当前位置:文档之家› 端粒与衰老

端粒与衰老

端粒与衰老
端粒与衰老

端粒与衰老

摘要

众所周知,端粒是染色体两端的“保护帽”,能够起到某种抗癌作用,并与人体衰老现象有所联系,但其完整的生物学上的机理仍然还没有弄清楚。端粒酶是一种合成和延伸端粒的核糖核蛋白。端粒具有重要的生物学功能:①保护染色体不被核酸酶降解;②防止染色体相互融合;③为端粒酶提供底物,解决DNA 复制的末端隐缩,保证染色体的完全复制;④决定细胞的寿命。正常细胞内检测不到端粒酶活性, 因此, 正常细胞分裂次数是有限的, 不能无限增殖。衰老不仅仅是生长不可逆的停滞,而且涉及到功能的改变;衰老细胞分泌的细胞因子可能会引起组织功能和统一性的下降,这是端粒功能异常通过细胞衰老造成的影响,端粒与端粒酶同衰老是密不可分的。此外,在约85%的肿瘤细胞中检测到了端粒酶活性,这表明端粒系统(端粒、端粒酶)同癌症之间也存在相关性。随着对端粒和端粒酶研究的不断深入 ,发现端粒系统与衰老、肿瘤有密切关系。如果抑制端粒酶的活性 ,就可以使癌细胞停止分裂增殖 ,达到抗癌目的;若激活端粒酶 ,就可以增加细胞分裂次数 ,从而延长寿命。

关键词

端粒端粒酶衰老肿瘤

1、端粒及其两面性

端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长。细胞分裂次数越多,其端粒磨损越多,逐渐越短。

然而,端粒所起的作用决非想象中的那么简单。例如,端粒变短是一个喜忧参半的结果:它可延缓癌细胞分裂的速度,但同时也阻碍了自然组织的修复过程———无论是在人体或小鼠体内,较短的端粒意味着疾病的产生和机体的衰老。DNA 的每一次复制过程,都会导致染色体变短,在端粒变得极短之时,就可能对一些重要的DNA 序列造成破坏,并可能导致细胞修复机制出错,将受损的染色体末端误认为受损的DNA 链,而将其两端融合起来。由于染色体损伤有可能促使细胞生长失控,人们因此会认为严重受到侵蚀的端粒也可能会产生同样的风险。

2、端粒与衰老

研究证明,端粒与细胞寿命的控制密切相关。人类端粒长度大约2~15 kb,由于存在末端复制问题,DNA每复制1次,端粒DNA就会丢失50~200bp,随着细胞分裂次数的增加,端粒DNA也在进行性地缩短,当缩短到一定限度后,便不能维持染色体的稳定,使细胞失去了分裂增殖能力而衰老死亡,这种缩短就是衰老的标志。因此,端粒也被称为细胞的“生命钟”。

衰老是生物在生命过程中整个机体形态、结构和功能逐渐衰退的综合现象。关于衰老的学说有多种,其中端粒学说由Olovnikov提出,认为在细胞分裂的过程中,端粒起缓冲作用,但是当端粒缩短到一定程度就会失去缓冲作用,从而导致细胞衰老。目前认为,端粒长度随着细胞分裂逐渐缩短,当它缩短到一定长度,亦即在端粒长度缩短到可能造成基因损伤前,细胞自身的检测系统被激活,启动终止细胞分裂的信号,激发细胞周期p53或Rb关卡,从而使细胞周期停止,进入第一死亡期M 期。倘若使p53或Rb失活以阻断M 期,细胞将继续倍增20~40代,同时端粒进一步丢失,直到发生DNA损伤,出现染色体融合、细胞危机,即进入第二死亡期M 期。此时大部分细胞死亡,只有极少细胞激活端粒酶发生逃逸,成为永生化细

胞H

端粒随着岁月流逝不断缩短的事实表明,端粒长度在某种意义上记录了生物体的生理年龄,就像树木的年轮一样。然而,从事端粒研究工作的科学家告诫道,这种解释有些过于简单化。“有明确的证据表明,端粒不是衰老的唯一决定性因素,”2009 年度诺贝尔医学奖获得者格雷德说,“导致衰老可能有五种、六种,甚至七种不同的途径,端粒在衰老过程中只是起到了其中的一部分作用。

3、端粒酶与衰老

端粒酶(telomerase) 是一种以自身RNA 为模板, 将端粒DNA 合成至染色体的核糖核蛋白复合物(ribo nucleoprotein, RNP) 。端粒长度的维持需要端粒酶的激活。1985 年, Blackbum 和Greider 首度在四膜虫体内发现了端粒酶的存在。端粒酶由三个亚单位组成: ( 1 ) 端粒酶反转录亚单位( hTRT ) ; (2) 端粒酶RNA (hTRNA) ; ( 3) 端粒酶相关蛋白( hTRPl、hTRP2、TLP 或TPl) 。其中, hTRNA被认为是端粒酶用来延长端粒的模板。该基因由450 个核苷酸组成, 其中包含模板序列5cCUAACCCUAAC3c, 与人端粒序列(TTAGGG)n 互补。若该模板发生变化, 则将导致端粒酶的功能发生改变, 致使端粒不断缩短。hTRPl 和hT RP2分别是端粒酶的调节和催化亚单位。此外, 端粒酶的活性调节还涉及癌基因、抑癌基因( P53、RB、c-myc等), 细胞分化和细胞周期等。

端粒的长度是由端粒酶决定的。正常人的体细胞经多次分裂后 ,端粒缩短 ,但如果在端粒缩短的同时 ,激活端粒酶 ,就能以自身的模板合成端粒 ,以弥补端粒的缺损 ,维持染色体的稳定性 ,使细胞免于衰老死亡而获得生存 ,发展成为“永生细胞”。

衰老的调节还有赖于端粒酶对端粒的调控,以及端粒和端粒酶的联合作用。端粒酶能够以自身的RNA提供模板,维持端粒的结构和长度。如果在正常体细胞中重建端粒酶活性,就可维持细胞的端粒长度,延缓细胞的衰老。Bodnar AG等“将编码了人类端粒酶催化亚基的载体转染到视网膜色素上皮细胞和包皮成纤维细胞这两种端粒酶表达呈阴性的正常人类细胞中,结果发现端粒酶表达呈阴性的细胞的端粒缩短、细胞衰老,而端粒酶表达呈阳性的细胞的端粒伸长,细胞分裂旺盛,作为生物衰老标记物的β一半乳糖苷酶的活性降低。同时值得注意的是,端粒酶表达呈阳性的细胞有正常的核型,而且这些细胞的寿命超出正常细胞的寿命至少4JD倍。Davis T等“引研究发现,Werner综合征患者的端粒长度与他们的衰老程度相对应,端粒越短,患者的衰老程度越严重。如果增强Wemer综合征患者成纤维细胞的端粒酶活性,就可以延长细胞寿命,控制衰老的进程。

4、端粒酶与肿瘤

端粒酶与恶性肿瘤的关系非常密切。研究发现,在人类许多正常体细胞中检测不到端粒酶活性,而几乎所有的人类恶性肿瘤细胞中的端粒酶均呈现活性。人端粒酶催化亚单位mRNA 在大多数正常体细胞中不表达,但在原发性肿瘤、癌细胞系中却高表达。同时,有报道称大多肿瘤细胞在繁殖过程中由于端粒酶的作用而端粒不缩短,因此肿瘤细胞的繁殖永无休止。许多人认为,端粒酶的异常激活是细胞癌变的重要一步

肿瘤是一种体细胞遗传病,人们很早以前就把目光集中到遗传物质的载体——染色体上。通过研究染色体在肿瘤形成中的变化,不少学者发现人恶性肿瘤细胞中染色体的端粒酶的活性均不同于正常体细胞;在许多正常体细胞中检测不到端粒酶活性,而几乎所有的人类恶性肿瘤细胞中的端粒酶均呈现活性。统计资料表明,84.8%的恶性肿瘤具有活化状态的端粒酶,而仅在4.2%的正常组织、癌旁组织和良性肿瘤中端粒酶呈阳性。这似乎在告诉人们,端粒酶活性的变化也许是伴随细胞恶化而产生的。

从1994年Kim 等首次创造了高度敏感的端粒重复序列扩增实验( Telomeric repeated

sequenceamplificat io n, T RSAP) 以来, 便加速了端粒酶的研究步伐。有关端粒酶的临床研究证实, 几乎涵括全身各器官的肿瘤, 绝大多数恶性肿瘤的端粒酶呈阳性。而正常组织或良性肿瘤中, 端粒酶的活性则呈阴性。同时, 研究表明, 端粒酶活性与恶性肿瘤的病程与预后有密切关系。

许多学者在对癌细胞进行研究的过程中发现,永生化是癌细胞所具有的显著行为,也就是说,癌细胞具有端粒酶被激活的细胞所具备的特性。1995年Hiyama等人在对100例成纤维神经细胞瘤的研究中证实,有端粒酶活性表达的肿瘤组织占94%,端粒酶活性越高的组织越容易伴有其它遗传学变化,并且预后不良;而低端粒酶活性的肿瘤组织中未见有相应的变化且都预后良好,甚至有3处于IVS阶段的无端粒酶活性的病例竟出现了肿瘤消退的现象。这似乎说明端粒酶同癌症之间存在着相关性,但是否因果关系,还很难定论。

如果没有端粒酶的存在,肿瘤发展速度将会受到限制。“通常来说,细胞分裂失控是因端粒酶调控出现问题而产生的,”谢伊说道。事实上,谢伊和他在西南医学中心的长期合作者伍德林·赖特(Woodring Wright)发现,人类肿瘤的90%都存在有端粒酶活跃的现象。研究人员曾经认为,促使肿瘤细胞活跃的条件之一是休眠的端粒酶基因被重新激活。研究得知,端粒酶是由小分子RNA和蛋白质组成的一种自身携带模板的核糖核酸蛋白酶,它能够利用自身RNA为模板合成端粒DNA,作为依赖RNA的一种特殊DNA聚合酶,属逆转录酶。其中,镶嵌在蛋白质内部的核酸为端粒酶将六聚体核苷酸连接到染色体末端提供模板,是端粒酶呈现活性的必需组分。

5、前景与展望

抑制端粒酶活性,是中药抗肿瘤的重要机理之一,也是治疗肿瘤的一个新思路,深入研究抗肿瘤中药对肿瘤细胞端粒酶活性的影响,不仅有助于阐明中药抗肿瘤发生、浸润和转移的机理,而且对于肿瘤的中医药治疗、抗肿瘤中药的开发等均有重要意义。

近些年来,端粒酶已经引起众多专家学者的关注,积累了丰厚的理论基础。既然端粒酶与肿瘤有着如此密切的关系,可将端粒酶作为肿瘤的一项标志物,在临床上用于对肿瘤的监测,前景可观。但因其在一些增殖活跃的正常细胞及一些良性肿瘤中亦表达,而在约20%肿瘤中却不表达,且其在不同恶性肿瘤中表达水平高低没有特异的区别,这就为在临床上的应用带来困难,所以亟待进行更深入细致的研究,为人类最终战胜肿瘤发挥作用。其次,hTERT 是端粒酶必不缺少的重要组成部分,可将hTERT作为靶点用于肿瘤的靶向治疗,但其副作用有哪些,对正常细胞有没有影响,如对增殖性强的干细胞、生殖细胞、活化的淋巴细胞,因为它们也会有端粒酶的表达,会不会导致这些细胞的提前衰老,所以要将其广泛用于临床,还需大样本、多中心、对照组的大规模实验。端粒酶与肿瘤的关系毋庸置疑,所以端粒酶抑制剂将作为肿瘤治疗的重要手段,若将端粒酶抑制剂与手术、传统放化疗及中医中药联合起来综合治疗,相信肿瘤的治疗定会迎来新的曙光!

参考文献

1、孔令平,汪华侨.端粒和端粒酶与衰老,癌症的潜在关系———2009 年诺贝尔生

理学或医学奖简介[J].自然杂志, 2009, 31( 6) :327 - 331.

2、Keys B,Scrra V,Samuld G,et al.Telomere shortening in human fibroblasts is

not dependent on the size of the telomeric-3'-overhang[J].Aging Cell,2004,3:103-109.

3、许娜,潘文干,刘玉莲《端粒系统与人类衰老关系》《吉林医药学院学报》2006

年9月27卷3期

4、《端粒、端粒酶与衰老和癌症的关系》寻医问药网

5、宋淑霞, 吕占军《T、B细胞衰老及其分子机制研究进展》

6、Smogorzewska A,van Steensel B,Bianchi A,et a1.Control of HumanTelomere Length byrrRF1 andTRF2[J】.Mol Cell Biol,2000,20(5):1659—1668.

7、纪冬,游少莉,辛绍杰.端粒酶的研究进展[J].军医进修学院学报, 2010,5,31( 5) :508 -510.

8、史济平.药学分子生物学[M].北京: 人民卫生出版社,2006,7,2( 8) : 26.

1植物衰老的机理

1植物衰老的机理 1.1植物衰老和细胞的程序性死亡 植物在长期进化和适应环境的基础上有选择性地使某些细胞、组织和器官有序死亡,称之为程序性死亡(programmed celldeath, PCD)[2]。植物PCD是指整个原生质(有细胞壁或无细胞壁)在植物某个生命时期主动撤退、消化过程,它在去除不需要细胞质或整个细胞时主要通过以下机制:自溶、裂解和木质化。植物衰老是涉及PCD的生理过程,两者在发生机制和信号传导上存在较多的共性: (1)植物衰老和PCD都是由基因控制的主动的过程,它们的发生都依赖新基因的转录和蛋白质的合成。(2)PCD和植物衰老都是一程序性事件。(3)植物衰老与PCD 都可以受许多内部发育信号和外部环境信号的影响,从而调节进程的快慢。(4)植物衰老和PCD过程中都存在物质的运转,这在衰老器官中表现为维管束周围组织最后衰老[3]。植物衰老的过程不完全是PCD。完整的植物衰老过程应包括两个阶段:第一阶段为可逆衰老阶段,细胞以活体状态存在;第二阶段为不可逆衰老阶段,细胞器裂解,细胞衰退, PCD发生,其中液泡的裂解和染色质降解形成的DNA片段是PCD开始发生的标志。胞间基质相互作用,为细胞的分化、生长和死亡提供必需的信号。MMP为基质金属蛋白酶(matrix metallopro-tease)可降解基质。Delorme等[4]在黄瓜叶片衰老的后期检测到一种基质金属蛋白酶CS1-MMP,它是一种前体酶,须经过修饰才能活化,其表达早于DNA片段化的出现,但不参与衰老中营养物质的运转,可能与PCD的发生有关。由此认为:PCD可能只在衰老的末期发生,即植物衰老达到一个不可逆的点,这个点的出现标志着PCD的发生。Rao和Davis发现[5]:缺少脱落酸(SA)信号传导途径的拟南芥突变体pad4,其叶片长时间保持黄化状态,细胞死亡速度比野生型慢得多,而野生型拟南芥SA信号传导途径中被诱导表达的一个衰老特异基因SAG12只在衰老晚期的黄化组织中表达,推测植物衰老前期产生的SA信号可诱导下一步的PCD,SAG12可能在衰老后期的PCD过程中起关键作用。 1.2自由基与衰老 植物体内的自由基是指植物代谢过程中产生的O·-2、OH·等活性氧基团或分子,当它们在植物体内引发的氧化性损伤积累到一定程度,植物就出现衰老,甚至死亡。但生物在长期进化过程中在体内形成了一套抗氧化保护系统,通过减少自由基的积累与清除过多的自由基两种机制来保护细胞免受伤害。生物体内的抗氧化剂主要有两大类,一是抗氧化酶类,主要包括超氧化物歧化酶(SOD)、过氧化氢酶(CA T)、过氧化物酶(POX)等;二是非酶类抗氧化剂,主要有维生素E、维生素C、谷胱甘肽(GSH)等。许多研究表明,在缺氧条件下,生物体内SOD、CA T活性下降。对菜豆子叶超氧化物歧化酶活性研究发现,其SOD活性随组织衰老而下降,表明植物组织酶的清除能力随年龄增加而下降[6]。已有的证据显示,自由基、活性氧对植物的损害作用主要表现在生物膜损伤、呼吸链损伤、线粒体DNA损伤等。大多数研究集中在活性氧所引发的膜脂过氧化方面。膜脂过氧化即自由基(O·-2、OH·等)对类脂中不饱和脂肪酸引起的一系列自由基反应。脂氧合酶(lipoxygenase,LOX)是一种氧合酶,专门催化具有顺-1,4戊二烯结构的不饱和脂肪酸的加氧反应,其中间产物自由基和最终产物丙二醛都会严重地损伤生物膜。丙二醛具有强交联性质,能与蛋白质、核酸游离的氨基结合,形成具有荧光的Schif碱,称为类脂褐色素(1ipofuscin-like pigment, LEP),是不溶性化合物,干扰细胞内正常生命活动代谢。同时,丙二醛与生物膜中结构蛋白和酶的交联,破坏它们的结构和催化功能[7]。活性氧、自由基还能直接与核酸分子作用,使碱基羟基化,发生突变,从而改变核酸的结构。用自旋捕集技术和ESR法,通过研究紫外线辐射核黄素产生的超氧阴离子自由基(O·-2)等活性氧与嘧啶碱基及核苷的反应,发现该反应不是直接进行,而是通过羟自由基来实现的。线粒体呼吸链是细胞内自由基的主要发生器之一,它本身易被自由基损伤。在衰老的植物组织中电子传递链的失衡使得部分电子泄露给O2,呼吸链电子传递出现短路,其结果使A TP生成减少,O·-2等活性氧的产生增加,从而影响细胞的功能[8]。

中医衰老学说及抗衰老研究概况_赵蓉

[收稿日期]2006-01-06中医衰老学说及抗衰老研究概况 赵 蓉 (天津市大港区中医医院,天津300270) [中图分类号]R161.7 [文献标识码]B [文章编号]1004-2814(2006)06-384-02 衰老是指机体发育成熟后,组织器官逐步发生退行性改变,并最终走向老化的过程。目前西医和中医对衰老机制及 抗衰老都进行了大量的研究,并取得了不少成果。现就中医衰老学说的研究综述如下。1 中医衰老学说 精气神衰老学说:精、气、神为人之三宝,是生命的根本。中医认为精、气、神三者的状态标志着一个人的健康,如三者虚衰,则是衰老的征象。5太平经6提出/精、气、神0是支配着人体生命的三大元素。5素问#金匮真言论6曰:/夫精者,身之本也。05灵枢#本神篇6记载:/故生之来谓之精,两精相搏谓之神。05灵枢#决气篇6记载:/上焦开发,宣五谷味,熏肤,充身,泽毛,若雾露之溉,是谓气。0历代医家又对此进行不断充实发挥,丰富了学说内容。5黄帝内经素问集注6说:/神气血脉,皆生于精,故精乃生身之本,能藏其精,则血气内固,邪不外侵。0可见历代医家对人体的精、气、神非常重视,精充、气足、神旺即是健康的标志,如精亏、气虚、神萎则是衰老的征象,从精、气、神三方面的表现,完全可以反映出人体衰老的程度。 肾虚衰老学说:5素问#上古天真论6谓:/女子七岁,肾气盛,齿更发长。二七而天癸至,任脉通,太冲脉盛,月事以时下,固有子,,七七,任脉虚;太冲脉衰少,天癸竭,地道不通,故形坏而无子也。丈夫八岁,肾气实,发长齿更。二八,肾气盛,天癸至,精气溢泻,阴阳和,故能有子,,八八,则齿发去。肾者主水,受五脏六腑之精而藏之,故五脏盛,乃能泻,,此其天寿过度,气脉常通,而肾气有余也。0肾为先天之本,人体生长、发育、衰老以至死亡的过程就是肾气逐渐充实、 隆盛、衰少乃至衰竭的过程[1] 。 脾胃虚弱衰老学说:脾胃为后天之本,为气血生化之源。脾胃在人体活动中起着升降枢纽的作用,肾中的先天精气也依赖于脾胃化生的后天水谷精微的充养。李东垣在5脾胃论6中谓脾胃是化生元气的本源,脾胃损伤必然导致元气不足,而产生各种病变,提出/诸病从脾胃而生0,脾虚则/气促憔悴0、/血气虚弱0等观点,认为脾胃虚弱是导致衰老发生的主要原因。脾胃功能强盛则身体健康而长寿,脾胃虚衰则百病丛生而早衰。 阴阳衰老学说:5素问#阴阳应象大论6曰:/阴阳者,天地之道也,万物之纲纪,变化之父母,生杀之本始,,0中医学认为阴阳之间的变化是一切事物运动变化的根据,同时也是生命生长、发育、衰老以至死亡的根本原因。古人认为只有阴阳平衡生命活动才能正常进行,如果阴阳平衡被打破则会导致 机体发生疾病、衰老以至死亡。机体衰老的过程也就是阴阳失去平衡,出现偏盛偏衰或阴阳两虚的结果。若进一步发展,阴阳不能相互为用而分离,人的生命活动也就停止了。5素问#生气通天论6的/阴平阳秘,精神乃治;阴阳离决,精气乃绝0则是对这种学说的概括与总结 [1] 。 脏腑经络衰老学说[2] :5内经6在论述人体衰老的原因时已明确指出,随着年龄的增长五脏虚衰则会导致衰老的发生与发展,并最终引起死亡。5灵枢#天年篇6谓:/五十岁,肝气始衰,肝叶始薄,胆汁始灭,目始不明。六十岁,心气始衰,苦忧悲,血气懈惰,故好卧。七十岁,脾气虚,皮肤枯。八十岁,肺气衰,魄离,故言善谈。九十岁,肾气焦,四脏经脉空虚。百岁,五脏皆虚,神气皆去,形骸独居而终矣。0首先提出了脏腑虚衰是导致人体衰老、死亡的原因。后世医家在此基础之上,对衰老的脏腑虚衰学说又各有发挥,并形成了两种主要观点。 淤血衰老学说:5素问6谓:/使道闭塞不通,,以此养生则殃。0/使道0即血脉,明确指出血脉不通有碍养生长寿。淤血产生后,气血运行受阻,脏腑得不到正常濡养,气化功能受损;同时代谢产物不能排泻,堆积体内,毒害机体,从而形成恶性循环,加速衰老[3] 。2 中医抗衰老研究概况 中药抗衰老研究:1调节免疫功能:研究表明,活血化淤类中药丹参、川芎等能提高大鼠的淋巴细胞转化率,增强小鼠单核巨噬细胞系统的吞噬作用,提高细胞免疫和体液免疫的 功能[4] 。复方参七汤能减缓免疫器官的萎缩,提高IL-2水平,对TNF-A 异常升高有抑制作用 [5] 。钟毅 [6] 等用补肾健 脾活血化痰方药经过临床和动物实验研究显示具有增加机体免疫功能作用。o对抗自由基的研究:杨勇等用四物汤及其各单味药对小鼠自由基代谢及免疫功能影响的比较研究发现四物汤全方通过调节自由基代谢及对免疫功能的影响,而起 到延缓衰老的作用,配伍后表现出较强的药理活性[7] 。?对神经系统的研究:赵伟康 [8] 等研究发现,固真方能明显延缓老 年机体H PTT 轴的功能退化及延缓老年大鼠下丘脑)垂体) 肾上腺)胸腺(H PTQ )轴衰老的作用[9] 。?对生殖系统的研究:生殖功能是反映机体衰老的敏感的指标之一。黄精可显著升高衰老动物脑和性腺组织的端粒酶活性[10] 。杜仲具有一定的抗衰老作用,使生精过程活跃,生精细胞增多,间质细胞增多不明显,生精小管直径改变不明显 [11] 。?对调控衰老基 因的研究:王学美[12] 等观察五子衍宗丸及其拆方对老年肾虚者外周血白细胞线粒体DNA 缺失,减少有缺陷的呼吸链,增强细胞所需的能量,从而达到维持细胞正常生理,延缓衰老的作用。?改善血液流变性的研究:实验表明,人参、黄精、决明子、何首乌、徐长卿、红花均有降血脂或降低血清胆固醇作用。 # 384#

衰老生化复习题

高脂血症:由于体内脂类物质代谢或转运异常使血清中总胆固醇、低密度脂蛋白胆固醇及(或)三酰甘油水平升高超过正常范围高限的一种病症。 血浆所含脂类(脂质)统称血脂(lipids)。 胰岛素:是由胰岛β细胞合成分泌的多肽激素。 高血糖症:是糖代谢紊乱导致血糖浓度高于参考上限的一种异常现象,主要表现为空腹血糖损伤、糖耐量减退或糖尿病。 胰岛素受体是一种位于细胞膜上的糖蛋白,能特异性与胰岛素结合而引起细胞效应。 糖尿病(diabetes mellitus, DM)是一组由于胰岛素分泌不足或/和胰岛素作用低下而引起的糖代谢紊乱性疾病,其特征是高血糖症。 胰岛素抵抗:机体对胰岛素敏感性下降,胰岛素降血糖的能力降低,身体组织对葡萄糖的利用障碍 随着年龄继续增长,中心性肥胖更为明显,胰岛β细胞的增龄性改变使其无法继续维持良好的代偿分泌功能,不足以控制负荷后的血糖水平,进而出现隐性糖尿病 糖化蛋白是指蛋白质中的氨基酸残基与自由糖(主要是葡萄糖)不经酶催化发生结合的产物。 生命:生命是自然界中的一种高度有序的现象 人口普查(census):在国家统一规定的时间内,按照统一的方法、统一的项目、统一的调查表和统一的标准时点,对全国人口普遍地、逐户逐人地进行的一次性调查登记。 由自发的或环境的因素引起DNA一级结构的任何异常的改变称为DNA的损伤(DNA damage),也称为突变(mutation)。 DNA甲基化:S-腺苷甲硫氨酸上的甲基在DNA甲基转移酶的催化下转移至DNA分子中胞嘧啶环第5位碳原子上,形成5-甲基胞嘧啶(5-mC)的过程。 端粒(telomere):位于染色体末端,由端粒 DNA 和端粒相关蛋白组成。 端粒相关蛋白:直接或者间接与端粒相结合的蛋白。 端粒DNA:富含GxTy,由简单重复的非编码序列组成,受特殊蛋白质保护,不被核酸酶水解。 端粒酶(telomerase):是一种核糖核蛋白,是一种逆转录酶,由RNA和蛋白质构成,能识别和结合端粒序列。 辐射、农药、食物添加剂、酒精、吸烟等外来因素引发的自由基称为“外源性自由基”。 在新陈代谢过程中,从大气中吸进的氧气,在肺部,与食物消化后进入血液里的葡萄糖进行化学反应,产生维持生命活动的能量。在正常生化过程中,常有1%左右的氧变成化学性质极其强烈的氧自由基,即人体内生化反应产生的“内源性自由基”。 色斑也称脂褐素,是脂质过氧化的最终产物丙二醛与大分子交联形成的高聚物,呈圆形或椭圆形,直径1μm~1·5μm,难溶于水,不易被排除,在细胞内大量沉积,防碍细胞代谢,加速细胞机能衰退,引起细胞老化,因此,色素斑的形成是皮肤衰老的标志之一,也是自由基联锁反应的结果。 单胺氧化酶(MAO,EC1. 4. 3. 4)全名:单胺∶O2 氧化还原酶,它在大脑和周围神经组织中催化一些生物体产生的胺,氧化脱氨产生过氧化氢。 单胺氧化酶抑制剂(MAOIs)是一类选择性抑制机体内单胺氧化酶活性的药物。 寿命(life span):从出生到死亡的存活时间。 个体寿命:在自然情况(即没有任何意外事故的情况)下,生物体从第一次呼吸到最后一次呼吸的时间。 最长寿命:一个物种的个体所能活到的最长寿命,以已有纪录的最长寿命表示。

细胞凋亡与衰老

细胞凋亡与衰老 (作者:___________单位: ___________邮编: ___________) 【关键词】细胞凋亡;衰老 衰老是指增龄过程中机体出现的多器官渐进性功能减退,其确切机制并不清楚,有多种学说,如自由基学说、端粒学说和细胞凋亡学说等。以啮齿类动物为研究对象,肌肉、脑、心脏等多种衰老组织中均存在细胞凋亡异常〔1〕。细胞凋亡参与多种与衰老相关的病理过程,如骨质疏松、阿尔茨海默病等。目前细胞凋亡在衰老中的作用成为国内外研究热点,本文就二者的最新研究进展作综述。 1 细胞凋亡 细胞凋亡涉及一系列基因的激活、表达及调控,是机体为更好地适应环境采取的主动死亡,其参与许多重要生命活动,如胚胎发育、免疫防御和维持组织稳态等,对维持细胞增殖与死亡的平衡有重要意义。 1.1 细胞凋亡途径 1.1.1 外源性途径又称死亡受体途径,是由膜受体介导的细胞死亡过程。死亡受体是属于肿瘤坏死因子受体超家族的跨膜受体,其中研究较透彻的是Fas/FasL系统。Fas广泛分布于胸腺、肝、心、肾等

组织细胞表面。当Fas与其配体FasL结合后发生多聚化,与胞浆内死亡结构域结合蛋白(FADD)结合,活化胞浆caspase8,再活化凋亡执行者caspase3,水解蛋白质,启动核酸内切酶剪切DNA,造成凋亡。这是发育过程和免疫系统中最主要的凋亡途径。通过该途径可清除发育过程及免疫反应中活化的淋巴细胞。增龄过程中Fas表达呈上升趋势。衰老大鼠胸腺细胞和脾细胞凋亡速度加快,可能造成衰老机体免疫功能下降。 1.1.2 内源性途径以线粒体为核心,又称线粒体途径。该途径凋亡信号来自体内各种应激,如DNA损伤、氧化应激、紫外线、生长因子缺乏等。凋亡信号引起前凋亡蛋白Bax活化,Bax诱导线粒体释放细胞色素c(Cyt c)。进入胞质的Cyt c与凋亡蛋白激活因子(Apaf1)、caspase9前体组成凋亡体,激活caspase9,再活化caspase3引起细胞凋亡。线粒体也可释放凋亡诱导因子(AIF)和内切核酸酶G进入胞浆,二者转移到细胞核,断裂DNA。随着年龄增长,内源性凋亡途径逐渐变得活跃。 1.1.3 内质网应激介导的细胞凋亡内质网(ER)参与蛋白质合成及翻译后加工修饰。当非折叠或错折叠蛋白质在ER内堆积超过处理能力时,引起ER应激。ER应激的一个后果是细胞凋亡。位于ER膜上的Bak、Bax发生构象变化形成多聚体,使Ca2+进入ER,活化caspase12,引起下游级联反应,活化caspase9和caspase3。机体具有应对ER应激的保护措施,如使翻译起始因子eIF2去磷酸化,减少蛋白质合成。但衰老机体应对ER应激能力降低,eIF2磷

衰老的机制研究进展

衰老的机制研究进展 甘肃医学院赵文俊 摘要: 衰老又称老化, 通常是指在正常状况下生物体发育成熟后, 随年龄增长机体发生的功能性和器质性衰退老化的渐进过程。现代医学对衰老机制的研究涉及到很多方面,从自由基学说看,自由基可形成脂褐素、可造成线粒体DNA(mtDNA)的突变、引起核DNA的受损等;从遗传因素看,衰老是一连串基因激活和阻抑及其通过各自产物相互作用的结果;从免疫功能改变学说看,是由于机体对外来物质免疫反应的下降以及自身免疫反应的增多引起的。 关键词:衰老;自由基;脂褐素;细胞凋亡;线粒体DNA; 遗传基因;免疫系统衰老又称老化,通常是指在正常状况下生物发育成熟后,随年龄增加,自身机能减退,内环境稳定能力与应激能力下降,结构、组分逐步退行性变,趋向死亡的不可逆转的现象。对衰老的研究一直是生命科学领域的最为基本和重要的问题之一,但细节一直知之甚少。衰老是一个持续发展的、动态的、缓慢渐进而复杂的过程。这个过程从生长期结束后逐渐开始,它的影响要到老年期通过人体系统功能失调、器官功能衰退、细胞变性及蛋白质和酶分子结构变化逐渐表现出来。主要表现为机体对环境刺激的适应能力减弱以至丧失,出现多种器官组织功能的衰退并影响健康。影响衰老的因素有很多,各种社会因素、经济、疾病、营养、遗传、生活习惯、环境及精神状态等都起着一定的作用,是很多因素共同作用的结果[1]。目前,随着分子生物学和细胞生物学的研究深入,对衰老机理的研究从整体水平发展到分子水平。有关细胞衰老的学说近年来提出了很多,如细胞损伤学说、生物大分子损伤学说、自由基学说、端粒学说等。对于生物体而言,细胞衰老受到多种因素的影响,有自身遗传因素的影响,也有环境因素的影响,根本的还是受遗传方面的影响。

端粒和端粒酶与衰老_癌症的潜在关系_2009年诺贝尔生理学或医学奖简介

端粒和端粒酶与衰老、癌症的潜在关系 ———2009年诺贝尔生理学或医学奖简介 孔令平① 汪华侨② ①副教授,广州医学院从化学院,广州510182;②教授,中山大学中山医学院人体解剖学与脑研究室,广州510080 关键词 端粒 端粒酶 细胞 衰老 癌症 美国科学家伊丽莎白?布莱克本、卡萝尔?格雷德和杰克?绍斯塔克三人同时获得2009年诺贝尔生理学或医学奖,这是由于他们发现“染色体是如何被端粒和端粒酶保护的”,这一研究成果揭开了人类衰老和肿瘤发生等生理病理现象的奥秘。本文将就端粒和端粒酶的发现、结构和功能及其与人类衰老、癌症的潜在关系等方面做一简要介绍。 人的生老病死,这或许是生命最为简洁的概括,但其中却蕴藏了无穷无尽的奥秘。2009年10月5日,瑞典卡罗林斯卡医学院宣布将2009年诺贝尔生理学或医学奖授予美国科学家伊丽莎白?布莱克本(Elizabet h H.Blackburn)、卡萝尔?格雷德(Carol W.Greider)和杰克?绍斯塔克(J ack W.Szostak),以表彰他们发现“染色体是如何被端粒和端粒酶保护的”。这3位科学家的发现“解决了一个生物学重要课题,即染色体在细胞分裂过程中是怎样实现完全复制,同时还能受到保护且不发生降解”。由此可能揭开了人类衰老和罹患肿瘤等严重疾病的奥秘。 染色体是生物细胞核中的一种易被碱性染料染色的线状物质。大家都知道,正常人的体细胞有23对染色体,这对人类生命具有重要意义,其中的X和Y染色体是决定男女性别的性染色体。在染色体的末端,有一个像帽子一样的特殊结构,这就是端粒。作为染色体末端的“保护帽”,端粒具有维持染色体的相对稳固、防止DNA互相融合及重组的功能,犹如卫兵那样守护染色体不受损害。而端粒酶的作用则是帮助合成端粒,使得端粒的长度等结构得以稳定。 “染色体携有遗传信息。端粒是细胞内染色体末端的‘保护帽’,它能够保护染色体,而端粒酶在端粒受损时能够恢复其长度。”获奖者之一的伊丽莎白?布莱克本介绍说:“伴随着人的成长,端粒逐渐受到‘磨损’。于是我们会问,这是否很重要?而我们逐渐发现,这对人类而言确实很重要。”借助他们的开创性工作,如今人们知道,端粒不仅与染色体的个性特质和稳定性密切相关,而且还涉及细胞的寿命、衰老与死亡。简单讲,端粒变短,细胞就老化。相反,如果端粒酶活性很高,端粒长度就能得到保持,细胞老化就被延缓。 1端粒的发现、结构与功能 20世纪30年代,两位著名的遗传学家McClintock 和Müller等人发现,染色体的末端存在一种能稳定染色体结构和功能的特殊成分。如果缺少了此成分,染色体易降解,相互之间易发生粘连,出现结构的异常,影响染色体的正确复制,甚至引起细胞的死亡。于是Müller从希腊文的“末端”(telos)和“部分”(meros)二词为此特殊成分创造了一个全新的术语“端粒”(telomere)。但端粒的精确组成直到1978年才由美国科学家Blackburn和Gall首次提出,他们发现单细胞生物四膜虫(tetrahy2 mena)的端粒是由一连串简单重复序列T T GGGG形成的[1]。之后包括动物、植物和微生物在内的多种生物的端粒序列被测定出,发现它们与四膜虫的端粒序列极其相似,均由富含G和T的简单重复序列不断重复而成。正是这些连接在染色体末端的DNA重复序列及结合在其上的相关蛋白质共同构成了真核生物染色体的“末端保护帽”———端粒。人类细胞端粒的重复序列为T TA GGG,长度为5~15kb。不同组织细胞其端粒的长度不同,精子和早期胚胎细胞端粒长度较长,可达15~20kb。 端粒的结合或相关蛋白最重要的是人端粒重复序列结合因子(telomeric repeat factor)TRF1和TRF2,此外还包括PO T1,Ku70,Ku80,Tankyrase1,PINX1, TIN2和hRap1等。TRF1和TRF2均专一性地与端粒DNA重复序列结合。TRF1对端粒的长度起负调控作用,可以在一定程度上抑制端粒酶在端粒末端的行为; ? 7 2 3 ?

【课外阅读】有关植物衰老的学说1

有关植物衰老的学说 关于植物衰老发生的原因,主要有以下几种学说。 1.自由基损伤学说自由基有细胞杀手之称。1955年哈曼(Harman)就提出,衰老过程是细胞和组织中不断进行着的自由基损伤反应的总和。近年来,衰老的自由基损伤学说受到重视。衰老过程往往伴随着超氧化物歧化酶(superoxide dismutase,SOD)活性的降低和脂氧合酶(lipoxygenase,LOX,催化膜脂中不饱和脂肪酸加氧,产生自由基)活性的升高,导致生物体内自由基产生与消除的平衡被破坏,以致积累过量的自由基,对细胞膜及许多生物大分子产生破坏作用,如加强酶蛋白质的降解、促进脂质过氧化反应、加速乙烯产生、引起DNA损伤、改变酶的性质等,进而引发衰老。自由基与膜伤害的关系可参照图11-4。 自由基和活性氧自由基(free radical)又称游离基,它是带有未配对电子的原子、离子、分子、基团和化合物等。生物自由基是通过生物体内自身代谢产生的一类自由基。生物自由基包括氧自由基和非含氧自由基,其中氧自由基(oxygen free radical)是最主要的,它又可分为两类:一类是无机氧自由基,如超氧自由基(O 2 ·-)、羟自由基(·OH);另一类是有机氧自由基,如过氧化物自由基(ROO·)、烷氧自由基(RO·)和多聚不饱和脂肪酸自由基(PUFA·)。多数自由基有下述特点:不稳定,寿命短;化学性质活泼,氧化能力强;能持续进行链式反应。活性氧(active oxygen)是化学性质活泼,氧化能力很强的含氧物质的总称。 生物体内的活性氧主要包括氧自由基、单线态氧(1O 2)和H 2 O 2 等,它们能氧化生 物分子,破坏细胞膜的结构与功能,其中O 2 氧化能力特强,它能迅速攻击所有生物分子,包括DNA,引起细胞死亡。 自由基和活性氧两者间的组成关系如下: 非含氧自由基,如:CH 3·(甲自由基);(C 6 H 5 ) 3 C·(三苯甲自由基) 自由基 氧自由基,如:O 2 -·;·OH;ROO· 活性氧 含氧非自由基,如:1O 2;H 2 O 2 正常情况下,由于植物体内存在着活性氧清除系统,细胞内活性氧水平很低,不会引起伤害。植物细胞中活性氧的清除主要是通过有关酶和一些抗氧化物质。细胞的保护酶主要有超氧化物歧化酶(SOD)、过氧化物酶(peroxidase,POD)、过氧化氢酶(catalase,CAT)、谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)、谷胱甘肽还原酶(glutathione reductase,GR)等,其中以SOD 最为重要。对水稻、烟草、菜豆、燕麦等叶片衰老的研究表明,叶片中SOD 活性随衰老而呈下降趋势,O 2 -·等随衰老而增加,脂类过氧化产物丙二醛(MDA)迅速积累(MDA积累速率可代表组织中总的清除自由基能力的大小);而植物处于生长旺盛时期,SOD活性则是随着生长的加速保持比较稳定的水平或有所上升,因此,SOD活性的下降与植物体的衰老是呈正相关的。 增加植物体细胞内活性氧种类浓度的环境因素。 目前已发现有三种不同形式的SOD:(1)CuZn-SOD,分子量为32 000,由两个相同的亚基构成,主要分布于高等植物的细胞质和叶绿体中,是高等植物中主要的SOD;(2)Mn-SOD,主要分布于原核生物及真核生物的线粒体中,是诱导酶

9 第9章 植物的成熟与衰老生理-自测题及参考答案

第 9章 植物的成熟与衰老生理 自测题: 一、名词解释: 1. 单性结实 2. 天然单性结实 3. 刺激性单性结实 4. 假单性结实 5 休眠 6. 硬实 7. 后熟 8. 层积处理 9.呼吸高峰 10. 跃变型果实 11. 非跃变型果实 12 .衰老 13. 老化 14. 脱落 15. 离区与离层 16. 自由基 17. 程序性细胞死亡 二、缩写符号翻译: 1.LOX 2.PCD 3.GR 4.GPX 5.PME 三、填空题: 1.种子成熟过程中,脂肪是由______转化来的。 2.风旱不实的种子中蛋白质的相对含量__________。 3.籽粒成熟期ABA的含量______。 4.北方小麦的蛋白质含量比南方的__________。北方油料种子的含油量比南方的________。 5.温度较低而昼夜温差大时有利于__________脂肪酸的形成。 6.人们认为果实发生呼吸跃变的原因是由于果实中产生______________结果。 7.核果的生长曲线呈__________型。 8.未成熟的柿子之所以有涩味是由于细胞液内含有__________。 9.果实成熟后变甜是由于__________的缘故。 10.用__________破除马铃薯休眠是当前有效的方法。 11. 叶片衰老时, 蛋白质含量下降的原因有两种可能: 一是蛋白质_____________; 二是蛋白质_____________。 12.叶片衰老过程中,光合作用和呼吸作用都__________。 13.一般来说,细胞分裂素可__________叶片衰老,而脱落酸可_____________叶片衰老。 14.叶片和花、果的脱落都是由于______________细胞分离的结果。 15.种子成熟时,累积的磷化合物主要是______。 16.油料种子成熟时,油脂的形成有两个特点:__________________;__________________。 17. 小麦种子成熟过程中, 植物激素最高含量出现顺序是: __________、 __________、 __________、 __________。 18.油料种子成熟过程中,其酸价__________。 19. 果实成熟时酸味的减少是因为______________________、 ______________________、 __________________。 20.将生长素施于叶柄的______________端,有助于有机物从叶片流向其他器官。 21.整株植物最先衰老的器官是______________和__________。 22.在不发生低温伤害的条件下,适度的低温对衰老的影响是______________。 23.种子成熟时最理想的温度条件是______________。 24.在未成熟的柿子中,单宁存在的部位是______________。 25.果实含有丰富的各类维生素主要是______________。 四、 选择题(单项和多项): 1.下列果实中,有呼吸跃变现象的有( )。 A.桃 B.葡萄 C.番茄 D.草莓 2.叶片衰老时,( )。 A.RNA含量上升 B.蛋白质合成能力减弱 C.光合速率下降 D.呼吸速率下降 3.在豌豆种子成熟过程中,种子最先积累的是( )。 A.以蔗糖为主的糖分 B.蛋白质 C.脂肪 D.含氮化合物

端粒与端粒酶研究于抗衰老的应用

端粒与端粒酶研究于抗衰老的应用 陈元懿 技术原理 端粒:端粒是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,它与端粒结合蛋白一起构成了特殊的结构,能够维持染色体的完整和控制细胞分裂周期。端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在人中,端粒序列为TTAGGG/CCCTAA,并有许多蛋白与端粒DNA 结合。 端粒酶:端粒酶以自身的RNA作为端粒DNA复制的模板,合成出富含脱氧单磷酸鸟苷的DNA序列后添加到染色体的末端并与端粒蛋白质结合,从而稳定了染色体的结构。但是,在正常人体细胞中,端粒酶的活性受到相当严密的调控,只有在造血细胞、干细胞和生殖细胞,这些必须不断分裂复制的细胞之中,才可以侦测到具有活性的端粒酶。在保持端粒稳定、基因组完整、细胞长期的活性和潜在的继续增殖能力等方面有重要作用。 由于核DNA是线形DNA,复制时由于模板DNA 起始端被RNA引物先占据,新生链随之延伸;引物 RNA脱落后,其空缺处的模板DNA无法再度复制成 双链。因此,每复制一次,末端DNA就缩短若干个 端粒重复序列。当端粒不能再缩短时,细胞就无法 继续分裂了。越是年轻的细胞,端粒长度越长;越 是年老的细胞,端粒长度越短。一旦端粒消耗殆尽, 细胞将会立即启动凋亡机制。端粒与细胞老化的关 系,阐述了一种新的人体衰老机制。 端粒酶以自身的RNA作为端粒DNA复制的模板,合成出富含脱氧单磷酸鸟苷的DNA序列后添加到染色体的末端并与端粒蛋白质结合,从而稳定了染色体的结构。 DNA复制期间的滞留链

尽管如此,正常人体细胞几乎不表达端粒酶,而在干细胞及肿瘤细胞中该酶的表达量较大。通过对细胞进行基因工程改造,改变细胞中端粒酶的活性,可以影响细胞衰老的进程。 技术应用(实验阶段) 1)美国德克萨斯大学西南医学中心的细胞生物学及神经系统科学教授杰里·谢伊和伍德林·赖特做了这样一项试验:在采集的包皮细胞(包皮环切术的附带产物)中导入某种基因,使细胞中产生端粒酶。一般来说,包皮细胞在变老之前可分裂60次左右。但在上述试验中,细胞已分裂了300多次却毫无终止的征兆,也没有显示任何异常的迹象。 2)哈佛Dana-Farber癌症研究所的科学家们通过控制端粒酶基因,第一次在老鼠身上局部逆转了年龄增长所带来的老化问题,其中包括:大脑和睾丸的新生长发育,繁殖能力的增强,以及恢复了部分已丧失的认知功能。 技术优点 1)此种技术在DNA层面上对细胞衰老进行干预,为人类从衰老的根本上进行打开一条的新的道路。 技术缺点 1)尽管端粒酶似乎能有效地延缓细胞凋亡机制的启动,但也发现它在多种癌细胞中都有大量表达,与癌细胞的无限增生密切相关。由于对细胞衰老机制探究的不完全,虽然在细胞方面的已有可参考的实验,但于生物体的改造仍有很多风险及不确定因素。 2)端粒酶技术仅仅从单个细胞的角度延缓衰老,但生物个体中的新陈代谢是一套更复杂的系统。关于如何在延长细胞寿命的基础上协调个体的细胞代谢机制仍需更进一步的研究。

衰老学说

衰老学说 有人认为老年病正是衰老的原因;另有人反对说,老年病恰是衰老的结果。那么,究竟衰老的本质是什么呢? (一)氧自由基学说。这是世界上公认的主要衰老学说之一。它认为机体的细胞在氧化、代谢过程中,或受射线照射,服用化学药剂后,都使体内积累大量有害的自由基,这种自由基可是生物膜中多元不饱和脂肪酸发生过氧化作用,最终导致蛋白质交联物渐渐增多,导致细胞功能积累性退化衰老。自由基是使人衰老的罪魁祸首,所以设法消除这种自由基病便可延长人的寿命。美国路易斯维尔大学的生化专家即从植物中提取了一种能消除动物体内自由基的物质,用它喂蚊子,使其寿命从29天延长到45天。一旦能找到适合人服用的这类物质,人的寿命可望大大提高。 (二)细胞突变说。认为细胞分裂次数与寿命成正比。衰老即是由于细胞受损而产生突变。,从而使细胞本身及下一代细胞异常,生理功能下降,分裂次数降低。在实验中,人体细胞只能分裂50次,然后就土崩瓦解;但是在低温下,细胞分裂速度可变慢,这是延长寿命的方法之。与此相似的是生物钟学说,认为人的细胞分裂次数50次是生物钟决定的。例如寿命为30年的鸡,细胞分裂25次;寿命为3年的小白鼠,只分裂12次。有人提出一个推断:人的体温若降低2摄氏度,寿命可延长到200岁,若降低4摄氏度,可活700岁,且生命质量不变。又有人认为合理有益的饥饿,可大大提高人的寿命,这都是减缓细胞分裂速度的原理使然。程序衰老学说认为,人和动物的神经寿命是有特定的遗传程序决定的,不可更改,因此,人的衰老成为必然,这个学说也可以叫做遗传衰老学学说。 (三)免疫功能退化学说。这是为许多人接受的一种衰老学说,也是一个主要的衰老学说。它认为人的免疫功能在中老年后,随着年龄的增长而退化,而人类是处于外部病菌、病毒、内部异常细胞、毒素的包围之中,岁时又受侵害的可能,免疫功能降低就是致病且不易治愈,这就使器官、组织受损或致死。有人把幼儿内分泌腺诸如老人体内能,借此增加老人的米纳一功能,但尚未得到广泛临床应用。淋巴细胞是免疫系统的“主帅”。英国老年保健研究所公布的一项鸭牛结果表明:在一个老人死前3年终,淋巴细胞数量明显下降趋势。这是他们对05个人进行长达30年之久的考察得出的结论。 此外,北京大学大学医学部免疫学研究时发现,白细胞介素随着人的计数年龄的增长而呈明显夏季那个趋势,它在康衰老中参与机体的免疫调节。 (四)自身中毒说。人的大肠细菌等可分泌一种有毒物质,它可以使人衰老。此外,美国洛克菲勒大学的细胞生物学家尤金尼亚还从人体的结缔组织细胞中分离出一种特殊的蛋白质,是老化的、不能分裂的细胞的产物,正是它杀死了细胞。消除这种毒物,可望推迟衰老。 (五)死亡激素说。有人问为老化的关键步骤并非发生在细胞中,而是发生在大脑、神经、内分泌的活动,使机体老化的决定因素。若早期摘除大白鼠垂体腺,并喂食可的松激素,会延长大白鼠寿命。有的学者认为脑垂体腺在大脑中释放一种“死亡激素”,有的说胸线释放这种“死亡激素”但都未得到实验的证实。有人从乌贼鱼的泪腺中发现“死亡激素”。 (六)胶体化学说。捷克的汝兹卡认为衰老是滞后作用的过程,即使由于体内状态的变化。人随着年龄增长,体内进行胶体颗粒的合并过程,于是机体活性酸度下降,呈现衰老状态。

衰老理论和原因

衰老理论和原因 (三)自由基学说(国际学术界公认) 衰老的自由基学说是Denham Harman在1956年提出的,认为衰老过程中的退行性变化是由于细胞正常代谢过程中产生的自由基的有害作用造成的。生物体的衰老过程是机体的组织细胞不断产生的自由基积累结果,自由基可以引起DNA损伤从而导致突变,诱发肿瘤形成。自由基是正常代谢的中间产物,其反应能力很强,可使细胞中的多种物质发生氧化,损害生物膜。还能够使蛋白质、核酸等大分子交联,影响其正常功能。 支持该学说的证据主要来自一些体内和体外实验。包括种间比较、饮食限制、与年龄相关的氧化压力现象测定、给予动物抗氧化饮食和药物处理;体外实验主要包括对体外二倍体成纤维细胞氧压力与代谢作用的观察、氧压力与倍增能力及抗氧化剂对细胞寿命的影响等。该学说的观点可以对一些实验现象加以解释如:自由基抑制剂及抗氧化剂可以延长细胞和动物的寿命。体内自由基防御能力随年龄的增长而减弱。脊椎动物寿命长的,体内的氧自由基产率低。但是,自由基学说尚未提出自由基氧化反应及其产物是引发衰老直接原因的实验依据,也没有说明什么因子导致老年人自由基清除能力下降,为什么转化细胞可以不衰老,生殖细胞何以能世代相传维持种系存在这些问题。而且,自由基是新陈代谢的次级产物,不大可能是衰老的原发性原因。 (四)交联学说 该学说由Bjorksten于1963年提出的,后经Verzar加以发展。其主要论点是:机体中蛋白质,核酸等大分子可以通过共价交叉结合,形成巨大分子。这些巨大分子难以酶解,堆积在细胞内,干扰细胞的正常功能。这种交联反应可发生于细胞核DNA上,也可以发生在细胞外的蛋白胶原纤维中。目前有一些证据支持交联学说。皮肤胶原的可提取性以及胶原酶对其消化作用随增龄降低,而其热稳定性和抗张强度则随年龄的增高而增强了;大鼠尾腱上的条纹数目及所具备的热收缩力随年龄的增高而增加,溶解度却随年龄增高而降低。这些结果表明,在年老时胶原的多肽链发生了交联,并日益增多。该学说与自由基学说有类似之处,亦不能说明衰老发生的根本机制。 (五)差误成灾学说 差误成灾学说是由Orgel明确提出的,认为在DNA复制,转录和翻译中发生误差,这种误差可以不断扩大,造成细胞衰老、死亡。如DNA转录mRNA 的过程发生微小的差异,带有该微小差异的mRNA会翻译出进一步偏离的蛋白质,该蛋白质如果属于DNA聚合酶会合成差异程度更大的DNA,这样的差错经过每一次信息传递都扩大一些,形成恶性循环,使细胞内积累许多差错分子造成灾难,细胞正常功能不能发挥,致使细胞衰老、死亡。 对于这种假说,已有大量的研究和报道,各抒己见,褒贬不一。Lewis 和Tarrant发表了他们认为支持该学说的资料:合成生物大分子所需的酶存在年龄依赖性变化,如小鼠肝DNA多聚酶、人体成纤维细胞DNA多聚酶合成的正确性都随着年龄的增加而降低;同时DNA的修复速度也下降。 然而,与之不符的结果有在亚致死浓度的氨基酸类似物中生长的二倍体细胞寿命并不缩短。假如衰老是因为蛋白质合成时的差错引起的,那么在上

细胞衰老与凋亡案例教案

第六章第3节《细胞的衰老和凋亡》教学计划李艳2011/10/17 16:32:18 宁夏固原市西吉二中30 0 一、教材分析 细胞像生物体一样也要经历出生、生长、成熟、繁殖、衰老、死亡的过程,所以细胞的分裂、分化、衰老、死亡是生命的必然。那么个体衰老与细胞衰老的关系呢?细胞衰老有哪些表现呢?细胞衰老的原因是 什么?细胞的衰老和凋亡是生命活动中必不可少的过程,衰老和凋亡有什么关系?这一连串的问题构成本节内容的主线。对于细胞衰老和凋亡的学习,能使学生对细胞的整个生命过程有个完整的认识。同时细胞衰 亡机制的研究与生物科技的发展息息相关。对细胞衰亡知识的学习,有助于培养学生的科学兴趣,培养学 生的创新意识。 二、教学目标 1.知识与技能 (1)个体衰老与细胞衰老的关系。 (2)描述细胞的衰老的特征和原因。 (3)简述细胞凋亡的含义及与细胞坏死的区别。 2.过程与方法 (1)培养学生联系实际灵活应用知识的能力。 (2)学会进行与社会老龄化相关问题的分析。 3.情感态度与价值观 (1)探讨细胞的衰老和凋亡与人体健康的关系,关注老年人健康状况和生活状况 (2)通过有关衰老问题的讨论,树立科学的发展观。 三、教学重点难点 学习重点:1.细胞衰老的概念及特征。2.细胞凋亡的含义。 学习难点:细胞衰老与细胞凋亡的区别和联系。 四、学情分析 学生已经学习了细胞的增殖、分化的内容,对本节的内容已经有了初步的认识和理解,明确了细胞的分化、衰老和凋亡是一个自然的生命过程。本节的内容接近现实生活,可利用现实生活中的例子加以说明, 培养学生知识的应用能力和知识的迁移能力。 五、课型:新授课教学方法:教学基本环节:情境导入、展示目标→合作探究、精讲点拨→反思总结、 当堂检测→布置作业及预习 六、课前准备 布置学生在课前通过上网、查报纸杂志、看电视等途径收集与细胞衰老与凋亡有关的资料。教师制作课件。 七、课时安排:1课时 八、教学过程 【情景导入、展示目标】 教师展示“问题探讨”老年人晨练图片:随着社会的发展,人民生活水平的提高,医疗的完善等,人的寿命 在延长,老年人的比例上升。那如何能延缓衰老,保持身体健康显得尤其重要。 问题1:人的一生必然要经历哪些生命历程:出生→生长→成熟→繁殖→→的生命历程。(学生思考回答) 对于人的一生来说,出生,衰老,死亡都是非常重要,活细胞也一样。衰老和死亡是细胞不可忽视的部分。今天我们来学习第六章第3节《细胞的衰老和凋亡》的内容。 小组讨论:完成问题2和问题3 (3分钟) 问题2:我们学过的单细胞生物有:(举一例) 单细胞生物的衰老(= 或≠)细胞的衰老。 问题3:人的生命系统结构层次有哪些?

端粒与衰老

端粒与衰老 摘要 众所周知,端粒是染色体两端的“保护帽”,能够起到某种抗癌作用,并与人体衰老现象有所联系,但其完整的生物学上的机理仍然还没有弄清楚。端粒酶是一种合成和延伸端粒的核糖核蛋白。端粒具有重要的生物学功能:①保护染色体不被核酸酶降解;②防止染色体相互融合;③为端粒酶提供底物,解决DNA 复制的末端隐缩,保证染色体的完全复制;④决定细胞的寿命。正常细胞内检测不到端粒酶活性, 因此, 正常细胞分裂次数是有限的, 不能无限增殖。衰老不仅仅是生长不可逆的停滞,而且涉及到功能的改变;衰老细胞分泌的细胞因子可能会引起组织功能和统一性的下降,这是端粒功能异常通过细胞衰老造成的影响,端粒与端粒酶同衰老是密不可分的。此外,在约85%的肿瘤细胞中检测到了端粒酶活性,这表明端粒系统(端粒、端粒酶)同癌症之间也存在相关性。随着对端粒和端粒酶研究的不断深入 ,发现端粒系统与衰老、肿瘤有密切关系。如果抑制端粒酶的活性 ,就可以使癌细胞停止分裂增殖 ,达到抗癌目的;若激活端粒酶 ,就可以增加细胞分裂次数 ,从而延长寿命。 关键词 端粒端粒酶衰老肿瘤 1、端粒及其两面性 端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长。细胞分裂次数越多,其端粒磨损越多,逐渐越短。 然而,端粒所起的作用决非想象中的那么简单。例如,端粒变短是一个喜忧参半的结果:它可延缓癌细胞分裂的速度,但同时也阻碍了自然组织的修复过程———无论是在人体或小鼠体内,较短的端粒意味着疾病的产生和机体的衰老。DNA 的每一次复制过程,都会导致染色体变短,在端粒变得极短之时,就可能对一些重要的DNA 序列造成破坏,并可能导致细胞修复机制出错,将受损的染色体末端误认为受损的DNA 链,而将其两端融合起来。由于染色体损伤有可能促使细胞生长失控,人们因此会认为严重受到侵蚀的端粒也可能会产生同样的风险。 2、端粒与衰老 研究证明,端粒与细胞寿命的控制密切相关。人类端粒长度大约2~15 kb,由于存在末端复制问题,DNA每复制1次,端粒DNA就会丢失50~200bp,随着细胞分裂次数的增加,端粒DNA也在进行性地缩短,当缩短到一定限度后,便不能维持染色体的稳定,使细胞失去了分裂增殖能力而衰老死亡,这种缩短就是衰老的标志。因此,端粒也被称为细胞的“生命钟”。 衰老是生物在生命过程中整个机体形态、结构和功能逐渐衰退的综合现象。关于衰老的学说有多种,其中端粒学说由Olovnikov提出,认为在细胞分裂的过程中,端粒起缓冲作用,但是当端粒缩短到一定程度就会失去缓冲作用,从而导致细胞衰老。目前认为,端粒长度随着细胞分裂逐渐缩短,当它缩短到一定长度,亦即在端粒长度缩短到可能造成基因损伤前,细胞自身的检测系统被激活,启动终止细胞分裂的信号,激发细胞周期p53或Rb关卡,从而使细胞周期停止,进入第一死亡期M 期。倘若使p53或Rb失活以阻断M 期,细胞将继续倍增20~40代,同时端粒进一步丢失,直到发生DNA损伤,出现染色体融合、细胞危机,即进入第二死亡期M 期。此时大部分细胞死亡,只有极少细胞激活端粒酶发生逃逸,成为永生化细

相关主题
文本预览
相关文档 最新文档