当前位置:文档之家› 涡流无损检测

涡流无损检测

涡流无损检测
涡流无损检测

1

无损检测(Nondestructive Testing, NDT)是一门涉及多学科的综合性应用技术,

它以不损害被检对象的内部结构和使用性能为前提,应用多种物理原理和化学现象,对各种工程材料、零部件、结构件进行有效地检验和测试,检测被检对象中

是否存在缺陷或不均匀性,进而评价它们的连续性、完整性、安全可靠性及某些

物理性能【1-6]。无损检测技术是现代工业发展必不可少的有效工具,在一定程度上反应了一个国家的工业发展水平,其重要性己得到世界范围内广泛公认。无损检

测技术的应用范围十分广泛,遍布工业发展的各个领域,在机械、建筑、冶金、

电力、石油、造船、汽车、宇航、核能、铁路等行业中被普遍采用,成为不可或

缺的质量保证手段,其在产品设计、生产和使用的各个环节中己被卓有成效的运

用[4,7-16]。

2

以德国科学家伦琴1895年发现X射线为标志,无损检测作为应用型技术学科

己有一百多年的历史[l7]0 1900年,法国海关开始应用X射线检验物品;1922年,美国建立了世界第一个工业射线实验室,用X射线检查铸件质量,以后在军事工

业和机械制造业等领域得到了广泛应用,射线检测技术至今仍然是许多工业产品质量控制的重要手段。1912年,超声波检测技术最早在航海中用于探查海面上的冰山;1929年,将其应用于产品缺陷的检测,目前仍是锅炉压力容器、铁轨等重要机械产品的主要检测手段。1930年后,开始采用磁粉检测方法来检测车辆的曲柄等关键部件,以后在钢结构上广泛应用磁粉探伤方法,使磁粉检测得以普及到各种铁磁性材料的表面检测。毛细管现象是土壤水分蒸发的一种常见现象,随着工业化大生产的出现,将“毛细管现象”成功地应用于金属和非金属材料开口缺陷的检测,其灵敏度与磁粉检测相当,它的最大好处是可以检测非铁磁性物质。经典的电磁感应定律和涡流趋肤效应的发现,促进了现代导电材料涡流检测方法的产生。1935年,第一台涡流探测仪器研究成功。到了二十世纪中期,建立了以射线检测(Radiographic Testing, RT、超声检测(Ultrasonic Testing, UT、磁粉

检测(Magnetic Testing, MT、渗透检测(Penetrant Testing, PT)和涡流检测(Eddy Current Test, ECT五大常规检测技术为代表的无损检测体系【‘“]。

作为五大常规无损检测方法之一的涡流检测技术,是建立在电磁感应原理基础上的一种无损检测方法,主要适用于导电材料(如金属材料、可感生涡流的非金属材料等)近表面缺陷的检测,其具有以下特点[y,2,i9,2o}.

1.非接触检测,能穿透非导体涂镀层,可以在不清除零件表面油脂、积碳和保护层的情况下进行检测。

2.检测无需祸合介质,可以在高温状态下进行检测。探头可伸入到远处作业,故可对工件的狭窄区域、深孔壁等进行检测。

3.对工件表面或近表面的缺陷,有很高的检出灵敏度,且在一定的范围内具有良好的线性指示,可对大小不同的缺陷进行评价。

4.可以对工件表面涂层厚度进行测量,如测量导电覆盖层或非导电涂层的厚度;可以对导体的电导率进行测量,进行材料的分类。

5.由于检测信号为电信号,所以可对检测结果进行数字化处理,并将处理后

的结果进行存储、再现及进行数据比较分析。

多频涡流检测(Multi-Frequency Eddy Current Testing, MFECT)技术是一种涡

流检测新技术,它用多个频率激励传感器,比用单个频率作为激励信号的常规涡

流检测技术能获取更多信息【i,2,2i-23}。检测中如何充分利用所获取的信息,对其进行特征提取分析是多频涡流检测技术的关键问题,其检测结果比常规涡流检测技

术可以更有效地实现干扰抑制或者多参数检测。

3

1.2涡流检测技术的研究进展

1.2.1涡流检测技术的发展历程

涡流现象的发现己经有近二百年的历史。奥斯特(Oersted、安培(Ampere ) ,

法拉弟(Faraday、麦克斯韦(Maxwell)等世界著名科学家通过研究电磁作用实

验,发现了电磁感应原理,建立了系统严密的电磁场理论,为涡流无损检测奠定

了理论基础[l]。1879年,体斯(Hughes)首先将涡流检测应用于实际一一判断不

同的金属和合金,进行材质分选。自1925年起,在美国有不少电磁感应和涡流检测仪获得专利权,其中,Karnz直接用涡流检测技术来测量管壁厚度;Farraw首次

设计成功用于钢管探伤的涡流检测仪器。但这些仪器都比较简单,通常采用60Hz , 110V的交流电路,使用常规仪表(如电压计、安培计、瓦特计等),所以其工作

灵敏度较低、重复性较差。二战期间,多个工业部门的快速发展促进了涡流检测

仪器的进步。涡流检测仪器的信号发生器、放大器、显示和电源装置等部件的性

能得到了很大改进,问世了一大批各种形式的涡流探伤仪器和钢铁材料分选装置,较多地应用于航空及军工企业部门。当时尚未从理论和设备研制中找到抑制干扰

因素的有效方法,所以,在以后很长一段时间内涡流检测技术发展缓慢。

直到1950年以后,以德国科学家福斯特(Foster)博士为代表提出了利用阻

抗分析方法来鉴别涡流检测中各种影响因素的新见解,为涡流检测机理的分析和

设备的研制提供了新的理论依据,极大地推动了涡流检测技术的发展。福斯特也

因此当之无愧地被称为“现代涡流检测之父”。由于福斯特的卓越贡献,自20世

纪50年代起,美国、前苏联、法国、英国等工业发达国家的科学家积极开展涡流

检测技术研究。到20世纪70年代以后,电子技术和计算机技术飞速发展,有效

地带动了涡流检测仪器技术性能的改进,进一步突现了涡流检测技术在探测导电

材料表面或近表面缺陷应用中的优越性。世界各国相继开展了大量的涡流检测技

术研究和仪器开发工作,发表了大量的研究论文,并研制生产了一些高性能的涡流检测仪器[L=}l。我国从20世纪60年代开展涡流检测技术的研究工作,并先后研制

成功了一系列涡流检测仪器,如厦门爱德森公司的系列涡流检测仪器。涡流检测

技术的发展得到实质性的突破并步入实用化阶段。此后,随着电子技术尤其是计

算机和信息处理技术的进一步发展,影响和促进了涡流检测技术与仪器的不断更

新和进步。

从涡流检测仪器的发展历程来看,可分为五代产品[fall。第一代产品是以分立

元件为基础,采用简单谐振方式的一维显示模拟仪器,只有一种检测频率。第二

代产品是以阻抗平面分析法为基础,部分采用集成电路技术的二维显示模拟仪器,

检测时可以选择不同的激励频率以适应不同检测材料的要求。第三代产品是多频

涡流检测仪器,检测时对探头施加两个或两个以上不同的检测频率,利用不同频

率下被检导体材料反射阻抗不同的原理,提高了对材料特性或缺陷的检测能力,

并通过混和运算抑制干扰信号,达到去伪存真的目的。第四代产品是以计算机技

术为基础的智能化、数字化产品,其特点是能够大大简化操作,提高检测效率和

数据处理能力,并具备频谱分析、涡流成像等功能。第五代产品是DSP技术、阵

列技术、多通道技术、通信传输技术及其它无损检测技术相互融合为一体的多功

能仪器,它能够对缺陷进行检测、分析、判断,并通过其它技术的辅助检测,验

证其结果的正确性。涡流检测技术己进入一个全新的发展时代,具有乐观的发展

前景。

4

1.2.2涡流检测新技术

随着人类科技不断进步,工业化程度不断提高,对材料和产品的质量检测要

求也不断提高,常规涡流检测技术自身存在的一些局限性,如对提离效应敏感、

检测速度慢、探测深度小等问题,发展并提出了一些新的涡流检测技术[}a,aa,as-3a} 除本文研究的多频涡流检测技术以外,还有交变磁场测量(Alternating Current Field Measurement, ACFM)技术、脉冲涡流检测(Pulsed Eddy Current Testing, PELT

技术、远场涡流检测(Remote Field Eddy Current Testing, RFECT)技术、涡流阵

列检测(Eddy Current Array Testing, ECAT)技术、磁光/涡流成像检测(Magneto-Optical Eddy Current Imager, MOI)技术等。这些新的涡流检测技术以

各自独特的优点在不同的行业得到了广泛应用,弥补了常规涡流检测技术的不足。下面对这几种涡流检测新技术作简单介绍。

1.2.2.1交变磁场测量技术

交变磁场测量技术是近几年兴起的精确测量表面裂纹的无损检测方法,它由

交流电势降(Alternating Current Potential Drop, ACPD)技术发展而来,其突出优

点是能测量裂纹尺寸[[33-35] o ACFM法结合ACPD法能测定裂纹尺寸和涡流法无需

同工件接触的优点,无需人工标定试块,具有精确理论依据的数学模型,能够实现缺陷的定量检测。当载有交变电流的检测线圈靠近导体时,交变电流在周围的

空间中产生交变磁场,被检对象表面感应出交变涡流;当表面无缺陷时,表面涡

流线彼此平行,形成近似匀强涡流场,在周围空间产生近似匀强的交变电磁场;

当被检对象表面存在缺陷时,由于电阻率的变化,涡流场发生畸变,匀强涡流分

布受到破坏,进而匀强磁场发生变化,测量该扰动磁场的变化,即可判断出缺陷。在20世纪80年代后期,ACFM法首先被应用于石油和天然气的水下结构和海上

平台设备的无损检测中,用来探测结构关键部位焊缝和表面涂层。现己被广泛应

用于石油化工、海上平台、铁路运输、电力工业及航空航天等十分广泛的领域中,并取得显著效果[[36-40]

1.2.2.2脉冲涡流检测技术

脉冲涡流检测技术采用脉冲信号激励,通常为具有一定占空比的周期矩形波,

施加在探头上的激励信号会感应出脉冲涡流在被检对象中传播。根据电磁感应原理,此脉冲涡流又会感应出一个快速衰减的磁场;随着感生磁场的衰减,检测线

圈上就会感应出随时间变化的电压[[41-43]。与传统的常规涡流检测技术相比,脉冲涡流检测技术具有许多优势。常规涡流检测技术采用单一频率的正弦信号作为激励,主要对感应磁场进行稳态分析,即通过测量感应电压的幅值和相位来识别缺陷;而脉冲涡流检测技术主要对感应电压信号进行时域的瞬态分析,提取信号特

征量,分析缺陷尺寸、类型和结构参数等变化。在理论上,由于脉冲涡流检测技

术中的激励信号可以看成一系列不同频率正弦谐波的合成信号,具有很宽的频谱,广义上可以认为其是一种多频涡流检测技术,所以,可以比常规涡流检测技术提

供更多信息[[44-51]。脉冲涡流检测技术主要应用于导体较深层缺陷、飞机机身多层结构等的探测[[52-54]

1.2.2.3远场涡流检测技术

远场涡流检测技术是一种能穿透金属管壁的低频涡流检测技术[[55,56]。探头通常为内通式,由激励线圈和检测线圈构成,检测线圈与激励线圈相距约2-3倍管内径长度;激励线圈通以低频交流电流,感应出的磁力线穿过管壁向外扩散,在远

场区又再次穿过管壁向管内扩散,被检测线圈接收,从而有效地检测金属管子的内、外壁缺陷和管壁厚薄变化等情况[[57-60]。远场效应是20世纪40年代发现的,各国科学家对远场涡流检测技术进行了不断的探索,使远场涡流理论得到了逐步

完善和实验验证。直至2000年,美国试验与材料学会(American Society for Testing

and Materials, ASTM)颁布了“Standard Practice for In Situ Examination of

Ferromagnetic Heat-Exchanger Tubes Using Remote Field Testing”的标准,标志着远

场涡流检测技术正式被接受成为一项有效的管道无损检测方法[[61,62]。远场涡流检

测技术主要应用于核反应堆压力管、石油及天然气输送管和城市煤气管道等结构的探伤[63-65]

1.2.2.4涡流阵列检测技术

与常规涡流检测技术相比,涡流阵列检测技术的主要不同点是探头由多个独

立工作的线圈构成,这些线圈按照特殊的方式排布,且激励线圈与检测线圈之间

形成两种方向相互垂直的电磁场传递方式,有利于发现取向不同的线性缺陷[[66,67] 涡流阵列探头中包含几个或几十个线圈,不论是激励线圈,还是检测线圈,相互

之间距离都非常近,保证各个激励线圈的激励磁场之间、检测线圈的感应磁场之

间不相互干扰,是涡流阵列检测技术的关键。在检测过程中,采用电子学的方法,

按照设定的逻辑顺序,对阵列单元分时切换,将各单元获取的涡流检测信号采集

进入仪器的信号处理系统。涡流阵列检测技术除了具有扫查覆盖面积大、检测速

度快等优点外,其探头外形可根据实际被检对象的形面进行设计,因此还具有容

易克服提离效应影响的优势;采用C扫描显示方式时,图像直观清晰,检测结果

一目了然[[68,69]涡流阵列检测技术不仅能够对被检对象展开的或封闭的检测面进

行大面积的高速扫描,而且能用于扫描任何固定形状构成的检测面,如各种异型管、棒、条、板材,以及飞机机体、轮毅,发动机涡轮盘桦齿、外环、涡轮叶片

等构件的表面[[70-75]

1.2.2.5磁光/涡流成像检测技术

磁光/涡流成像检测技术是以法拉第电磁感应和磁光效应为基础而提出的一种

无损检测方法【76,77]。磁光效应是指当以平行于外加磁场方向传播的线性偏振光穿过磁场中的旋光介质时,其偏振平面会被扭转的现象。在磁光/涡流成像检测技术

中,通常采用交流(脉冲)激励线圈在被测导体上感应出涡流,涡流感生的磁场

对通过磁光介质的线偏振光产生作用。根据涡流检测原理可知,只要在被检对象

中的检测区域内产生直线流动、分布均匀的层状涡流,此涡流会在空间感应出垂

直于被检对象的均匀磁场。如果试件中在该区域内含有缺陷,则缺陷处涡流的流

动将发生变化,并引起该处的垂直磁场分布发生变化。此时,磁光传感元件将磁

场的这种变化转换成相应的光强变化,即可对缺陷进行实时成像[}}s-sod磁光/涡流成像检测技术主要应用于航空航天装备的快速、准确、可视化无损检测[}si-s3}

5

1.2.3涡流检测技术研究的热点问题

在涡流检测技术的发展中,主要围绕以下几个关键问题进行研究,推动着涡

流检测技术的不断进步。

1.2.3.1涡流检测的理论问题研究

涡流检测的理论问题一般分为涡流正问题(Forward Problem)和涡流逆问题

(Inverse Problem。涡流正问题是在条件(检测距离、缺陷等)己知的情况下,求解涡流传感器的磁场分布、阻抗变化等。涡流逆问题是在电磁场分布或者涡流

传感器输出己知的情况下,对被检对象有关参数进行辨识的问题,包括位置辨识、形状辨识和媒质参数(电导率、磁导率、介电常数等)辨识。

1.涡流正问题

涡流正问题的研究为涡流逆问题的解决提供理论支持,大多数涡流正问题的

解存在且唯一。国内外学者对涡流正问题开展了大量的研究工作。在解析计算方面,国外的主要研究有,1968年,美国学者Dodd C V和Deeds W E利用巧妙的数学方法求解了关于矢量磁位的边值问题,建立了位于两层线性、各向同性、均匀

半无限大导电媒质上方涡流传感器的数学模型,求解格林函数并应用叠加原理给

出了涡流传感器阻抗的闭合解析表达式[[84]。该模型成为后来许多学者继续研究的基础,其模型和求解算法不断得到优化。1971年,Cheng C C等改进模型,分析

了半无限大任意多层线性、各向同性、均匀导电媒质中间的轴对称、时谐电磁场

问题,采用矩阵方法求解各层媒质的格林函数,然后计算线圈的阻抗,但其表达

式含有Bessel函数的外积分区域从零到无穷大的二重广义积分,计算难度很大[[85] 1994年,Bowler J R等提出了涡流检测中半无限大导体中理想裂缝模型,将理想

裂缝假设为一个电流不可穿透的障碍面,其作用等效为一层面分布的电流偶极子,

计算涡流传感器检测过程中的阻抗变化[86]。2005年,Theodoulidis T P等将半无限大导体上方涡流传感器阻抗求解积分表达式转化为无穷级数的和,简化了求解过

程[fg}l。国内方面,2000年,雷银照采用矢量磁位计算轴对称圆柱导体的磁场分布,给出位于半无限大导体上方线圈传感器阻抗的解析表达式[88]。2002年,幸玲玲等研究了有限厚平板导体理想裂缝模型,导出了场点和源点位于同一区域时和不同

区域时的并矢格林函数,解决了计算等效电流偶极子面密度时遇到的积分奇点问

题[89]0 2004年,黄平捷等分析计算了多层导电结构厚度涡流检测传感器阻抗变化数学模型,并进行了实验验证[[90]

随着计算机科学技术的发展,电磁场数值计算技术得到了广泛应用。功能强

大的有限元数值计算方法使求解复杂结构的涡流问题成为可能,部分解析形式的

涡流计算问题也转变成半解析半数值形式,加快了涡流问题的求解。国外的主要

研究有,1993年,Machado V M等利用有限元方法计算了含有内部缺陷线性导体

的数值计算问题,并和其解析解取得一致[}91}0 1997年,Badics Z等提出了一种直接计算导体内部缺陷扰动的三维有限元模型,有效减少了数值计算时间,并对含

有缺陷的管道模型进行了数值计算和实验比较[}92} 0 2000年,Tanaka M等提出了一种涡流检测的快速有限元计算模型,通过提出的基函数选定求解区域,计算缺陷

导致的矢量磁位变化[93]。2009年,Maouche B等提出了一种涡流检测传感器的半解析模型,进行了有限元数值计算和实验验证[[94]。国内方面,2000年,蒋齐密等建立涡流检测的轴对称有限元模型,以条件变分法给出了涡流计算公式卿」。2008

年,谢德馨等研究了三维正弦涡流场和瞬态涡流场的有限元解法,铁磁材料中涡

流场计算的特点和处理方法,有限元网格的自动生成和电磁场分析结果的后处理

等问题[96]

2.涡流逆问题

涡流逆问题和正问题有很大的不同[[97]。多数情况下,正问题的己知条件是连

续函数,而逆问题的己知条件是离散的;正问题的解是存在且唯一的,但逆问题

的解不唯一,离散的己知输入数据有时使解根本不存在;正问题的解一般是数值

稳定的,但逆问题的解大多是不稳定的。因此,涡流逆问题比正问题要复杂得多,很难得到其解析算法。目前,涡流逆问题的求解方法主要可以分为两大类,一类

是电磁场微积分方程的数值求解,另一类是模式识别方法。

在数值法求解中,国外方面,1993年,Norton S J等采用体积积分方程和直接

共扼梯度法重构分层媒质的电导率分布和导体表面裂缝的形状[98]。1998年,Yan M 等采用有限元方法,通过迭代求解涡流检测的正问题,使用最小二乘法逼近目标

函数,从而得到逆问题的解[[99]。国内方面,2000年,雷银照提出了一种三维缺陷的涡流逆问题计算方法,包括三维缺陷的数学描述、无约束极小化数学模型的建

立和寻找极小点的数值方法[[97]。在模式识别方法中,主要是采用人工神经网络(Artificial Neural Network, ANN)方法。人工神经网络是在一定程度上模仿人脑

神经系统处理信息的方法,用大量基本神经元相互连接组成自适应非线性动态系统,具有大规模并行处理能力。在涡流逆问题求解过程中,通过对正问题的不断

反复训练来求解逆问题。主要研究有,1997年,国外学者Wang B等分别采用多

层前向感知器(Multi-Layer Perceptron, MLP)和径向基函数(Radial Basis Function, RBF)两种神经网络模型,对涡流检测的实际数据和裂缝形状进行训练[yoo} 0 2002 年,国内学者幸玲玲等在涡流缺陷检测中提出了组合神经网络(Composite Neural Network, CNN)模型,降低了神经网络输入变量的维数,同时具有较高的缺陷识

别率[ioy

1.2.3.2涡流传感器的设计与优化

涡流传感器是涡流检测中信息获取的前端,国内外学者对涡流传感器的尺寸

结构、有效屏蔽等方面进行了大量研究。传统的涡流传感器常常采用漆包线绕制,

传感器的灵敏度受到线圈大小、形状,绕线线径、匝数、匝比,磁芯大小、形状

等的影响。

1997年,国外学者Wilde J等采用ANSYS有限元仿真软件对线圈涡流传感器结

构进行了优化[}102} 0 2003年,国内学者游风荷等应用粗糙集约简算法,指出了影响线圈涡流传感器性能的各因素之间关系,获得了涡流传感器的设计规则【io3} 近年来,新型磁测量传感器不断被应用到涡流检测中,提高了涡流检测的灵

敏度和空间分辨率,如新型巨磁电阻(Giant Magneto-Resistance, GMR)传感器、

超导量子干涉器(Superconducting Quantum Interference Device, SQUID)传感器等。巨磁电阻传感器是基于GMR效应的磁场测量装置。GMR效应是指微弱的磁场变

化可以使得某些材料的电阻值发生明显变化。与线圈不同的是,巨磁电阻传感器

直接测量磁场大小,其灵敏度与磁场的交变频率几乎无关,在很宽的频率范围(从

DC到几兆赫兹)内具有很高的灵敏度,并且其具有可靠性好、抗恶劣环境、体积

小及价格低等优点[[104-106年,国外学者Kim J等人己经将基于GMR磁测量

传感器的涡流检测技术应用于飞机结构的检测中【io}}。在约瑟夫效应和磁通量子化效应基础上发展起来的超导量子干涉器,其性能远远超过常规器件,是当今最灵

敏的磁测量装置。采用S QUID传感器的涡流检测仪器,具有检测灵敏度高、动态

范围宽、空间分辨力高等特点,特别是工作在交流场检测模式时,容易实现对深

层缺陷的检测【ios,io9}。该方法目前仍存在一些尚未解决的问题,国内外学者在

S QUID的无损检测应用方面进行了大量的实验研究,涉及检测方法的改进、检测

仪器的完善、空间分辨力的优化等,使商业化仪器逐渐成为可能[}mo,m}

1.2.3.3涡流检测信号的处理方法研究

在涡流检测过程中,微弱涡流检测信号受到检测仪器内部电磁场、被检对象

形状和表面特性、外界环境等的干扰,检测信号中往往带有高频噪声和低频扰动等,甚至湮没在噪声中,难于提取和判断。信号处理方法诸如傅立叶分析(Fourier Analysis)方法、小波分析(Wavelet Analysis)方法、主成分分析(Primary Component Analysis, PCA)方法、独立分量分析(Independent Component Analysis, ICA)方法

等不断被应用于涡流检测中,增强检测信号,或者抑制其它干扰,提高缺陷判断

的准确性。

国外方面,2004年,Shin B H将独立分量分析方法应用到管道涡流检测信号

的处理中,实现了信号消噪和支撑干扰抑制[l‘2]。2005年,Tian G Y等将小波分析方法和主成分分析方法应用到脉冲涡流检测信号的处理中,提高了缺陷分类识别

和定量检测的准确性[}m3}。国内方面,2000年,孙晓云等研究了小波分析方法在涡流检测信号降噪中的应用,提出了采用小波多尺度边沿检测来消除支撑板干扰的

新方法[l‘4]0 2003年,何岭松等将数字滤波器技术应用到涡流检测信号处理中,有效降低了低频波动和高频干扰等【lls} 0 2003年,林俊明等应用小波分析方法对涡流检测信号进行去噪,分辨出微弱的缺陷信号}m6}

6

1.3多频涡流检测的技术优势和研究进展

1.3.1多频涡流检测技术的特点及优势

在常规涡流检测过程中,主要通过测量涡流传感器输出信号的变化以得到被

检对象特性。被检对象中影响涡流传感器输出信号的因素很多,诸如磁导率、电

导率、外形尺寸和缺陷等,各种因素的影响程度各异。另一方面,在一次检测过

程中,有时需要同时获得被检对象的多个参数。常规涡流检测技术采用单一频率

工作,获取的信息量有限,难以满足实际检测过程中的更高需求。单频涡流检测

技术在检测过程中所采用激励信号的时域波形和频谱如图1.2所示。

1970年,美国科学家Libby H L首先提出多频涡流检测技术,用以实现涡流

检测过程中的干扰抑制或者被检对象的多参数检测[[21]。多频涡流检测技术采用多个不同频率激励涡流传感器,利用不同频率下,参数有不同变化的原理来实现的。在不同频率下得到的检测信号,通过一定的方法进行分析处理,提取多个所需参

数,或者抑制干扰【1,3,21,117]。多频涡流检测技术在检测过程中所采用同步合成激励

信号的时域波形和频谱如图1.3所示。

7

涡流技术由于具有的很多优点而被广泛应用。首先,它是非接触检测,而且

能穿透非导体的覆盖层,这就使得在检测时不需要做特殊的表面处理,因此缩短

了检测周期,降低了成本。同时,涡流检测的灵敏度非常高。涡流检测按激励方

式和检测原理的不同可以分为单频涡流、多频涡流、脉冲涡流、远场涡流等,下

面对这些技术的发展简要的加以介绍。

传统的涡流采用单频激励的方式,主要来对表面及近表面的缺陷进行检测,

根据被测材料及缺陷深度的不同,激励频率的范围从几赫兹到几兆赫兹不等,为

了得到良好的检测信号,激励线圈必须在缺陷的附近感应出最大的涡流,感应电

流的大小和激励频率、电导率、磁导率、激励线圈的尺寸和形状以及激励电流的

大小有关[64一69]。通过测量阻抗或电压的变化来实现对缺陷的检测。然而,由于对其它参数也很敏感,这就影响了对缺陷的检测。

为了克服单频涡流的缺点,1970年美国人Libby提出了多频涡流的技术 (Multi-frequency Eddy Current, MFEC),多狈涡流是同时用儿个狈率信号激励探

头,较单频激励法可获取更多的信号[fs‘一9‘],这样就可以抑制实际检测中的许多干

扰因素,如热交换管管道中的支撑板、管板、凹痕、沉积物、表面锈斑和管子冷

加工产生的干扰噪声,汽轮机大轴中心孔、叶片表面腐蚀坑、氧化层等引起的电磁噪声,以及探头晃动提离噪声等。理论与实践表明,被测工件的缺陷和上述干扰因素对不同频率的激励信号各有不同的反应,可反应出不同的涡流阻抗平面。利用这一原理,用两个(或多个)不同频率的正弦波同时激励探头,然后由两个

(或多个)通道分别进行检波、放大和旋转等处理,此后,通过多个混合单元的

综合运算,就可以有效的去除信号干扰,准确的获取缺陷信号[f 12l。但是,多频涡流只能提供有限的检测数据,很难以可视化的方式实现对缺陷的成像检测。

70年代中后期,脉冲涡流技术(Pulsed Eddy Current, PEC)在世界范围内得到

广泛的研究,PEC最早由密苏里大学的Waidelich在20世纪50年代初进行研究,脉冲涡流的激励电流为一个脉冲,通常为具有一定占空比的方波,施加在探头上的激励方波会感应出脉冲涡流在被测试件中传播,根据电磁感应原理,此脉冲涡流又会感应出一个快速衰减的磁场,随着感生磁场的衰减,检测线圈上就会感应出随时间变化的电压,由于脉冲包含很宽的频谱,感应的电压信号中就包含重要的深度信息。脉冲涡流主要有以下几个特点[[24]:不需要改变测试参数的设置,一次扫描就可以完成对大面积复杂结构的检测;探头上可施加较大的能量来实现对

深层缺陷的检测;与多频涡流相比,仪器的成本低。

8

远场涡流(Remote field eddy current, RFEC)技术

最早发表于1951年美国W . R. M adean的一篇专利

报告中u, 20世纪50年代末60年代初,壳牌公司的

T. R. Schmidt教授研制成功了应用于油井套管检测

的远场涡流仪。80年代,有限元法和计算机数值分

析技术的应用进一步推动了远场涡流机理的研究,

美国学者T. R. Schmidt教授、W . Lord教授、D. L.

Atherton和我国的孙雨施教授等用有限元法和计算

机仿真技术研究了远场涡流现象,应用能量扩散流

的概念阐明了远场涡流现象的机理.。1986年,美

国的科罗拉多州立大学用有限元方法模拟并复制了

远场状态。我国的孙雨施教授和W. Lord教授合作

引入能流的概念,发现了“磁位峡谷”和“相位节点”现象} 0 20世纪80年代以后,国内外一些研究机

构着手进行远场涡流检测系统的研制,I}. Tomita and I}. Yasui等人还撰文介绍了其应用系统。

近年来,远场涡流技术的应用得到全面深入的

研究,许多研究机构正在进行远场涡流检测系统的

9

三、远场涡流和常规涡流技术的比较

(1>远场涡流技术检测的是穿过管壁后在管外

沿管轴传播一段距离再返回到管内的磁场,接收线

圈必须处于距激励线圈2} 3倍管径处的远场区。

常规涡流技术则是采用靠近管壁的线圈以直接磁祸

合的形式来拾取传播到管壁又返回的信号。

( 2)远场涡流检测仪频率较低(典型为50

500 Hz) ,磁场可以穿过铁磁性材料管壁,为了保证

在激励的每个周期内采集到信号,并且不漏检,其检测速度受到限制,通常只有常规涡流检测方法的

1 /3} 1 /5,约在10} 20 m/min之问。常规涡流检测仪频率较高(1 000 Hz范围),在铁磁性材料管道中,

磁场被限制在管道的内表面,检测外部缺陷非常困难。

( 3)远场涡流技术主要用于检测铁磁性管道,也可以用于检测非铁磁性管道,其最大优势是能检查厚壁铁磁性管道,最大检测壁厚为25~,这是常规涡流技术无法达到的。其次,对大范围壁厚缺损,远场涡流检测技术的检测灵敏度和精确度较高,精度可以达到2%一5%,对于小体积的缺陷,如腐蚀凹坑等,其检测灵敏度的高低取决于被测管道的材质、壁厚、磁导率的均匀性、检测频率和探头的拉出速度等因素。常规涡流检测技术与其相比造价较低,一般适用于检测非铁磁性材料。

( 4)远场涡流检测技术测量的是接收线圈输出

的相位和幅度信号,条形图显示的是相位和幅度的对数,这些参数都和管材大范围的缺损呈线性关系。常规涡流检测显示的是阻抗幅度和相位,与壁厚的关系较复杂。

( 5)远场涡流检测仪对内外管壁缺损有相同的

检测灵敏度,对填充系数要求低,对有障碍物和凹痕的管了检测效果很好,对探头在管内行走产生的偏心影响比常规涡流小。

四、应用中存在的问题

现场检测时,用户必须提供一些被测管道的信息,包括管道的使用年限、以前的检测史、腐蚀数据

及被测管道的长度等。为了避免掩盖缺陷信号,检测前应清除管内的障碍物、淤积物、磁性物质和导体的碎屑。在管道检测中远场涡流检测技术还存在以下技术难题。

(y渗透性变化会产生类似金属缺损的信号,掩

盖真正的金属缺损信号。需要研究开发一种能把渗透性变化的情况滤除或将其区分出来的方法。

( 2}支撑板会阻挡磁力线的传播,掩盖缺损信号,导致靠近支撑板的管面检测困难。

( 3)管了的弯曲部位在壁厚和渗透性上变化很大,严重影响了远场涡流信号,探测此处的缺陷和缺陷尺寸成为问题。

( 4)检测时,必须保证检测速度的平稳,不能引起振动噪声,否则振动噪声会湮没缺陷信号。

电磁电涡流测厚原理及测厚仪

电磁/电涡流测厚原理及测厚仪 对材料表面保护、装饰形成的覆盖层,如涂层、镀层、敷层、贴层、化学生成膜等,在有关国家和国际标准中称为覆层(coating)。覆层厚度测量已成为加工工业、表面工程质量检测的重要一环,是产品达到优等质量标准的必备手段。为使产品国际化,我国出口商品和涉外项目中,对覆层厚度有了明确的要求。 覆层厚度的测量方法主要有:楔切法,光截法,电解法,厚度差测量法,称重法,X射线荧光法,β射线反向散射法,电容法、磁性测量法及涡流测量法等。这些方法中前五种是有损检测,测量手段繁琐,速度慢,多适用于抽样检验。 X射线和β射线法是无接触无损测量,但装置复杂昂贵,测量范围较小。因有放射源,使用者必须遵守射线防护规范。X射线法可测极薄镀层、双镀层、合金镀层。β射线法适合镀层和底材原子序号大于3的镀层测量。电容法仅在薄导电体的绝缘覆层测厚时采用。 随着技术的日益进步,特别是近年来引入微机技术后,采用磁性法和涡流法的测厚仪向微型、智能、多功能、高精度、实用化的方向进了一步。测量的分辨率已达0.1微米,精度可达到1%,有了大幅度的提高。它适用范围广,量程宽、操作简便且价廉,是工业和科研使用最广泛的测厚仪器。 采用无损方法既不破坏覆层也不破坏基材,检测速度快,能使大量的检测工作经济地进行。 测量原理与仪器 一.磁吸力测量原理及测厚仪 永久磁铁(测头)与导磁钢材之间的吸力大小与处于这两者之间的距离成一定比例关系,这个距离就是覆层的厚度。利用这一原理制成测厚仪,只要覆层与基材的导磁率之差足够大,就可进行测量。鉴于大多数工业品采用结构钢和热轧冷轧钢板冲压成型,所以磁性测厚仪应用最广。测厚仪基本结构由磁钢,接力簧,标尺及自停机构组成。磁钢与被测物吸合后,将测量簧在其后逐渐拉长,拉力逐渐增大。当拉力刚好大于吸力,磁钢脱离的一瞬间记录下拉力的大小即可获得覆层厚度。新型的产品可以自动完成这一记录过程。不同的型号有不同的量程与适用场合。 这种仪器的特点是操作简便、坚固耐用、不用电源,测量前无须校准,价格也较低,很适合车间做现场质量控制。 二.磁感应测量原理 采用磁感应原理时,利用从测头经过非铁磁覆层而流入铁磁基体的磁通的大小,来测定

实验 涡流探伤实验指导书

实验涡流探伤实验(烟台大学王海波) 一、实验目的 1.了解涡流探伤的基本原理; 2.掌握涡流探伤的一般方法和检测步骤; 3.熟悉涡流探伤的特点。 二、实验原理 1. EEC-35/RFT涡流检测仪简介 EEC-35/RFT智能全数字式多频远场涡流检测仪是新一代涡流无损检测设备,它采用了最先进的数字电子技术、远场涡流技术及微处理机技术,能实时有效地检测铁磁性和非铁磁性金属管道的内、外壁缺陷。EEC-35/ RFT 既是一套完整的远场涡流检测系统,也可与常规的多频、多通道的普通涡流检测系统融为一体成为高性能、多用途、智能化的涡流检测新型设备。 EEC-35/RFT由于具备了四个相对独立的测试通道,可同时获得二个绝对、二个差动的涡流信号。仪器可通过软开关切换成两台二频二通道的涡流检测仪,同时连接两只探头进检测。具有5Hz 至5MHz 的可变频率范围,因此 EEC-35/RFT 特别适用于核能、电力、石化、航天、航空等部门在役铜、钛、铝、锆等各种管道、金属零部件的探伤和壁厚测量以及各种铁磁性管道的探伤、分析和评价。例如:锅炉管、热交换器管束、地下管线和铸铁管道等的役前和在役检测。EEC-35/RFT 具有可选的多个检测程序,同屏多窗口显示模式,同屏显示多个涡流信号的相位、幅度变化及其波形的情况。多个相对独立的检测通道,有多达三个混频单元,能抑制在役检测中由支撑板、凹痕、沉积物及管子冷加工产生的干扰信号,去伪存真,提高对涡流检测信号的评价精度。且由于采用了全数字化设计,能够在仪器内建立标准检测程序,方便用户现场检测时调用。 此外,仪器还具有组态分析功能,能够用于金属表面硬度、硬化深度层深等的检测及材料分选。 2.涡流检测原理 涡流检测是以电磁感应为基础的,它的基本原理可以描述为:当载有交变电

无损检测----涡流阵列检测技术典型应用

目录 一、涡流阵列检测应用研究 二、涡流阵列检测应用案例 三、涡流阵列检测应用注意事项 一、涡流阵列检测应用研究 1.非铁磁性材料、均匀表面 --对比试样 ET∝f(σ,μ≈μ0, LF, 均匀性…) 均匀表面:结构或材质方面的均匀。管件、锻件、铸件等 ECA显示特点: 表面开口缺陷:幅值、相位、C扫显示∝缺陷深度 近表面缺陷:幅值、C扫显示∝埋藏深度 1.非铁磁性材料、均匀表面--工件 对于非铁磁性金属材料的均匀表面,与PT相比,ECA表面条件要求低、检测速度快、缺陷检出率高、绿色环保, 优势较为明显。 1.非铁磁性材料、均匀表面--ECA-C扫成像

绝对桥式阵列、小的线圈尺寸、多的阵列排数更有利于涡流阵列C扫成像。 均匀表面表面开口缺陷ECA-C扫成像可在一定程度上定性 2.非铁磁性材料、非均匀表面--对比试块 ET∝f(σ, LF, μ≈μ0, 均匀性…) 对接接头:局部表面出现结构或材质不均匀。 2.非铁磁性材料、非均匀表面--模拟试块 表面的不均匀性,在一定程度上影响ECA-C成像效果,直观性受到影响。焊纹也会降低检测灵敏度。 2.非铁磁性材料、非均匀平面--工件 3.铁磁性材料、均匀表面--对比试样 ET∝f(σ, LF, μ, 均匀性…) 管件、锻件、铸件等

4.铁磁性材料、非均匀表面--动态提离补偿技术 ECA C-scan Image 对接接头:局部表面出现结构或材质不均匀。 4.铁磁性材料、非均匀表面--对比试样 5.高温 奥氏体不锈钢刻槽试板高温检测实验(300℃) 6.低温

低温情况下,PT无法实施,可考虑ECA。 二、涡流阵列检测典型案例——奥氏体不锈钢对接接头 1.表面开口缺陷 ECA可以比PT更容易发现缺陷。 2.近表面缺陷 ECA可以在一定程度上检出近表面缺陷。 在线不打磨检测--动态提离补偿 动态提离补偿技术,实现了碳钢对接接头的在线不打磨表面缺陷检测。

五大常规无损检测技术之一:涡流检测(ET)的原理和特点

五大常规无损检测技术之一:涡流检测(ET)的原理和特点 涡流检测(Eddy Current Testing),业内人士简称E T,在工业无损检测(Nondestructive Testing)领域中具有重要的地位,在航空航天、冶金、机械、电力、化工、核能等领域中发挥着越来越重要的作用。 涡流检测主要的应用是检测导电金属材料表面及近表面的宏观几何缺陷和涂层测厚。 涡流检测是五大常规无损检测技术之一,其他四种是:射线检测(Radiographic Testing):射线照相法、超声检测(Ultrasonic Testing):A型显示的超声波脉冲反射法、磁粉检测(Magnetic Particle Testing)、渗透检测(Penetrant Testing)。 按照不同特征,可将涡流检测分为多种不同的方法: (1)按检测线圈的形式分类: a)外穿式:将被检试样放在线圈内进行检测,适用于管、棒、线材的外壁缺陷。b)内穿式:放在管子内部进行检测,专门用来检查厚壁管子内壁或钻孔内壁的缺陷。 c)探头式:放置在试样表面进行检测,不仅适用于形状简单的板材、棒材及大直径管材的表面扫查检测,也适用于形状福州的机械零件的检测。

(2)按检测线圈的结构分类: a)绝对方式:线圈由一只线圈组成。 b)差动方式:由两只反相连接的线圈组成。 c)自比较方式:多个线圈绕在一个骨架上。 d)标准比较方式:绕在两个骨架上,其中一个线圈中放入已经样品,另一个用来进行实际检测。 (3)按检测线圈的电气连接分类: a)自感方式:检测线圈使用一个绕组,既起激励作用又起检测作用。 b)互感方式:激励绕组和检测绕组分开。 c)参数型式:线圈本身是电路的一个组成部分。 涡流检测原理 涡流检测,本质上是利用电磁感应原理。 无论什么原因,只要穿过闭合回路所包围曲面的磁通量发生变化,回路中就会有电流产生,这种由于回路磁通量变化而激发电流的现象叫做电磁感应现象,回路中所产生的电流叫做感应电流。 电路中含有两个相互耦合的线圈,若在原边线圈通以交流电1,在电磁感应的作用下,在副边线圈中产生感应电流2;反过来,感应电流又会影响原边线圈中的电流和电压的关系。如下图所示:

涡流检测原理及部件

涡流原理及主要配件上海佳创精工机械有限公司

一、概述 1.1 涡流检测的原理 涡流检测就是运用电磁感应原理,将激励信号加到探头线圈,当探头接近金属表面时,线圈周围的交变磁场在金属表面产生感应电流。对于平板金属,感应电流的流向是以线圈同心的圆形,形似漩涡,成为涡流。涡流的大小、相位及流动形式受到试件导电性能的影响。涡流也会产生一个磁场,这个磁场反过来又会使检测线圈的阻抗发生变化。 因此当导体表面或近表面出现缺陷或测量的金属材料发生变化时,将影响到涡流的强度和分布,涡流的变化又引起了检测线圈电压和阻抗的变化,根据这一变化,就可以间接地知道导体内缺陷的存在及金属材料的性能是否有变化。 1.2 涡流检测技术的特点 涡流检测时一种应用较为广泛的无损检测技术,它具有如下技术特点: ●检测速度快,且易于实现自动化。 ●表面、亚表面缺陷检出灵敏度高。 ●能在高温状态下进行检测。 ●抑制多种干扰因素。 涡流检测的对象必须是导电材料,且不适用于检测金属材料深层的内部缺陷,这是涡流检测在应用上的局限所在。其次,涡流检测至今仍处于当量比较阶段,对缺陷作出准确的定性定量判断技术尚待开发研究。 1.3 涡流的探伤及材质分选 涡流法可以用来测量非金属表面层的电导率,也可以用来检验与电导率数值有对应关系的性能,如化学成分和组织状态等。因此,涡流检测可以成功地用于按牌号分选合金,检验材料热处理质量及机械性能等。 涡流探伤不仅对于导电材料表面上或近表面的裂纹、孔洞以及其它类型的缺陷,涡流实验具有良好的检测灵敏度并能提供缺陷深度的信息,还可以发现于薄的油漆层或涂层下的这些缺陷。 涡流检测仪的操作请参考《多频多通道智能数字涡流检测仪操作使用说明书》。

涡流无损检测实验报告

江苏科技大学数理学院开放性选修 实验训练 涡流无损检测实验报告 指导老师:魏勤 组员:彭加福(0640502112)胡进军(0640502107)徐大程(0640502115) 江苏科技大学数理学院06级应用物理学 2009年12月15日

涡流无损检测实验报告 彭加福 (江苏科技大学数理学院应用物理 0640502112) 涡流检测是建立在电磁感应原理基础之上的一种无损检测方法,它仅适用于导电材料,如果我们把一块导体置于交变磁场之中,在导体中就有感应电流存在,即产生涡流。由于导体自身各种因素(如电导率、磁导率、形状、尺寸和缺陷等)的变化会导致感应电流的变化,利用这种现象而判知导体性质、状态的检测方法,叫做涡流检测方法。在涡流探伤中,是靠检测线圈来建立交变磁场,把能量传递给被检导体,同时又通过涡流所建立的交变磁场来获得被检测导体中的质量信息。作为无损检测的一种重要手段,涡流检测在现代工业无损检测中得到了深入而广泛的应用和推广。 实验训练期间,我们采用SMART-2097智能便携式多频涡流仪、D60K数字金属电导率测量仪和7504塗层测厚仪等涡流仪器完成了定标、探伤、电导率测定和膜厚测量等实验,掌握了涡流的产生机理及涡流探伤原理,熟练掌握了各种涡流探伤仪、测量仪的基本操作。 1 实验目的 1.1 熟悉各种涡流探伤仪、测量仪的基本操作,简单了解各实验仪器的工作原理及性能,并通过系列实验了解涡流无损检测在现代工业中的应用; 1.2 学习掌握涡流检测的基本方法及相关理论知识,了解涡流检测仪、测量仪及涡流探头的内部结构和工作原理; 1.3 分别使用SMART-2097智能便携式多频涡流仪、D60K数字金属电导率测量仪和7504塗层测厚仪进行探伤、测电导率和薄膜厚度。 2 实验仪器 SMART-2097智能便携式多频涡流仪、D60K数字金属电导率测量仪、7504塗层测厚仪、各种涡流探头及数据传输线、SMART-2097智能便携式多频涡流仪标准试块(含有深为0.1mm, 0.5mm, 1.0mm的划痕)、D60K数字金属电导率测量仪高值-低值定标试块、7504塗层测厚仪标准膜。 3 实验原理 3.1 螺线管磁场 如果将长直导线绕成螺线管,磁力线分布类似于条形磁铁,磁场方向取决于电流方向,同样可以用右手定则表示,其磁场强度取决于两个因素:线圈的圈数和电流的大小,圈数越多或电流越大,则磁场越强。 对一个螺线管来说,它所形成的磁场是数个线圈磁场的叠加,所以当交流电通过螺线管时,可形成既强又集中的交变磁场,如图1所示。

实验06(电涡流传感器)实验报告

实验六-电涡流传感器 实验1:电涡流传感器位移实验 一、实验目的 了解电涡流传感器测量位移的工作原理和特性。 二、实验原理 通过交变电流的线圈产生交变磁场,当金属体处在交变磁场时,根据电磁感应原理,金属体内产生电流,该电流在金属体内自行闭合,并呈旋涡状,故称为涡流。涡流的大小与金属导体的电阻率、导磁率、厚度、线圈激磁电流频率及线圈与金属体表面的距离x等参数有关。电涡流的产生必然要消耗一部分磁场能量,从而改变激磁线线圈阻抗,涡流传感器就是基于这种涡流效应制成的。电涡流工作在非接触状态(线圈与金属体表面不接触),当线圈与金属体表面的距离x以外的所有参数一定时可以进行位移测量。 三、实验器械 主机箱、电涡流传感器实验模板、电涡流传感器、测微头、被测体(铁圆片)。 四、实验接线图 五、实验数据记录以及数据分析 实验数据如下: 实验数据拟合图像如下:

数据分析: 由图像可知,位移-输出电压曲线的线性区域是~,进行正、负位移测量时的最佳工作点处。实验拟合直线方程为:y=灵敏度和非线性误差计算: 测量范围为1mm时,灵敏度为(V/mm),非线性误差为% 测量范围为3 mm时,灵敏度为(V/mm),非线性误差为% 六、实验备注 电涡流传感器的量程与哪些因素有关,如果需要测量±5mm 的量程应如何设计传感器与被测物体的磁导率,电导率,尺寸因子,探头线圈的电流强度和频率有关。通过调节前面五个因素的组合来达到所需要的量程。 实验2:被测体材质对电涡流传感器特性影响 一、实验目的 了解不同的被测体材料对电涡流传感器性能的影响。 二、实验原理 涡流效应与金属导体本身的电阻率和磁导率有关,因此不同的材料就会有不同的性能。 三、实验器械 和实验1相同,另加铜和铝的被测体。 四、实验接线图 和实验1相同。 五、实验数据记录以及数据分析 实验数据记录如下: 被测物体材料为铝时

涡流检测技术概述

涡流检测技术概述 涡流技术由于具有的很多优点而被广泛应用。首先,它是非接触检测,而且能穿透非导体的覆盖层,这就使得在检测时不需要做特殊的表面处理,因此缩短了检测周期,降低了成本。同时,涡流检测的灵敏度非常高。涡流检测按激励方式和检测原理的不同可以分为单频涡流、多频涡流、脉冲涡流、远场涡流等,下面对这些技术的发展简要的加以介绍。 传统的涡流采用单频激励的方式,主要来对表面及近表面的缺陷进行检测,根据被测材料及缺陷深度的不同,激励频率的范围从几赫兹到几兆赫兹不等,为 了得到良好的检测信号,激励线圈必须在缺陷的附近感应出最大的涡流,感应电 流的大小和激励频率、电导率、磁导率、激励线圈的尺寸和形状以及激励电流的 大小有关,通过测量阻抗或电压的变化来实现对缺陷的检测。然而,由于其它参数也很敏感,这就影响了对缺陷的检测。 为了克服单频涡流的缺点,1970 年美国人 Libby 提出了多频涡流的技术(Multi-frequency Eddy Current, MFEC),多频涡流是同时用几个频率信号激励探头,较单频激励法可获取更多的信号,这样就可以抑制实际检测中的许多干扰因素,如热交换管管道中的支撑板、管板、凹痕、沉积物、表面锈斑和管子冷加工产生的干扰噪声,汽轮机大轴中心孔、叶片表面腐蚀坑、氧化层等引起的电磁噪声,以及探头晃动提离噪声等。理论与实践表明,被测工件的缺陷和上述干扰因素对不同频率的激励信号各有不同的反应,可反应出不同的涡流阻抗平面。利用这一原理,用两个(或多个)不同频率的正弦波同时激励探头,然后由两个(或多个)通道分别进行检波、放大和旋转等处理,此后,通过多个混合单元的综合运算,就可以有效的去除信号干扰,准确的获取缺陷信号。但是,多频涡流只能提供有限的检测数据,很难以可视化的方式实现对缺陷的成像检测。 70 年代中后期,脉冲涡流技术(Pulsed Eddy Current, PEC)在世界范围内得到广泛的研究,PEC最早由密苏里大学的Waidelich在20世纪50年代初进行研究,脉冲涡流的激励电流为一个脉冲,通常为具有一定占空比的方波,施加在探头上的激励方波会感应出脉冲涡流在被测试件中传播,根据电磁感应原理,此脉冲涡流又会感应出一个快速衰减的磁场,随着感生磁场的衰减,检测线圈上

涡流检测的技术

目录 涡流检测技术及进展 (2) 涡流检测自然裂纹与信号处理 (5) 压力容器列管涡流检测技术的研究 (9) 金属锈蚀的涡流检测 (11)

涡流检测技术及进展 1 引言 涡流检测是建立在电磁感应原理基础上的无损检测方法。如图1,已知法拉第电磁感应定律,在检测线圈上接通交流电,产生垂直于工件的交变磁场。检测线圈靠近被检工件时,该工件表面感应出涡流同时产生与原磁场方向相反的磁场,部分抵消原磁场,导致检测线圈电阻和电感变化。若金属工件存在缺陷,将改变涡流场的强度及分布,使线圈阻抗发生变化,检测该变化可判断有无缺陷。 随着微电子学和计算机技术的发展及各种信号处理技术的采用,涡流检测换能器、涡流检测信号处理技术及涡流检测仪器等方面出现长足发展。 2 涡流检测的信号处理技术 提高检测信号的信噪比和抗干扰能力,实现信号的识别、分析和诊断,以得出最佳的信号特征和检测结果。 2.1 信号特征量提取 常用的特征量提取方法有傅里叶描述法、主分量分析法和小波变换法。 傅里叶描述法是提取特征值的常用方法。其优点是,不受探头速度影响,且可由该描述法重构阻抗图,采样点数目越多,重构曲线更逼近原曲线。但该方法只对曲线形状敏感,对涡流检测仪的零点和增益不敏感,且不随曲线旋转、平移、尺寸变换及起始点选择变化而变化。 用测试信号自相关矩阵的本征值和本征矢量来描绘信号特征的方法称为主分量分析法,该方法对于相似缺陷的分辨力较强。

小波变换是一种先进的信号时频分析方法。将小波变换中多分辨分析应用到涡流检测信号分析中,对不同小波系数处理后,再重构。这种经小波变换处理后的信号,其信噪比会得到很大的提高。 2.2 信号分析 (1) 人工神经网络 人工神经网络的输入矢量是信号的特征参量,对信号特征参量的正确选择与提取是采用神经网络智能判别成功的关键。组合神经网络模型,采用分级判别法使网络输入变量维数由N2 降到N,网络结构大为简化,训练速度很快,具有较高的缺陷识别率和实用价值。 神经网络可实现缺陷分类,具有识别准确度高的优点,对不完全、不够清晰的数据同样有效。 (2) 信息融合技术 信息融合是对来自不同信息源检测、关联、相关、估计和综合等多级处理,得到被测对象的统一最佳估计。 涡流C 扫描图像的融合,将图像分解为多子带图像,并在转换区内采用融合算法实现图像融合。Ka Bartels等采用信噪比最优方法合并涡流信号,并用空间频率补偿方法使合并前高频信号变得模糊而低频信号变得清晰。Z Liu等利用最大值准则选择不同信号的离散小波变换系数,选取待融合系数的最大绝对值作为合并转换系数。因此融合信号可基于这些系数,利用逆小波变换来重构。小波变换可按不同比例有效提取显著特征。在融合信号过程中,所有信号的有用特征都被保存下来,因此内部和表面缺陷信息得到增强。 2.3 涡流逆问题求解 换能器检测到的信号隐含缺陷位置、形状、大小及媒质性质等信息,由已知信号反推媒质参数(电导率)或形状(缺陷),属于电磁场理论中的逆问题。 为求解涡流逆问题,先要建立缺陷识别的数学模型,有形状规则的人工缺陷、边界复杂的自然缺陷、单缺陷和多缺陷等模型;在媒质类型方面,有复合材料和被测件表面磁导率变化等模型。 随着计算机技术发展,缺陷模型各种数值解法也获得进展。出现有限元法、矩量法和边界元法等。 3 涡流检测设备 美国的EM3300 和MIZ-20 为采用阻抗平面显示技术典型产品,而TM-128 型涡流仪是我国首台配有微机带有阻抗平面显示的涡流探伤仪。MFE-1三频涡流仪是我国研制的首台多频涡流检测设备。随后,国内研制成功多种类型的多频涡流检测仪,如EEC-35、EEC-36、EEC-38、EEC-39 和ET-355、ET-555、ET-556 等。 目前,我国在有限元数值仿真、远场涡流探头性能指标分析及检测系统的研制等方面取得研究成果,推出商品化远场涡流检测仪器,其中ET-556H和 EEC-39RFT 已用于化工炼油设备的钢质热交换管和电厂高压加热器钢管的在 役探伤。 今后涡流检测技术研发包括:完善换能器设计理论,研制性能更好的涡流检测换能器;研究缺陷大小形状位置深度的涡流定位技术和三维成像技术;研究并

无损检测实验报告

无损检测实验报告 一、实验目的 1.通过实验了解六种无损检测(超声检测、射线检测、涡流检测、磁粉检测、 渗透检测、声发射检测)的基本原理。 2.掌握六种无损检测的方法,仪器及其功能和使用方法。 3.了解六种无损检测的使用范围,使用规范和注意事项。 二、实验原理 (一)超声检测(UT) 1. 基本原理 超声波与被检工件相互作用,根据超声波的反射、透射和散射的行为,对被检工件经行缺陷测量和力学性能变化进行检测和表征,进而进行安全评价的一种无损检测技术。 金属中有气孔、裂纹、分层等缺陷(缺陷中有气体)或夹杂,超声波传播到金属与缺陷的界面处时,就会全部或部分反射。超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射式超声波探伤仪就是根据这个原理设计的。目前便携式的脉冲反射式超声波探伤仪大部分是A 扫描方式的,所谓A 扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射,反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。 2. 仪器结构 a)仪器主要组成 探头、压电片和耦合剂。 其中,探头分为直探头、斜探头。压电片受到电信号激励便可产生振动发射超声波,当超声波作用在压电片上时,晶片受迫振动引起的形变可转换成相应的电信号,从而接受超声波。耦合剂是为了使超声波更有效的传入工件,在探头与工件表面之间施加的一层透生介质为耦合剂,作用在于排除探头与工件之间的空气。 b)主要旋钮 F1-F6 菜单键,不同状态下有不同功能。 0ABC\4MNO 调节键,调节参数值的大小。 设置及检测键。 快捷键。dB 增益,2GHI 闸门,范围,移位。 电源键。 射线的种类很多,其中易于穿透物质的有X射线、丫射线、中子射线三种。这三 种射线都被用于无损检测,其中X射线和丫射线广泛用于锅炉压力容器焊缝和其他工业

无损检测---涡流阵列检测技术基本原理

目录 一、什么是涡流阵列检测技术? 二、涡流检测基础知识 三、涡流阵列检测技术工作原理 四、涡流阵列检测技术特点 五、涡流阵列检测技术的国内外现状 一、什么是涡流阵列检测技术? “涡流阵列”,又叫”阵列涡流”,英文名称“Eddy Current Array(简称ECA)”。 JB/T 11780-2014 无损检测仪器涡流阵列检测仪性能和检验 阵列涡流检测 具有按一定方式排布、且独立工作的多个检测线圈,能够一次性完成大面积扫查及成像的涡流检测技术。 C扫相关显示与缺陷形状像不像? 并能形成直观性C扫图 二、涡流检测基础知识 1. ET工作原理—电磁感应 ①激励,悬空(电0→磁0 ) 空载阻抗 Z=Z0 M—互感系数~提离 R2—电涡流短路环负载~路径几何尺寸,σ2 L2—电涡流短路环自感系数~路径几何尺寸,μ2

2.影响放置式线圈阻抗的因素 a)提离 b)边缘效应 c)电导率 d)磁导率 e)工件几何尺寸 f)缺陷 g)表面状况 h)检测频率 影响阻抗变化的因素太多,限制了涡流探伤的应用! 3.放置式涡流探头的分类 4. 绝对式探头和差分式探头的对比 绝对式 信号来自1个感应线圈; 每个缺陷产生1个闭路(半8字); 对于小缺陷、长缺陷和渐变缺陷敏感; 可用于测量材料性能差异. 可能需要参考线圈执行系统平衡; 对提离非常敏感。 差分式 信号来自2个感应线圈的减法。. 每个缺陷产生2个闭路(8字) 对小缺陷特别敏感,但渐变缺陷不敏感; 对于小缺陷具有更好的信噪比; 对于提离不太敏感。 检测前,应该根据用途、被检工件状况等确定探头的工作模式和信号响应模式!

5. 常规涡流检测技术的特点 优点 ■适用于各种导电材质的试件探伤; ■可以检出表面和近表面缺陷; ■检测结果以电信号输出,容易实现自动化; ■由于采用非接触式检测,所以检测速度快; ■无需耦合剂,环保。 缺点 ■不能检测非导电材料; ■形状复杂的工件很难检测; ■各种干扰检测的因素较多,容易引起杂乱信号; ■无法检出埋藏较深的缺陷; ■一次覆盖范围小,检测效率低; ■检测结果不直观,不能显示缺陷图形,无法缺陷定性。 ECA 三、涡流阵列技术工作原理 1.涡流阵列工作原理 多个涡流线圈按照一定的物理构造方式排布组成阵列,按照特定的工作模式、信号响应方式组成若干个阵列元;阵列元是代表涡流检测工作模式、信号响应方式且能独立工作的最小单元(可视为“放置式涡流探头”),每个阵列元都含有发射线圈和接收线圈(包括自发自收线圈);为避免阵列元之间的相互串扰,通常会采用多路切换技术分时、分批激活阵列元;编码器触发仪器将阵列元的涡流检测数据及其位置数据保存;这些数据经过软 件处理,形成直观的C扫图。 1.多路切换技术 目的:避免串扰; 特点:切换速度非常快,不会影响检测。

涡流探伤原理知识讲解

涡流探伤原理

涡流无损检测原理 最佳答案 涡流检测是建立在电磁感应原理基础之上的一种无损检测方法,它适用于导电材料。当把一块导体置于交变磁场之中,在导体中就有感应电流存在,即产生涡流。由于导体自身各种因素(如电导率、磁导率、形状,尺寸和缺陷等)的变化,会导致涡流的变化,利用这种现象判定导体性质,状态的检测方法,叫涡流检测。 至于区别,每一种检测方法都有它的局限性,要根据被检工件来选择检测方法,涡流检测适用于导电材料的金属表面缺陷检测,一般都用来检测小管子的,出场的时候都要检测的。 涡流检测的特点(Eddy-current testing) ET是以电磁感应原理为基础的一种常规无损检测方法,使用于导电材料。 一、优点 1、检测时,线圈不需要接触工件,也无需耦合介质,所以检测速度快。 2、对工件表面或近表面的缺陷,有很高的检出灵敏度,且在一定的范围内具有良好的线性指示,可用作质量管理与控制。 3、可在高温状态、工件的狭窄区域、深孔壁(包括管壁)进行检测。 4、能测量金属覆盖层或非金属涂层的厚度。 5、可检验能感生涡流的非金属材料,如石墨等。

6、检测信号为电信号,可进行数字化处理,便于存储、再现及进行数据比较和处理。 二、缺点 1、对象必须是导电材料,只适用于检测金属表面缺陷。 2、检测深度与检测灵敏度是相互矛盾的,对一种材料进行ET时,须根据材质、表面状态、检验标准作综合考虑,然后在确定检测方案与技术参数。 3、采用穿过式线圈进行ET时,对缺陷所处圆周上的具体位置无法判定。 4、旋转探头式ET可定位,但检测速度慢。 涡流检测是运用电磁感应原理,将载有正弦波电流激励线圈,接近金属表面时,线圈周围的交变磁场在金属表面感应电流(此电流称为涡流)。也产生一个与原磁场方向相反的相同频率的磁场。又反射到探头线圈,导致检测线圈阻抗的电阻和电感的变化,改变了线圈的电流大小及相位。因此,探头在金属表面移动,遇到缺陷或材质、尺寸等变化时,使得涡流磁场对线圈的反作用不同,引起线圈阻抗变化,通过涡流检测仪器测量出这种变化量就能鉴别金属表面有无缺陷或其它物理性质变化。涡流检测实质上就是检测线圈阻抗发生变化并加以处理,从而对试件的物理性能作出评价。

电涡流传感器测量振动实验报告

实验二十一 被测体面积大小对电涡流传感器的特性影响实验 一、实验目的: 了解电涡流传感器在实际应用中其位移特性与被测体的形状和尺寸有关。 二、基本原理: 电涡流传感器在实际应用中,由于被测体的形状,大小不同会导致被测体上涡流效应的不充分,会减弱甚至不产生涡流效应,因此影响电涡流传感器的静态特性,所以在实际测量中,往往必须针对具体的被测体进行静态特性标定。 三、需用器件与单元: 直流源、电涡流传感器、测微头、电涡流传感器实验模板、不同面积的铝被测体、数显单元。 四、实验步骤: 1.按图2-1安装电涡流传感器。 图2-1传感器安装示意图 2.在测微头端部装上铝质金属(小圆盘与小圆柱体),作为电涡

流传感器的被测体。调节测微头,使铁质金属圆盘的平面贴到电涡流传感器的探测端,固定测微头。 图2-2 电涡流传感器接线示意图 3.传感器连接按图2-2,实验模块输出端Uo与直流电压表输入端U i相接。直流电压表量程切换开关选择电压20V档,模块电源用2号导线从实验台上接入+15V电源。 4.合上实验台上电源开关,记下数显表读数,然后每隔0.1mm 读一个数,直到输出几乎不变为止。将结果列入表2-1。

(1)由上图可得系统灵敏度:S=ΔV/ΔW=3.1977V/mm (2)由上图可得非线性误差: 当x=1mm时: Y=3.1977×1+2.4036=5.6013V Δm=Y-5.70=-0.0987V yFS=10.69V δf=Δm/yFS×100%=0.923% 当x=3mm时: Y=3.1977×3+2.4036=12.00V Δm=Y-11.2=0.8V yFS=10.69V δf=Δm/yFS×100%=7.48% 表2-3 铝质被测体(圆柱体)

交通大学_无损检测_涡流检测实例

涡流检测 测控技术与仪器(1)班魏永徵 一、涡流检测的原理 将通有交流电的线圈置于待测的金属板上或套在待测的金属管外,这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感应交变电流,称为涡流。涡流的分布和大小,除与线圈的形状和尺寸、交流电流的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈的距离以及表面有无裂纹缺陷等。因而,在保持其他因素相对不变的条件下,用一探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化,进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或缺陷存在等信息。但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能反映试件表面或近表面处的情况。 二、涡流检测仪器及设备 涡流检测仪器是涡流检测装置最核心的组成部分,根据应用目的不同,涡流检测仪器可分为涡流探伤仪、涡流电导仪和涡流测厚仪等三种类型,它们的电路型式也各不相同。但在检测时他们需要完成一些相同任务:①产生激励信号;②检测我留信息;③鉴别影响因素;④指示检测结果。 涡流检测的电子电路主要分为基本电路和信号处理电路两大部分。基本电路包括振荡器、信号检出电路、放大器、显示器和电源。,这些几乎是所有涡流检测仪都具有的;信号处理电路是鉴别影响因素和抑制干扰的电路,随检测目的不同而不同。 针对不同检测对象的应用,不仅各类涡流检测设备在构成完整的检测系统上有所不同,而且同类检测设备也会因检测对象不同有所差异,特别是涡流探伤系统表现得尤为明显。一般而言,涡流检测装置包括检测线圈、检测仪器、辅助装置。 1.涡流检测线圈 涡流检测线圈通常又称探头。从制作方式和检测信号产生原理两方面考虑,“检测线圈”这一名称比“探头”要更准确、合理。“探头”是各种小尺寸探测器的俗称,在电磁检测中,有几种原理不同的“探头”,如霍尔元件、磁敏二极管及电磁线圈等。涡流检测中通常所称的“探头”即其中的“电磁线圈”,它是

涡流检测基本原理

涡流检测基本原理 发布者::IDEA 发布时间::2009-10-23 10:50浏览次数::76 涡流检测是许多NDT(无损检测)方法之一,它应用―电磁学‖基本理论作为导体检测的基础。涡流的产生源于一种叫做电磁感应的现象。当将交流电施加到导体,例如铜导线上时,磁场将在导体内和环绕导体的空间内产生磁场。涡流就是感应产生的电流,它在一个环路中流动。之所以叫做―涡流‖,是因为它与液体或气体环绕障碍物在环路中流动的形式是一样的。如果将一个导体放入该变化的磁场中,涡流将在那个导体中产生,而涡流也会产生自己的磁场,该磁场随着交流电流上升而扩张,随着交流电流减小而消隐。因此当导体表面或近表面出现缺陷或测量金属材料的一些性质发生变化时,将影响到涡流的强度和分布,从而我们就可以通过一起来检测涡流的变化情况,进而可以间接的知道道题内部缺陷的存在及金属性能是否发生了变化。 涡流作为一种NDT工具的一大优点是它能够做多种多样的检查和测量。在适当的环境下,涡流可以用于: 1、裂缝、缺陷检查 2、材料厚度测量 3、涂层厚度测量 4、材料的传导性测量 涡流检测的优越性主要包括: 1、对小裂纹和其它缺陷的敏感性 2、检测表面和近表面缺陷速度快,灵敏度高 3、检验结果是即时性的

4、设备接口性好 5、仅需要作很少的准备工作 6、测试探头不需要接触被测物 7、可检查形状尺寸复杂的导体 无损检测-声脉冲 发布者::IDEA 发布时间::2009-11-20 09:48浏览次数::19 1.什么叫声脉冲? 由一串声波所形成的脉冲。 2.简述声脉冲检测的原理。 当一串声波沿管子传播时,如果遇到管子存在开口、孔洞、鼓胀、凹陷、裂缝、内部腐蚀和沉积 等,就会有反射波返回发射端,由于声波的传播速度是固定的,通过计算机系统的处理,便可以准确地 得到管子发生异常的具体位置。 3.简述声脉冲检测的应用范围。 声脉冲快速检漏仪适用于有色金属、黑色金属和非金属管道的快速检漏。如电站高、低加,冷凝器 管,锅炉四管;化工厂的热交换管;酒楼大厦中央空调器管的在役检漏等,4.声脉冲检测的特性是什么? ①在役管道高速检漏,可达每小时500~1000根管子; ②管子材质不限,铁磁非铁磁性或非金属管均宜; ③直管、弯管、缠绕管均宜; ④可快速发现存在于管子上的穿透性缺陷等; ⑤实时记录检测波形,便于下次检测时回放比较。 5.声脉冲检测仪器的技术特性有哪些? □增益范围0 ~ 48dB , 步长0.5 dB □观察长度(2~50M)及管径(10 ~ 100MM)

钢棒阵列涡流探伤技术

钢棒阵列涡流探伤技术 阵列涡流技术是近十多年出现的一项新的涡流检测技术,它是通过涡流检测线圈结构的特殊设计,并借助于计算化的涡流仪强大的控制和处理功能,实现对金属材料的快速、有效地检测。阵列涡流用于钢铁企业生产检验的主要优点表现在:① 一个完整的探头由多个独立的线圈排列而成,对于不同方向的线性缺陷具有一致的检测灵敏度;② 探头覆盖区域较大,检测效率比常规涡流点探头大很多倍;③ 具有点探头的高灵敏性,但在检测钢棒时不需要探头旋转,省却了复杂的旋转头装置。 1 阵列涡流探伤技术原理 阵列涡流技术与传统的涡流检测技术相比,主要不同点在于阵列涡流探头是由多个独立工作的线圈构成,这些线圈按照特殊的方式排布,且激励线圈与接收线圈之间形成两种方向相互垂直的电磁场传递方式。工作时不需使用机械式探头扫描,只需按照设定的逻辑程序,对阵列线圈进行分时切换,并将各线圈获取的涡流响应信号通过多路复用器接入仪器的信号处理系统中去,即可完成一个阵列的巡回检测。为提高检测效率,阵列涡流探头中包含有几个或十几个甚至几十个线圈,不论是激励线圈,还是接收线圈,相互之间距离都非常近。采用多路复用技术可以有效避免不同线圈间的相互干扰。 如图1所示是一个检测圆钢的阵列涡流探头的原理示意图,它由一个与圆钢截面为同心圆的骨架以及在骨架上安装的两排阵列线圈组成。 这些阵列线圈在局部会产生许多的小涡流场,使得局部 涡流场强度大大增加,从而提高了检测灵敏度。圆钢从 探头内部穿过时,是如何完成对圆钢的检测呢?为便于 叙述和理解,将这二排线圈分为A 组(A 1,A 2,A 3,……) 和B 组(B 1,B 2,B 3,……),如图2所示。相对于A 组线圈而言,B 组线圈为激励线圈,如图中,B 1线圈产生的磁场在圆钢表面激励产生涡流,该涡流在再生磁场被A 1和A 2线圈所感应接收;以这种方式电磁耦合形成的涡流适于发现圆钢表面上轴线方向的缺陷。同理,B 2线圈作用于A 2和A 3线圈,B 3线圈作用于 图1 圆钢阵列涡流探头 图2 阵列线圈的电磁耦合方式

涡流无损检测中的定量分析

第匏卷第5期2000年s胃 无损检测 NDT V01.22NO.5 May2000涡流无损检测中的定量分析’ 孙晓云路妯袁斌盛剑嚣 (西安交通大学,曲安710049) 摘要提出满流光损检测中定量分析髓需考虑的问题,介绍鹕漶定量捡测砖方法,龟括tl-波分辨技书、人工神经鼹络、百褪纯技书麓数嚣霹艘术等。 主麓诵涡流检验信昔处理定量分析 QUAN零l零A譬lV嚣ANALYSlSFoR嚣DDYCURREN簟NoNDESTRUCTIVETESTlNG SunXiaoyunlmCanYuan蟊jnShengJiannJ (XihnJiaotongUniversity) AbstractTheproblemsshouldbeconsideredinthequamltatlvearmlysisforeMycurren*nondestruetivetes{.ingareputforVvardQuantitativeanalysismethodsareintroduced.includingwaveletanalysis.neuralnetwork。vi—sualizationandda*abasemethods KeywordsEddycurrenttestingSignsIprocessingQuantitativeanalysis 无损评估楚铼诳工监安全生产而建立的一项练台性的高科技方法,它以无损检测为基础。评健巾缺陷可分为廷险牲驰无戴睑性群大粪。前者是在运行中产生豹.如表面裂纹,逐步向内发袋,导致设备破裂“1:对这种裂纹必须严密监视,用涡流检测法捡测巽寿独特赫挠点, 嚣翦涡流无援硷测处予定性分橱蹬段,要向定肇努辑发展,需要考虑的阁题毒①提离捡溅终空溺分辨力和掰鬣仪器的灵敏瀵。②缺陷检测不是一次检测的直接结果,而蔼根据一次检测结果进行缺赡识S《:缺路识别属于电磁场闯题的逆闻鼷,~般来浇无唯一解;需冀有先验知识加以约束才能获得实际缺陷的形状刹尺寸。③通过{义器获得的信息难免混育多种干扰信号,必籁将干扰去除到允许范醋内,才髓避行识别:①识别商离线识别捌在线识别,后者可甥快识别遮襞,实现实对检测。⑤侵于测试A员瑟时了解梭蒯情况或进行必要的人工干预、原始数据的铰对及缺赂的昆示等。 1激韵线湖酾探测线疆分蔫,以提塞窑瓣努辨力 在融抗变化的满流检测中,一般都将激勋线霹 *国家教帮部媾士盎蕊垒拦助壤舄和探测线圈台二为一。探头两端的感应电盛表镬了线圈艇在范鼹幽磁运量的时闫变化率,斟此空闺分辨力随探测线圈横截面积增大而减小。本课题组提出将探测栖激励线圈分离,且增大激励线圈的体穰郄缩小探测线圈豹体积;显然,老将搽测线黉缩小到某~程度可分辨出空间磁场的分布,这样投大疆离了磁场的空闽分辨力,可方便地反映缺照的位鼍爱大,』、,我孵髂之为基于场量分析的涡流无损检测敖术,详缅分析方法见文献i2]。模拟计算表骢,在这种方法巾.疆把探测缝匿魄体积擞得足够小,才能提囊空闰分辨力。另补,搽测线圈两端的感应电压约在徼侠数麓级。因此必须提高测擐仪器的灵敏度,否则难以达到孝藿辘捡测的g的。 2搦强横拟计葬,为缺陷识剐提鬣先骏知识 前蕊已指出,缺掐识别属于电磁场的逆问题,需要事窝的先验知识加以约束,才蘸获碍噍一解。先验知识的虢取,可用实验测定或模献计算,丽置看者与蓊着褶比可节省大量的入力和幸势力,还可获得一堕前蠢无法羲褥的知识。龙损检测系统中瓣涡漉场~般为三缎开域场。用常甄豹毒隈元法戢边拜元法嚣翥饕禳天的计算量,用三维青隈元法计算时,特剐楚当敬璐很小时,所嚣的计箕量更加盛犬。濯她本澡溪缢掇出r微撬场的观点,鄄将由缺陷Sf超的场定义 ?195?  万方数据

涡流检测报告

脉冲涡流检测对于铝、铁检测的信号特征区别 学号:姓名: 一、原理介绍 1、脉冲涡流检测是一种新型的无损检测技术,脉冲涡流产生磁场的频谱宽、穿透能力强,检测时可以获得更多的缺陷信息。涡流检测只能用于导电材料的检测。对管、棒和线材等型材有很高的检测效率 2、涡流检测的基本原理 当载有交变电流的检测线圈靠近导电工件时,由于线圈磁场的作用,工件中将会感生出涡流(其大小等参数与工件中的缺陷等有关),而涡流产生的反作用磁场又将使检测线圈的阻抗发生变化。因此,在工件形状尺寸及探测距离等固定的条件下,通过测定探测线圈阻抗的变化,可以判断被测工件有无缺陷存在 3、影响线圈阻抗的因素是材料自身的性质和线圈与试件的电磁耦合状况,主要包括(1)电导率γ;(2)圆柱体直径;(3)相对磁导率μr;(4)缺陷;(5)检测频率。 二、脉冲涡流检测对于铁磁性材料和非铁磁性材料的检测信号特征区别 1、铁以及铁磁材料涡流探伤 受到电导率和磁导率的综合效应,铁磁材料的磁导率很高,其测量厚度是通过检测电压的特征衰减时间来确定的,而特征衰减时间与厚度的关系建立在被测试件比检测线圈大得多的基础上.当被测试件比较小时,不可避免地出现测量误差. 2、铝以及非铁磁材料涡流探伤 铝及铝合金的电导率范围大致在17%IACS~62%IACS。对于不同牌号和热处理状态的铝及铝合金,当电导率的测得值在规定的电导率极限值范围内,可根据电导率的合格推断其硬度合格;当电导率的测得值超出规定的电导率验收值范围,特别是超出量又比较小的情况下,决不能由电导率的不合格断定该试件为不合格品,而需要对电导率不合格的试件(或部位)做补充硬度试验,并以硬度试验结果进一步的分析和判定。 3、摘抄论文:《基于信号斜率的铁磁材料脉冲涡流测厚研究》 柯海,徐志远,黄琛,武新军 ( 华中科技大学制造装备数字化国家工程研究中心武汉430074) 脉冲涡流( pulsed eddy current,PEC) 作为一种非接触式无损检测技术,被广泛应用于导电构件的腐蚀检测和壁厚测量。它采用一定占空比的方波来激励线圈,与传统涡流检测技术采用谐波激励相比,方波激励中含有一系列的频率成分,因此,其检测信号中包含的信息也更丰富,对深层腐蚀的检测能力更强。 但脉冲涡流检测也有其固有缺点,其中最主要的缺点就是检测信号的解释相对困难,分析手段也呈现多样化。在信号的时域分析上,主要集中在分析信号的特征量如峰值、峰值时间、过零时间、提离交叉点及拐点时间等。 峰值、峰值时间和过零时间多用于非铁磁性构件如飞机多层铆接结构中缺陷信号的定量分析与分类。提离交叉点具有与提离距离( 线圈与待测构件之间的距离) 无关的特性,常用于补偿提离效应,也可用于非铁磁性金属的厚度和电导率测量。拐点时间是指构件中涡流扩散至下表面的特征时间,被用于铁磁性构件的大面积腐蚀检测和壁厚测量。

相关主题
文本预览
相关文档 最新文档