当前位置:文档之家› 最新吉林大学高等量子力学习题答案

最新吉林大学高等量子力学习题答案

最新吉林大学高等量子力学习题答案
最新吉林大学高等量子力学习题答案

吉林大学高等量子力学习题答案

高等量子力学习题和解答

? 量子力学中的对称性

1、试证明:若体系在线性变换Q

?下保持不变,则必有0]?,?[=Q H 。这里H ?为体系的哈密顿算符,变换Q

?不显含时间,且存在逆变换1?-Q 。进一步证明,若Q

?为幺正的,则体系可能有相应的守恒量存在。 解:设有线性变换Q

?,与时间无关;存在逆变换1?-Q 。在变换 ?(,)'(,)(,)r t r t Q

r t ψ→ψ=ψ 若体系在此变换下不变,即变换前后波函数满足同一运动方程

?''?t t

i H i H ?ψ=ψ?ψ=ψ

进而有

11[,]0

t t i Q HQ i Q HQ Q HQ H H Q --?ψ=ψ

??ψ=ψ?=?=

2、令坐标系xyz O -绕z 轴转θd 角,试写出几何转动算符)(θd R z

e

的矩阵表示。 解:

'cos sin 'sin cos 'O xyz z d x x d y d y x d y d z z

θθθ

θθ-=+=-+=考虑坐标系绕轴转角

'1''x x yd d y xd y z z θθθ=+??

<

用矩阵表示 '10'10'00

1x d x y d y z z θθ

?????? ?

???=- ? ??? ? ??????

???

还可表示为 '()z e r R d r θ=

1

0()1000

1z e d R d d θθθ

??

?=- ? ??

?

3、设体系的状态可用标量函数描述,现将坐标系绕空间任意轴n

转θd 角,在

此转动下,态函数由),,(z y x ψ变为),,(),()',','(z y x d n U z y x ψθψ

=。试导出转动算符),(θd n U 的表达式,并由此说明,若体系在转动),(θd n U

下保持不

变,则体系的轨道角动量为守恒量。

解:从波函数在坐标系旋转变换下的变化规律,可导出旋转变换算符

()z e U d θ

利用 (')()()z e r U d r θψ=ψ 及 (')()r Rr ψ=ψ 可得 ()1z e z i

U d d L θθ=-

通过连续作无穷多次无穷小转动可得到有限大小的转动算符

()lim(1)z z i L n e z n i U L e n

θθ

θ-→∞=-= 绕任意轴n 转θ角的转动算符为

()i

n L

n U e

θθ-?=

1U U U -+=? 为幺正算符

若 (')()()z e r U d r θψ=ψ

则必有

1(')()()()

()[,]

z z e e z H r U d H r U d i

H r d H L θθθ-==+

若哈密顿量具有旋转对称性,就有[,]0z H L =→角动量守恒

4、设某微观粒子的状态需要用矢量函数描述,试证明该粒子具有内禀自旋

1=S 。

解:矢量函数在旋转变换下

'(')()()

()[()()()](')'(')'(')'

z z e e x x y y z z x x y y z z r U d r U d r e r e r e r e r e r e θθψ=ψ=ψ+ψ+ψ=ψ+ψ+ψ 1'cos sin ''sin cos '''x x y x x y d y x y y x y z z z

z O xyz z d e d e d e e e d e e d e d e e d e e e e e e

θθθθθθθθ<<-=+=+????=-+????→=-+????==??考虑坐标系绕轴转角的变换

后式代入前式 '(')(')[](')[](')x x y y x y z z r r e d e r d e e r e θθψ=ψ++ψ-++ψ 又 '(')'(')'(')'(')x x y y z z r r e r e r e ψ=ψ+ψ+ψ

比较得

'(')(')(')

?

[1]()[1]()[1]()()

x x y z x z y z x y r r d r i i d L r d d L r i

d L r d r θθθθθ

θψ=ψ-ψ=-ψ--ψ=-ψ-ψ

类似可得

?

'(')()[1]()

?

'(')[1]()

y x z y z z z i r d r d L r i r d L r θθ

θψ=ψ+-ψψ=-ψ

写成矩阵形式 '(')()'(')()()'(')()z x x y e y z z r r r U d r r r θψψ???? ? ?

ψ=ψ ? ? ? ?ψψ????

其中 ?10

?()10?0010

0?(1)00000z z e z

z z i d L d i

U d d d L i d L d i d L I d θθθθθ

θθθθ

??-- ?

? ?=- ?

? ?-

?

?

?

-??

?=-+ ? ??

?

改写为 00?()[00]000z e z i i U d I d L I i

θθ-??

?

=-+ ? ??? 再令 0000000z i S i -??

?

= ? ???

则 ()()z e z z z i

i

U d I d L S I d J θθ

θ

=-+=-

()i

n J

n n U e

θθθ-?=绕转动有限大小角的转动算符

若哈密顿量具有转动对称性,必有总角动量守恒

2[,]0;[,]0n H J H J ==

由 222

2222000202002x y

z S S S S I ?? ?=++== ? ???

知1S = →当某微观粒子的状态需要用矢量函数来描述的话,则该粒子自旋为1。 例:光子

5、证明宇称算符的厄米性和幺正性,并证明宇称算符为实算符。

解:定义宇称算符?()()P

r r ψ=ψ- 本征问题 ?()()P

r P r ??= 2222

?()()()()11

P

r P r r P r P P ????=?=?=?=±

?()()()()?()()()()P

r r r r P r r r r ????????=?-=→=-?-=-→偶宇称态奇宇称态

厄米性

'*?*()()*()()*(')(')(')

?*()()[()]()?r r r P r d r r d r r d r r d P

r r d P P ττ

τττ∞

-∞

-∞

-∞

=-∞

-∞

-∞

+Φψ=Φψ-????→=Φ-ψ-=Φ-ψ=Φψ?=?

????

幺正性

211

?P I P P P P

-+

-=?==

? 角动量理论

1、试证明任意个相互独立的角动量算符之和仍是角动量算符。

解: 轨道角动量 ?

[,]x y z L r p L L i L =?=;

自旋角动量 ?

[,]x y z S S S i S =;

[,]0L S =→ J L S =+ 仍为角动量

证:[,][,]

[,][,]

x y x x y y x y x y z z z

J J L S L S L L S S i L i S i J =++=+=+=

一般地若两角动量满足 12[,]0J J =

则12J J J =+ 也是角动量

进一步:任意个两两对易的角动量算符之和仍为角动量算符 证明:设n m n nm J J i J δ?= 即[,]nx my nz nm J J i J δ=

则对于 1

1

?;,,k

k

n n n n J J J J x y z μμ

μ===?==∑∑

1

111

11

1

[,][,][,]

k k k

k

x y nx my nx my n m n m k k

k

n nm nz z

n m n J J J J J J i J i J i J δ============∑∑∑∑∑∑∑

2、定义角动量升降算符y

x J i J J ???±=±,试利用升降算符讨论,对给定的角量子数j ,相应的磁量子数m 的取值范围。

解: 利用升降算符可得到给定λ下,2j z 和j 的全部本征函数

1)从jm ψ出发 2)从j m ψ出发

''22''''''1

''|''||(1)''||''||j j m m

j j m m z j j m m j j m m j m jm j m J jm j j j m J jm m j m J jm δδδδδδδδ±±<>=<>=+<>=<>=

:,1,2,

,m m m m m n m ---=

m m 与—指标方程及取值情况 利用0j m J J ψ+-=和0jm J J ψ-+= →()(1)0m m m m +-+= →0m m m m +=?=-

高等量子力学复习题

上册 1.3 粒子在深度为0V ,宽度为a 的直角势阱(如图1.3)中运动,求 (a)阱口刚好出现一个束缚态能级(即0V E ≈)的条件; (b)束缚态能级总和,并和无限深势阱作比较 . 解 粒子能量0V E 小于时为游离态,能量本征值方程为: []0)(22''=-+ ψψx V E m (1) 令002k mV = ,β=- )(20E V m (2) 式(1)还可以写成 ?? ???≥=-≤=+)(阱外)(阱内4)(2,03)(2,022''2''a x a x mE ψβψψψ 无限远处束缚态波函 数应趋于0,因此式(4)的解应取为()2,a x Ce x x ≥=-βψ 当阱口刚好出现束缚态能级时,0,0≈≈βV E ,因此 2,0)('a x Ce x x ≥≈±=-ββψ (6) 阱内波函数可由式(3)解出,当0V E ≈解为 ()()2,s i n ,c o s 00a x x k x x k x ≤?? ?==ψψ奇宇称 偶宇称 (7) 阱内、外ψ和ψ应该连续,而由式(6)可知,2a x =处,0'=ψ, 将这条件用于式(7),即得 ,5,3,,02cos ,6,4,2,02 sin 0000ππππππ====a k a k a k a k 奇宇称偶宇称(8) 亦即阱口刚好出现束缚能级的条件为 ,3,2,1, 0==n n a k π (9) 即2 22202π n a mV = (10) 这种类型的一维势阱至少有一个束缚能级,因此,如果 2 2202π< a mV ,只存在一个束缚态,偶宇称(基态)。如果22202π = a mV ,除基态外,阱口将再出现一个能级(奇宇称态),共两个能级。如() 222022π= a mV ,阱口将出现第三个能级(偶宇称)。依此类推,由此可知,对于任何20a V 值,束缚态能级总数为 其中符号[A]表示不超过A 的最大整数。 当粒子在宽度为a 的无限深方势阱中运动时,能级为 ,3,2,1,212 =?? ? ??=n a n m E n π 则0V E ≤的能级数为 120-=?? ????=N mV a n π (12) 也就是说,如果只计算0V E ≤的能级数,则有限深)(0V 势阱的能级数比无限深势阱的能级数多一个。注意,后者的每一个能级均一一对应的高于前者的相应能级。

量子力学讲义第二章讲义

第二章 一维势场中的粒子 §2.2 方 势 一、一维运动 当粒子在势场V (x ,y ,z )中运动时,其 Schrodinger 方程为: 22 [(,,)](,,)(,,)2V x y z x y z E x y z m ψψ-?+= 若势可写成: V (x ,y ,z ) = V 1(x ) + V 2(y ) + V 3(z ) 形式, 2212 [()]()()2x d V x X x E X x m dx -+= 2222 [()]()()2y d V y Y y E Y y m dy -+= 2232 [()]()()2z d V z Z z E Z z m dz -+= ψ(x ,y ,z ) = X (x ) Y (y ) Z (z ) ψ1(x ) x y z E E E E =++ 二、一维无限深势阱 0(0)()(0,) x a V x x x a ?<?? 这是定态问题 一维无限深势阱(0~a )的求解 解:(1)列出各势域的 S — 方程 22 2 [()]()()2d V x x E x m dx ψψ-+= 20222 2 2202 22()0202()0I I II II III III d m V E dx d mE dx d m V E dx ψψψψψψ?--=???+=???--=?? 00E V << 0()V →∞ ,令k = )(0>k ,β=方程可简化为:22 2 222 222 000I I II II III III d dx d k dx d dx ψβψψψψβψ?-=????+=???-=??

高等量子力学习题汇总(可编辑修改word版)

2 i i i j i j ± 第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是 Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是 Hillbert 空间内的厄米算符( A ? );2、物理量所能取的值是相应算符 A ? 的本征值;3、 一个任意态总可以用算符 A ? 的本征态 a i 展开如下: = ∑C i a i i C i = a i ;而 物理量 A 在 中出现的几率与 C i 成正比。原理三 一个微观粒子在直角坐标下的位置 算符 x ? 和相应的正则动量算符 p ? 有如下对易关系: [x ? , x ? ]= 0 , [p ? , p ? ] = 0 , [x ?i , p ? j ]= i ij 原理四 在薛定谔图景中,微观体系态矢量 (t ) 随时间变化的规律由薛定谔方程给 i ? ?t (t ) = H ? (t ) 在海森堡图景中,一个厄米算符 A ?(H ) (t ) 的运动规律由海森堡 方程给出: d A ?(H ) (t ) = 1 [A ?(H ), H ? ] 原理五 一个包含多个全同粒子的体系,在 dt i Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答: (x, t ) =< x |(t )>式中态矢随时间而变而 x 不含 t ,结果波函数ψ(x ,t )中的宗量 t 来自 ψ(t ) 而 x 来自 x ,这叫做薛定谔图景. ?1 ? ? 0? 3、 已知 = ?,= ?. 0 1 (1)请写出 Pauli 矩阵的 3 个分量; (2)证明σ x 的本征态 ? ? ? ? 1 ?1 ? 1 | S x ± >= ? = ? 1? (± ). 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求 证: 2 2

清华大学量子力学讲义Lecture14[1]

3. 系综与密度算符 1)纯系综和混合系综 相同的物理体系构成系综,例如由具有自旋的粒子构成的系综。 一个自旋为1/2的粒子的自旋态(方位角,αβ) /2/2(,)(,)(,)cos sin 22i i c c e e ααβ β χαβαβχαβχχχ-++--+-=+=+, 其中,χχ+-是?z s 的本征态, cos(/2)sin(/2) i c c e αββ+-=。 如果所有粒子的自旋都取相同方向,则称体系是极化系统,构成的系综是纯系综。 如果粒子的自旋不在同一方向,则构成的系综叫混合系综。例如自旋向上的粒子数占70%,自旋向下的粒子数占30%,体系是部分极化。一个自旋方向完全随机的系综,其自旋向上,向下的几率各有50%,整的表现是相互抵销,自旋为零,完全没极化。 2)系综平均与态密度算符 系统的力学量平均值 ?A A ααα=, 这里态α是固定的,是量子平均。进入任意表象B , ,' ?''b b A b b A b b ααα=∑, 对表象的维数求和。 系综平均 [ ]A w A ααα=∑ , 这里w α是体系处于态α的几率,显然满足归一化条件 1w αα =∑, 是统计平均,求和指标不是对表象的维数,而是对态。例如自旋1/2的粒子构成的系综,自旋表象的维数为2,但不同粒子的自旋态可以有很多取向,求和就是对不同的取向。

[],,','??''''b b b b A w b b A b w b b b A b αααααααα??== ??? ∑∑∑。 定义态密度算符 ?w αα ρ αα=∑, 它在表象B 的矩阵元 '?''bb b w b b αα ρρ αα==∑, []() ,'??????''b b b A b b b A b b A b tr A ρ ρρ==≡∑∑。 这是量子统计力学的基本公式。注意:表象变换不改变矩阵的求迹,上式不依赖于表象的选取。 在连续表象,例如坐标表象,密度算符的矩阵元 *'?''()(')xx x x w x x w x x αααααα ρρααψψ===∑∑ , 系综平均 []() 3????A tr A d x x A x ρρ==? 。 密度矩阵满足归一化条件 ,,? 1 b b tr w b b w b b w w αααααααα ρ ααα α=====∑∑∑∑完备性条件 态的量子归一化条件 态的统计归一化条件 这里用到了归一化条件1α=和表象的完备性条件1b b b =∑。 设密度算符?ρ的本征态为θ, 22 ?,??ρ θθθρθρθθθθ=== 对于纯系综,所有系统都取同一个态n ,

量子力学讲义第三章讲义

第三章 力学量用算符表达 §3.1 算符的运算规则 一、算符的定义: 算符代表对波函数进行某种运算或变换的符号。 ?Au v = 表示?把函数u 变成 v , ?就是这种变换的算符。 为强调算符的特点,常常在算符的符号上方加一个“^”号。但在不会引起误解的地方,也常把“^”略去。 二、算符的一般特性 1、线性算符 满足如下运算规律的算符?,称为线性算符 11221122 ???()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。 例如:动量算符?p i =-? , 单位算符I 是线性算符。 2、算符相等 若两个算符?、?B 对体系的任何波函数ψ的运算结果都相同,即??A B ψψ=,则算符?和算符?B 相等记为??A B =。 3、算符之和 若两个算符?、?B 对体系的任何波函数ψ有:?????()A B A B C ψψψψ+=+=,则???A B C +=称为算符之和。 ????A B B A +=+,??????()()A B C A B C ++=++ 4、算符之积 算符?与?B 之积,记为??AB ,定义为 ????()()AB A B ψψ=?C ψ= ψ是任意波函数。一般来说算符之积不满足交换律,即????AB BA ≠。 5、对易关系 若????AB BA ≠,则称?与?B 不对易。 若A B B A ????=,则称?与?B 对易。 若算符满足????AB BA =-, 则称?A 和?B 反对易。 例如:算符x , ?x p i x ? =-? 不对易

证明:(1) ?()x xp x i x ψψ?=-? i x x ψ? =-? (2) ?()x p x i x x ψψ?=-? i i x x ψψ?=--? 显然二者结果不相等,所以: ??x x xp p x ≠ ??()x x xp p x i ψψ-= 因为ψ是体系的任意波函数,所以 ??x x xp p x i -= 对易关系 同理可证其它坐标算符与共轭动量满足 ??y y yp p y i -= ,??z z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。 ??0??0y y z z xp p x xp p x -=??-=?,??0??0x x z z yp p y yp p y -=??-=?,??0??0x x y y zp p z zp p z -=???-=?? ????0x y y x p p p p -=,????0y z z y p p p p -=,????0z x x z p p p p -= ????0xy yx -=,????0y z z y p p p p -=,????0z x x z p p p p -= 写成通式(概括起来): ??x p p x i αββααβδ-= (1) ????0x x x x αββα-= ????0p p p p αββα-= 其中,,,x y z αβ=或1,2,3 量子力学中最基本的对易关系。 注意:当?与?B 对易,?B 与?对易,不能推知?与?对易与否。 6、对易括号(对易式) 为了表述简洁,运算便利和研究量子力学与经典力学的关系,人们定义了对易括号: ??????[,]A B AB BA ≡- 这样一来,坐标和动量的对易关系可改写成如下形式: ?[,]x p i αβαβδ= 不难证明对易括号满足下列代数恒等式: 1) ????[,][,]A B B A =- 2) ???????[,][,][,]A B C A B A C +=+ 3) ?????????[,][,][,]A BC B A C A B C =+ ,?????????[,][,][,]AB C A B C A C B =+,]?,?[]?,?[B A k B k A = 4) ?????????[,[,]][,[,]][,[,]]0A B C B C A C A B ++= ——称为 Jacobi 恒等式。

量子力学期末考试试卷及答案

量子力学期末试题及答案 红色为我认为可能考的题目 一、填空题: 1、波函数的标准条件:单值、连续性、有限性。 2、|Ψ(r,t)|^2的物理意义:t时刻粒子出现在r处的概率密度。 3、一个量的本征值对应多个本征态,这样的态称为简并。 4、两个力学量对应的算符对易,它们具有共同的确定值。 二、简答题: 1、简述力学量对应的算符必须是线性厄米的。 答:力学量的观测值应为实数,力学量在任何状态下的观测值就是在该状态下的平均值,量子力学中,可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理,而要满足态叠加原理,算符必须是线性算符。综上所述,在量子力学中,能和可观测的力学量相对应的算符必然是线性厄米算符。 2、一个量子态分为本征态和非本征态,这种说法确切吗? 答:不确切。针对某个特定的力学量,对应算符为A,它的本征态对另一个力学量(对应算符为B)就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。 3、辐射谱线的位置和谱线的强度各决定于什么因素? 答:某一单色光辐射的话可能吸收,也可能受激跃迁。谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。 三、证明题。

2、证明概率流密度J不显含时间。 四、计算题。 1、

第二题: 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球, 计算这种效应对类氢原子基态能量的一级修正。 解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。据题意知 )()(?0 r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 2004ze U r r πε=-() )(r U 为考虑这种效应后的势能分布,在0r r ≥区域, r Ze r U 024)(πε-= 在0r r <区域,)(r U 可由下式得出, ?∞ -=r E d r e r U )( ???????≥≤=??=)( 4 )( ,43441 02 003003303 420r r r Ze r r r r Ze r r Ze r E πεπεπππε ??∞ --=0 )(r r r Edr e Edr e r U ?? ∞ - - =00 20 2 3 002 144r r r dr r Ze rdr r Ze πεπε )3(84)(82 203 020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ?? ???≥≤+--=-=')( 0 )( 4)3(8)()(?00022 2030020r r r r r Ze r r r Ze r U r U H πεπε

高等半导体物理讲义

高等半导体物理 课程内容(前置课程: 量子力学,固体物理) 第一章能带理论,半导体中得电子态 第二章半导体中得电输运 第三章半导体中得光学性质 第四章超晶格,量子阱 前言:半导体理论与器件发展史 1926 Bloch 定理 1931 Wilson 固体能带论(里程碑) 1948 Bardeen, Brattain and Shokley 发明晶体管,带来了现代电子技术得革命,同时也促进了半导体物理研究得蓬勃发展。从那以后得几十年间,无论在半导体物理研究方面,还就是半导体器件应用方面都有了飞速得发展。 1954半导体有效质量理论得提出,这就是半导体理论得一个重大发展,它定量地描述了半导体导带与价带边附近细致得能带结构,给出了研究浅能级、激子、磁能级等得理论方法,促进了当时得回旋共振、磁光吸收、自由载流子吸收、激子吸收等实验研究。 1958 集成电路问世 1959 赝势概念得提出,使得固体能带得计算大为简化。利用价电子态与原子核心态正交得性质,用一个赝势代替真实得原子势,得到了一个固体中价电子态满足得方程。用赝势方法得到了几乎所有半导体得比较精确得能带结构。1962 半导体激光器发明 1968 硅MOS器件发明及大规模集成电路实现产业化大生产 1970 * 超晶格概念提出,Esaki (江歧), Tsu (朱兆祥) * 超高真空表面能谱分析技术相继出现,开始了对半导体表面、界面物理得研究 1971 第一个超晶格Al x Ga1x As/GaAs 制备,标志着半导体材料得发展开始进入人工设计得新时代。 1980 德国得V on Klitzing发现了整数量子Hall 效应——标准电阻 1982 崔崎等人在电子迁移率极高得Al x Ga1x As/GaAs异质结中发现了分数量子Hall 效应 1984 Miller等人观察到量子阱中激子吸收峰能量随电场强度变化发生红移得量子限制斯塔克效应,以及由激子吸收系数或折射率变化引起得激子光学非线性效应,为设计新一代光双稳器件提供了重要得依据。 1990 英国得Canham首次在室温下观测到多孔硅得可见光光致发光,使人们瞧到了全硅光电子集成技术得新曙光。近年来,各国科学家将选择生成超薄层外延技术与精细束加工技术密切结合起来,研制量子线与量子点及其光电器件,预期能发现一些新得物理现象与得到更好得器件性能。在器件长度小于电子平均自由程得所谓介观系统中,电子输运不再遵循通常得欧姆定律,电子运动完全由它得波动性质决定。人们发现电子输运得AharonovBohm振荡,电子波得相干振荡以及量子点得库仑阻塞现象等。以上这些新材料、新物理现象得发现产生新得器件设计思想,促进新一代半导体器件得发展。 半导体材料分类: ?元素半导体, Si, Ge IV 族金刚石结构 Purity 10N9, Impurity concentration 1012/cm3 , Dislocation densities <103 /cm3 Size 20 inches (50 cm) in diameter P V 族 S, Te, Se VI 族 ?二元化合物, 1.IIIV族化合物: GaAS系列,闪锌矿结构, 电荷转移 GaAs, 1、47 eV InAs 0、36 eV GaP, 2、23 eV GaSb, 0、68 eV GaN, 3、3 eV BN 4、6 eV AlN 3、8 eV

高等量子力学考试知识点

1、黑体辐射: 任何物体总在吸收投射在它身上的辐射。物体吸收的辐射能量与投射到物体上的辐射能之比称为该物体的吸收系数。如果一个物体能吸收投射到它表面上的全部辐射,即吸收系数为1时,则称这个物体为黑体。 光子可以被物质发射和吸收。黑体向辐射场发射或吸收能量hv的过程就是发射或吸收光子的过程。 2、光电效应(条件): 当光子照射到金属的表面上时,能量为hv的光子被电子吸收。 临界频率v0满足 (1)存在临界频率v0,当入射光的频率v

7、一维无限深势阱(P31) 8、束缚态:粒子只能束缚在空间的有限区域,在无穷远处波函数为零的状态。 一维无限深势阱给出的波函数全部是束缚态波函数。 从(2.4.6)式还可证明,当n分别是奇数和偶数时,满足 即n是奇数时,波函数是x的偶函数,我们称这时的波函数具有偶宇称;当n是偶数时,波函数是x的奇函数,我们称这时的波函数具有奇宇称。 9、谐振子(P35) 10、在量子力学中,常把一个能级对应多个相互独立的能量本征函数,或者说,多个相互独立的能量本征函数具有相同能量本征值的现象称为简并,而把对应的本征函数的个数称为简并度。但对一维非奇性势的薛定谔方程,可以证明一个能量本征值对应一个束缚态,无简并。 11、半壁无限高(P51例2) 12、玻尔磁子 13、算符 对易子 厄米共轭算符 厄米算符:若,则称算符为自厄米共轭算符,简称厄米算符 性质:(1)两厄米算符之和仍为厄米算符 (2)当且仅当两厄米算符和对易时,它们之积才为厄米算符,因为 只在时,,才有,即仍为厄米算符

高等量子力学习题汇总

第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是Hillbert 空间内的厄米算符(A ?);2、物理量所能取的值是相应算符A ?的本征值;3、一个任意态 总可以用算符A ?的本征态i a 展开如下:ψψi i i i i a C a C ==∑,;而物理量A 在 ψ 中出现的几率与2 i C 成正比。原理三 一个微观粒子在直角坐标下的位置算符i x ?和相应的正则动量算符i p ?有如下对易关系:[]0?,?=j i x x ,[]0?,?=j i p p ,[] ij j i i p x δ =?,? 原理四 在薛定谔图景中,微观体系态矢量()t ψ随时间变化的规律由薛定谔方程给 ()()t H t t i ψψ?=?? 在海森堡图景中,一个厄米算符() ()t A H ?的运动规律由海森堡 方程给出: ()()()[] H A i t A dt d H H ? ,?1? = 原理五 一个包含多个全同粒子的体系,在Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答:()()t x t ψψ|,x =<>式中态矢随时间而变而x 不含t ,结果波函数()t x ,ψ中的宗量t 来自()t ψ而x 来自x ,这叫做薛定谔图景. 3、 已知.10,01??? ? ??=???? ??=βα (1)请写出Pauli 矩阵的3个分量; (2)证明σx 的本征态).(211121|βα±=??? ? ??±>=±x S 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求证: 答案:设:C 1=x 1+iy 1,C 2=x 2+iy 2

完整word版,量子力学试题(2008年)含答案,推荐文档

2008~2009郑州大学物理工程学院电子科学与技术专业 光电子方向量子力学试题(A 卷) (说明:考试时间120分钟,共6页,满分100分) 计分人: 复查人: 一、填空题:(每题 4 分,共 40 分) 1. 微观粒子具有 波粒 二象性。 2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为: E=h ν, p=/h λ 。 3.根据波函数的统计解释,dx t x 2 ),(ψ的物理意义为:粒子在x —dx 范围内的几率 。 4.量子力学中力学量用 厄米 算符表示。 5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i =h 。 6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量 F 所得的数值,必定是算符F ?的 本征值 。 7.定态波函数的形式为: t E i n n e x t x η -=)(),(?ψ。 8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。 9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。 10.每个电子具有自旋角动量S ρ,它在空间任何方向上的投影只能取两个数值为: 2 η± 。

二、证明题:(每题10分,共20分) 1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系: 证明: z y x L i L L? ] ?, ?[η = ] ? ? , ? ? [ ] ?, ?[ z x y z y x p x p z p z p y L L- - = ] ? ? , ? [ ] ? ? , ? [ z x y z x z p x p z p z p x p z p y- - - = ] ? , ? [ ] ? , ? [ ] ? , ? [ ] ? , ? [ z y x y z z x z p x p z p z p z p x p y p z p y+ - - = ] ? , ? [ ] ? , ? [ z y x z p x p z p z p y+ = y z z y z x x z p p x z p x p z p p z y p z p y?] ? , [ ] ? , ?[ ?] ? , [ ] ? , ?[+ + + = y z x z p p x z p z p y?] ? , [ ] ? , ?[+ = y z y z x z x z p p x z p p z x p z p y p p yz? ?] , [ ?] ?, [ ?] , ?[ ] ?, ?[+ + + = y x p i x p i y?) ( ?) (η η+ - = ] ? ? [ x y p y p x i- =η z L i?η =

高等量子力学

研究生课程教学大纲 高等量子力学 一、课程编码:21-070200-B01-17 课内学时: 64 学分: 4 二、适用学科专业:理学,工学 三、先修课程:数理方法,理论力学,电动力学,量子力学,热力学统计物理 四、教学目标 通过本课程的学习,使研究生掌握希尔伯特空间,量子力学基本理论框架,了解狄拉克 方程,量子力学中的对称性与守恒定律,二次量子化等理论知识,提升在微观体系中运用量 子力学的基本能力。 五、教学方式:课堂讲授 六、主要内容及学时分配 1 希尔伯特空间10学时 1.1 矢量空间 1.2 算符 1.3 本征矢量和本征值 1.4 表象理论 1.5 矢量空间的直和与直积 2 量子力学基本理论框架20学时 2.1 量子力学基本原理 2.2 位置表象和动量表象 2.3 角动量算符和角动量表象 2.4 运动方程 2.5 谐振子的相干态 2.6 密度算符 3 狄拉克方程 6学时 4 量子力学中的对称性 5学时 5 角动量理论简介 5学时 6 二次量子化方法16学时 6.1 二次量子化 6.2 费米子 6.3 玻色子 复习 2学时七、考核与成绩评定:以百分制衡量。 成绩评定依据: 平时作业成绩占30%,期末笔试成绩占70%。 八、参考书及学生必读参考资料 1. 喀兴林,《高等量子力学》,.[M]北京:高等教育出版社,2001 2. Franz Schwabl,《Advanced Quantum Mechanics》,.[M]北京:世界图书出版公司:2012 3. 曾谨言,《量子力学》,.[M]北京:科学出版社:第五版2014或第四版2007 4. https://www.doczj.com/doc/ea4759222.html,ndau, M.E.Lifshitz,《Quantum Mechanics (Non-reativistic Theory)》,.[M]北京:世界 图书出版公司:1999 5. 倪光炯,《高等量子力学》,. [M]上海:复旦大学出版社:2005 九、大纲撰写人:曾天海

高等量子力学复习综述

高等量子力学复习 主讲老师:张盈 记录整理:王宏辉 开始第一节课我们告诉大家了,什么是高等量子学,它和普通量子学的一个区别。其实按理说这门课学完,我们应该回过头来想一想,为什么?至少你可以通过描述一个问题来回答清楚,比如说量子力学适用于研究怎样的对象? 这个问题并不是那么好回答,不能简单的说低速的就可以,微观的就行,不是这么简单。那么它有几个层次。 一个就是量子力学和薛定谔方程实际上是不一样,不能把薛定谔方程适用的对象看成是量子力学的对象。这个我给大家说过吧,因为你像狄拉克方程啊,克莱因-戈登方程都属于量子力学。所以量子力学适用于研究的对象是量子力学搭建的这个理论构架所适用研究的对象。这是我们说的第一个层次,你要区分量子力学和薛定谔方程。 第二个层次,你要从量子力学的基本原理,或者说薛定谔方程里面,其他的方面看出来,它适用研究的对象,为什么具有这个特点。也就是说,你说它适用于微观,我们从薛定谔方程或者狄拉克方程里面,怎么能看出来它适用微观。你说它适用于也就是这种粒子数不变的体系,你要能说明这一点,这个方程的体系里面,要能把这些东西对应上。这是第二个层次。 所以回答这个问题的时候应该是站在高等量子的高度,从你们学过的这个课程的基础之上来回答,不再是像以前那个量子力学低速微观OK。简单是这样子。所以这个问题有时候蛮复杂的。 首先我们说这门课的时候,你要理清几个大块,也就是我们这几章。 在第一个大章里面,我们给大家介绍的是量子力学的一个理论的构架。在这个理论构架里面,我们先给大家讲了三条基本假设,大家还能举起来吗?第一条:态,就是关于希尔伯特空间的。第二条:厄米算符是力学量的候选者,第三条:统计解释。 那么我们一个一个来回顾一下。 第一条假设,物理的状态对应希尔伯特空间中的一个矢量,更准确的说,实

《 高等量子力学》课程教学大纲

《高等量子力学》课程教学大纲 一、课程名称(中英文) 中文名称:高等量子力学 英文名称:Advanced Quantum Mechanics 二、课程代码及性质 课程编码: 课程性质:学科(大类)专业选修课/选修 三、学时与学分 总学时:64(理论学时:64学时) 学分:4 四、先修课程 先修课程:无 五、授课对象 本课程面向物理学各专业学生开设 六、课程教学目的(对学生知识、能力、素质培养的贡献和作用) 量子力学理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人类认识客观世界运动规律的新途径,开创了物理学的新时代。 本课程是物理学专业本科课程《量子力学》的后续课程,用以弥补量子力学课程与学生实际进入科研前沿之间的知识鸿沟。其内容分为两部分:第一部分是在量子力学课程的基础上归纳阐述量子力学的基本原理(公设)及表述形式。第二部分主要是讲述量子力学的基本方法及其应用。在分析清楚各类基本应用问题的物理内容基础上,掌

握量子力学对一些基本问题的处理方法。 课程的教学目的是使得学生掌握微观粒子的运动规律、量子力学的基本假设、基本原理和基本方法,掌握量子力学的基本近似方法及其对相关物理问题的处理,并了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。 七、教学重点与难点: 课程重点:本课程所讲授的内容均为学生从事前沿科学研究所必备,因此所有内容均为重点 课程难点:本课程所讲授的内容抽象程度较高,理论推导计算量大,因此所有内容均为难点 八、教学方法与手段: 教学方法:采用课堂讲授、讨论、习题等多种授课形式相结合的教学新模式。课堂讲授基本概念、基本原理,通过讨论课加深学生对基本内容的理解,通过习题课提高学生运用基本理论分析问题、解决问题的能力。 教学手段:采用多媒体与板书相结合的教学手段,传统授课手段与现代教育技术手段相互取长补短,相得益彰。特别的,将Mathematica 和Matlab等计算软件引入本课程的教学,以实现抽象复杂的数学物理问题的直观展现,提高学生的学习兴趣。重要理论推导采用板书与多媒体相结合的手段,以形成师生的良好互动。 九、教学内容与学时安排 (一)量子力学的公理体系(教师课堂教学6小时+ 学生课后学习12小时) 教学内容:Hilbert空间、左矢、右矢、算符矩阵表示与表象变换

高等量子力学

量子计算机中的量子力学 ——量子力学理论在现代科技中的应用 06级物理学2班 张洪(40606085) 从1946年第一台计算机诞生以来,其在冯·诺依曼体系结构上已经走过了60余年,其采用Alan Turing 于1936年提出的图灵机模型为计算模型。但随着科学的不断发展,以及计算机制造工艺的不断进步,计算机的尺寸也越来越小,其集成度也越来越高。按照摩尔定律,计算机芯片的集成度不久将达到原子分子量级,但是当电子器件小到原子分子量级的时候,这便受到了量子效应的干扰,这便把量子力学引入了计算机。物理学家Feynman 于1982年提出量子计算机的概念,并指出量子计算机在速度上对于传统计算机可能有本质的超越。 所谓量子计算机,是指利用处于多现实态下的原子进行运算的计算机。某种条件下,原子世界存在着多现实态,即原子和亚原子粒子可以同时存在于此处和彼处,可以同时表现出高速和低速,可以同时向上和向下运动。如果用这些不同原子状态分别代表不同的数字或数据,就可以利用一组具有不同潜在状态组合的原子,在同一时间对某一问题的所有答案进行探寻,就可以使代表正确答案的组合快速脱颖而出。 量子计算机的存储原理 传统计算机信息系统采用物理上最容易实现的二进制数据位存储数据或程序,每一个二进制数据位由0或1表示,成为一个比特(bit )或位,以其作为最小的信息单元。在传统计算机中,每一个数据位要么是0,要么是1,二者必取其一。而量子计算机是根据物理系统的量子力学性质和规律执行计算任务的装置,其计算方式是量子计算。在量子计算机中,量子位(量子计算机的数据位)可以是0或者1,也可以是0和1的任何线性叠加它以一定的概率存在于0和1之间。 为了便于量子系统的表示和运算,狄拉克提出用符号|x>来表示量子态,|x>是一个列向量,称为右矢;其共轭转置用ψ |描述,可表示为↓>+↑>>=|||b a ψ,式中↑>|和↓>|表示量子位的基向量,在量子计算中一般表示 为>0 |和>1|;它们相互正交,a 和b 称为概率幅, 皆为复数;2a 和2b 分别表示>ψ|为>0|和>1|的概率,且1a 22=+b 。在传统计算机中, 一个数据位的值是确定性的, 而在量子计算机中, 量子位的叠加态不是确定性的, 而是概率性的。从另一个角度讲,在传统计算机里,一个二进制位只能存储一个数据,;而在量子计算机里,一个量子位可以同时存储两个数据。从而大大提高了计算机的存储能力。

高等量子力学考试题

1.一个包含两个质量和频率都相同的线性谐振子系统,它们之间存在相互作用,其哈密顿算符为: 1212 2 2222???()()1?()...(1,2)22i i i H H x H x x x H x m x i m x λω=++?=-+=? (1) 试证明该系统可以表述为两个非耦合谐振子系统 (2) 求出该系统的能量 2.由李普曼-许温格方程01V E H i ?ε ±±ψ=+ψ-± 试计算下列关系式: (1) b a ++ ψψ (2) b a -+ψψ 3.已知混沌场密度算符1H k T B Z e ρ--=,其中H k T B Z Tre -=,系统的哈密顿量1?()2 H a a ω+=+,求此混沌场系统中?N a a +=和2?N 平均值。 4.设两种系统的哈密顿能量分别为:221?????()()2 H b b b b ωα++=+++和?????????(1)()H a a b b ab a b ωα++++=++++,其中??a b 、和++??a b 、为玻色子算符,求两种系统的元激发谱。 5.已知位移算符*???()exp()D b b ααα+=-,α为非零复数,?b +是声子产生算符,?b 是声子消灭算符。 (1) 试计算关系式4 ()()?D b D αα+= (2) 将位移算符作用于声子真空态得到相干态()0D αα=,试证明相干态α就是?b 的本征态,对应的本征值为α。 (3) 计算相干态在坐标表象中的结果:?x α= (4) 试证等式*()b αααααα+?=+ ?和*()b αααααα?=+? (5) 试判断声子产生算符?b +是否存在本征态,并证明你的判断。

《高等量子力学》课程教学大纲

《高等量子力学》课程教学大纲 课程编号: 1352001-04 课程名称:高等量子力学 英文名称:Advanced Quantum Mechanics 课程类型: 课程群(平台课、模块课、课程群) 开课学期:第一学期 课内学时:80学时讲课学时:72 实验学时: 学分:4 教学方式:课堂讲授及课外作业练习 适用对象: 凝聚态物理、理论物理、粒子与原子核、光学、生物物理 考核方式:闭卷考试 预修课程:大学物理、热力学与统计物理、数学物理方法、理论力学、电动力学、 (初等)量子力学 后续课程:量子场论 开课单位:郑州大学物理工程学院 一、课程性质和教学目标 课程性质:本课程为凝聚态物理、理论物理、粒子与原子核等专业硕士研究生必修课。 教学目标:本课程的目的是通过《高等量子力学》课堂授课、课外作业练习及考试,能够使有关学科的研究生系统了解该课程的基本概念、发展历史,掌握其主要内容与研究方法,为学生以后的学习和研究奠定坚实的理论基础,以及学生毕业后应能胜任高等院校、科研机构等部门与物理相关专业的教学、科研、技术等工作,或者为学生继续深造、攻读博士学位等奠定理论知识基础。 本课程的目标主要为凝聚态物理、理论物理、粒子与原子核等专业的深入研究进行理论准备。凝聚态物理是研究由大量微观粒子组成的凝聚态物质的宏观、微观结构和粒子运动规律、动力学过程、彼此间的相互作用及其与材料的物理性质之间关系的一门学科,是一门以物理学各个分支学科、数学

和相关的基础理论知识为基础,并与材料学、化学、生物学等自然科学和现代技术相互交叉的学科。凝聚态物理所研究的新现象和新效应是材料、能源、信息等工业的基础,对当前高技术的带头领域,如新型材料、信息技术和生物材料等有重要影响,对科学技术的发展和国民经济建设有重大作用。理论物理是从理论上探索自然界未知的物质结构、相互作用的物理运动的基本规律的学科,理论物理的研究领域涉及粒子物理与原子核物理、统计物理、凝聚态物理、宇宙学等,几乎包括物理学所有分支的基本理论问题。粒子物理与原子核物理是研究粒子和原子核的性质、结构、相互作用及运动规律,探索物质世界更深层次的结构和更基本的运动规律。它们涉及从最微观领域的规律到天体的形成与演化的规律。这些学科都需要具备《高等量子力学》的基础知识才能够全面理解及深入研究,该课程的讲授能够适应相关专业研究生对基础理论知识需求。 二、教学基本要求 除了系统听讲、对课堂讲解的内容理解之外,要求学生认真复习课堂讲解内容,熟悉量子力学的研究方法和思路,掌握主要方程的建立和推演,全面理解方程的适应条件和物理意义,为进一步从事科研工作进行系统的理论思考训练。 三、教学内容及预期任务 本课程将概括地介绍量子力学基本概念、研究与发展历史;简要回顾主要的经典理论及数学方法;详细而严谨地推导讲解高等量子力学的主要研究内容,包括早期量子力学的经典近似及其适应范围,路径积分方法的建立,多粒子问题的分析计算方法,相对论量子力学,以及辐射场的量子化等等。同时,也介绍一些量子力学理论的特殊应用成就,如BCS理论等等。在课程讲授过程中,拟融入科学研究方法介绍,以及科学探索中的哲学思考。简要介绍物理学主要分支的前沿研究内容及其与量子力学的关系,如宇宙学中的黑洞、暗物质与暗能量,高能物理中的夸克,生物学中的DNA等等,从中揭示量子力学的局限性以及面临的严峻挑战。以期通过本课程的学习,不仅使同学们概括了解量子力学研究的简要历史,了解当前物理学主要分支的前沿知识,明确量子力学面临的任务,开阔学术视野,启发同学们能够自觉探索科学研究的方法。同时,要求学生认真复习课堂讲解内容,完成必要的课外练

量子力学课程教学大纲

《量子力学》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子力学 所属专业:物理学专业 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人 类认识客观世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍《量子力学》(非相对论)的基本概念、基本原理和基本方法。课程分为两大部分:第一部分主要是讲述量子力学的基本原理(公 设)及表述形式。在此基础上,逐步深入地让学生认识表述原理的数学结构, 如薛定谔波动力学、海森堡矩阵力学以及抽象表述的希尔伯特空间的代数结 构。本部分的主要内容包括:量子状态的描述、力学量的算符、量子力学中 的测量、运动方程和守恒律、量子力学的表述形式、多粒子体系的全同性原 理。第二部分主要是讲述量子力学的基本方法及其应用。在分析清楚各类基 本应用问题的物理内容基础上,掌握量子力学对一些基本问题的处理方法。 本篇主要内容包括:一维定态问题、氢原子问题、微扰方法对外场中的定态 问题和量子跃迁的处理以及弹性散射问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一 了光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19 世纪末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及 紫外灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与 半经典理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。 《数学物理方法》中所学习的复变函数论和微分方程的解法都在量子力学中 有广泛的应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特 空间的理论基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 苏汝铿, 《量子力学》, 高等教育出版社; [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章微观粒子状态的描述 第一节光的波粒二象性 第二节原子结构的玻尔理论 第三节微观粒子的波粒二象性 第四节量子力学的第一公设:波函数 (一)教学方法与学时分配:课堂讲授;6学时 (二)内容及基本要求 主要内容:主要介绍量子力学的实验基础、研究对象和微观粒子的基本特性及其状态描述。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射 实验;

相关主题
文本预览
相关文档 最新文档