当前位置:文档之家› 磷酸铁锂的合成方法

磷酸铁锂的合成方法

磷酸铁锂的合成方法
磷酸铁锂的合成方法

磷酸铁锂合成工艺比较

(1)高温固相法:J. Barkaer 等就磷酸盐正极材料申请了专利,主要采用固相合成法,以碳酸锂、氢氧化锂等为锂源,草酸亚铁、乙二酸亚铁,氧化铁盒磷酸铁等为铁源,磷酸根主要来源于磷酸二氢铵等。典型的工艺流程为:将原料球磨干燥后,在马弗炉或管式炉内于惰性或者还原气氛中,以一定的升温加速加热到某一温度,反应一段时间后冷却,高温固相法的优点是工艺简单,易实现产业化,但产物粒径不容易控制,分布不均匀,形貌也不规则,并且在合成过程中需要使用惰性气体保护。

(2)碳热还原法:这种方法是高温固相法的改进,直接以铁的高价氧化物如Fe2O3,LiH2PO4和碳粉为原料,以化学计量比混合,在箱式烧结炉氩气气氛中于700℃烧结一段时间,之后自然冷却到室温,采用该方法做成的实验电池首次充放电容量为151mAh/g,该方法目前有少数几家企业在应用,由于该法生产过程较为简单控制,且采用一次烧结,所以它为LiFePO4产业化提供了另外一条途径。但该方法制备的材料较传统的高温固相法容量表现和倍率性能方面偏低。

(3)水热合成法:S. F. Yang等用Na2HPO4和FeCl3合成,然后与CH3COOLi通过水热法合成LiFePO4,与高温固相法比较,水热法合成的温度较低,约150度~200度,反应时间也仅为固相反应的1/5左右,并且适合于高倍率放电领域,但该种合成方法容易在形成橄榄石结构中发生Fe错位现象,影响电化学性能,且水热法需要耐高温高压设备,工业化生产的困难要大些,据称Phostech的P2粉末便采用该类工艺生产。

(4)液相共沉淀工艺:该法原料分散均匀,前躯体可以在低温条件下合成,将LiOH加入到(NH4)2Fe(SO4)与H3PO4的混合液中,得到共沉淀物,过滤洗涤后,在惰性气氛下进行热处理,可以得到LiFePO4,产物表现出较好的循环稳定性。

(5)雾化热解法:雾化热解法主要用来合成前躯体,将原料和分散剂在高速搅拌下形成浆状物,然后在雾化干燥设备内进行热解反应,得到前躯体,灼烧后得到产品。

(6)氧化-还原法:该法能得到电化学优良的纳米级的磷酸铁锂粉体,但其工艺很复杂,不能大量生产,只适合实验室研究。

此外,乳化干燥法,微波烧结法及溶胶凝胶法。

目前国内外已经能实现磷酸铁锂电池量产的合成方法均是高温固相法,高温固相法又分为传统的(以天津斯特兰、湖南瑞翔、北大先行等位代表,以草酸亚铁作为铁源)和改进的(以美国Valence、苏州恒正为代表,以三价铁物质作为铁源,该法也称为碳热还原法)两种。对碳热还原法来讲,选取的铁源主要有两种,一种是以Valence的氧化铁红路线,还有一种是清华大学(已成立北京锂先锋科技)以及武汉大学(已转让浙江振华新能源)的技术,选用磷酸铁做为铁源,该法过程工艺较为简单,其最大的优点是避开了其他合成方法中使用磷酸二氢铵为原料,产生大量氨气污染的问题,但对磷酸铁原料要求较高。

目前清华大学的一个研究小组通过控制沉淀条件合成了一种粒度可控,碳掺杂的磷酸铁前躯体,但该法合成难度较高,在工业放大过程中面临一些问题。目前有些厂家选用磷酸二氢锂做为生产磷酸铁锂的原材料,同样可以避免反应过程的污染问题,这个在氧化铁红路线上有所体现,这条路线和磷酸铁加碳酸锂的路线均不产生污染。

摘要:为了研究水对碳包覆LiFePO4的影响,我们进行了化学分析,结构分析(X射线衍射分析,扫描电镜,透射电镜),光谱分析(红外光谱,拉曼光谱)和磁测量分析。将磷酸铁锂浸泡在水中,部分样品会漂浮在水面,而大部分会沉降。我们对漂浮部分和沉降的部分都进行了分析,发现漂浮的部分与沉降部分的区别只是碳含量不同。磷酸铁锂浸泡在水中,几分钟内无碳包覆的颗粒会与水迅速反应,但是无论是水热反应还是固相反应合成法生产的磷酸铁锂,碳包覆层都不能阻止水分的渗透,渗透了水的碳层就不能保护内层的LiFePO4,但水分子对LiFePO4的化学侵蚀仅限于粒子表层(几纳米厚)。如果磷酸铁锂颗粒仅仅是接触到潮湿的空气,碳包覆层对粒子的保护则更有效。在这种情况下,Li有亲水性,在一段时间内(几周)磷酸铁锂接触潮湿的空气后表层锂也会与水发生锂化反应;但是如果将该吸水的样品干燥后,其电化学性能可以恢复。

1.介绍

LiFePO4作为锂电池正极材料10年前就有报道[1] 。由于该材料的电导率低,曾引起广泛的研究和讨论[2] 。将LiFePO4外包覆一层碳就能[ 3-5 ]解决电导率的问题,现在LiFePO4电池已经商品化了,该材料和含钴化合物相比有很多的优点[1,4,5] ,如环保,安全等。过去,不含杂质的LiFePO4妨碍了磷酸铁锂电化学性能的发挥,但是现在通过掺杂技术大规模生产的磷酸铁锂,其容量已经越来越接近170Ah/kg.的理论容量值。

磷酸铁锂电池已经在全球得到了广泛的应用,但是还需要对其抗滥用的能力进行深入研究,抗滥用能力不够使电池需要采取昂贵的保护措施防止过充过放等。LiFePO4有显着的热稳定性,但对其寿命特征还需要进一步的研究。最近,空气对磷酸铁锂的影响已经有人研究过。特别的,对暴露在空气中几个星期到一年的LiFePO4的伏安特性的衰减进行了检测。不仅在烧结合成过程,而且在环境空气中的储存期引入的杂质都不可避免的要影响到磷酸铁锂电池的使用寿命和比容量[10] 。最近人们对放置在空气中仅一天的LiFePO4的粒子进行了研究[11,12]。在此较短的时间内预计只会对部分锂离子的脱嵌造成影响,而不会形成杂相,因此只会对电池的首次循环造成影响[11] 。

然而,不清楚这些影响是由于环境的湿度还是由于空气中的其他气体如氧气,因为锂会与空气中的许多气体或化合物发生反应。最明显的证据是锂金属暴露于空气中,会形成很多的化合物如氢氧化锂(LiOH),碳酸锂(Li2CO3)和氮化锂(Li3N)[13] 。我们研究发现LiFePO4中的锂在与水接触后也会形成LiOH和Li2CO3,虽然从动力学和热力学上与金属锂的反应机理不同。

但众所周知,锂离子电池都要严格控制水分,主要原因是锂极易与水反应:

Li + H2O → LiOH + 1/2H2 (1)

氢氧化锂(LiOH)是一种腐蚀性的白色吸湿性碱结晶体,它易溶于水,有人在研究利用它的这一特性将水合氢氧化锂作为一种潜在的磷酸铁锂电池用电解质[14] 。由于碳包覆层不会影响锂离子的传输(原因C - LiFePO4的作为正极材料已经广泛用于锂离子电池),我们推断反应(1)是有可能的,这意味着从LiFePO4中脱出的Li 能与水反应。我们目前的工作观察到在有水的环境中会有锂化反应,虽然该反应只对LiFePO4的粒子的表层无序结构产生影响。尽管锂会与空气中的水发生反应,我们还是将包覆碳的LiFePO4颗粒及没有包覆碳的LiFePO4颗粒分别浸入水中,来检测碳包覆工艺的有效性[ 15 ] 。这种方法是基于这样一个事实:当C - LiFePO4的粉末浸在液态水中时,部分包覆的碳颗粒从磷酸铁锂颗粒分离并浮到水面,这部分碳上还残留了部分的LiFePO4,而大部分磷酸铁锂则沉到水底。最近Porcher et al.确定C - LiFePO4的粒子与水反应的结果是在磷酸铁锂粒子表面形成了一层薄薄的Li3PO4 (几个纳米厚)[16] ,而一部分铁则

转移到水中。在这次的研究中,我们分析了水对碳包覆LiFePO4颗粒的影响,同时对浮在水面的和沉降的LiFePO4样品都进行了研究。

LiFePO4与H2O分子之间强烈的相互作用是毫无疑问的。众所周知,在工业上为了保护铁不受腐蚀,通常是将铁浸入磷化锰的热槽中,使其在加热的条件下发生磷化反应,从而在铁的表面而形成薄薄的一层FePO4。由于磷酸铁具有疏水性,这层膜保护了铁,提高了其抗氧化耐腐蚀能力。由此可以推测经水浸泡后的LiFePO4,在其脱锂的颗粒表面上会形成一层薄薄的FePO4 ,保护了内部粒子的不受其他侵蚀[17,18] 。碳包覆层也可能发挥重要作用,可以保护LiFePO4的样品在潮湿条件下稳定,我们的研究发现碳包覆层很大程度上改变了磷酸铁锂颗粒的表面层,参见文献Ref[19]。但是,在我们这次的研究中,我们发现情况还要更加复杂。

本文的内容安排如下:在接下来的部分我们会报告实验的细节,同时也会说明样品准备的情况。在第二部分,我们会详细说明在水中浸泡前后的样品的表征;无论是浮在水面的还是沉降的样品都要进行X射线衍射仪,扫描电子显微镜(SEM)和透射电子显微镜(TEM)的测试分析。它们的组成分析采用了红外光谱和磁矩测量,还将有关的电化学性能与接触水的时间建立一个函数。我们也报告了对浸泡磷酸铁锂后的水溶液所进行的化学分析。由于磷酸铁锂在水中浸泡是一个相当典型的事件,碳包覆层根本没有可能将LiFePO4与水隔离开来。我们还探讨了该材料暴露在潮湿空气中的情况。最后,我们还报告了LiFePO4的吸湿的特征和接触空气几个月后的磷酸铁锂的电化学性能衰减的情况。

2.实验

样品的准备

样品C-LiFePO4用两种不同的方法合成:固相合成法(此后简称SSR);和水热合成法(此后简称HTR). SSR- LiFePO4 的合成原料是FePO4 (H2O)2 和Li2CO3 按化学计量比将反应物在异丙醇中混合均匀。干燥后,混合物在还原性气氛下(即95%的氩气和5 %氢气)加热到700℃。加热6小时后,得到C - LiFePO4的(SSR)样品。根据Ait Salah et al. [21]所描述的工艺,我们在丙酮溶液中加入蔗糖和醋酸纤维素作为碳的来源。

在第二种方法中,LiFePO4(HTR)是采用Zaghib and Armand [22]首创的水热合成法合成的,这在随后的出版物中有详细描述[23] 。按计量比称取硫酸亚铁和H3PO4混合于脱氧去离子水中。将少量的柠檬酸添加到混合物中以防止铁氧化,取摩尔氢氧化锂缓慢加入混合液中,使Fe:P:Li=1:1:3。在氮气保护下搅拌约5分钟,然后将反应混合物转移到帕尔反应釜,在氮气保护下加热到180-220 C,保温3-5小时冷却至室温,将沉淀过滤并用去离子水彻底洗涤,然后置于真空-氮气交替循环的手套箱里85度保温24Hr。

那些浮在水面的粒子我们称之为“漂浮的粒子”,那些沉降在容器底部的粒子我们称之为“沉降颗粒”,水热法和固相法LFP产品的碳含量经测定都是%。

设备

磷酸铁锂样品的晶体结构用Philips X’Pert apparatus公司生产的装备有Cu K_ X-ray源的X-ray衍射仪进行分析(XRD),XRD的测量数据是在2 θ范围10-80度内收集的。FTIR 傅里叶红外吸收光谱是用傅里叶变换干涉仪来测量的(型号BrukerIFS113v),该仪器的波数测量范围是150–1400 cm1 ,分辨率是2 cm1。样品被研磨成细小的粉末,并以1:300的比例分散进碘化铯颗粒。

样品形貌用扫描电镜(SEM)外加能量色散X射线分析仪(EDX)进行测试的,所有的电镜照片是用日立的S-4700电镜以超高清晰的模式拍摄的。透射电镜图像是用日立H-9000型透射电镜在300 kV的能势下测得的。透射电镜的样品先用超声波分散在酒精里,然后沉积在硅质的基片上。

粒径分析用的仪器是LA-950V2 激光衍射粒度分析仪(HORIBA仪器公司生产).

红外吸收光谱是用BrukerIFS113型傅里叶变换干涉仪测定的,波数范围为150–1400 cm1,分辨率是2 cm1。在(400–100cm1)的远红外范围内,真空台式仪配备μm厚的聚酯薄膜束分配器,格鲁巴碳化硅电阻加热源和DTGS/PE远红外探测仪。为了便于测定,粉末用碘化铯颗粒进行研磨,并压入半透明的样品盘中。

磁测量是在4-300K的温度范围内,采用全自动磁强计(购自量子设计公司,型号为MPMS-5S)和超灵敏的超导量子干涉仪进行的。样品放在塑料瓶中,再放到一个支架上,最后放入超导量子干涉仪的氦低温恒温器中。

水分测试仪为康普水分分析仪(Arizona Instruments LLC)。

电化学特性是用金属锂为负极制作模拟电池来测量的,1M/L的LiPF6的EC、DMC为电解液,电池的测试温度分别为25,45,60度。

3结果

结构特性

磷酸铁锂晶体在浸泡之前,其X射线衍射数据(未见报告)只显示橄榄石LiFePO4的结构特征谱线。图1. 是样品的扫描电镜图。HRT样品的是椭圆形颗粒,粒径大小为微米。亚微米离子的非球形形状以前已经观测到,并且解释为橄榄石几何结构的结果[18,19 ] 。可是在照片里还可以看到更大的粒子,这些粒子可能是前述离子粘结在一起形成的。亚微米级的粒子也可以在SSR合成法的样品的电镜图中看到,两种样品的主要区别是水热法合成的样品中有更大量的团聚,因此这些粒子的平均粒径更大。

图2是样本LiFePO4的粒度分布图。HRT样品的第一个峰集中在微米处,而第二个峰在10微米处。另一方面,SSR样品的粒径分布很广,从直到20微米。粒径较大的粒子的形状比较复杂,它们很好的证明了它们是由较小的椭球形粒子粘结在一起形成的团聚,而不是单个的大的更接近于球形的粒子。

浸泡前一个粒子的高分辨率透射电镜图TEM(参见图3)显示在LiFePO4的表面存在碳包覆层,厚度为几个纳米。TEM显示存在一个近纳米厚的无序层,与其他的研究结果相一致[20] 。浸泡水后的LiFePO4

的颗粒,绝大多数粒子都沉降了,这些沉降的粒子和浮在水面的样品相比密度较大。如图四所示。

由于布朗运动对这种大颗粒而言可以忽略不计,所以浮在水面的部分样品不完全是LiFePO4粒子。我们用适合对绝缘材料进行化学分析的EDX能谱分析了SSR样品的成分,结果如图5。并与沉降部分的EDX 能谱进行了比较。从HRT样品我们也得到了类似的结果(未报告),根据EDX能谱的峰值所对应的C(1S),O(1S)Fe(2P)的电子的结合能[24]我们很容易确定其中的化学元素。从峰值强度所确定的该化合物中的Fe,O和P元素的比例与LiFePO4分子式的化学成分是完全一致的。唯一的区别是浮料中含有大量的碳,EDX能谱中碳的峰值强度更大。漂浮部分的样品的高分辨率的透射电镜如图6所示,从图中可知附着在LiFePO4粒子上还有部分的碳纤维,而沉降在水中的磷酸铁锂失去了其部分碳包覆,这就解释了部分粒子漂浮的原因。浸泡在水中前,碳将磷酸铁锂粒子结合在一起(这是保证粒子之间电导率的重要机理)并包覆磷酸铁锂颗粒。经水浸泡后,至少在部分粒子的表面碳包覆层和粒子之间的结合力减弱,其结果是部分碳分离并由于水的表面张力而浮到水面。部分磷酸铁锂粒子仍然和碳粘连在一起,并且由于颗粒太小难以下

沉也会浮在水面。可是透射电子显微镜的图像清楚的表明:即使是碳含量高的LiFePO4的粒子,浸水后其实已经失去了碳涂层,碳只是和它的表面松散的结合在一起。

图7显示的是沉在水中的SSR和HTR磷酸铁锂样本的SEM扫描电镜照片。这两个照片都显示样品粒子没有很好的分散。在SSR样品中粒径小于1微米的大部分颗粒,在浸泡之前之所以粒径较大是因为团聚造成的,但在浸泡过程中会互相分离而变小。可是,有些团聚还会保留下来。这说明了它们与磷酸铁锂的性质不符的原因。纳米粒子的布朗运动和表面处理增强了它们在胶体溶液里的稳定性,但是不足以防止粒子的团聚,这种团聚减少了单分散粒子的形成[25]。

SSR - LiFePO4的粒子的X射线光谱如图8所示,浸水1小时后,漂浮部分和沉降部分的X射线衍射光谱没有明显区别。晶格参数也无明显改变,如图9所示,其中a和b分别是浸水后的不同时间的参数报告,对于所有的样本,无论在水中的时间长短, a = (5),b= (4),c = (5),而晶胞体积是(7)3。这些参数表明:大部分磷酸铁锂粒子不受水影响,只有表层受到影响。然而,X射线衍射对检测粒子表层不够敏感,原因有二:1、对那些大粒子而言其表面积/体积比太小,2、粒子表面层是无序结构。因此,检测浸水后磷酸铁锂的表层变化还需要其他类型仪器设备。

对水的分析

LiFePO4与H2O的反应后,特别是与SSR样品反应后,水的颜色呈黄色(见图4)。而HTR样品与水的反应较弱,因为水是清澈的。可是,这种反应与杂质无关,因为我们知道怎样用磁测定和红外光谱来检测存在的杂质相(见我们前面所做的工作【2】及此处的数据)。从暴露在潮湿空气之前的样品分析可知(除了一个样品中残留有少量的Fe2O3,这些数据下面我们将会提到),在这些样品中不存在杂质相。

通过对浸泡过样品SSR和HTRLiFePO4的液体进行电感耦合质谱分析(ICM),我们得到了样品与水反应的更详尽的定量表征。为了便于比较,我们也对浸泡在NMP溶剂里的样品进行了测试,NMP通常广泛用于溶解制作锂离子电池电极片的聚合物粘接剂(PVDF)。有关的结果汇总在表1中。在所有的实验中我们使用了同样数量的样品和同样数量的NMP和水,所以我们可以从数量上对结果进行比较。由于NMP溶液中的磷和铁离子是可以忽略不计(只有百万分之几),我们可以断定磷酸铁锂不会与NMP发生反应。而在水中这两种离子的量比在NMP中高出两个数量级。

对浸泡磷酸铁锂的水溶液进行了定量分析,这是一大进步(因为之前没有这样做过)但是该数据仍不足以确定所生成的化学物质的性质。然而,从总体上考虑,我们可以进行相同的假设。尽管存在可溶性Fe 和P化合物,浸泡过HTR样品的溶液还是保持透明。如果在溶解过程中存在有磷酸盐[PO4 3 -]离子,则形成的Li3PO4的反应并不占主导地位,因为磷酸锂不溶于水。存在有不同的磷酸锂复合离子,铁或亚铁离子。如上所述,磷酸铁盐[FePO4]是“防水”的,它停留在粒子表层,保护它们免遭进一步解体,这一点可以通过分析它们的物理性质来确认。由于在水中的P :Fe = ± (见表1 ),那么我们无法预想存在在大多数矿物中的[Fe3(PO4)2nH2O, 板磷铁矿(n = , 蓝铁矿(up to n = 8)],亚铁磷酸盐的存在,因为亚铁磷酸盐的P:Fe要比它小。P:Fe大不排除会形成这样的材料,但它实际上需要P在更低电荷的复杂离子团中占据优势,这些离子团就是在水溶液中形成的磷酸氢根[HPO42]和磷酸二氢根[H2PO4] 离子。但水溶液中的磷酸是不存在的,因为浸泡过SSR和HTR样品的溶液的PH值呈碱性,即PH值都在左右。事实上Fe(H2PO4)2是溶解于水的。此外,这种物质会在铁的磷化过程——一种钝化铁化合物表面的工业过程中形成[26]。

表1、对浸泡过SSR和HTR磷酸铁锂样品的溶液进行电感耦合质谱分析的结果

在两个实验中,我们都是采用同样数量的样品和同样数量的溶剂(NMP和水),所以我们可以对结果进行数量对比。这些结果是按照标准的程序将50克样品浸泡在600克溶剂中(NMP或者水)检测得到的。

水会与金属锂反应生成溶于水的LiOH。此外,锂也会与碳反应生成可溶性的碳酸锂LiCO3.如果形成了Fe(H2PO4)2 ,则[ P ] / [Fe] = 2。这个值是只略比实验值小,但是这个差异仍然超过了实验的不确定性。另一组磷酸盐样品中没有铁元素,这可能是少量的Li3PO4颗粒悬浮在水溶液中造成的。例如,在HTR浸泡过的溶液中,[ P ] / [Fe] = ,我们可以设想能够满足下述化学反应式的腐蚀反应:

LiFePO4 +H2O → Fe(H2PO4)2(aq) +1/3[Li3PO4] (2)

但是这种反应不能解释整个腐蚀进程,如方程式(2)所示的反应不能说明LiOH的形成。如果有磷酸锂的话,数量必须足够低,才不会影响溶液的透明度(见图4右边的烧杯)。

. 对水分蒸发后的沉淀物的分析

图10显示的是浸水后的磷酸铁锂在水分蒸发后的样品图。在这个实验中,我们先取出漂浮在水面的样品,然后蒸发掉水分,剩下了的固体是样品的沉降部分和溶于水中的物质。SSR磷酸铁锂样品的颜色几乎是蓝黑色的,但HTR磷酸铁锂样品上有一层白色的物质,两个样品之间的显着差别是粒度分布(见图.2 )和碳的沉积(见样品制备)。在这两个样本中,度粒都超过100纳米,对于这样大的粒子而言不会在电子结构上产生量子效应。我们认为粒子的粒度足够大但尺寸不是相关的参数。观察图10中两者的区别,其差异的原因来自于碳。当样品浸入水中时,部分碳漂浮在水面另一部分碳沉降到水里,部分处于中间位置——悬浮在水溶液中。浸泡过SSR样品的溶液浑浊变色证明在溶液中存在悬浮的碳粒子(见图4)。干燥后,悬浮的碳沉积在容器的底部形成一层黑壳。这是SSR样品沉积物表面呈黑色的本质原因。在前面提到的铁在磷化后可以观测到呈彩虹光泽的蓝色,这要归因于超薄层的光衍射。同样的效应可以解释在这里观测到彩虹光泽的原因。另一方面,有一定的浊度,HRT样品中碳不会形成悬浮颗粒,这可以从图4右边的溶液是透明的来证实。该样品蒸干水分后表层主要是LiOH及上面提到的铁的化合物。如同下面报告提到的那样,通过拉曼光谱分析,可以检测到LiOH和Li2CO3,LiOH和Li2CO3都是白色固体,这说明了HTR样品沉积物表面呈白色的原因。

由于在1200–1700 cm1的光谱范围内存在两个特征拉曼带,证明样品中存在碳,这一点为这个分析进一步提供了支持。黑色/蓝色SSR沉积物和白色HTR沉积物的拉曼光谱是用He - Ne激光(波长nm )来测量的。图11为黑色/蓝色SSR样品的拉曼光谱,为了便于比较,未包覆碳的LiFePO4的粒子的光谱也表示在图中。

图11. SSR磷酸铁锂样品沉积物的拉曼光谱图,黑色表示黑色部分的拉曼光谱,蓝色表示蓝色彩虹光部分的拉曼光谱,未包覆的磷酸铁锂颗粒的拉曼光谱放在图的下方以便比较,垂直的虚线指向磷酸根的延伸线的位置。

虽然LiFePO4固有光谱主要是在与磷酸根单元的延伸线相关联的960cm-1峰值处,但是显示蓝色彩虹光的拉曼光谱却是碳的两条特征峰占主导地位。可是我们也可以清楚的看到集中在960cm-1处的尖峰,这表明这部分样品还包含磷酸盐。黑色部分的拉曼光谱没有显示蓝色彩虹光谱那样的碳的特征峰,而且也不是在960cm-1处的光谱。这一系列的光谱证明,蓝色彩虹光谱与磷酸盐的存在及磷化作用有关。此外,在较低的频率398 ,263和219 cm - 1处的三个明显的光谱带是LiOH的特征峰[28] 。在1070cm-1附近我们观测到一条较宽的谱带,在蓝色彩虹光谱中也可以看到这条谱带。这条谱带在熔融的LiOH的拉曼光谱中也能看到,并且还和碳酸根分子单元的振动相关,这证实样品中除了氢氧化锂外还存在有碳酸锂。从(2LiOH +CO2→Li2CO3+H2O)可以知道,碳酸锂实际上是氢氧化锂与空气中的二氧化碳反应的副产物。

当然,HRT白色样品的白色部分的拉曼光谱中不存在的碳的谱带,并且在1200至1700cm - 1范围内光谱是平坦的。

、LiFePO4的物理性质

红外光谱是一种探测表层局部构成的有效工具[29] 。这是因为磷酸铁锂晶格中分子单元的振动和材料无序时频谱中的吸收带存在对应关系。然而在目前情况下我们无法检测浸水后发生的显着的变化。样品经水浸泡1小时后的下沉颗粒,频谱不变。图12是样品SSR的红外光谱图。这个频谱的特征峰是LiFePO4固有的(在其他地方有详细的描述)[30] 。所有的谱带都是源于磷酸铁锂固有的振动[31][32]。对于漂浮颗粒,图中频谱显示的差异很小。碳含量较多的漂浮粒子产生额外的扩散。因此,频谱略微有信噪,从而影响到磷酸根PO4振动的吸收带强度。

图12. SSR磷酸铁锂样品在浸入水中前的红外光谱(最下面的谱线)和浸水1Hr后分别沉降部分和漂浮部分的红外光谱图

唯一例外的是一个带的吸收峰从1220迁移到1250cm-1。这一个吸收带的特点是C-O-C的拉伸和C-O

的不对称拉伸[33]。可以归因于样品的漂浮部分有过量的碳连结到氧(图4)。这些实验中红外光谱的灵敏性缺失进一步证明:粒子与水的反应只发生在粒子的表层。在粒子的表面我们观察到有Li3PO4存在,这是根据在460cm -1 附近的特征频段来确定的[28] 。但是,即使存在磷酸锂层,由于两方面的原因用红外光谱来对它进行检测也不太可能:第一,磷酸根单元的振动在Li3PO4的光谱中占主导地位[27],并且它们和磷酸铁锂相同;第二,对这些大粒子而言其表面积/体积比可能太小因而用这种技术很难检测出。

众所周知,磁性测量是一种更灵敏的检测粒子表层变化的方法[20] 。SRR样品浸泡前的磁化强度M(H)在直到30 k奥斯特Oe的磁场内是线性的。磁化率通常定义为X=M/H ,X-1(T)曲线和我们已经发表的有关这种材料的曲线(此处没有列出)相同(参见参考文献[7])。

根据居里韦斯法则:X-1(T)=C/T+θ(3),如果温度高于尼尔温度TN=52K在顺磁性区域该公式是成立的。对于HTR样品,当磁场强度H>1KOe奥斯特时磁化曲线是线性的。但是与SSR样品相比较,我们可以推断当磁场强度H趋向零的极限时有限磁化量M0,这一点可以从图13中看出。从该图中可知存在一定残留量的γ-Fe2O3,虽然γ-Fe2O3含量小(其含量不足产品的%),为了确定内在的磁化量我们必须从总的磁化量中减去这个外部的磁化量,此处内部磁化量为x=(M-M0)/H.根据x的定义,方程式(3)也可以成立,这一点从图14也可以看出,由于铁离子产生的有效磁矩μeff可由居里常数推断出[23、35]。

NA是阿佛伽德罗常数,C是1摩尔磷酸铁锂的居里常数,μB玻尔磁常数,μeff以玻尔磁作单位。结果是SSR和HTR样品的μeff分别为和。不含任何锂空缺的μeff值与高自旋态的Fe2+的理论值相一致,但是SRR和HRT的值经常会重合,这是因为在大部分磷酸铁锂粒子中存在有<1%的低浓度的Li位空缺。SRR和HRT的样品浸水后的磁矩都增加了μB,μeff分别达到了和。磁矩增加的时间很短。由于技术原因,检测样品最短时间为15分钟,这时样品的磁矩μeff达到了极限。即使在水中浸泡更长的时间(到1小时)其结果仍然不会改变。磁矩在很短的时间内的增加表明样品表层发生了Fe2+氧化为Fe3+的氧化反应。这也是表面脱锂的证据。

为了对该现象进行量化,我们首先需要建立一个粒子分布的模型。在单个粒子没有团聚的情况下,可以预期粒度分布是f(d)的对数正态分布,如图2中带有一个尖峰的分布曲线,图中粒子的直径对应于图中的横坐标。而团聚的粒子的情况比较复杂,不是单个高斯分布图,而是一系列的对数分布的聚合:

这个方程是Gi高斯分布,即当用In(d)而不是d为自变量时的高斯分布图。优点是以dq(d)和In(d)的函数标绘出的实验数据,可以根据一系列的高斯图使用相同的程序作为标准来拟合光谱数据。这个结果可以很好的解释HRT样品。为了方便选用HTR样品而不选用SSR样品,是因为该样品的团聚没有那么复杂。三条对数正态分布曲线能很好的说明粒度分布,这一点从图15可以很好看出。我们也报告了三个高斯函数Gi(i=1、2、3)的参数,强度(INT)是指数的前因子,图中标有POS的是mi的参数,最后一个参数是半最大处的全宽度(FWHM),等于2 i[2 ln(2)]1/22 i[2 ln(2)]1/2.

然而在物理意义上只有第一个高斯G1集中在d=μm,而另外两个仅仅是团聚体粒子的模拟值,SEM测试表明这种团聚在浸水后同样重要,如图6所示,大概是因为水能渗透到团聚体内的粒子的间隙中。通过这种渗透作用隔离在粒子与水的反应中不会起到显着的作用。为此,通过仅仅保留方程式Eq.(5)的首项(i=1)我们可以模拟与水接触的粒子的实际粒度分布。将强度归一化以满足条件:

那么,有效的粒度分布符合下式:

下一步是测定直径为d的粒子的表面积/体积比r(d)。为此,我们按照以往的方法,根据计算结果我们可以绘制出晶格参数为α=à的简单立方晶格型晶体粒子的r(d)曲线图。这一计算结果如图16所示,如果d 是等效球形粒子的有效直径,则s/v的比值根据πd2 /(πd3/6)=6/d(d用1单位来测定)在三维极限上是近似的,为了便于比较,我们也将这一规律示于图16 。

对于纳米粒子来说对有限粒子效应进行修正的确非常重要。但是我们处理的样品的粒径足够大,就我们在这里测试的样品而言这种修正实际上很小。因此对该方程的修正实际值很小,因此就我们的样品而言我们直截了当的用下式计算表面积和体积比rs:

这个表面层的厚度在早期的研究中我们已经估算过[20],也是通过TEM能观察到的无序表面层部分的厚度。

由于这个从磁矩推断出来的计算没有考虑Fe和P离子在水中的溶解,浸水后遭到破坏的表层厚度稍微有些低估。根据表1分析Fe和P离子,我们发现样品SSR有%的Fe和3%的P(实际上是PO43-,因为磷酸根离子较为稳定)溶解在水中。这相当于x=4%,即我们发现从Fe2+ 转化为Fe3+的分数,但是这个数量仍然较小。这个结果证实了磷酸铁锂与水反应会在表层生成FePO4以防止其进一步和水进行反应。

在低温下与水接触的磷酸铁锂不会产生剩余磁化,HTR样品在浸水前后的磁化量不变,而SSR样品的磁化在浸水前后都不存在。这些结果表明浸水后不会产生Fe2O3。如下反应并不存在:

暴露在空气中

暴露在水分中的磷酸铁锂,其表面随时间的变化要比暴露在含水空气中的变化更好进行研究,理由很明显,空气中的水分含量很小。此外,我们预期离子表面层的降解要小的多。至少在试验过程中,铁离子可以溶解到水溶液中,但是它不会挥发。这也是为什么主要反应是表面层脱锂的原因,而不是Li的亲水性的结果。测量在空气中的样品的水含量是该研究这个反应的间接方法。几个样品的结果如图17所示。测试在室温21度下进行,湿度都是55%,在所有实验中,准饱和度都是暴露在空气中24小时后测试的。然而在同样的湿度下三个样品的水分含量的测试结果——即使用同样工艺制备的样品粒子,差别仍然很大。这一结果表明暴露于空气中的吸湿效果还取决于碳包覆层的其他参数(均匀性,孔隙率、厚度),这些因素

在我们的研究中还没有考虑到。然而粒子吸收水份是可逆的,这在下述试验中可以证实。将样品放在潮湿的空气中24小时(或在在环境空气中放置更长时间)后,再将样品置于120度的干燥气氛中,我们记录了其含水量随时间变化的关系。

图17.碳包覆磷酸铁锂暴露在21度55%湿度空气中的几种不同样品的含水量(单位为ppm)随时间变化的曲线。

结果如图18,样品3个小时后就能烘干。如果样品重新置于21度55%相对湿度的潮湿空气中,我们会回复到如图17所示的结果。由此可知:磷酸铁锂的吸收/脱水的过程在几个小时内是可逆的。但是材料

磷酸铁锂材料的制备方法

磷酸铁锂材料的制备方法主要有: (1)高温固相法:J.Barker等就磷酸盐正极材料申请了专利,主要采用固相合成法。以碳酸锂、氢氧化锂等为锂源,草酸亚铁、乙二酸亚铁,氧化铁和磷酸铁等为铁源,磷酸根主要来源于磷酸二氢铵等。典型的工艺流程为:将原料球磨干燥后,在马弗炉或管式炉内于惰性或者还原气氛中,以一定的升温加速加热到某一温度,反应一段时间后冷却。高温固相法的优点是工艺简单、易实现产业化,但产物粒径不易控制、分布不均匀,形貌也不规则,并且在合成过程中需要使用惰性气体保护。 (2)碳热还原法:这种方法是高温固相法的改进,直接以铁的高价氧化物如Fe 2O 3 、LiH 2 PO 4 和碳粉为原料,以化学计量比混合,在箱式烧结炉氩气气氛中于70 0℃烧结一段时间,之后自然冷却到室温。采用该方法做成的实验电池首次充放电容量为151mAh/g。该方法目前有少数几家企业在应用,由于该法的生产过程较为简单可控,且采用一次烧结,所以它为LiFePO 4 走向工业化提供了另一条途径。但该法制备的材料较传统的高温固相法容量表现和倍率性能方面偏低。 (3)水热合成法:S.F.Yang等用Na 2HPO 4 和FeCL 3 合成FePO 4 .2H 2 O,然后与CH 3 C OOLi通过水热法合成LiFePO 4 。与高温固相法比较,水热法合成的温度较低,约 150度~200度,反应时间也仅为固相反应的1/5左右,并且可以直接得到磷酸铁锂,不需要惰性气体,产物晶粒较小、物相均一等优点,尤其适合于高倍率放电领域,但该种合成方法容易在形成橄榄石结构中发生Fe错位现象,影响电化学性能,且水热法需要耐高温高压设备,工业化生产的困难要大一些。据称Pho stech的P 2 粉末便采用该类工艺生产。 (4)液相共沉淀法:该法原料分散均匀,前躯体可以在低温条件下合成。将Li OH加入到(NH 4) 2 Fe(SO 4 ) 3 .6H 2 O与H 3 PO 4 的混合溶液中,得到共沉淀物,过滤 洗涤后,在惰性气氛下进行热处理,可以得到LiFePO 4 。产物表现出较好的循环稳定性。日本企业采用这一技术路线,但因专利问题目前尚未大规模应用。(5)雾化热解法:雾化热解法主要用来合成前躯体。将原料和分散剂在高速搅拌下形成浆状物,然后在雾化干燥设备内进行热解反应,得到前躯体,灼烧后得到产品。 (6)氧化-还原法: 该法能得到电化学优良的纳米级的磷酸铁锂粉体,但其工艺很复杂,不能大量生产,只适合实验室研究。

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一.高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等),磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFePO4分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFePO4粉体材料。 例1:C.H.Mi等采用一:步加热法得到包覆碳的LiFePO4,其在30℃,0.1 C 倍率下的初始放电容量达到160 mAh·g-1;例2:S.S.Zhang等采用二步加热法,以FeC:2O4·2H2O和LiH2PO4为原料,在氮气保护下先于350~380℃加热5 h形成前驱体,再在800℃下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放电容量为159 mAh·g-1;例3:A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4·2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300℃下预热分解,再在氮气保护下先于450℃加热10 h,再于800℃烧结36 h,产物在放电电流密度为2.3 mA·g-1时放电,室温初始放电容量在136 mAh·g-1左右;例4:Padhi等以Li2CO3,Fe(CH3COO)2,NH4H2PO4为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA·h /g;T akahashi 等以LiOH·H2O, FeC2O4·2H2O,(NH4)2HPO4为原料,在675、725、800℃下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以At+5%H2为保护气氛,在700℃下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3·4-3·5V之间,0·05C首次放电比容量为150mA·h/g;例6:高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139·4mA·h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0·15%;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500℃下预烧,再在700℃下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3·98F0·02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA·h/g。 2.优点:工艺简单、易实现产业化 3.缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4粉末导电性能不好,需要添加导电剂增强其导电性能 4.改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能二.碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1: 杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具有优势,10 C时容量保持率为88.1%;例2:Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g;例3:P.P.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛下(Ar:H2=95:5)于550℃加热1 h后合成了最终样品,其在0.1C倍率下的室温

磷酸铁锂正极材料项目

磷酸铁锂正极材料项目 简述 磷酸铁锂是近年来发展较快的锂电池正极材料,其分子式LiMPO4,Lithium Iron Phosphate ,简称LFP正极材料,其结构为橄榄石型结构,有高稳定性,和目前锂材料最大的不同是不含钴等贵重元素,没有毒性,原料价格低且磷、锂、铁存在于地球的资源含量丰富,不会有供料问题。其工作电压适中(3.2V)、电容量大(170mAh/g)、高放电功率、可快速充电且循环寿命长,在高温与高热环境下的稳定性高。用作电池的磷酸铁锂材料一般颜色为灰白色,经过包裹碳后成为黑色粉末。 磷酸铁锂具有以下几个重要的优点: (1)高性价比,目前,一般国内磷酸铁锂的价格为每吨25万元,国外产品的价格约在30万元以上。我们产品的性能基本上同国内外的主流产品,材料成本和消耗成本(电源,燃料和人工费用)约在8-10万左右,利润率较好。 (2)磷酸铁锂的单位容量约为钴酸锂的75%,成本只相当于钴酸锂的三分之一左右,而且没有爆炸等危险,无毒性,电池循环寿命约是锂电池的4-5倍,高于锂电池8-10倍高放电功率(可瞬间产生大电流),加上同样能量密度下整体重

量,约较锂电池减少30-50%,其在动力电池市场上有更广阔的前景。 建设主要内容: 计划建设年产6000吨磷酸铁锂材料生产基地,项目占地100亩,总建筑面积9000平方米。建设研发中心、原料库、成品库、加工车间及办公区域。项目分两期建设,其中一期总投资1亿元,形成年产2000吨磷酸铁锂材料产能。二期总投资4亿元,达到年产6000吨产能水平。购置设备有实验合成用气氛反应炉及控制设备台、高温纤维加热炉、高能量密度介质搅拌磨、无污染型介质搅拌磨、真空干燥箱、混合机、X射线沉降粒度仪、电超声法纳米粒度仪、比表面吸附仪等,设备总价2500万元。 总投资 5亿元,其中企业自筹3.5亿元,国内银行贷款1.5亿元 经济效益分析 按年生产6000吨磷酸铁锂材料计算,销售收入6000*25万元,利润总额6亿元,实现利税4亿元。

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一. 高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等) ,磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFeP04分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFeP04粉体材料。 例1: C.H.Mi等采用一:步加热法得到包覆碳的LiFeP04,其在30 C, 0.1 C 倍率下的初始放电容量达到160 mAh g-1 ;例2 : S.S.Zhang等采用二步加热法,以 FeC:2O4 2H2O和LiH2PO4为原料,在氮气保护下先于350~380 C加热5 h形成前驱体,再在800 C下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放 电容量为159 mAh g-1 ;例3 : A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4 2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300 C下预热分解,再在氮气保护下先于 450 C加热10 h,再于800 C烧结36 h,产物在放电电流密度为2.3 mA g-1时放电,室温初始放电容量在136 mAh g-1 左右;例4: Padhi 等以Li2CO3 , Fe(CH3COO)2 , NH4H2PO4 为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA h /g ; Takahashi 等以LiOH H2O, FeC2O4 2H2O , (NH4)2HPO4 为原料,在675、725、800 C下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以 At+5%H2为保护气氛,在700 C下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3 4-3 5V之间,0 05C首次放电比容量为150mA h/g ;例 6 :高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4 前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139 4mA h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0 15% ;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500 C下预烧,再在700 C下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3 98F0 02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA h/g。 2?优点:工艺简单、易实现产业化 3?缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次 稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4 粉末导电性能不好,需要添加导电剂增强其导电性能 4?改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能 二. 碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气 保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1:杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具 有优势,10 C时容量保持率为88.1% ;例2 : Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g ; 例3 : PP.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛

磷酸铁锂正极材料稳定性探讨

磷酸铁锂正极材料稳定性探讨 张世杰副总工程师 中国电子科技集团公司第十八研究所 目录 引言 磷酸铁锂正极材料产业现状分析 目前磷酸铁锂正极材料批产存在的主要质量问题 产生质量问题的主要原因分析 如何提高磷酸铁锂批次稳定性 讨论 1、引言 采用磷酸铁锂正极材料制备的锂离子电池与其他正极材料制备的锂离子电池比较具有三个突出的特点:一是电池安全性好,电池在过充电、过放电、短路、针刺等试验条件下安全;二是电池充放电循环寿命长且容量保持率高,能够循环2000次且容量仍能保持90%;三是电池倍率放电能力强,可以几十倍率放电。因此,磷酸铁锂正极材料被公认为是动力锂离子电池理想正极材料,也成为世人关注的“热点”。

锂离子电池制造商在使用国产磷酸铁锂正极材料试验和生产电池过程发现:国产磷酸铁锂正极材料与国际先进同类产品相比仍有较大差距、一部分磷酸铁锂供应商提供的材料存在不同程度的质量问题、批次产品之间存在质量不稳定等问题。为此,国产磷酸铁锂正极材料质量一致性又成为人们关注的“焦点”。 如何迅速解决磷酸铁锂正极材料生产中存在的关键技术问题、工艺技术问题和产品质量问题?如何提高磷酸铁锂批生产过程产品批次不稳定问题?更是从事磷酸铁锂正极材料技术研究、产品开发、中试和批生产技术攻关工作者所面临的一大“难点”。 本报告正是针对以上人们关心和关注的问题,结合实际工作中遇到的问题,浅谈一些粗浅的见解。 2、磷酸铁锂正极材料产业现状分析 国内已经形成了一批磷酸铁锂正极材料生产商,产业初具规模,并把产品投向市场,提供给锂离子电池制造商使用。但是,大家普遍感到:目前国内磷酸铁锂正极材料批量生产技术还存在突出的工艺稳定性问题。突出表现在: 一些大的锂离子电池制造商从磷酸铁锂材料平均粒径、电极加工性、电极压实密度、实际比容量、循环寿命、倍率放电、温度特性、安全性等方面对国内几个磷酸铁锂材料供应商和Valence等国外供应商所提供的材料进行了非常系统的试验评价,客观的试验数据表明:国内磷酸铁锂批产产品与Valence等国外供应商产品比较仍有较大差距; 表1: Valence公司产品与国产产品3个主要指标对比

磷酸铁锂生产配方及工艺

正极材料调试详细工艺流程 1.原材料检验 1.1磷酸铁:纯度99.5%以上,D90粒度小于5um ;(必须有纯度、粒度及杂质含量检 测报告) 1.2碳酸锂:纯度99.5%以上,D90粒度小于5um ; 1.3蔗糖:纯度99.5%以上,D90粒度小于5um ; 1.4纯水:电导率大于10兆欧。 1.5氮气:99.999% 1.6分散剂:聚乙二醇(PEG) 2.工艺过程 2.1磷酸铁烘干除水 (1)烘房烘干工序:不锈钢匣钵装满原料磷酸铁置入烘房,调节烘房温度220±20℃,6-10小时烘干。出料转下一工序至回转炉烧结。 (2)回转炉烧结工序:回转炉升温、通氮气达到要求后,进料(来自上工序烘房的物料),调节温度540±20℃,烧结8-12小时。 2.2研磨机混料工序 正常生产时,两台研磨机同时投入运行,两台设备具体投料和操作相同(调试时一台单独运行亦可),程序如下: (1)碳酸锂研磨:称量碳酸锂13Kg、蔗糖12Kg、纯水50Kg,混合研磨1-2小时。暂停。 (2)混合研磨:在上述混合液中加入磷酸铁50Kg,纯水25Kg,混合研磨1-3小时。停机,出料转入分散机。取样测粒度。 (3)清洗:称量100Kg纯水,分3-5次清洗研磨机,洗液全部转入分散机。 2.3分散机机物料分散工序

(1)将2.2两台研磨机混合好(或者1台研磨机两次混合)的物料约500Kg(包括清洗研磨机的物料)一起转入分散机,再加入100Kg纯水,调节搅拌速度,充分搅拌分散1-2小时,等待用泵打入喷雾干燥设备。 2.4喷雾干燥工序 (1)调节喷雾干燥设备的进口温度220±20℃,出口温度110±10℃,进料速度80Kg/hr,然后,开始进料喷雾干燥,得到干燥物料。 (2)可以按照喷雾粒度大小调节固含量为15%~30%。 2.5液压机物料压块装料 分别调节液压机的压力为150吨和175吨,在模具中装入喷雾干燥好的物料,保压一定时间,压实成块状。装入匣钵转入推板炉。同时,放入几组散装样品,与压成块状的物料进行对比。 2.6推板炉烧结 先升温,通氮气,达到气氛要求100ppm以下,将匣钵推入推板炉,按升温段300-550℃,4-6小时;恒温段750℃8-10小时;降温段6-8小时进行,出料。 2.7辊压超细磨 将推板炉烧好的物料输入超细磨,调节转速,进行辊压研磨后送入超细磨进行研磨。每批取样测试粒度。 2.8筛分、包装 将研磨物料进行筛分、包装。5Kg、25Kg两种规格。 2.9检验、入库 产品检验、贴标签入库。包括:产品名称、检验人、物料批次、日期。

磷酸铁锂合成方法比较

磷酸铁锂正极材料制备方法比较 A ?固相法 一.高温固相法1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等),磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFePO4 分子式的原子比进行配料,在保护气 氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得 LiFePO4 粉体材料。 例1: C.H.Mi等采用一:步加热法得到包覆碳的LiFeP04,其在30C, 0.1 C 倍率下的初始放电容量达到160 mAh - g-1 ;例2:S.S.Zhang等采用二步加热法,以FeC:2O4?2H2O和LiH2PO4为原料,在氮气保护下先于350~380C加热5 h形成前驱体,再在800E下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放电容量为159 mAh ? g-1;例3: A.S.Andersson等采用三步加热法, 将由:Li2CO3、FeC2O4?2H2O和(NH4)2HPO4组成的前驱体先在真空电炉中于300r下预热分解,再在氮气保护下先于450r加热10 h,再于800r烧结36 h,产物在放电 电流密度为2.3 mA- g-1时放电,室温初始放电容量在136 mAh ? g-1 左右;例 4:Padhi 等以Li2CO3,Fe(CH3COO)2,NH4H2PO4 为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA-h /g;Takahashi 等以LiOH ? H2O, FeC2O4 ? 2H2O,(NH4)2HPO4 为原料,在675、725、800r 下,制备出具有不同 放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以At+5%H2为保护气氛,在700r下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3 4-3 5V之间,0 ? 05C首次放电比容量为150mA ? h/g;例6: 高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4 前驱体,再通过高温煅烧合成LiFePO4/C 正极材料,首次放电比容量最为139 ? 4mA ? h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0 ? 15%;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯

磷酸铁锂电池简介

磷酸铁锂电池简介 1.磷酸铁锂电池定义 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。 2.磷酸铁锂正极材料 磷酸铁锂作为锂离子电池用正极材料具有良好的电化学性能,充放电平台十分平稳,充放电过程中结构稳定。同时,该材料无毒、无污染、安全性能好、可在高温环境下使用、原材料来源广泛等优点,是目前电池界竞相开发研究的热点。该材料具有发上图所示的晶体结构。工作电压范围:2.5~3.6V,平台约3.3V,比钴酸锂电池3.7V低一些。由于该材料导电性差,需往磷酸铁锂颗粒内部掺入导电碳材料或导电金属微粒,或者往磷酸铁锂颗粒表面包覆导电碳材料,提高材料的电子电导率;或掺杂金属离子来提高导电性。这样材料的密度低,做成电池的体积比容量低,只有180Wh/L(钴酸锂可做到400Wh/L 以上),在小电池领域,同样尺寸电池只有现有电池容量的一半不到。 3.磷酸铁锂的优点: (1)安全。磷酸铁锂的安全性能是目前所有的材料中最好的。绝不用担心爆炸。 (2)稳定性高。包括高温充电的容量稳定性,储存性能等。这是最大的优点。 (3)环保。整个生产过程清洁无毒。所有原料都无毒。不像钴是有

毒的物质。 (4)价格便宜。 4.磷酸铁锂的缺点: (1)导电性差,目前可通过添加C或其它导电剂得到解决。即:LiFePO4/C正极。 (2)振实密度较低。一般只能达到1.3-1.5,电池极片的面密度低,所以同样型号的电池容量更低。从消费便携电子产品上看,磷酸铁锂没有前途,在特定的电池领域使用较有优势,如动力电池。 (3)制造成本偏高,在电池生产上加工困难、倍率放电不稳定(需要特定的电池工艺配合,受工艺影响很大)。 (4)技术还未成熟。由于振实密度低,比表面积大,需要改变电池先行工艺。而且电解液也需重新开发适用的电解液体系,用现有的成熟电解液难发挥其性能。没有批量配套的保护线路和充电器,较难在现有的电子设备上发挥出其特性,需要一个整体的行业整合。 5.磷酸铁锂电池产业:优势分析 (1)磷酸铁锂产业符合政府产业政策的导向,各国都把储能电池和动力电池的发展放在国家战略层面高度,配套资金和政策支持的力度很大,中国在这方面有过之而不及,过去关注镍氢电池,现在则把目光更多的集中到磷酸铁锂电池上。 (2)LFP代表了电池未来发展的方向,随着技术成熟,甚至可能成为

硼掺杂磷酸铁锂正极材料提高倍率

Delivered by Publishing Technology to: University of New South Wales IP: 149.171.232.34 On: Wed, 27 Feb 2013 03:01:32 Copyright American Scientific Publishers RESEARCH ARTICLE Copyright?2013American Scienti?c Publishers All rights reserved Printed in the United States of America Journal of Nanoscience and Nanotechnology V ol.13,1535–1538,2013 Research on High Rate Capabilities B-Substituted LiFePO4 Fu Wang,Yun Zhang?,and Chao Chen College of Materials Science and Engineering,Sichuan University,Chengdu610064,P.R.China LiFePO4is currently recognized as one of the most promising electrode materials for large-scale application of lithium ion batteries.However,the limitation of rate capability is believed to be intrinsic to this family of compounds due to the existence of larger tetrahedral(PO4 3?unit and quasi-hexagonal close-packed oxygen array.This paper report here a systematic investigation of the enhancement of rate performance by partly substitution of light small triangle oxyanion,(BO3 3?, for the larger tetrahedral(PO4 3?units in LiFePO4.Cathode electrode materials LiFeB X P 1?X O4? , in which X=0 3 6and9,mol%,were synthesized by solid-state method.The as-synthesized products were characterized by X-Ray Diffraction(XRD),Scanning Electron Microscope(SEM)and Electrochemical Measurements.The results showed that6mol%of boron substitution had no effect on the structure of LiFePO4material,but signi?cantly improved its rate performance.The initial discharge capacity of the LiFeB0 06P0 94O4? sample was145.62mAh/g at0.1C,and the capacity retention ratios of81%at2C and76%at5C were obtained,demonstrating that a proper amount of boron substitution(lower than6mol%)could signi?cantly improve the rate performance of LiFePO4 cathode material. Keywords:LiFePO 4 ,High Rate Capability,Li-Ion Battery,Nano-Particles,Boron. 1.INTRODUCTION LiFePO4has recently received a great deal of attention owing to their advantages of competitive high theoreti- cal capacity,good cycle stability,excellent thermal stabil- ity and low toxicity,1–3aimed at utilizing it as a cathode material for large-scale application of lithium ion batter- ies,such as electric vehicle and hybrid electric vehicle. Moreover,its voltage,about3.5V versus lithium,is com- patible with the window of a solid-polymer Li-ion elec- trolyte.However,this kind of compound is a wide-gap semiconductor(3.7eV)and has an inherently extremely low electronic conductivity(~10?9S cm?1 at room tem-perature because of the existence of larger tetrahedral (PO4 3?units and quasi-hexagonal close-packed oxygen array.1Various material processing approaches have been adopted to overcome this drawback,including methods of carbon coating,4reducing particle size to nano level,5 6 and doping with super valence cations.7The aforemen- tioned methods for improving electronic conductivity and rate capability are not the most optimistic choice and have their intrinsic limitations:the shortcomings of carbon coat- ing including the lower content of active materials in the cathode material and no actual improvement in conductiv- ity for the core of LiFePO4particles.The preparation of ?Author to whom correspondence should be addressed.nano-sized particles with a uniform size distribution are extremely dif?cult for industrial scale production.And the quantity of Fe3+/Fe2+redox couples is reduced by super valence cations substitution. LiFeBO3,as a new potential cathode material with a theoretical capacity of220mAh/g which is much larger than that of LiFePO4,has been reported to have the actual speci?c capacity of over190mAh/g at1/20C.8In addi- tion,from the thermodynamic study performed in the case of LiFeBO3,the Fe3+/Fe2+reduction couple lies between 3.1V and2.9V(vs.Li/Li+ ,demonstrating an impor-tant inductive effect of BO3group,and the electrical con- ductivity of LiFeBO3is reported to be1 5×10?4S/cm,9 which is also much higher than that of LiFePO4.10Thus, it is believed that partly replacing the tetrahedral anion units,(PO4 3?,to plane triangle oxyanion,(BO3 3?,could be signi?cantly increasing the electronic conductivity of the LiFePO4particles because of the smaller and lighter (BO3 3?and the controlled off-stoichiometry of oxygen element formed. In this regard,we proposed a new method,partly sub- stitution of boron element for phosphorus element in LiFePO4,for improving the rate capability of the cathode material.We report here a systematic investigation of the enhancement of capacity at high rates of charge and dis- charge by partly substitution of light small plane triangle J.Nanosci.Nanotechnol.2013,Vol.13,No.21533-4880/2013/13/1535/004doi:10.1166/jnn.2013.59811535

磷酸铁锂合成工艺选择

磷酸铁锂合成工艺选择 各位LFP大牛们,以下两个生产工艺,你们更看好哪个?从原料来源、成本、生产工艺复杂度、质量控制、环保等角度考虑 (一)磷酸二氢锂+ 氧化铁红 化学反应方程式:LiH2PO4 + 0.5Fe2O3 + 0.5C --> LiFePO4 + H2O + 0.5CO (二)正磷酸铁+ 氢氧化锂 化学反应方程式:FePO4 + LiOH + 0.5C --> LiFePO4 + 0.5H2O + 0.5CO两种方案消耗的C与排出的CO等量,但方案(二)排出少一半儿的水 一的优点:成本低,容量偏低 二的优点:合成材料的电性能优良, 0.5Li2CO3+ FeC2O4·2H2O+NH4H2PO4 --> LiFePO4 + H2O + 0.5CO 不过正磷酸铁好像有结晶水? 方案1. 两个都是比较常见的原料,原料质量相对稳定,供应商也相对较多。成本分两块,原料成本该路线较低,但工艺成本该路线偏高,因为其对混料与后处理的要求更高。从产品质量上来说,该工艺路线从氧化铁到最终磷酸铁锂,经历的晶体结构变化巨大,产物的颗粒也会较大,如果后处理工艺不过关,很容易导致最终产品电化学性能不过关。 方案2. 首先,你的分析有误,常规的正磷酸铁都含几份结晶水(通常是2份)。氢氧化锂是较常见的锂盐,但吸湿性较强,可能实际使用中会有一定问题,当然,你在这里采用氢氧化锂是有道理的,固相反应更容易进行。正磷酸铁,目前国内供应商的产品,质量有待提高(主要是颗粒,纯度,铁磷比)。成本上来说,该路线的材料成本肯定高于方案1,但该路线的工艺成本相对较低,因为该工艺的后处理会相对简单。产品质量方面,煅烧过程中,磷酸铁与磷酸铁锂的结构变化相对较小,如果工艺控制得当,最终产品基本能够维持原料磷酸铁的粒度大小,后处理简单,且电化学性能也会较稳定。 在我个人看来,如果真是有技术实力的公司,自产FePO4,而后制备磷酸铁锂,应该是今后的一个主流。 两种方法理论上都是可行的,但高质量的LFP合成一般不会采用以上的工艺路线,原因主要是:方法一的原料质量很难控制,易导致合成化学计量偏离。方法二除了

固相法合成磷酸铁锂

摘要 橄榄石型的磷酸铁锂(LiFePO4)作为新型锂离子电池正极材料,它具有价格低廉,热稳定性好,对环境无毒,可逆性好,并且其中大阴离子可稳定其结构,防止铁离子溶解,使其成为最具潜力的正极材料之一。但是LiFePO4极低的本征电子电导率和锂离子扩散系数严重影响其电化学性能,并阻碍它的应用。因此需从提高LiFePO4材料的电子传导性和锂离子传导性着手来对其进行改性研究。 本实验以Li2CO3为锂源,FeC2O2·2H2O为铁源,以NH4H2PO4为磷源,以淀粉为碳源按不同比例混合,采用球磨法处理原材料,经喷雾干燥制得前驱体。采用不同的烧成温度并应用充放电测试等方法,系统的研究温度对LiFePO4性能的影响。 结果表明在0.1C倍率充放电时600℃下合成的材料具有较好的放电容量为151.6mAh/g。 关键词:锂离子电池;正极材料;磷酸铁锂;固相法;温度影响

Abstract Olivine-type LiFePO4 as a new lithium ion battery cathode material, it has low price, good thermal stability, environmental non-toxic, good reversibility, and anion of which can stabilize the structure to prevent the dissolution of iron ions , making it one of the most promising cathode material.But LiFePO4 low intrinsic electronic conductivity and lithium ion diffusion coefficient seriously affect its electrochemical performance, and hinder its application.Therefore required to improve the LiFePO4 material from the electronic conductivity and lithium ion conductivity to proceed to its modification. In this experiment, Li2CO3 as lithium, FeC2O2.2H2O,Fe2O3 as iron source, NH4H2PO4 as the phosphorus source, using starch as carbon source mixed in different proportions, handling of raw materials by ball milling, spray-dried precursor obtained. Sintering temperature and different charge-discharge testing methods applied to study the impact of temperature on the performance of LiFePO4. Results show thatLiFePO4 cells showed an enhanced cycling performance and a high discharge capacity of 151.6mAh g-1at 0.1 C Keywords:Lithium ion battery; Cathode material; Lithium iron phosphate, Solid State Method ;temperature effect

磷酸铁锂生产配方及工艺

磷酸铁锂生产配方及工 艺 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

正极材料调试详细工艺流程1.原材料检验 1.1磷酸铁:纯度%以上,D90粒度小于5um ;(必须有纯度、粒度及杂质含量检测 报告) 1.2碳酸锂:纯度%以上,D90粒度小于5um ; 1.3蔗糖:纯度%以上,D90粒度小于5um ; 1.4纯水:电导率大于10兆欧。 1.5氮气:% 1.6分散剂:聚乙二醇(PEG) 2.工艺过程 2.1磷酸铁烘干除水 (1)烘房烘干工序:不锈钢匣钵装满原料磷酸铁置入烘房,调节烘房温度220±20℃,6-10小时烘干。出料转下一工序至回转炉烧结。 (2)回转炉烧结工序:回转炉升温、通氮气达到要求后,进料(来自上工序烘房的物料),调节温度540±20℃,烧结8-12小时。 2.2研磨机混料工序 正常生产时,两台研磨机同时投入运行,两台设备具体投料和操作相同(调试时一台单独运行亦可),程序如下: (1)碳酸锂研磨:称量碳酸锂13Kg、蔗糖12Kg、纯水50Kg,混合研磨1-2小时。暂停。 (2)混合研磨:在上述混合液中加入磷酸铁50Kg,纯水25Kg,混合研磨1-3小时。停机,出料转入分散机。取样测粒度。

(3)清洗:称量100Kg纯水,分3-5次清洗研磨机,洗液全部转入分散机。 2.3分散机机物料分散工序 (1)将两台研磨机混合好(或者1台研磨机两次混合)的物料约500Kg (包括清洗研磨机的物料)一起转入分散机,再加入100Kg纯水,调节搅拌速度,充分搅拌分散1-2小时,等待用泵打入喷雾干燥设备。 2.4喷雾干燥工序 (1)调节喷雾干燥设备的进口温度220±20℃,出口温度110±10℃,进料速度80Kg/hr,然后,开始进料喷雾干燥,得到干燥物料。 (2)可以按照喷雾粒度大小调节固含量为15%~30%。 2.5液压机物料压块装料 分别调节液压机的压力为150吨和175吨,在模具中装入喷雾干燥好的物料,保压一定时间,压实成块状。装入匣钵转入推板炉。同时,放入几组散装样品,与压成块状的物料进行对比。 2.6推板炉烧结 先升温,通氮气,达到气氛要求100ppm以下,将匣钵推入推板炉,按升温段300-550℃,4-6小时;恒温段750℃8-10小时;降温段6-8小时进行,出料。 2.7辊压超细磨 将推板炉烧好的物料输入超细磨,调节转速,进行辊压研磨后送入超细磨进行研磨。每批取样测试粒度。 2.8筛分、包装

磷酸铁锂电池知识大全

磷酸铁锂电池知识大全 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料有很多种,主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料,而其它正极材料由于多种原因,目前在市场上还没有大量生产。磷酸铁锂也是其中一种锂离子电池。从材料的原理上讲,磷酸铁锂也是一种嵌入/脱嵌过程,这一原理与钴酸锂,锰酸锂完全相同。磷酸铁锂电池是用来做锂离子二次电池的,现在主要方向是动力电池,相对NI-H、Ni-Cd电池有很大优势。磷酸铁锂电池充放电效率,相对高一些。在88% - 90%之间。而铅酸电池约为80%。 磷酸铁锂电极材料主要用于各种锂离子电池,自1996年日本的NTT首次揭露AyMPO4(A为碱金属,M为CoFe两者之组合:LiFeCOPO4)的橄榄石结构的锂电池正极材料之后, 1997年美国德克萨斯州立大学研究群也接着报导了LiFePO4的可逆性地迁入脱出锂的特性,美国与日本不约而同地发表橄榄石结构(LiMPO4), 使得该材料受到了极大的重视,并引起广泛的研究和迅速的发展。与传统的锂离子二次电池正极材料,尖晶石结构的LiMn2O4和层状结构的LiCoO2相比,LiMPO4 的原物料来源更广泛、价格更低廉且无环境污染。 磷酸铁锂电池*构造 正极:正极物质在磷酸铁锂离子蓄电池中以磷酸铁锂(LiFePO4)为主要原料; 负极:负极活性物质是由碳材料与粘合剂的混合物再加上有机溶剂调和制成糊状,并涂覆在铜基体上,呈薄层状分布; 隔膜板:称为隔板或称隔离膜片,其功能起到关闭或阻断通道的作用,一般使用聚乙烯或聚丙烯材料的微多孔膜。所谓关闭或阻断功能是电池出现异常温度上升时阻塞或阻断作为离子通道的细孔,使蓄电池停止充放电反应。隔膜板可以有效防止因内、外部短路等引起的过大电流而使电池产生异常发热现象。 PTC 元件:在磷酸铁锂电池盖帽内部,当内部温度上升到一定温度时或电流增大到一定控制值时,PTC 就起到了温度保险丝和过流保险的作用,会自动拉断或断开,从而形成内部断路。这样电池内部停止了工作反应,温度降下来。保证了电池的安全使用(双重保险)。 安全阀:为了确保磷酸铁锂电池的使用安全性,一般通过对外部电路的控制或者在磷酸铁锂电池内部设有异常电流切断的安全装置。即使这样,在使用过程中也有可能其他原因引起磷酸铁锂电池内压异常上升,这样,安全阀释放气体,以防止蓄电池破裂或爆开。

相关主题
文本预览
相关文档 最新文档