荷离子.它的存在说明样品是较稳定的.采用电喷雾的离子化技术, 可产生带很多电荷的离子,最后经计算机自动换算成单质/荷

质谱分析法

质谱分析法简介 第一节概论 从J.J. Thomson制成第一台质谱仪,到现在已有近90年了,早期的质谱仪主要是用来进行同位素测定和无机元素分析,二十世纪四十年代以后开始用于有机物分析,六十年代出现了气相色谱-质谱联用仪,使质谱仪的应用领域大大扩展,开始成为有机物分析的重要仪器。计算机的应用又使质谱分析法发生了飞跃变化,使其技术更加成熟,使用更加方便。八十年代以后又出现了一些新的质谱技术,如快原子轰击电离子源、基质辅助激光解吸电离源、电喷雾电离源、大气压化学电离源,以及随之而来的比较成熟的液相色谱-质谱联用仪,感应耦合等离子体质谱仪、付立叶变换质谱仪等。这些新的电离技术和新的质谱仪使质谱分析又取得了长足进展。目前质谱分析法已广泛地应用于化学、化工、材料、环境、地质、能源、药物、刑侦、生命科学、运动医学等各个领域。 质谱仪种类非常多,工作原理和应用范围也有很大的不同。从应用角度,质谱仪可以分为下面几类: 有机质谱仪:由于应用特点不同又分为: ①气相色谱-质谱联用仪(GC-MS)。在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极杆质谱仪,气相色谱-飞行时间质谱仪,气相色谱-离子阱质谱仪等。 ②液相色谱-质谱联用仪(LC-MS)。同样,有液相色谱-四极杆质谱仪,液相色谱-离子阱质谱仪,液相色谱-飞行时间质谱仪,以及各种各样的液相色谱-质谱-质谱联用仪。 ③其他有机质谱仪,主要有: 基质辅助激光解吸飞行时间质谱仪(MALDI-TOFMS) 付立叶变换质谱仪(FT-MS) 无机质谱仪,包括: ①火花源双聚焦质谱仪。 ②感应耦合等离子体质谱仪(ICP-MS)。 ③二次离子质谱仪(SIMS) 以上的分类并不十分严谨。因为有些仪器带有不同附件,具有不同功能。例如,一台气相色谱-双聚焦质谱仪,如果改用快原子轰击电离源,就不再是气相色谱-质谱联用仪,而称为快原子轰击质谱仪(FAB-MS)。另外,有的质谱仪既可以和气相色谱相连,又可以和液相色谱相连,因此也不好归于某一类。在以上各类质谱仪中,数量最多,用途最广的是有机质谱仪。 除上述分类外,还可以从质谱仪所用的质量分析器的不同,把质谱仪分为双聚焦质谱仪,四极杆质谱仪,飞行时间质谱仪,离子阱质谱仪,付立叶变换质谱仪等。 第二节质谱分析法原理和仪器 质谱是确定化合物分子量的有力手段,它不仅能够准确测定分子的质量而且可以确定化合物的化学式和进行结构分析。本部分内容包括质谱分析法原理、质谱图和主要离子峰以及质谱分析法的应用。质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。 一、质谱分析法基本原理 用高速电子束的撞击等不同方式使试样分子成为气态带正电离子,其中有分子离子M+和各种分子碎片阳离子。在高压

相关主题
文本预览
相关文档 最新文档