当前位置:文档之家› 端粒与端粒酶与细胞衰老的关系

端粒与端粒酶与细胞衰老的关系

端粒与端粒酶与细胞衰老的关系
端粒与端粒酶与细胞衰老的关系

学科前沿知识讲座

班级:

学号:

姓名:

项。众所周知,衰老是一种自然规律,因此,我们不可能违背这个规律。而端粒和端粒酶的发现发现为科学家认识并探索衰老和肿瘤的发生机制开辟了新领域,对预防和治疗衰老及与衰老相关的疾病具有重要科学和应用意义。

衰老是生物在生命过程中整个机体形态、结构和功能逐渐衰退的综合现象。生物的机体由细胞构成,生命存在于活细胞中,故生命的衰老起始于细胞的老化。而细胞的老化又与端粒有着密不可分的关系。

端粒是真核细胞线性染色体末端非编码的DNA 重复序列和与之相连的端粒结合蛋白的功能性复合体。端粒的主要作用是保护染色体的末端和维持基因组稳定性。

端粒酶是基本的核蛋白逆转录酶,可将端粒DNA加至真核细胞染色体末端。端粒酶能延长缩短端粒,从而增强体外细胞的增殖能力。此外,端粒酶在诱导肿瘤发生、新血管的生成、抑制细胞分化等方面亦有独立于端粒之外的生物学功能。

1973年Olovfnikov 博士首次提出端粒丢失与衰老关系的理论,他认为端粒的丢失可能是因为某种与端粒相关的基因发生了致死性的缺失。目前认为细胞内端粒酶活性的丧失将导致端粒的缩短,这种缩短使得端粒最终成为不能被细胞识别的末端,这时端粒并不是不存在了,而是端粒缩短到了一个临界长度,端粒一旦缩短到此长度,就可能导致染色体双链的断裂,并激活细胞自身的检验系统,从而使细胞进入M1期(死亡阶段1),随着端粒的进一步丢失,将会发生染色体重排。双着丝粒染色体和非整倍体染色体形成,这将导致进一步的危机产生,进入M2期(死亡阶段2)。如果细胞要维持正常分裂,就必须阻止端粒的进一步丢失,激活端粒酶,细胞才能进行正常染色体复制,对于那些无法激活端粒酶的细胞只能进入细胞老化。正常人体细胞中一般检测不到端粒酶,但是在恶性肿瘤细胞中却发现具有高活性的端粒酶,具有活性的端粒酶发挥其合成端粒的功能,补尝正常的端粒丢失,端粒将不能达到临界长度,如此,这个细胞就不能进入正常的老化和衰亡,从而获得了永生,这样,便形成了一个恶性增值的肿瘤细胞,最后发生癌变。

端粒和端粒酶已成为现代生物学研究的热点,他与人类的衰老和肿瘤的发生有着极为密切的关系,相信,在不久的将来,科学家一定能解开这个谜底,造福人类。

通过聆听这次讲座,我从中学到了很多,对细胞来说,本身是否能持续分裂克隆下去并不重要,而是分化成熟的细胞将背负更重大的使命,就是让组织器官运作,使生命延续,但不是永续,这种世代交替的轮回即是造物者对于生命设计的巧思。

得分:________

签到盖章

端粒和端粒酶的研究及应用

端粒和端粒酶的研究及应用 2005-4-11 https://www.doczj.com/doc/eb1352099.html, 来源:丁香园 10:56:00 摘要:古往今来,“长生不老”成为人们一直追求的梦想,曾经有多少人用各种方法来延缓衰老,但终未取得显著效果。近年来研究证实,端粒缩短导致衰老。本文就端粒、端粒酶与衰老的关系做一综述。 关键词:端粒、端粒酶、衰老 最早观察染色体末端的科学家始于19世纪末期,Rabl[1]在1885年注意到染色体上所有的末端都处于细胞核的一侧。20世纪30年代,两个著名的遗传学家McClintock B [2]和Muller HJ [3]发现了染色体的末端可维持染色体的稳定性和完整性。Muller将它定义为“telomere”,这是由希腊词根“末端”(telos)及“部分”(meros)组成的。30多年前,Hayflick[4]首次提出将体外培养的正常人成纤维细胞的“有限复制力”作为细胞衰老的表征。在此过程中,细胞群中的大部分细胞经历了一定次数的分裂后便停止了,但它们并没有死亡,仍保持着代谢活性,只是在基因表达方式上有一定的改变。于是Hayflick猜测细胞内有一个限制细胞

分裂次数的“钟”,后来通过细胞核移植实验发现,这种“钟”在细胞核的染色体末端——端粒。但端粒究竟是怎样的复杂结构呢?Blackburn和Gall[5] 于1978年首次阐明了四膜虫rDNA分子的末端结构,他们发现这种rDNA每条链的末端均含有大量的重复片段,并且这些大量重复的片段多是由富含G、C的脱氧核苷酸形成的简单序列串联而成。在1985年,CW?Greider和EH?Blackburn发现将一段单链的末端寡聚核苷酸加至四膜虫的提取物中后,端粒的长度延长了,这就说明了确实有这样的一种酶存在[6],并将它命名为“端粒酶”(telomerase)。之后,耶鲁大学Morin 于1989年在人宫颈癌细胞中也发现了人端粒酶[7] 。近年来,随着人体端粒酶的发现和端粒学说的提出,已经知道决定细胞衰老的“生物钟”就是染色体末端的端粒DNA,它可随着年龄的增长而缩短。 一、衰老机理及假说 许多人错误的认为,退休是一个人进入生理老年的开端。而老年则是衰老的标志,其实,这是不科学的。人体的所有器官和组织都由细胞组成,但组成器官和组织的细胞有两大类,即干细胞和非干细胞。人体衰老正是由细胞特别是干细胞衰老引起的。医学家认为,如果人类若能避免一些疾患和意外事故,人类寿命的上限应当是130岁。在人类基因组计划之前和进行之中,对长寿的分子生物学研究就有了许多显著的成果与发现。总的归纳起来便是:衰老是一种多基因的复合调控过程,表现为染色体端粒长度的改变、DNA损伤(包括单链和双链的断裂)、DNA的甲基化和细胞的氧化损害等。这些因素的综合作用,才造成了寿命的长短。

细胞凋亡与衰老

细胞凋亡与衰老 (作者:___________单位: ___________邮编: ___________) 【关键词】细胞凋亡;衰老 衰老是指增龄过程中机体出现的多器官渐进性功能减退,其确切机制并不清楚,有多种学说,如自由基学说、端粒学说和细胞凋亡学说等。以啮齿类动物为研究对象,肌肉、脑、心脏等多种衰老组织中均存在细胞凋亡异常〔1〕。细胞凋亡参与多种与衰老相关的病理过程,如骨质疏松、阿尔茨海默病等。目前细胞凋亡在衰老中的作用成为国内外研究热点,本文就二者的最新研究进展作综述。 1 细胞凋亡 细胞凋亡涉及一系列基因的激活、表达及调控,是机体为更好地适应环境采取的主动死亡,其参与许多重要生命活动,如胚胎发育、免疫防御和维持组织稳态等,对维持细胞增殖与死亡的平衡有重要意义。 1.1 细胞凋亡途径 1.1.1 外源性途径又称死亡受体途径,是由膜受体介导的细胞死亡过程。死亡受体是属于肿瘤坏死因子受体超家族的跨膜受体,其中研究较透彻的是Fas/FasL系统。Fas广泛分布于胸腺、肝、心、肾等

组织细胞表面。当Fas与其配体FasL结合后发生多聚化,与胞浆内死亡结构域结合蛋白(FADD)结合,活化胞浆caspase8,再活化凋亡执行者caspase3,水解蛋白质,启动核酸内切酶剪切DNA,造成凋亡。这是发育过程和免疫系统中最主要的凋亡途径。通过该途径可清除发育过程及免疫反应中活化的淋巴细胞。增龄过程中Fas表达呈上升趋势。衰老大鼠胸腺细胞和脾细胞凋亡速度加快,可能造成衰老机体免疫功能下降。 1.1.2 内源性途径以线粒体为核心,又称线粒体途径。该途径凋亡信号来自体内各种应激,如DNA损伤、氧化应激、紫外线、生长因子缺乏等。凋亡信号引起前凋亡蛋白Bax活化,Bax诱导线粒体释放细胞色素c(Cyt c)。进入胞质的Cyt c与凋亡蛋白激活因子(Apaf1)、caspase9前体组成凋亡体,激活caspase9,再活化caspase3引起细胞凋亡。线粒体也可释放凋亡诱导因子(AIF)和内切核酸酶G进入胞浆,二者转移到细胞核,断裂DNA。随着年龄增长,内源性凋亡途径逐渐变得活跃。 1.1.3 内质网应激介导的细胞凋亡内质网(ER)参与蛋白质合成及翻译后加工修饰。当非折叠或错折叠蛋白质在ER内堆积超过处理能力时,引起ER应激。ER应激的一个后果是细胞凋亡。位于ER膜上的Bak、Bax发生构象变化形成多聚体,使Ca2+进入ER,活化caspase12,引起下游级联反应,活化caspase9和caspase3。机体具有应对ER应激的保护措施,如使翻译起始因子eIF2去磷酸化,减少蛋白质合成。但衰老机体应对ER应激能力降低,eIF2磷

端粒和端粒酶与衰老_癌症的潜在关系_2009年诺贝尔生理学或医学奖简介

端粒和端粒酶与衰老、癌症的潜在关系 ———2009年诺贝尔生理学或医学奖简介 孔令平① 汪华侨② ①副教授,广州医学院从化学院,广州510182;②教授,中山大学中山医学院人体解剖学与脑研究室,广州510080 关键词 端粒 端粒酶 细胞 衰老 癌症 美国科学家伊丽莎白?布莱克本、卡萝尔?格雷德和杰克?绍斯塔克三人同时获得2009年诺贝尔生理学或医学奖,这是由于他们发现“染色体是如何被端粒和端粒酶保护的”,这一研究成果揭开了人类衰老和肿瘤发生等生理病理现象的奥秘。本文将就端粒和端粒酶的发现、结构和功能及其与人类衰老、癌症的潜在关系等方面做一简要介绍。 人的生老病死,这或许是生命最为简洁的概括,但其中却蕴藏了无穷无尽的奥秘。2009年10月5日,瑞典卡罗林斯卡医学院宣布将2009年诺贝尔生理学或医学奖授予美国科学家伊丽莎白?布莱克本(Elizabet h H.Blackburn)、卡萝尔?格雷德(Carol W.Greider)和杰克?绍斯塔克(J ack W.Szostak),以表彰他们发现“染色体是如何被端粒和端粒酶保护的”。这3位科学家的发现“解决了一个生物学重要课题,即染色体在细胞分裂过程中是怎样实现完全复制,同时还能受到保护且不发生降解”。由此可能揭开了人类衰老和罹患肿瘤等严重疾病的奥秘。 染色体是生物细胞核中的一种易被碱性染料染色的线状物质。大家都知道,正常人的体细胞有23对染色体,这对人类生命具有重要意义,其中的X和Y染色体是决定男女性别的性染色体。在染色体的末端,有一个像帽子一样的特殊结构,这就是端粒。作为染色体末端的“保护帽”,端粒具有维持染色体的相对稳固、防止DNA互相融合及重组的功能,犹如卫兵那样守护染色体不受损害。而端粒酶的作用则是帮助合成端粒,使得端粒的长度等结构得以稳定。 “染色体携有遗传信息。端粒是细胞内染色体末端的‘保护帽’,它能够保护染色体,而端粒酶在端粒受损时能够恢复其长度。”获奖者之一的伊丽莎白?布莱克本介绍说:“伴随着人的成长,端粒逐渐受到‘磨损’。于是我们会问,这是否很重要?而我们逐渐发现,这对人类而言确实很重要。”借助他们的开创性工作,如今人们知道,端粒不仅与染色体的个性特质和稳定性密切相关,而且还涉及细胞的寿命、衰老与死亡。简单讲,端粒变短,细胞就老化。相反,如果端粒酶活性很高,端粒长度就能得到保持,细胞老化就被延缓。 1端粒的发现、结构与功能 20世纪30年代,两位著名的遗传学家McClintock 和Müller等人发现,染色体的末端存在一种能稳定染色体结构和功能的特殊成分。如果缺少了此成分,染色体易降解,相互之间易发生粘连,出现结构的异常,影响染色体的正确复制,甚至引起细胞的死亡。于是Müller从希腊文的“末端”(telos)和“部分”(meros)二词为此特殊成分创造了一个全新的术语“端粒”(telomere)。但端粒的精确组成直到1978年才由美国科学家Blackburn和Gall首次提出,他们发现单细胞生物四膜虫(tetrahy2 mena)的端粒是由一连串简单重复序列T T GGGG形成的[1]。之后包括动物、植物和微生物在内的多种生物的端粒序列被测定出,发现它们与四膜虫的端粒序列极其相似,均由富含G和T的简单重复序列不断重复而成。正是这些连接在染色体末端的DNA重复序列及结合在其上的相关蛋白质共同构成了真核生物染色体的“末端保护帽”———端粒。人类细胞端粒的重复序列为T TA GGG,长度为5~15kb。不同组织细胞其端粒的长度不同,精子和早期胚胎细胞端粒长度较长,可达15~20kb。 端粒的结合或相关蛋白最重要的是人端粒重复序列结合因子(telomeric repeat factor)TRF1和TRF2,此外还包括PO T1,Ku70,Ku80,Tankyrase1,PINX1, TIN2和hRap1等。TRF1和TRF2均专一性地与端粒DNA重复序列结合。TRF1对端粒的长度起负调控作用,可以在一定程度上抑制端粒酶在端粒末端的行为; ? 7 2 3 ?

端粒与端粒酶

端粒是真核生物染色体末端的DNA重复片段,由许多个短的富含G重复序列组成的3撇端。并突出于另一条DNA链的5撇端,和许多蛋白质构成。这些重复序列并不含有遗传信息,形态上,染色体DNA末端膨大成粒状。像两顶帽子盖在了染色体的两端,作为染色体末端的保护帽。 端粒存在戴帽和非戴帽两种状态,戴帽状态是端粒的功能状态。细胞可以继续分裂;非戴帽状态会引发细胞周期的阻滞。在正常的细胞分裂时,端粒可以在两种状态间变换,随着细胞分裂的继续,越来越多的细胞粒处于非戴帽状态,继而出现衰老与细胞死亡。 端粒的功能是完成染色体末端的复制,防止染色体相互融合、重组和降解,维持染色体的完整性。端粒的DNA序列既有高度的保守性又有种属的特异性。在生物体内,正常体细胞端粒的长度是有限的,随着细胞的持续分裂,端粒就会缓慢缩短,当端粒再也无法保护染色体免受伤害时,细胞就会停止分裂,或者变得不稳定。因此,生物体细胞分裂的次数是有限的。端粒的长度决定了细胞的寿命,所以端粒又被称为“生命的时钟”。 端粒酶的主要成分是RNA和蛋白质,即核糖核酸蛋白质复合体。是端粒重复序列延伸的反转录DNA聚合酶。真核细胞染色体末端DNA的复制不是由DNA聚合酶完成的,而是由端粒酶催化合成的。以其自身RNA组分为模板,并且RNA上含有引物特异识别位点。蛋白质具有催化活性,以端粒3撇端为引物,通过反复延伸与移位,又反复地将重复片段加到突出的3撇端上,而互补的富含C的延伸像后随链那样复制,未补偿由去除引物引起的末端缩短。因此在端粒的保护中,端粒酶起着至关重要的作用。但端粒的延长并非只有端粒酶一种途径,而是存在端粒酶依赖和非端粒酶依赖两种。 人端粒酶结构主要包括3部分:端粒酶RNA(hTR);端粒酶催化亚单位(hTERT)和端粒相关蛋白质(TPI/TLPI) 人体细胞中端粒酶合成和延长端粒的作用是在胚胎发育过程中完成的,当胚胎发育完成后,端粒酶活性在大多数组织中消失,除生殖细胞、造血干细胞以及外周淋巴细胞的等少数几种细胞外。由此认为胚胎期获得的端粒应以足够维系人体的整个生命过程中因细胞分裂所致的端粒缩短。端粒酶活性阳性细胞中的hTERT基因突变或沉默则细胞端粒酶活性消失。在端粒酶活性阴性的细胞中导入编码的hTERT基因,则可以重建细胞的端粒酶活性,结果细胞的端粒增长,寿命延长,老化过程延缓,甚至出现永生化现象。 目前认为,细胞的衰老是由端粒的丢失引起的,而端粒的丢失又与端粒酶的活性有关,人体细胞内端粒酶活性的缺失导致端粒缩短,这种缩短使得端粒最终不能被细胞识别,端粒一旦短于“关键长度”,就很有可能导致染色体双链断裂,使细胞进入M1期死亡状态。随着端粒的进一步丢失,将导致进一步的危机,即M2期死亡状态。当几千个端粒DNA丢失后,细胞就会停止分裂进入衰老状态。 新进研究显示引起细胞衰老的原因与端粒的长度无关,而与以下几个因素有关:端粒的位置效应、DNA损伤信号以及端粒富含G的3撇末端突出的缺失。 端粒和端粒酶的发现也是有关人体衰老、癌症和干细胞等研究的谜题拼图中重要的一片,次发现使我们对细胞的理解增加了新的维度,清楚地显示了疾病的机理,并将促使我们开发出潜在的新的疗法。尽管已有越来越多的有关端粒与端粒酶的研究成果,但这一领域仍然存在着不少有待解决的问题等待着人类去探索去认知。

端粒与端粒酶的研究进展

端粒与端粒酶的研究进展 【摘要】研究显示,端粒酶活性被激活,可维护端粒的长度,细胞将会延缓衰老,避免癌变。此外,端粒酶的发现还在理论上丰富和发展了分子肿瘤学,据研究显示90%的人体肿瘤与端粒酶相关,若我们通过端粒酶活性的检测,提前预知肿瘤的发生,从而提前预防和治疗,或者若我们能使癌细胞中的端粒酶再度“休眠”,恶性肿瘤就会停止生长,以此来治疗癌症。 【关键字】端粒端粒酶肿瘤癌症衰老染色体 1.端粒和端粒酶的概述 2009年,美国的三位科学家Elizabeth H·Blackburn、Carol W·Greider和Jack W·Szostak发表了题为“端粒和端粒酶是如何保护染色体的”而共同获得诺贝尔生理学或医学奖。也是从这一重大研究成果开始,端粒和端粒酶的研究为人类衰老和肿瘤带来了福音。 端粒是真核细胞染色体末端的帽子样的结构,它具有稳定染色体末端结构,防止染色体DNA降解和末端融合,保护染色体结构基因,调节正常细胞生长等作用。同种生物不同组织的细胞,甚至相同组织的不同细胞由于处于不同的生命时相,端粒的长度也不一样。由此可发现端粒的长度跟细胞的寿命、衰老与死亡有密切关系,所以端粒的长度被称为“生命时钟”【1】。 端粒酶(telomerase)是一种以自身RNA为模板,将端粒DNA合成至染色体的核糖核蛋白复合物(ribonucleoprotein,RNP)。端粒长度的维持需要端粒酶的激活。所以端粒酶在保持端粒稳定、基因组完整、细胞长期的活性和潜在的继续增殖能力等方面有重要作用。端粒酶的活性存在于人的生殖细胞、肿瘤细胞、永生化细胞系和再生性组织中,一般情况下酶的活性处于抑制状态,只有当端粒体受到损伤的时候,端粒酶才被激活。 由于端粒和端粒酶对肿瘤和癌症的发生有很大关系,所以近年来,端粒和端粒酶的研究也比较多,且主要是在妇产科学、基础医学、心血管疾病、泌尿科学、外科学等方面,其中端粒酶与肿瘤形成关系的研究占总文献比例最大【2】。 2.端粒和端粒酶的结构 端粒是存在于染色体3'末端的特殊部位,通常由一些简单重复的序列组成。不同种类的细胞端粒重复序列不同,大多长约5-8bp。人类的端粒序列由5 '

端粒与端粒酶研究于抗衰老的应用

端粒与端粒酶研究于抗衰老的应用 陈元懿 技术原理 端粒:端粒是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,它与端粒结合蛋白一起构成了特殊的结构,能够维持染色体的完整和控制细胞分裂周期。端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在人中,端粒序列为TTAGGG/CCCTAA,并有许多蛋白与端粒DNA 结合。 端粒酶:端粒酶以自身的RNA作为端粒DNA复制的模板,合成出富含脱氧单磷酸鸟苷的DNA序列后添加到染色体的末端并与端粒蛋白质结合,从而稳定了染色体的结构。但是,在正常人体细胞中,端粒酶的活性受到相当严密的调控,只有在造血细胞、干细胞和生殖细胞,这些必须不断分裂复制的细胞之中,才可以侦测到具有活性的端粒酶。在保持端粒稳定、基因组完整、细胞长期的活性和潜在的继续增殖能力等方面有重要作用。 由于核DNA是线形DNA,复制时由于模板DNA 起始端被RNA引物先占据,新生链随之延伸;引物 RNA脱落后,其空缺处的模板DNA无法再度复制成 双链。因此,每复制一次,末端DNA就缩短若干个 端粒重复序列。当端粒不能再缩短时,细胞就无法 继续分裂了。越是年轻的细胞,端粒长度越长;越 是年老的细胞,端粒长度越短。一旦端粒消耗殆尽, 细胞将会立即启动凋亡机制。端粒与细胞老化的关 系,阐述了一种新的人体衰老机制。 端粒酶以自身的RNA作为端粒DNA复制的模板,合成出富含脱氧单磷酸鸟苷的DNA序列后添加到染色体的末端并与端粒蛋白质结合,从而稳定了染色体的结构。 DNA复制期间的滞留链

尽管如此,正常人体细胞几乎不表达端粒酶,而在干细胞及肿瘤细胞中该酶的表达量较大。通过对细胞进行基因工程改造,改变细胞中端粒酶的活性,可以影响细胞衰老的进程。 技术应用(实验阶段) 1)美国德克萨斯大学西南医学中心的细胞生物学及神经系统科学教授杰里·谢伊和伍德林·赖特做了这样一项试验:在采集的包皮细胞(包皮环切术的附带产物)中导入某种基因,使细胞中产生端粒酶。一般来说,包皮细胞在变老之前可分裂60次左右。但在上述试验中,细胞已分裂了300多次却毫无终止的征兆,也没有显示任何异常的迹象。 2)哈佛Dana-Farber癌症研究所的科学家们通过控制端粒酶基因,第一次在老鼠身上局部逆转了年龄增长所带来的老化问题,其中包括:大脑和睾丸的新生长发育,繁殖能力的增强,以及恢复了部分已丧失的认知功能。 技术优点 1)此种技术在DNA层面上对细胞衰老进行干预,为人类从衰老的根本上进行打开一条的新的道路。 技术缺点 1)尽管端粒酶似乎能有效地延缓细胞凋亡机制的启动,但也发现它在多种癌细胞中都有大量表达,与癌细胞的无限增生密切相关。由于对细胞衰老机制探究的不完全,虽然在细胞方面的已有可参考的实验,但于生物体的改造仍有很多风险及不确定因素。 2)端粒酶技术仅仅从单个细胞的角度延缓衰老,但生物个体中的新陈代谢是一套更复杂的系统。关于如何在延长细胞寿命的基础上协调个体的细胞代谢机制仍需更进一步的研究。

端粒和端粒酶的结构与功能及其应用

第31卷第1期湖南农业大学学报(自然科学版) V ol.31 No.1 2005年2月Journal of Hunan Agricultural University (Natural Sciences) Feb.2005 文章编号:1007-1032(2005)01-0098-08 端粒和端粒酶的结构与功能及其应用 朱雅新1,2,麻 浩1* (1.南京农业大学大豆研究所,江苏南京 210095;2.新疆农业大学农学院,新疆乌鲁木齐 830052) 摘要:端粒是构成真核生物线状染色体末端重要的DNA—蛋白质复合结构,DNA由简单的串联重复序列组成.它的合成由一个特殊的具有反转录活性的核糖核蛋白端粒酶完成.端粒对染色体、整个生物基因组,甚至对细胞的稳定都具有重要意义.端粒酶是由RNA模板和蛋白亚基组成的核蛋白颗粒.它解决染色体的末端问题,归属于逆转录酶家族又和逆转录酶有一定的差别.端粒酶的过度表达和细胞的永生化和癌变直接相关.端粒酶的结构和功能决定了它在肿瘤与癌症治疗等方面具有广泛的应用前景. 关键词:端粒;端粒酶;结构与功能;细胞永生化;癌症治疗 中图分类号:Q52 文献标识码:A Structure,Function and Application of Telomere and Telomerase ZHU Ya-xin1,2,MA Hao1* (1.Soybean Research Institute,Nanjing Agricultural University,Nanjing 210095,China;2.Agricultural College, Xinjiang Agricultural University,Wulumuqi,830052,China) Abstract: Telomere is an important DNA-protein structure.It caps the ends of linear eukaryotic chromosomes.Telomeric DNA consists of tandemly repeated simple sequences.Telomere is synthesized with the action of telomerase,a ribonucleoprotein with reverse transcriptase activity.Telomere plays an important role in maintaining the stability of intact chromosome,genome and cell.Telomerase is a ribonucleoprotein responsible in most eukaryotes for replication of the end of chromosomes.Its RNA subunit acts as a template for the systhesis of telomeric DNA,while a protein component catalyzes this process to make up for convertional DNA polymerases’ inability to replicate completely the end linear DNA.It belongs to the reverase transcriptase family but differs from reverse transcriptase.The overexprossion of telomerase has close relationship with cell’s immortalization and tumorigenesis.The structure and function of telomerase suggest its extensive application in the near future. Key words: telomere;telomerase;structure and function;cell immortalization;tumor treatment 20世纪30年代,遗传学家Mc Clintock和Muller分别在玉米和果蝇中发现损伤断裂后的染色体末端之间极易发生连接,从而形成各种类型的染色体畸变,如末端融合形成环状体或形成双着丝点染色体.但染色体的天然末端似乎从来不与染色体断裂产生的那种末端连接,天然末端之间也不结合,就像有一顶“帽子”那样维持着染色体末端的稳定.于是Muller提出位于染色体两端的片段在细胞里具有重要的作用,并命名它为端粒(Telomere)[1],这是由希腊语“末端”(Telos)及“部分”(Meros)组成的. 20世纪70年代,Blackburn利用四膜虫(Tetrah- ymena)进一步揭示了端粒的初步结构,发现它是由几个核苷酸(富含G)组成的DNA重复片断,重复的次数由几十到数千不等.1972年,Watson发现了这样一个问题,即DNA多聚酶是不能够复制线性染色质的全部的,由于在末端缺少5′端的引物,DNA 多聚酶将不能完成最后的复制工作,而留下一个单链的间隙.如果这一间隙不能被填充的话,染色体 收稿日期:2004-05-27 基金项目:农业部“948”项目(2001-207);江苏省“十五”攻关项目(Q200126) 作者简介:朱雅新(1968-),女,汉族,山东潍坊人,硕士研究生.*通讯作者:E-mail:lq-ncsi@https://www.doczj.com/doc/eb1352099.html,

端粒和端粒酶的发现历程——记诺贝尔生理学或医学奖

端粒和端粒酶的发现历程——记诺贝尔生理学或医学奖 引言-到底是"谁"得诺奖了? 2009年诺贝尔生理学或医学奖授予了UCSF(加州大学旧金山分校)的Elizabeth Blackburn(简称Liz),Johns Hopkins University(约翰霍普金斯大学)的Carol Greider(简称Carol),以及Howard Medical School(哈佛医学院)的Jack Szostak。诺贝尔奖主页上介绍她/他们获奖的原因是揭示了"how chromosomes are protected by telomeres and the enzyme telomerase"(染色体是如何被端粒和端粒酶保护的),这样描 述是非常专业的。当然更多的公众媒体为了吸引眼球,会用"Aging Research Wins Nobel Prize"(衰老研究摘 取诺贝尔奖)的标题,这颇有误导之嫌。"揭开衰老与癌症的奥秘",这样的标题更是耸人听闻,偏离这个诺贝 尔奖的用意了。 不可否认端粒和端粒酶的发现能获得诺贝尔奖,是因为它跟衰老和癌症的潜在关系获得了更多公众的关注。但 是迄今为止它只是衰老和癌症的correlator(相关者),勉强算得上indicator(指示者),还远不是causer (引起者)。当年发现衰老的细胞端粒变短之后,人们兴奋地以为找到了衰老的"时钟",揭开了衰老的奥秘。 但是事实上端粒在生理条件下并不是细胞衰老的"瓶颈",细胞或机体的衰老是其它原因导致的老化。小鼠的端 粒是比较长的,如果把小鼠的端粒酶RNA亚基敲除,它能活得很自在,并不会早衰,生殖力也正常。那也就是 说在当代的小鼠中,端粒缩短并不是小鼠衰老的原因。这样的小鼠可以一直传6代。当然越到后来,端粒越短,染色体也开始融合[1]。癌细胞的增殖需要端粒的不断复制,但是我们知道端粒酶激活只是癌细胞发生中比较重 要的一环,但远不是唯一的一环。端粒酶固然是治疗癌症的一个潜在靶标,但是癌细胞也能通过recombination (遗传重组)延长端粒,逃脱对端粒酶的依赖[2]。 所以,不能说是"衰老或癌症"的研究得诺奖了,它跟cell cycle(细胞周期)的研究得诺奖一样,更多的是对 细胞基本功能的重要研究的肯定。而这个研究的进程中贯穿着"发现现象/问题"-"提出概念/模型"-"实验验证" 的思路,整个过程就像相继解开一个个puzzle(智力谜团)一样有趣,充满了思想的光辉。"Nobel Prize in Medicine Awarded for Cracking DNA Puzzle"(诺贝尔医学奖授予解开DNA谜团"的研究"),这样的标题最为 精准。换个角度,我们不妨说是解"puzzle"得了诺奖。 相关链接:2009年诺贝尔生理学或医学奖揭晓 染色体DNA的两个难题以及端粒概念的提出 20世纪70年代初,对DNA聚合酶特性的深入了解引申出了一个染色体的复制问题。DNA聚合酶在复制DNA的时 候必须要有引物来起始,而且它的酶活性具有方向性,只能沿着DNA5'到3'的方向合成。染色体复制之初可以 由小RNA作为引物起始合成,之后细胞的修复机器启动,DNA聚合酶能够以反链DNA为模板,以之前合成的DNA 为引物,合成新的DNA取代染色体中间的RNA引物。但是线性染色体最末端的RNA引物因为没有另外的引物起始,没有办法被DNA取代。所以线性染色体DNA每复制一轮,RNA引物降解后末端都将缩短一个RNA引物的长度

细胞衰老与凋亡案例教案

第六章第3节《细胞的衰老和凋亡》教学计划李艳2011/10/17 16:32:18 宁夏固原市西吉二中30 0 一、教材分析 细胞像生物体一样也要经历出生、生长、成熟、繁殖、衰老、死亡的过程,所以细胞的分裂、分化、衰老、死亡是生命的必然。那么个体衰老与细胞衰老的关系呢?细胞衰老有哪些表现呢?细胞衰老的原因是 什么?细胞的衰老和凋亡是生命活动中必不可少的过程,衰老和凋亡有什么关系?这一连串的问题构成本节内容的主线。对于细胞衰老和凋亡的学习,能使学生对细胞的整个生命过程有个完整的认识。同时细胞衰 亡机制的研究与生物科技的发展息息相关。对细胞衰亡知识的学习,有助于培养学生的科学兴趣,培养学 生的创新意识。 二、教学目标 1.知识与技能 (1)个体衰老与细胞衰老的关系。 (2)描述细胞的衰老的特征和原因。 (3)简述细胞凋亡的含义及与细胞坏死的区别。 2.过程与方法 (1)培养学生联系实际灵活应用知识的能力。 (2)学会进行与社会老龄化相关问题的分析。 3.情感态度与价值观 (1)探讨细胞的衰老和凋亡与人体健康的关系,关注老年人健康状况和生活状况 (2)通过有关衰老问题的讨论,树立科学的发展观。 三、教学重点难点 学习重点:1.细胞衰老的概念及特征。2.细胞凋亡的含义。 学习难点:细胞衰老与细胞凋亡的区别和联系。 四、学情分析 学生已经学习了细胞的增殖、分化的内容,对本节的内容已经有了初步的认识和理解,明确了细胞的分化、衰老和凋亡是一个自然的生命过程。本节的内容接近现实生活,可利用现实生活中的例子加以说明, 培养学生知识的应用能力和知识的迁移能力。 五、课型:新授课教学方法:教学基本环节:情境导入、展示目标→合作探究、精讲点拨→反思总结、 当堂检测→布置作业及预习 六、课前准备 布置学生在课前通过上网、查报纸杂志、看电视等途径收集与细胞衰老与凋亡有关的资料。教师制作课件。 七、课时安排:1课时 八、教学过程 【情景导入、展示目标】 教师展示“问题探讨”老年人晨练图片:随着社会的发展,人民生活水平的提高,医疗的完善等,人的寿命 在延长,老年人的比例上升。那如何能延缓衰老,保持身体健康显得尤其重要。 问题1:人的一生必然要经历哪些生命历程:出生→生长→成熟→繁殖→→的生命历程。(学生思考回答) 对于人的一生来说,出生,衰老,死亡都是非常重要,活细胞也一样。衰老和死亡是细胞不可忽视的部分。今天我们来学习第六章第3节《细胞的衰老和凋亡》的内容。 小组讨论:完成问题2和问题3 (3分钟) 问题2:我们学过的单细胞生物有:(举一例) 单细胞生物的衰老(= 或≠)细胞的衰老。 问题3:人的生命系统结构层次有哪些?

端粒与衰老

端粒与衰老 摘要 众所周知,端粒是染色体两端的“保护帽”,能够起到某种抗癌作用,并与人体衰老现象有所联系,但其完整的生物学上的机理仍然还没有弄清楚。端粒酶是一种合成和延伸端粒的核糖核蛋白。端粒具有重要的生物学功能:①保护染色体不被核酸酶降解;②防止染色体相互融合;③为端粒酶提供底物,解决DNA 复制的末端隐缩,保证染色体的完全复制;④决定细胞的寿命。正常细胞内检测不到端粒酶活性, 因此, 正常细胞分裂次数是有限的, 不能无限增殖。衰老不仅仅是生长不可逆的停滞,而且涉及到功能的改变;衰老细胞分泌的细胞因子可能会引起组织功能和统一性的下降,这是端粒功能异常通过细胞衰老造成的影响,端粒与端粒酶同衰老是密不可分的。此外,在约85%的肿瘤细胞中检测到了端粒酶活性,这表明端粒系统(端粒、端粒酶)同癌症之间也存在相关性。随着对端粒和端粒酶研究的不断深入 ,发现端粒系统与衰老、肿瘤有密切关系。如果抑制端粒酶的活性 ,就可以使癌细胞停止分裂增殖 ,达到抗癌目的;若激活端粒酶 ,就可以增加细胞分裂次数 ,从而延长寿命。 关键词 端粒端粒酶衰老肿瘤 1、端粒及其两面性 端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长。细胞分裂次数越多,其端粒磨损越多,逐渐越短。 然而,端粒所起的作用决非想象中的那么简单。例如,端粒变短是一个喜忧参半的结果:它可延缓癌细胞分裂的速度,但同时也阻碍了自然组织的修复过程———无论是在人体或小鼠体内,较短的端粒意味着疾病的产生和机体的衰老。DNA 的每一次复制过程,都会导致染色体变短,在端粒变得极短之时,就可能对一些重要的DNA 序列造成破坏,并可能导致细胞修复机制出错,将受损的染色体末端误认为受损的DNA 链,而将其两端融合起来。由于染色体损伤有可能促使细胞生长失控,人们因此会认为严重受到侵蚀的端粒也可能会产生同样的风险。 2、端粒与衰老 研究证明,端粒与细胞寿命的控制密切相关。人类端粒长度大约2~15 kb,由于存在末端复制问题,DNA每复制1次,端粒DNA就会丢失50~200bp,随着细胞分裂次数的增加,端粒DNA也在进行性地缩短,当缩短到一定限度后,便不能维持染色体的稳定,使细胞失去了分裂增殖能力而衰老死亡,这种缩短就是衰老的标志。因此,端粒也被称为细胞的“生命钟”。 衰老是生物在生命过程中整个机体形态、结构和功能逐渐衰退的综合现象。关于衰老的学说有多种,其中端粒学说由Olovnikov提出,认为在细胞分裂的过程中,端粒起缓冲作用,但是当端粒缩短到一定程度就会失去缓冲作用,从而导致细胞衰老。目前认为,端粒长度随着细胞分裂逐渐缩短,当它缩短到一定长度,亦即在端粒长度缩短到可能造成基因损伤前,细胞自身的检测系统被激活,启动终止细胞分裂的信号,激发细胞周期p53或Rb关卡,从而使细胞周期停止,进入第一死亡期M 期。倘若使p53或Rb失活以阻断M 期,细胞将继续倍增20~40代,同时端粒进一步丢失,直到发生DNA损伤,出现染色体融合、细胞危机,即进入第二死亡期M 期。此时大部分细胞死亡,只有极少细胞激活端粒酶发生逃逸,成为永生化细

细胞的衰老与凋亡教案

6、3《细胞的衰老和凋亡》教案设计 导入 每个生物个体都要经历出生、生长、成熟、繁殖、衰老直至最后的死亡,生物体内的细胞也是一样,要经过增殖、分化、衰老和凋亡。前面我们已经学习了细胞的增殖和细胞的分化,今天我们就来学习第三节,细胞的衰老和凋亡。 问题一:婴儿体内有没有衰老细胞为什么老人表现出衰老,但是婴儿却没有表现出衰老 答案:有。老人体内的衰老细胞非常多,而婴儿体内很少。 个体衰老与细胞衰老的关系有什么关系呢 对于单细胞生物体来说,因为是整个生物体是由一个细胞构成的,因此细胞的衰老或死亡就是个体的衰老或死亡。但对于多细胞生物体来说,组成生物体的细胞总是在不断更新着,总有一部分细胞处于衰老或走向死亡的状态,也有一些是幼嫩的细胞,但从总体上看,个体衰老的过程也是组成个体的细胞普遍衰老的过程。 一、个体衰老与细胞衰老的关系 1.单细胞生物体 2.多细胞生物体 现在请同学们想一下,在45十以后,我们来参加同学聚会,你的同学会有变化吗大家现在就来想一下我们老了之后会变成什么样 答案:(1)那时候,我们的头发都会变白,这主要是由于人体内酶的活性降低。黑色素是酪氨酸酶催化酪氨酸造成的,酶的活性降低,黑色素合成减少。 (2)那时候,我们脸上可能已经出现了老年斑。这主要是由于色素的积累。 (3)大家有没有发现老年人特别怕冷。在冬天的时候,我们年轻人只穿了2-3 件衣服,但是老年人却要穿4-5件衣服。主要是由于人体的能量主要是由于呼吸 作用提供的,呼吸作用减弱了,人体得到的热能就少了。而人体的呼吸作用主 要是在线粒体内进行的,所以衰老的细胞线粒体的数量也是减少的。 (4)大家有没有注意到老年人的皮肤皱巴巴的,这主要是由于什么原因呢 这主要是由于老年人体内的水分减少的原因。而体内许多化学反应都要在水中 进行,所以水分的减少,必然导致人体的新陈代谢的减慢。 (5)有的老人还会出现“救生圈”,这也主要是由于老年人新陈代谢减慢的引 起的。在吃进相同的食物后,他们消耗能量的能力下降了,自然就化成脂肪堆 积了。 总结:个体衰老是由于细胞的衰老引起的,现在就让我们来总结一下细胞衰老的特点: 二、细胞衰老的特征 (1)水分减少,体积变小,新陈代谢速度减慢。 (2)酶的活性降低。头发会变白,这主要是由于人体内酶的活性降低。黑色素是酪氨酸酶催化酪氨酸造成的,酶的活性降低,黑色素合成减少 (3)细胞的通透性有所改变,使物质的运输功能下降 (4)细胞核体积变大,核膜内折,染色质收缩,染色加深 (5)线粒体内呼吸速率变慢

端粒及端粒酶的主要结构特点及作用

端粒及端粒酶的主要结构特点及作用 端粒是真核生物线性染色体末端重要的DNA-蛋白质复合结构,由TTAGG重复序列和大量的端粒结合蛋白组成。主要是由六个端粒结合蛋白TRF1、TRF2、POT1TIN2、TPP1和Rap1组成的复合体起着保护端粒的作用,被称为是遮蔽蛋白。其中端粒重复序列结合因子TRF1和TRF2是两个主要的端粒结合蛋白,它们通过相互作用来维持端粒的正常结构和功能。 端粒的功能:1、保护染色体末端:真核生物的端粒DNA-蛋白复合物,如帽子一般,保护染色体末端免于被化学修饰或被核酶降解,同时可能还有防止端粒酶对端粒进行进一步延伸的作用。改变端粒酶的模板序列将导致端粒的改变,从而诱导细胞衰老和死亡。 2、防止染色体复制时末端丢失:细胞分裂、染色体进行半保留复制时,存在染色体末端丢失的问题。随着细胞的不断分裂,DNA丢失过多,将导致染色体断端彼此发生融合,形成双中心染色体、环状染色体或其他不稳定形式。端粒的存在可以起到缓冲保护的作用,从而防止染色体在复制过程中发生丢失或形成不稳定结构。 3、决定细胞的寿命:染色体复制的上述特点决定了细胞分裂的次数是有限的,端粒的长度决定了细胞的寿命,故而被称为“生命的时钟”。 4、固定染色体位置:染色体的末端位于细胞核边缘,人类端粒DNA和核基质中的蛋白相互作用,以′TTAGGG′结构附着于细胞核基质。 端粒酶的结构及功能:端粒酶是一种核糖核蛋白复合物,由端粒逆转录酶(hTERT)、端粒酶RNA组分(hTR)以及端粒酶相关蛋白组成。端粒酶利用其自身hTR所携带的RNA为模板,在hTERT的逆转录催化下,将端粒重复序列合成到染色体末端,延长或稳定了随着细胞分裂而进行性缩短的端粒,在细胞永生化及恶性肿瘤的发生和发展中起到了重要的作用。 总之,端粒酶是一种特殊的反转录酶,是一种能延长端粒末端并保持端粒长度的核糖蛋白酶,由RNA和蛋白质亚单位组成,每个RNA均含有一段短的与端粒互补的序列,能以自身RNA模板合成端粒DNA添加到染色体末端,避免染色体复制丢失端粒DNA以使端粒延长从而延长细胞寿命。 蛋白质的一二三四级结构 一级结构:指多肽中从N-端到C-端的氨基酸序列,包括二硫键的位置。二级结构:多肽链借助氢键排列自己特有的a螺旋和b折叠片断。三级结构:指一条多肽链在二级结构或者超二级结构甚至结构域的基础上,进一步盘绕,折叠,依靠共价键的维系固定所形成的特定空间结构成为蛋白质的三级结构。 四级结构:指蛋白质的多条多肽链之间相互作用所形成的更为复杂聚合物的一种结构形式,主要描述蛋白质亚基空间排列以及亚基之间的连接和相互作用,不涉

端粒和端粒酶的发现历程资料

资料1 解读诺贝尔医学奖:什么是端粒和端粒酶 近日,诺贝尔基金会宣布,将2009年诺贝尔生理学或医学奖授予因发现端粒和端粒酶如何保护染色体的三位学者。 什么是端粒和端粒酶呢? 端粒是真核生物染色体线性DNA分子末端的结构。形态学上,染色体DNA末端膨大成粒状,像两顶帽子那样盖在染色体两端,因而得名。在某些情况下,染色体可以断裂,这时,染色体断端之间会发生融合,或者断端被酶降解。但正常染色体不会整体地互相融合,也不会在末端出现遗传信息的丢失(被降解之类)。可见端粒在维持染色体和DNA复制的完整性有重要作用。 真核生物双螺旋DNA双链复制时,会有一小段DNA引物连接在复制的起始部位,在合成酶的作用下,在引物后依次连接上A、T、C、G(脱氧核苷),形成新的DNA链。复制完成后,最早出现的起始端引物会被降解,留下的空隙没法填补,这样细胞染色体DNA将面临复制一次就缩短一些的问题。这种缩短的情况在某些低等生物的特殊生活条件下可以观察到,但却是特例。事实上,染色体虽经多次复制,却不会越来越短。早期的研究者们曾假定有一种过渡性的环状结构来帮助染色体末端复制的完成,但后来却一直未能证实这种环状结构的存在。 20世纪80年代中期,科学家们发现了端粒酶。当DNA复制终止时,端粒酶的作用下,通过端粒的依赖模版的复制,可以补偿由去除引物引起的末端缩短,因此在端粒的保持过程中,端粒酶至关重要。 随着细胞分裂次数的增加,端粒的长度是在逐渐缩短的,当端粒变得不能再短时,细胞不再分裂,而会死亡。并且发现,体细胞端粒长度大大短于生殖细胞,胚胎细胞的端粒也长于成年细胞。科学家发现,至少可以认为在细胞水平的老化,和端粒酶的活性下降有关。 因此,有人希望能把端粒酶注入衰老细胞中,延长端粒长度,使细胞年轻化,或者是给老人注射类似端粒酶的制剂,延长老者的端粒长度,达到返老还童的目的。但生物整体的老化,是一个非常复杂的问题,端粒的长度只是决定衰老的一个因素,因此端粒酶抗衰老,目前只具理论价值,连动物实验都很少,更别说应用于人了。 不过,端粒的缩短,的确和很多疾病有关。许多研究发现,基因突变、肿瘤形成时,人体的端粒可表现出缺失、融合或序列缩短等现象。而且,在一些癌症细胞中,端粒酶活性增高,它与端粒之间有某种联系,所以这些癌细胞可以分裂很多次。某些特定的癌细胞,如果可以阻止端粒酶,端粒就会变短,癌细胞就会死亡。所以深入研究端粒和端粒酶的变化,是目前肿瘤研究中的一个新领域。 资料2 端粒和端粒酶的研究 摘要:自端粒和端粒酶发现以来,就一直成为科技工作者的研究热点。端粒具有保护染色体的功能,同时也是端粒酶的底物,解决DNA复制的末端隐缩,保证染色体的完全复制。而端粒酶具有对端粒的延伸作用,使之处于一种不断伸缩的动态平衡中,端粒酶也可以修复断裂的染色体末端。端粒和端粒酶的存在保证了染色体或基因组的稳定性,与细胞的正常分裂有关。最近的研究表明端粒和端粒酶与人的衰老、癌症有重

端粒与端粒酶的发现历程——记诺贝尔生理学或医学奖

端粒与端粒酶的发现历程——记诺贝尔生理学或医学奖 本文是基于个人理解来整理的端粒和端粒酶的发现历史,因为知识时间有限,其中必有偏差和谬误的地方,关键之处还是以 原始文献为主。本人之所以赶这趟诺贝尔奖热,花大量的时间进行文献阅读和整理,是因为它提供了一次极好的向公众传播 科学思想的机会。由于端粒和端粒酶领域的一系列发现贯穿着"发现现象/问题"-"提出概念/模型"-"实验验证"的思路,重现这个思路对科学工作者是有启发意义的。本文也提供了一个很好的教学案例。 引言-到底是"谁"得诺奖了? 2009年诺贝尔生理学或医学奖授予了UCSF(加州大学旧金山分校)的Elizabeth Blackburn(简称Liz),Johns Hopkins University(约翰霍普金斯大学)的Carol Greider(简称Carol),以及Howard Medical School (哈佛医学院)的Jack Szostak。诺贝尔奖主页上介绍她/他们获奖的原因是揭示了"how chromosomes are protected by telomeres and the enzyme telomerase"(染色体是如何被端粒和端粒酶保护的),这样描述是非常专业的。当然更多的公众媒体为了吸引眼球,会用"Aging Research Wins Nobel Prize"(衰老研究 摘取诺贝尔奖)的标题,这颇有误导之嫌。"揭开衰老与癌症的奥秘",这样的标题更是耸人听闻,偏离这 个诺贝尔奖的用意了。 不可否认端粒和端粒酶的发现能获得诺贝尔奖,是因为它跟衰老和癌症的潜在关系获得了更多公众的关注。但是迄今为止它只是衰老和癌症的correlator(相关者),勉强算得上indicator(指示者),还远不是causer (引起者)。当年发现衰老的细胞端粒变短之后,人们兴奋地以为找到了衰老的"时钟",揭开了衰老的奥秘。但是事实上端粒在生理条件下并不是细胞衰老的" 瓶颈",细胞或机体的衰老是其它原因导致的老化。小鼠的端粒是比较长的,如果把小鼠的端粒酶RNA亚基敲除,它能活得很自在,并不会早衰,生殖力也 正常。那也就是说在当代的小鼠中,端粒缩短并不是小鼠衰老的原因。这样的小鼠可以一直传6代。当然越到后来,端粒越短,染色体也开始融合[1]。癌细胞的增殖需要端粒的不断复制,但是我们知道端粒酶激活只是癌细胞发生中比较重要的一环,但远不是唯一的一环。端粒酶固然是治疗癌症的一个潜在靶标,但是癌细胞也能通过recombination(遗传重组)延长端粒,逃脱对端粒酶的依赖[2]。 所以,不能说是"衰老或癌症"的研究得诺奖了,它跟cell cycle(细胞周期)的研究得诺奖一样,更多的是对细胞基本功能的重要研究的肯定。而这个研究的进程中贯穿着"发现现象/问题"-"提出概念/模型"-"实验验证"的思路,整个过程就像相继解开一个个puzzle(智力谜团)一样有趣,充满了思想的光辉。"Nobel Prize in Medicine Awarded for Cracking DNA Puzzle"(诺贝尔医学奖授予解开DNA谜团"的研究"),这样的标题最为精准。换个角度,我们不妨说是解"puzzle"得了诺奖。 染色体DNA的两个难题以及端粒概念的提出 20世纪70年代初,对DNA聚合酶特性的深入了解引申出了一个染色体的复制问题。DNA聚合酶在复制DNA的时候必须要有引物来起始,而且它的酶活性具有方向性,只能沿着DNA5'到3'的方向合成。染色 体复制之初可以由小RNA作为引物起始合成,之后细胞的修复机器启动,DNA聚合酶能够以反链DNA 为模板,以之前合成的DNA为引物,合成新的DNA取代染色体中间的RNA引物。但是线性染色体最末 端的RNA引物因为没有另外的引物起始,没有办法被DNA取代。所以线性染色体DNA每复制一轮,RNA 引物降解后末端都将缩短一个RNA引物的长度(图一)。尽管这个引物不长,但是细胞千千万万代地不 断复制,如果不进行补偿,染色体不断缩短,最终就会消失。James Watson(因为发现DNA双螺旋结 构获得诺奖)最早就明确指出了这个"末端隐缩问题",并猜想染色体也许可以通过在复制前联体(染色体 末端跟末端连起来)的方式来解决末端复制的问题[3]。

相关主题
文本预览
相关文档 最新文档