当前位置:文档之家› 无损检测-涡流检测

无损检测-涡流检测

无损检测-涡流检测
无损检测-涡流检测

电磁电涡流测厚原理及测厚仪

电磁/电涡流测厚原理及测厚仪 对材料表面保护、装饰形成的覆盖层,如涂层、镀层、敷层、贴层、化学生成膜等,在有关国家和国际标准中称为覆层(coating)。覆层厚度测量已成为加工工业、表面工程质量检测的重要一环,是产品达到优等质量标准的必备手段。为使产品国际化,我国出口商品和涉外项目中,对覆层厚度有了明确的要求。 覆层厚度的测量方法主要有:楔切法,光截法,电解法,厚度差测量法,称重法,X射线荧光法,β射线反向散射法,电容法、磁性测量法及涡流测量法等。这些方法中前五种是有损检测,测量手段繁琐,速度慢,多适用于抽样检验。 X射线和β射线法是无接触无损测量,但装置复杂昂贵,测量范围较小。因有放射源,使用者必须遵守射线防护规范。X射线法可测极薄镀层、双镀层、合金镀层。β射线法适合镀层和底材原子序号大于3的镀层测量。电容法仅在薄导电体的绝缘覆层测厚时采用。 随着技术的日益进步,特别是近年来引入微机技术后,采用磁性法和涡流法的测厚仪向微型、智能、多功能、高精度、实用化的方向进了一步。测量的分辨率已达0.1微米,精度可达到1%,有了大幅度的提高。它适用范围广,量程宽、操作简便且价廉,是工业和科研使用最广泛的测厚仪器。 采用无损方法既不破坏覆层也不破坏基材,检测速度快,能使大量的检测工作经济地进行。 测量原理与仪器 一.磁吸力测量原理及测厚仪 永久磁铁(测头)与导磁钢材之间的吸力大小与处于这两者之间的距离成一定比例关系,这个距离就是覆层的厚度。利用这一原理制成测厚仪,只要覆层与基材的导磁率之差足够大,就可进行测量。鉴于大多数工业品采用结构钢和热轧冷轧钢板冲压成型,所以磁性测厚仪应用最广。测厚仪基本结构由磁钢,接力簧,标尺及自停机构组成。磁钢与被测物吸合后,将测量簧在其后逐渐拉长,拉力逐渐增大。当拉力刚好大于吸力,磁钢脱离的一瞬间记录下拉力的大小即可获得覆层厚度。新型的产品可以自动完成这一记录过程。不同的型号有不同的量程与适用场合。 这种仪器的特点是操作简便、坚固耐用、不用电源,测量前无须校准,价格也较低,很适合车间做现场质量控制。 二.磁感应测量原理 采用磁感应原理时,利用从测头经过非铁磁覆层而流入铁磁基体的磁通的大小,来测定

实验 涡流探伤实验指导书

实验涡流探伤实验(烟台大学王海波) 一、实验目的 1.了解涡流探伤的基本原理; 2.掌握涡流探伤的一般方法和检测步骤; 3.熟悉涡流探伤的特点。 二、实验原理 1. EEC-35/RFT涡流检测仪简介 EEC-35/RFT智能全数字式多频远场涡流检测仪是新一代涡流无损检测设备,它采用了最先进的数字电子技术、远场涡流技术及微处理机技术,能实时有效地检测铁磁性和非铁磁性金属管道的内、外壁缺陷。EEC-35/ RFT 既是一套完整的远场涡流检测系统,也可与常规的多频、多通道的普通涡流检测系统融为一体成为高性能、多用途、智能化的涡流检测新型设备。 EEC-35/RFT由于具备了四个相对独立的测试通道,可同时获得二个绝对、二个差动的涡流信号。仪器可通过软开关切换成两台二频二通道的涡流检测仪,同时连接两只探头进检测。具有5Hz 至5MHz 的可变频率范围,因此 EEC-35/RFT 特别适用于核能、电力、石化、航天、航空等部门在役铜、钛、铝、锆等各种管道、金属零部件的探伤和壁厚测量以及各种铁磁性管道的探伤、分析和评价。例如:锅炉管、热交换器管束、地下管线和铸铁管道等的役前和在役检测。EEC-35/RFT 具有可选的多个检测程序,同屏多窗口显示模式,同屏显示多个涡流信号的相位、幅度变化及其波形的情况。多个相对独立的检测通道,有多达三个混频单元,能抑制在役检测中由支撑板、凹痕、沉积物及管子冷加工产生的干扰信号,去伪存真,提高对涡流检测信号的评价精度。且由于采用了全数字化设计,能够在仪器内建立标准检测程序,方便用户现场检测时调用。 此外,仪器还具有组态分析功能,能够用于金属表面硬度、硬化深度层深等的检测及材料分选。 2.涡流检测原理 涡流检测是以电磁感应为基础的,它的基本原理可以描述为:当载有交变电

无损检测----涡流阵列检测技术典型应用

目录 一、涡流阵列检测应用研究 二、涡流阵列检测应用案例 三、涡流阵列检测应用注意事项 一、涡流阵列检测应用研究 1.非铁磁性材料、均匀表面 --对比试样 ET∝f(σ,μ≈μ0, LF, 均匀性…) 均匀表面:结构或材质方面的均匀。管件、锻件、铸件等 ECA显示特点: 表面开口缺陷:幅值、相位、C扫显示∝缺陷深度 近表面缺陷:幅值、C扫显示∝埋藏深度 1.非铁磁性材料、均匀表面--工件 对于非铁磁性金属材料的均匀表面,与PT相比,ECA表面条件要求低、检测速度快、缺陷检出率高、绿色环保, 优势较为明显。 1.非铁磁性材料、均匀表面--ECA-C扫成像

绝对桥式阵列、小的线圈尺寸、多的阵列排数更有利于涡流阵列C扫成像。 均匀表面表面开口缺陷ECA-C扫成像可在一定程度上定性 2.非铁磁性材料、非均匀表面--对比试块 ET∝f(σ, LF, μ≈μ0, 均匀性…) 对接接头:局部表面出现结构或材质不均匀。 2.非铁磁性材料、非均匀表面--模拟试块 表面的不均匀性,在一定程度上影响ECA-C成像效果,直观性受到影响。焊纹也会降低检测灵敏度。 2.非铁磁性材料、非均匀平面--工件 3.铁磁性材料、均匀表面--对比试样 ET∝f(σ, LF, μ, 均匀性…) 管件、锻件、铸件等

4.铁磁性材料、非均匀表面--动态提离补偿技术 ECA C-scan Image 对接接头:局部表面出现结构或材质不均匀。 4.铁磁性材料、非均匀表面--对比试样 5.高温 奥氏体不锈钢刻槽试板高温检测实验(300℃) 6.低温

低温情况下,PT无法实施,可考虑ECA。 二、涡流阵列检测典型案例——奥氏体不锈钢对接接头 1.表面开口缺陷 ECA可以比PT更容易发现缺陷。 2.近表面缺陷 ECA可以在一定程度上检出近表面缺陷。 在线不打磨检测--动态提离补偿 动态提离补偿技术,实现了碳钢对接接头的在线不打磨表面缺陷检测。

五大常规无损检测技术之一:涡流检测(ET)的原理和特点

五大常规无损检测技术之一:涡流检测(ET)的原理和特点 涡流检测(Eddy Current Testing),业内人士简称E T,在工业无损检测(Nondestructive Testing)领域中具有重要的地位,在航空航天、冶金、机械、电力、化工、核能等领域中发挥着越来越重要的作用。 涡流检测主要的应用是检测导电金属材料表面及近表面的宏观几何缺陷和涂层测厚。 涡流检测是五大常规无损检测技术之一,其他四种是:射线检测(Radiographic Testing):射线照相法、超声检测(Ultrasonic Testing):A型显示的超声波脉冲反射法、磁粉检测(Magnetic Particle Testing)、渗透检测(Penetrant Testing)。 按照不同特征,可将涡流检测分为多种不同的方法: (1)按检测线圈的形式分类: a)外穿式:将被检试样放在线圈内进行检测,适用于管、棒、线材的外壁缺陷。b)内穿式:放在管子内部进行检测,专门用来检查厚壁管子内壁或钻孔内壁的缺陷。 c)探头式:放置在试样表面进行检测,不仅适用于形状简单的板材、棒材及大直径管材的表面扫查检测,也适用于形状福州的机械零件的检测。

(2)按检测线圈的结构分类: a)绝对方式:线圈由一只线圈组成。 b)差动方式:由两只反相连接的线圈组成。 c)自比较方式:多个线圈绕在一个骨架上。 d)标准比较方式:绕在两个骨架上,其中一个线圈中放入已经样品,另一个用来进行实际检测。 (3)按检测线圈的电气连接分类: a)自感方式:检测线圈使用一个绕组,既起激励作用又起检测作用。 b)互感方式:激励绕组和检测绕组分开。 c)参数型式:线圈本身是电路的一个组成部分。 涡流检测原理 涡流检测,本质上是利用电磁感应原理。 无论什么原因,只要穿过闭合回路所包围曲面的磁通量发生变化,回路中就会有电流产生,这种由于回路磁通量变化而激发电流的现象叫做电磁感应现象,回路中所产生的电流叫做感应电流。 电路中含有两个相互耦合的线圈,若在原边线圈通以交流电1,在电磁感应的作用下,在副边线圈中产生感应电流2;反过来,感应电流又会影响原边线圈中的电流和电压的关系。如下图所示:

涡流检测原理及部件

涡流原理及主要配件上海佳创精工机械有限公司

一、概述 1.1 涡流检测的原理 涡流检测就是运用电磁感应原理,将激励信号加到探头线圈,当探头接近金属表面时,线圈周围的交变磁场在金属表面产生感应电流。对于平板金属,感应电流的流向是以线圈同心的圆形,形似漩涡,成为涡流。涡流的大小、相位及流动形式受到试件导电性能的影响。涡流也会产生一个磁场,这个磁场反过来又会使检测线圈的阻抗发生变化。 因此当导体表面或近表面出现缺陷或测量的金属材料发生变化时,将影响到涡流的强度和分布,涡流的变化又引起了检测线圈电压和阻抗的变化,根据这一变化,就可以间接地知道导体内缺陷的存在及金属材料的性能是否有变化。 1.2 涡流检测技术的特点 涡流检测时一种应用较为广泛的无损检测技术,它具有如下技术特点: ●检测速度快,且易于实现自动化。 ●表面、亚表面缺陷检出灵敏度高。 ●能在高温状态下进行检测。 ●抑制多种干扰因素。 涡流检测的对象必须是导电材料,且不适用于检测金属材料深层的内部缺陷,这是涡流检测在应用上的局限所在。其次,涡流检测至今仍处于当量比较阶段,对缺陷作出准确的定性定量判断技术尚待开发研究。 1.3 涡流的探伤及材质分选 涡流法可以用来测量非金属表面层的电导率,也可以用来检验与电导率数值有对应关系的性能,如化学成分和组织状态等。因此,涡流检测可以成功地用于按牌号分选合金,检验材料热处理质量及机械性能等。 涡流探伤不仅对于导电材料表面上或近表面的裂纹、孔洞以及其它类型的缺陷,涡流实验具有良好的检测灵敏度并能提供缺陷深度的信息,还可以发现于薄的油漆层或涂层下的这些缺陷。 涡流检测仪的操作请参考《多频多通道智能数字涡流检测仪操作使用说明书》。

涡流无损检测实验报告

江苏科技大学数理学院开放性选修 实验训练 涡流无损检测实验报告 指导老师:魏勤 组员:彭加福(0640502112)胡进军(0640502107)徐大程(0640502115) 江苏科技大学数理学院06级应用物理学 2009年12月15日

涡流无损检测实验报告 彭加福 (江苏科技大学数理学院应用物理 0640502112) 涡流检测是建立在电磁感应原理基础之上的一种无损检测方法,它仅适用于导电材料,如果我们把一块导体置于交变磁场之中,在导体中就有感应电流存在,即产生涡流。由于导体自身各种因素(如电导率、磁导率、形状、尺寸和缺陷等)的变化会导致感应电流的变化,利用这种现象而判知导体性质、状态的检测方法,叫做涡流检测方法。在涡流探伤中,是靠检测线圈来建立交变磁场,把能量传递给被检导体,同时又通过涡流所建立的交变磁场来获得被检测导体中的质量信息。作为无损检测的一种重要手段,涡流检测在现代工业无损检测中得到了深入而广泛的应用和推广。 实验训练期间,我们采用SMART-2097智能便携式多频涡流仪、D60K数字金属电导率测量仪和7504塗层测厚仪等涡流仪器完成了定标、探伤、电导率测定和膜厚测量等实验,掌握了涡流的产生机理及涡流探伤原理,熟练掌握了各种涡流探伤仪、测量仪的基本操作。 1 实验目的 1.1 熟悉各种涡流探伤仪、测量仪的基本操作,简单了解各实验仪器的工作原理及性能,并通过系列实验了解涡流无损检测在现代工业中的应用; 1.2 学习掌握涡流检测的基本方法及相关理论知识,了解涡流检测仪、测量仪及涡流探头的内部结构和工作原理; 1.3 分别使用SMART-2097智能便携式多频涡流仪、D60K数字金属电导率测量仪和7504塗层测厚仪进行探伤、测电导率和薄膜厚度。 2 实验仪器 SMART-2097智能便携式多频涡流仪、D60K数字金属电导率测量仪、7504塗层测厚仪、各种涡流探头及数据传输线、SMART-2097智能便携式多频涡流仪标准试块(含有深为0.1mm, 0.5mm, 1.0mm的划痕)、D60K数字金属电导率测量仪高值-低值定标试块、7504塗层测厚仪标准膜。 3 实验原理 3.1 螺线管磁场 如果将长直导线绕成螺线管,磁力线分布类似于条形磁铁,磁场方向取决于电流方向,同样可以用右手定则表示,其磁场强度取决于两个因素:线圈的圈数和电流的大小,圈数越多或电流越大,则磁场越强。 对一个螺线管来说,它所形成的磁场是数个线圈磁场的叠加,所以当交流电通过螺线管时,可形成既强又集中的交变磁场,如图1所示。

实验06(电涡流传感器)实验报告

实验六-电涡流传感器 实验1:电涡流传感器位移实验 一、实验目的 了解电涡流传感器测量位移的工作原理和特性。 二、实验原理 通过交变电流的线圈产生交变磁场,当金属体处在交变磁场时,根据电磁感应原理,金属体内产生电流,该电流在金属体内自行闭合,并呈旋涡状,故称为涡流。涡流的大小与金属导体的电阻率、导磁率、厚度、线圈激磁电流频率及线圈与金属体表面的距离x等参数有关。电涡流的产生必然要消耗一部分磁场能量,从而改变激磁线线圈阻抗,涡流传感器就是基于这种涡流效应制成的。电涡流工作在非接触状态(线圈与金属体表面不接触),当线圈与金属体表面的距离x以外的所有参数一定时可以进行位移测量。 三、实验器械 主机箱、电涡流传感器实验模板、电涡流传感器、测微头、被测体(铁圆片)。 四、实验接线图 五、实验数据记录以及数据分析 实验数据如下: 实验数据拟合图像如下:

数据分析: 由图像可知,位移-输出电压曲线的线性区域是~,进行正、负位移测量时的最佳工作点处。实验拟合直线方程为:y=灵敏度和非线性误差计算: 测量范围为1mm时,灵敏度为(V/mm),非线性误差为% 测量范围为3 mm时,灵敏度为(V/mm),非线性误差为% 六、实验备注 电涡流传感器的量程与哪些因素有关,如果需要测量±5mm 的量程应如何设计传感器与被测物体的磁导率,电导率,尺寸因子,探头线圈的电流强度和频率有关。通过调节前面五个因素的组合来达到所需要的量程。 实验2:被测体材质对电涡流传感器特性影响 一、实验目的 了解不同的被测体材料对电涡流传感器性能的影响。 二、实验原理 涡流效应与金属导体本身的电阻率和磁导率有关,因此不同的材料就会有不同的性能。 三、实验器械 和实验1相同,另加铜和铝的被测体。 四、实验接线图 和实验1相同。 五、实验数据记录以及数据分析 实验数据记录如下: 被测物体材料为铝时

涡流检测的技术

目录 涡流检测技术及进展 (2) 涡流检测自然裂纹与信号处理 (5) 压力容器列管涡流检测技术的研究 (9) 金属锈蚀的涡流检测 (11)

涡流检测技术及进展 1 引言 涡流检测是建立在电磁感应原理基础上的无损检测方法。如图1,已知法拉第电磁感应定律,在检测线圈上接通交流电,产生垂直于工件的交变磁场。检测线圈靠近被检工件时,该工件表面感应出涡流同时产生与原磁场方向相反的磁场,部分抵消原磁场,导致检测线圈电阻和电感变化。若金属工件存在缺陷,将改变涡流场的强度及分布,使线圈阻抗发生变化,检测该变化可判断有无缺陷。 随着微电子学和计算机技术的发展及各种信号处理技术的采用,涡流检测换能器、涡流检测信号处理技术及涡流检测仪器等方面出现长足发展。 2 涡流检测的信号处理技术 提高检测信号的信噪比和抗干扰能力,实现信号的识别、分析和诊断,以得出最佳的信号特征和检测结果。 2.1 信号特征量提取 常用的特征量提取方法有傅里叶描述法、主分量分析法和小波变换法。 傅里叶描述法是提取特征值的常用方法。其优点是,不受探头速度影响,且可由该描述法重构阻抗图,采样点数目越多,重构曲线更逼近原曲线。但该方法只对曲线形状敏感,对涡流检测仪的零点和增益不敏感,且不随曲线旋转、平移、尺寸变换及起始点选择变化而变化。 用测试信号自相关矩阵的本征值和本征矢量来描绘信号特征的方法称为主分量分析法,该方法对于相似缺陷的分辨力较强。

小波变换是一种先进的信号时频分析方法。将小波变换中多分辨分析应用到涡流检测信号分析中,对不同小波系数处理后,再重构。这种经小波变换处理后的信号,其信噪比会得到很大的提高。 2.2 信号分析 (1) 人工神经网络 人工神经网络的输入矢量是信号的特征参量,对信号特征参量的正确选择与提取是采用神经网络智能判别成功的关键。组合神经网络模型,采用分级判别法使网络输入变量维数由N2 降到N,网络结构大为简化,训练速度很快,具有较高的缺陷识别率和实用价值。 神经网络可实现缺陷分类,具有识别准确度高的优点,对不完全、不够清晰的数据同样有效。 (2) 信息融合技术 信息融合是对来自不同信息源检测、关联、相关、估计和综合等多级处理,得到被测对象的统一最佳估计。 涡流C 扫描图像的融合,将图像分解为多子带图像,并在转换区内采用融合算法实现图像融合。Ka Bartels等采用信噪比最优方法合并涡流信号,并用空间频率补偿方法使合并前高频信号变得模糊而低频信号变得清晰。Z Liu等利用最大值准则选择不同信号的离散小波变换系数,选取待融合系数的最大绝对值作为合并转换系数。因此融合信号可基于这些系数,利用逆小波变换来重构。小波变换可按不同比例有效提取显著特征。在融合信号过程中,所有信号的有用特征都被保存下来,因此内部和表面缺陷信息得到增强。 2.3 涡流逆问题求解 换能器检测到的信号隐含缺陷位置、形状、大小及媒质性质等信息,由已知信号反推媒质参数(电导率)或形状(缺陷),属于电磁场理论中的逆问题。 为求解涡流逆问题,先要建立缺陷识别的数学模型,有形状规则的人工缺陷、边界复杂的自然缺陷、单缺陷和多缺陷等模型;在媒质类型方面,有复合材料和被测件表面磁导率变化等模型。 随着计算机技术发展,缺陷模型各种数值解法也获得进展。出现有限元法、矩量法和边界元法等。 3 涡流检测设备 美国的EM3300 和MIZ-20 为采用阻抗平面显示技术典型产品,而TM-128 型涡流仪是我国首台配有微机带有阻抗平面显示的涡流探伤仪。MFE-1三频涡流仪是我国研制的首台多频涡流检测设备。随后,国内研制成功多种类型的多频涡流检测仪,如EEC-35、EEC-36、EEC-38、EEC-39 和ET-355、ET-555、ET-556 等。 目前,我国在有限元数值仿真、远场涡流探头性能指标分析及检测系统的研制等方面取得研究成果,推出商品化远场涡流检测仪器,其中ET-556H和 EEC-39RFT 已用于化工炼油设备的钢质热交换管和电厂高压加热器钢管的在 役探伤。 今后涡流检测技术研发包括:完善换能器设计理论,研制性能更好的涡流检测换能器;研究缺陷大小形状位置深度的涡流定位技术和三维成像技术;研究并

无损检测实验报告

无损检测实验报告 一、实验目的 1.通过实验了解六种无损检测(超声检测、射线检测、涡流检测、磁粉检测、 渗透检测、声发射检测)的基本原理。 2.掌握六种无损检测的方法,仪器及其功能和使用方法。 3.了解六种无损检测的使用范围,使用规范和注意事项。 二、实验原理 (一)超声检测(UT) 1. 基本原理 超声波与被检工件相互作用,根据超声波的反射、透射和散射的行为,对被检工件经行缺陷测量和力学性能变化进行检测和表征,进而进行安全评价的一种无损检测技术。 金属中有气孔、裂纹、分层等缺陷(缺陷中有气体)或夹杂,超声波传播到金属与缺陷的界面处时,就会全部或部分反射。超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射式超声波探伤仪就是根据这个原理设计的。目前便携式的脉冲反射式超声波探伤仪大部分是A 扫描方式的,所谓A 扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射,反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。 2. 仪器结构 a)仪器主要组成 探头、压电片和耦合剂。 其中,探头分为直探头、斜探头。压电片受到电信号激励便可产生振动发射超声波,当超声波作用在压电片上时,晶片受迫振动引起的形变可转换成相应的电信号,从而接受超声波。耦合剂是为了使超声波更有效的传入工件,在探头与工件表面之间施加的一层透生介质为耦合剂,作用在于排除探头与工件之间的空气。 b)主要旋钮 F1-F6 菜单键,不同状态下有不同功能。 0ABC\4MNO 调节键,调节参数值的大小。 设置及检测键。 快捷键。dB 增益,2GHI 闸门,范围,移位。 电源键。 射线的种类很多,其中易于穿透物质的有X射线、丫射线、中子射线三种。这三 种射线都被用于无损检测,其中X射线和丫射线广泛用于锅炉压力容器焊缝和其他工业

无损检测---涡流阵列检测技术基本原理

目录 一、什么是涡流阵列检测技术? 二、涡流检测基础知识 三、涡流阵列检测技术工作原理 四、涡流阵列检测技术特点 五、涡流阵列检测技术的国内外现状 一、什么是涡流阵列检测技术? “涡流阵列”,又叫”阵列涡流”,英文名称“Eddy Current Array(简称ECA)”。 JB/T 11780-2014 无损检测仪器涡流阵列检测仪性能和检验 阵列涡流检测 具有按一定方式排布、且独立工作的多个检测线圈,能够一次性完成大面积扫查及成像的涡流检测技术。 C扫相关显示与缺陷形状像不像? 并能形成直观性C扫图 二、涡流检测基础知识 1. ET工作原理—电磁感应 ①激励,悬空(电0→磁0 ) 空载阻抗 Z=Z0 M—互感系数~提离 R2—电涡流短路环负载~路径几何尺寸,σ2 L2—电涡流短路环自感系数~路径几何尺寸,μ2

2.影响放置式线圈阻抗的因素 a)提离 b)边缘效应 c)电导率 d)磁导率 e)工件几何尺寸 f)缺陷 g)表面状况 h)检测频率 影响阻抗变化的因素太多,限制了涡流探伤的应用! 3.放置式涡流探头的分类 4. 绝对式探头和差分式探头的对比 绝对式 信号来自1个感应线圈; 每个缺陷产生1个闭路(半8字); 对于小缺陷、长缺陷和渐变缺陷敏感; 可用于测量材料性能差异. 可能需要参考线圈执行系统平衡; 对提离非常敏感。 差分式 信号来自2个感应线圈的减法。. 每个缺陷产生2个闭路(8字) 对小缺陷特别敏感,但渐变缺陷不敏感; 对于小缺陷具有更好的信噪比; 对于提离不太敏感。 检测前,应该根据用途、被检工件状况等确定探头的工作模式和信号响应模式!

5. 常规涡流检测技术的特点 优点 ■适用于各种导电材质的试件探伤; ■可以检出表面和近表面缺陷; ■检测结果以电信号输出,容易实现自动化; ■由于采用非接触式检测,所以检测速度快; ■无需耦合剂,环保。 缺点 ■不能检测非导电材料; ■形状复杂的工件很难检测; ■各种干扰检测的因素较多,容易引起杂乱信号; ■无法检出埋藏较深的缺陷; ■一次覆盖范围小,检测效率低; ■检测结果不直观,不能显示缺陷图形,无法缺陷定性。 ECA 三、涡流阵列技术工作原理 1.涡流阵列工作原理 多个涡流线圈按照一定的物理构造方式排布组成阵列,按照特定的工作模式、信号响应方式组成若干个阵列元;阵列元是代表涡流检测工作模式、信号响应方式且能独立工作的最小单元(可视为“放置式涡流探头”),每个阵列元都含有发射线圈和接收线圈(包括自发自收线圈);为避免阵列元之间的相互串扰,通常会采用多路切换技术分时、分批激活阵列元;编码器触发仪器将阵列元的涡流检测数据及其位置数据保存;这些数据经过软 件处理,形成直观的C扫图。 1.多路切换技术 目的:避免串扰; 特点:切换速度非常快,不会影响检测。

涡流探伤原理知识讲解

涡流探伤原理

涡流无损检测原理 最佳答案 涡流检测是建立在电磁感应原理基础之上的一种无损检测方法,它适用于导电材料。当把一块导体置于交变磁场之中,在导体中就有感应电流存在,即产生涡流。由于导体自身各种因素(如电导率、磁导率、形状,尺寸和缺陷等)的变化,会导致涡流的变化,利用这种现象判定导体性质,状态的检测方法,叫涡流检测。 至于区别,每一种检测方法都有它的局限性,要根据被检工件来选择检测方法,涡流检测适用于导电材料的金属表面缺陷检测,一般都用来检测小管子的,出场的时候都要检测的。 涡流检测的特点(Eddy-current testing) ET是以电磁感应原理为基础的一种常规无损检测方法,使用于导电材料。 一、优点 1、检测时,线圈不需要接触工件,也无需耦合介质,所以检测速度快。 2、对工件表面或近表面的缺陷,有很高的检出灵敏度,且在一定的范围内具有良好的线性指示,可用作质量管理与控制。 3、可在高温状态、工件的狭窄区域、深孔壁(包括管壁)进行检测。 4、能测量金属覆盖层或非金属涂层的厚度。 5、可检验能感生涡流的非金属材料,如石墨等。

6、检测信号为电信号,可进行数字化处理,便于存储、再现及进行数据比较和处理。 二、缺点 1、对象必须是导电材料,只适用于检测金属表面缺陷。 2、检测深度与检测灵敏度是相互矛盾的,对一种材料进行ET时,须根据材质、表面状态、检验标准作综合考虑,然后在确定检测方案与技术参数。 3、采用穿过式线圈进行ET时,对缺陷所处圆周上的具体位置无法判定。 4、旋转探头式ET可定位,但检测速度慢。 涡流检测是运用电磁感应原理,将载有正弦波电流激励线圈,接近金属表面时,线圈周围的交变磁场在金属表面感应电流(此电流称为涡流)。也产生一个与原磁场方向相反的相同频率的磁场。又反射到探头线圈,导致检测线圈阻抗的电阻和电感的变化,改变了线圈的电流大小及相位。因此,探头在金属表面移动,遇到缺陷或材质、尺寸等变化时,使得涡流磁场对线圈的反作用不同,引起线圈阻抗变化,通过涡流检测仪器测量出这种变化量就能鉴别金属表面有无缺陷或其它物理性质变化。涡流检测实质上就是检测线圈阻抗发生变化并加以处理,从而对试件的物理性能作出评价。

电涡流传感器测量振动实验报告

实验二十一 被测体面积大小对电涡流传感器的特性影响实验 一、实验目的: 了解电涡流传感器在实际应用中其位移特性与被测体的形状和尺寸有关。 二、基本原理: 电涡流传感器在实际应用中,由于被测体的形状,大小不同会导致被测体上涡流效应的不充分,会减弱甚至不产生涡流效应,因此影响电涡流传感器的静态特性,所以在实际测量中,往往必须针对具体的被测体进行静态特性标定。 三、需用器件与单元: 直流源、电涡流传感器、测微头、电涡流传感器实验模板、不同面积的铝被测体、数显单元。 四、实验步骤: 1.按图2-1安装电涡流传感器。 图2-1传感器安装示意图 2.在测微头端部装上铝质金属(小圆盘与小圆柱体),作为电涡

流传感器的被测体。调节测微头,使铁质金属圆盘的平面贴到电涡流传感器的探测端,固定测微头。 图2-2 电涡流传感器接线示意图 3.传感器连接按图2-2,实验模块输出端Uo与直流电压表输入端U i相接。直流电压表量程切换开关选择电压20V档,模块电源用2号导线从实验台上接入+15V电源。 4.合上实验台上电源开关,记下数显表读数,然后每隔0.1mm 读一个数,直到输出几乎不变为止。将结果列入表2-1。

(1)由上图可得系统灵敏度:S=ΔV/ΔW=3.1977V/mm (2)由上图可得非线性误差: 当x=1mm时: Y=3.1977×1+2.4036=5.6013V Δm=Y-5.70=-0.0987V yFS=10.69V δf=Δm/yFS×100%=0.923% 当x=3mm时: Y=3.1977×3+2.4036=12.00V Δm=Y-11.2=0.8V yFS=10.69V δf=Δm/yFS×100%=7.48% 表2-3 铝质被测体(圆柱体)

交通大学_无损检测_涡流检测实例

涡流检测 测控技术与仪器(1)班魏永徵 一、涡流检测的原理 将通有交流电的线圈置于待测的金属板上或套在待测的金属管外,这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感应交变电流,称为涡流。涡流的分布和大小,除与线圈的形状和尺寸、交流电流的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈的距离以及表面有无裂纹缺陷等。因而,在保持其他因素相对不变的条件下,用一探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化,进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或缺陷存在等信息。但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能反映试件表面或近表面处的情况。 二、涡流检测仪器及设备 涡流检测仪器是涡流检测装置最核心的组成部分,根据应用目的不同,涡流检测仪器可分为涡流探伤仪、涡流电导仪和涡流测厚仪等三种类型,它们的电路型式也各不相同。但在检测时他们需要完成一些相同任务:①产生激励信号;②检测我留信息;③鉴别影响因素;④指示检测结果。 涡流检测的电子电路主要分为基本电路和信号处理电路两大部分。基本电路包括振荡器、信号检出电路、放大器、显示器和电源。,这些几乎是所有涡流检测仪都具有的;信号处理电路是鉴别影响因素和抑制干扰的电路,随检测目的不同而不同。 针对不同检测对象的应用,不仅各类涡流检测设备在构成完整的检测系统上有所不同,而且同类检测设备也会因检测对象不同有所差异,特别是涡流探伤系统表现得尤为明显。一般而言,涡流检测装置包括检测线圈、检测仪器、辅助装置。 1.涡流检测线圈 涡流检测线圈通常又称探头。从制作方式和检测信号产生原理两方面考虑,“检测线圈”这一名称比“探头”要更准确、合理。“探头”是各种小尺寸探测器的俗称,在电磁检测中,有几种原理不同的“探头”,如霍尔元件、磁敏二极管及电磁线圈等。涡流检测中通常所称的“探头”即其中的“电磁线圈”,它是

涡流检测基本原理

涡流检测基本原理 发布者::IDEA 发布时间::2009-10-23 10:50浏览次数::76 涡流检测是许多NDT(无损检测)方法之一,它应用―电磁学‖基本理论作为导体检测的基础。涡流的产生源于一种叫做电磁感应的现象。当将交流电施加到导体,例如铜导线上时,磁场将在导体内和环绕导体的空间内产生磁场。涡流就是感应产生的电流,它在一个环路中流动。之所以叫做―涡流‖,是因为它与液体或气体环绕障碍物在环路中流动的形式是一样的。如果将一个导体放入该变化的磁场中,涡流将在那个导体中产生,而涡流也会产生自己的磁场,该磁场随着交流电流上升而扩张,随着交流电流减小而消隐。因此当导体表面或近表面出现缺陷或测量金属材料的一些性质发生变化时,将影响到涡流的强度和分布,从而我们就可以通过一起来检测涡流的变化情况,进而可以间接的知道道题内部缺陷的存在及金属性能是否发生了变化。 涡流作为一种NDT工具的一大优点是它能够做多种多样的检查和测量。在适当的环境下,涡流可以用于: 1、裂缝、缺陷检查 2、材料厚度测量 3、涂层厚度测量 4、材料的传导性测量 涡流检测的优越性主要包括: 1、对小裂纹和其它缺陷的敏感性 2、检测表面和近表面缺陷速度快,灵敏度高 3、检验结果是即时性的

4、设备接口性好 5、仅需要作很少的准备工作 6、测试探头不需要接触被测物 7、可检查形状尺寸复杂的导体 无损检测-声脉冲 发布者::IDEA 发布时间::2009-11-20 09:48浏览次数::19 1.什么叫声脉冲? 由一串声波所形成的脉冲。 2.简述声脉冲检测的原理。 当一串声波沿管子传播时,如果遇到管子存在开口、孔洞、鼓胀、凹陷、裂缝、内部腐蚀和沉积 等,就会有反射波返回发射端,由于声波的传播速度是固定的,通过计算机系统的处理,便可以准确地 得到管子发生异常的具体位置。 3.简述声脉冲检测的应用范围。 声脉冲快速检漏仪适用于有色金属、黑色金属和非金属管道的快速检漏。如电站高、低加,冷凝器 管,锅炉四管;化工厂的热交换管;酒楼大厦中央空调器管的在役检漏等,4.声脉冲检测的特性是什么? ①在役管道高速检漏,可达每小时500~1000根管子; ②管子材质不限,铁磁非铁磁性或非金属管均宜; ③直管、弯管、缠绕管均宜; ④可快速发现存在于管子上的穿透性缺陷等; ⑤实时记录检测波形,便于下次检测时回放比较。 5.声脉冲检测仪器的技术特性有哪些? □增益范围0 ~ 48dB , 步长0.5 dB □观察长度(2~50M)及管径(10 ~ 100MM)

钢棒阵列涡流探伤技术

钢棒阵列涡流探伤技术 阵列涡流技术是近十多年出现的一项新的涡流检测技术,它是通过涡流检测线圈结构的特殊设计,并借助于计算化的涡流仪强大的控制和处理功能,实现对金属材料的快速、有效地检测。阵列涡流用于钢铁企业生产检验的主要优点表现在:① 一个完整的探头由多个独立的线圈排列而成,对于不同方向的线性缺陷具有一致的检测灵敏度;② 探头覆盖区域较大,检测效率比常规涡流点探头大很多倍;③ 具有点探头的高灵敏性,但在检测钢棒时不需要探头旋转,省却了复杂的旋转头装置。 1 阵列涡流探伤技术原理 阵列涡流技术与传统的涡流检测技术相比,主要不同点在于阵列涡流探头是由多个独立工作的线圈构成,这些线圈按照特殊的方式排布,且激励线圈与接收线圈之间形成两种方向相互垂直的电磁场传递方式。工作时不需使用机械式探头扫描,只需按照设定的逻辑程序,对阵列线圈进行分时切换,并将各线圈获取的涡流响应信号通过多路复用器接入仪器的信号处理系统中去,即可完成一个阵列的巡回检测。为提高检测效率,阵列涡流探头中包含有几个或十几个甚至几十个线圈,不论是激励线圈,还是接收线圈,相互之间距离都非常近。采用多路复用技术可以有效避免不同线圈间的相互干扰。 如图1所示是一个检测圆钢的阵列涡流探头的原理示意图,它由一个与圆钢截面为同心圆的骨架以及在骨架上安装的两排阵列线圈组成。 这些阵列线圈在局部会产生许多的小涡流场,使得局部 涡流场强度大大增加,从而提高了检测灵敏度。圆钢从 探头内部穿过时,是如何完成对圆钢的检测呢?为便于 叙述和理解,将这二排线圈分为A 组(A 1,A 2,A 3,……) 和B 组(B 1,B 2,B 3,……),如图2所示。相对于A 组线圈而言,B 组线圈为激励线圈,如图中,B 1线圈产生的磁场在圆钢表面激励产生涡流,该涡流在再生磁场被A 1和A 2线圈所感应接收;以这种方式电磁耦合形成的涡流适于发现圆钢表面上轴线方向的缺陷。同理,B 2线圈作用于A 2和A 3线圈,B 3线圈作用于 图1 圆钢阵列涡流探头 图2 阵列线圈的电磁耦合方式

涡流无损检测中的定量分析

第匏卷第5期2000年s胃 无损检测 NDT V01.22NO.5 May2000涡流无损检测中的定量分析’ 孙晓云路妯袁斌盛剑嚣 (西安交通大学,曲安710049) 摘要提出满流光损检测中定量分析髓需考虑的问题,介绍鹕漶定量捡测砖方法,龟括tl-波分辨技书、人工神经鼹络、百褪纯技书麓数嚣霹艘术等。 主麓诵涡流检验信昔处理定量分析 QUAN零l零A譬lV嚣ANALYSlSFoR嚣DDYCURREN簟NoNDESTRUCTIVETESTlNG SunXiaoyunlmCanYuan蟊jnShengJiannJ (XihnJiaotongUniversity) AbstractTheproblemsshouldbeconsideredinthequamltatlvearmlysisforeMycurren*nondestruetivetes{.ingareputforVvardQuantitativeanalysismethodsareintroduced.includingwaveletanalysis.neuralnetwork。vi—sualizationandda*abasemethods KeywordsEddycurrenttestingSignsIprocessingQuantitativeanalysis 无损评估楚铼诳工监安全生产而建立的一项练台性的高科技方法,它以无损检测为基础。评健巾缺陷可分为廷险牲驰无戴睑性群大粪。前者是在运行中产生豹.如表面裂纹,逐步向内发袋,导致设备破裂“1:对这种裂纹必须严密监视,用涡流检测法捡测巽寿独特赫挠点, 嚣翦涡流无援硷测处予定性分橱蹬段,要向定肇努辑发展,需要考虑的阁题毒①提离捡溅终空溺分辨力和掰鬣仪器的灵敏瀵。②缺陷检测不是一次检测的直接结果,而蔼根据一次检测结果进行缺赡识S《:缺路识别属于电磁场闯题的逆闻鼷,~般来浇无唯一解;需冀有先验知识加以约束才能获得实际缺陷的形状刹尺寸。③通过{义器获得的信息难免混育多种干扰信号,必籁将干扰去除到允许范醋内,才髓避行识别:①识别商离线识别捌在线识别,后者可甥快识别遮襞,实现实对检测。⑤侵于测试A员瑟时了解梭蒯情况或进行必要的人工干预、原始数据的铰对及缺赂的昆示等。 1激韵线湖酾探测线疆分蔫,以提塞窑瓣努辨力 在融抗变化的满流检测中,一般都将激勋线霹 *国家教帮部媾士盎蕊垒拦助壤舄和探测线圈台二为一。探头两端的感应电盛表镬了线圈艇在范鼹幽磁运量的时闫变化率,斟此空闺分辨力随探测线圈横截面积增大而减小。本课题组提出将探测栖激励线圈分离,且增大激励线圈的体穰郄缩小探测线圈豹体积;显然,老将搽测线黉缩小到某~程度可分辨出空间磁场的分布,这样投大疆离了磁场的空闽分辨力,可方便地反映缺照的位鼍爱大,』、,我孵髂之为基于场量分析的涡流无损检测敖术,详缅分析方法见文献i2]。模拟计算表骢,在这种方法巾.疆把探测缝匿魄体积擞得足够小,才能提囊空闰分辨力。另补,搽测线圈两端的感应电压约在徼侠数麓级。因此必须提高测擐仪器的灵敏度,否则难以达到孝藿辘捡测的g的。 2搦强横拟计葬,为缺陷识剐提鬣先骏知识 前蕊已指出,缺掐识别属于电磁场的逆问题,需要事窝的先验知识加以约束,才蘸获碍噍一解。先验知识的虢取,可用实验测定或模献计算,丽置看者与蓊着褶比可节省大量的入力和幸势力,还可获得一堕前蠢无法羲褥的知识。龙损检测系统中瓣涡漉场~般为三缎开域场。用常甄豹毒隈元法戢边拜元法嚣翥饕禳天的计算量,用三维青隈元法计算时,特剐楚当敬璐很小时,所嚣的计箕量更加盛犬。濯她本澡溪缢掇出r微撬场的观点,鄄将由缺陷Sf超的场定义 ?195?  万方数据

涡流检测报告

脉冲涡流检测对于铝、铁检测的信号特征区别 学号:姓名: 一、原理介绍 1、脉冲涡流检测是一种新型的无损检测技术,脉冲涡流产生磁场的频谱宽、穿透能力强,检测时可以获得更多的缺陷信息。涡流检测只能用于导电材料的检测。对管、棒和线材等型材有很高的检测效率 2、涡流检测的基本原理 当载有交变电流的检测线圈靠近导电工件时,由于线圈磁场的作用,工件中将会感生出涡流(其大小等参数与工件中的缺陷等有关),而涡流产生的反作用磁场又将使检测线圈的阻抗发生变化。因此,在工件形状尺寸及探测距离等固定的条件下,通过测定探测线圈阻抗的变化,可以判断被测工件有无缺陷存在 3、影响线圈阻抗的因素是材料自身的性质和线圈与试件的电磁耦合状况,主要包括(1)电导率γ;(2)圆柱体直径;(3)相对磁导率μr;(4)缺陷;(5)检测频率。 二、脉冲涡流检测对于铁磁性材料和非铁磁性材料的检测信号特征区别 1、铁以及铁磁材料涡流探伤 受到电导率和磁导率的综合效应,铁磁材料的磁导率很高,其测量厚度是通过检测电压的特征衰减时间来确定的,而特征衰减时间与厚度的关系建立在被测试件比检测线圈大得多的基础上.当被测试件比较小时,不可避免地出现测量误差. 2、铝以及非铁磁材料涡流探伤 铝及铝合金的电导率范围大致在17%IACS~62%IACS。对于不同牌号和热处理状态的铝及铝合金,当电导率的测得值在规定的电导率极限值范围内,可根据电导率的合格推断其硬度合格;当电导率的测得值超出规定的电导率验收值范围,特别是超出量又比较小的情况下,决不能由电导率的不合格断定该试件为不合格品,而需要对电导率不合格的试件(或部位)做补充硬度试验,并以硬度试验结果进一步的分析和判定。 3、摘抄论文:《基于信号斜率的铁磁材料脉冲涡流测厚研究》 柯海,徐志远,黄琛,武新军 ( 华中科技大学制造装备数字化国家工程研究中心武汉430074) 脉冲涡流( pulsed eddy current,PEC) 作为一种非接触式无损检测技术,被广泛应用于导电构件的腐蚀检测和壁厚测量。它采用一定占空比的方波来激励线圈,与传统涡流检测技术采用谐波激励相比,方波激励中含有一系列的频率成分,因此,其检测信号中包含的信息也更丰富,对深层腐蚀的检测能力更强。 但脉冲涡流检测也有其固有缺点,其中最主要的缺点就是检测信号的解释相对困难,分析手段也呈现多样化。在信号的时域分析上,主要集中在分析信号的特征量如峰值、峰值时间、过零时间、提离交叉点及拐点时间等。 峰值、峰值时间和过零时间多用于非铁磁性构件如飞机多层铆接结构中缺陷信号的定量分析与分类。提离交叉点具有与提离距离( 线圈与待测构件之间的距离) 无关的特性,常用于补偿提离效应,也可用于非铁磁性金属的厚度和电导率测量。拐点时间是指构件中涡流扩散至下表面的特征时间,被用于铁磁性构件的大面积腐蚀检测和壁厚测量。

远场涡流无损检测技术的发展历史及特点.

远场涡流无损检测技术的发展历史及特点远场效应是20世纪40年代发现的。1951年Maclean W.R.获得了此项技术的美国专利[1](见图1)。50年代壳牌公司的Schmidt T.R.独立地再发现了远场涡流无损检测技术,在世界上首次研制成功检测井下套管的探头(见图2),并用来检测井下套管的腐蚀情况[2],1961年他将此项技术命名为“远场涡流检测”,以区别于普通涡流检测。壳牌公司开发部向Maclean购买了该专利权,在探头的研制中获得了很大的成功,并用来检测井下套管。20世纪60年代初期,壳牌公司应用远场涡流检测技术来检测管线,检测设备包括信号功率源、信号测量、信号记录和处理,做成管内能通过的形式,像活塞一样,加动力之后即可在管线内运动,取名“智能猪”(见图3)。此装置于1961年5月9日第一次试用,一次可以检测80公里或更长的管线。[3] 壳牌公司在80年代促进了此项技术的商业化。一些制造商立刻认可了此项技术的价值,开始生产远场涡流检测设备。[4] 图1世界上第一个远场涡流检测的专利

图2世界上第一个远场涡流井下套管检测探头(Schmidt,1961) 图3用“智能猪”来检测管线 (壳牌公司,1961) 在过去的20多年中,远场涡流检测技术引起了全世界有关研究人员的兴趣,Schmidt T.R.作出了杰出的贡献,Lordo w,Atherton D.L.等[5][6][7]对远场涡流现象进行了有限元模型的理论模拟,开发了计算机模拟程序,为远场涡流检测奠定了坚实的理论基础。 在80年代后期和90年代初期,远场涡流检测技术得到了很大发展,开发了

检测系统,利用内置式探头来检测输气管线、井下套管、地埋管线、热交换器和锅炉[8][9],利用外置式探头来检测平板和钢管。现代的检测设备利用计算机来显示和储存数据,还有自动信号分析程序。 从20世纪80年代开始,加拿大路赛尔技术有限公司(RUSSELL NDE SYSTEMS INC简称路赛尔公司)与加拿大女王大学(Queen’s University,世界应用电磁研究中心)合作,致力于远场涡流技术在管道检测方面的研究,特别是井下套管和地埋油气水输送管线的检测。路赛尔公司1988年研制成功第一代远场涡流检测系统(108型),1992年研制成功第二代检测系统(204型),2000年研制成功第三代检测系统(308型,见图8)。目前路赛尔公司生产的远场涡流无损检测系统的技术居世界领先水平。 图8路赛尔公司研制的三代远场涡流无损检测系统2000年美国材料试验学会制定了ASTM E2096-00《热交换器管远场涡流检测》标准,此标准由路赛尔公司撰写。美国无损探伤试验学会ASNT于2004年出版的电磁无损检测手册[10],其中第八章远场涡流检测由路赛尔公司和加拿大女王大学撰写。 2000年以来我国电力、石化、化工行业向路赛尔公司购买了数套204型和308型远场涡流检测系统,用于检测锅炉和热交换器,应用效果很好。我国2004年制定了国家电力行业标准DL/T 883-2004《电站在役给水加热器铁磁性钢管远场涡流检验技术导则》。近二年来我国油田开始对路赛尔公司生产的远场涡流井下套管无损检测系统感兴趣。

相关主题
文本预览
相关文档 最新文档