当前位置:文档之家› 天然气制氢10个问题

天然气制氢10个问题

天然气制氢10个问题
天然气制氢10个问题

天然气制取氢气中出现的故障影响范围,原

因分析及处理方法。

1.出现临时停机会造成的故障:

答:造成的影响有a.给下游用氢的企业造成氢气供应不上造成损失。b.各个设备突然断电停机造成设备故障。c.停机后操作不当容易造成各种损失要按要求操作。

处理方法:配备氢气罐车作为应急供气,各设备停电再次启动前应仔细检查需要盘车进行盘车,紧急停车出现后按紧急停车的操作规程进行操作例如:(1)首选迅速切断天然气进口阀(PV-1103A)、关闭前后截止阀,关燃烧气切断阀(KV1202)、燃烧气调节阀(FV1201)及前后截止阀,关解吸气FIC2009/2气开阀,关转化炉顶燃烧气进口阀,缓慢打开脱碳气放空阀(PV1404B)及前截止阀,缓慢泄压至1.5MPa后保压。开解吸气放空阀(PV2007)、氢气放空阀、开吸附塔出口氢气放空阀(XV2012)、开二氧化碳放空阀PI(1402)、关循环氢阀。3)关天然气压缩机进口阀,关氢压缩机进口阀,关二氧化碳压缩机进出口阀,调节水碳比蒸汽调节阀FPC1202,蒸汽流量1000-1200Nm3/h,以每小时50℃的速度,将转化温度降至650℃,关蒸汽以保护催化剂。

4)关锅炉给水泵进出口阀,关贫液泵进出口阀,待系统压力稳定后关解吸气放空阀(PV2007)、脱碳气放空阀、氢气放空阀,使各系统保持正压。

5)观察汽包压力变化,保持汽包压力,并防止超压。

6)逐一检查各系统状况。

7)来电、来气、来水后按开车程序开车。

8)如不能及时开车,需几天和才能开车的,各系统则用氮气进行置换,并保持正压。)

二蒸汽压力低造成的影响:

a.水蒸汽压力过低可能造成水碳比不符合要求造成反应不合格。

b.当水蒸汽压力过低而原料气(天然气)压力大于水蒸汽压力使水蒸汽不能进入混合器进行混合造成天然气直接进入转换炉炉管使催化剂中毒。

处理方法:首先要了解造成蒸汽压力过低的原因如果是自产蒸汽不足就需要对转化炉进行继续升温,如果有管道泄漏要及时进行查漏,同时如果水碳比不能稳定要及时调整水碳比,如果蒸汽压力太低要进行天然气压力调节避免天然气压力高于水蒸气压力。

3.燃气压力低造成的影响:

答:会造成转化炉内燃料不足温度无法保持,出现这种情况的原

因可能是阻火器堵塞,管道有泄漏。

处理方法:检查管道是否有泄漏,检查阻火器。

4.吸附塔阀门出现故障:

答:会造成吸附不能正常进行需要进行维修。

处理方法:装置减量到最小,关氢气循环,燃烧气全部改天然气,解析气放空,关氢气压缩机,关变压吸附,关紧急放空,控制系统压力,关控制变压吸附程控阀仪表空气,更好电磁阀,更换好后开变压吸附,关紧急放空阀,待吸附压力正常后开氢气压缩机,开循环氢,烧解析气。

5.转化炉引风机或鼓风机突然故障、跳闸长时间无法启动怎么处理?鼓风机和引风机的作用是什么?

答:必须采取紧急停车处理,迅速关闭燃料气切断阀拉开视火孔并且调节迎风机进口阀全开,以防闷炉。鼓风机和引风机未炉膛内部建立负压使热量均匀传递使炉管均匀受热,鼓风机未炉膛内部提供燃烧的空气,如果引风机突然不工作可能造成炉膛上部富集CO2,使烧嘴熄灭。炉膛受热不均。

6.转化炉开车时,当蒸汽升温达到650℃时切原料气进炉管时

要保证高水碳比(水碳比20)为什么?

答:转化、中变蒸汽升温时,转化出口温度达到650℃。水蒸气就能与CH4反应生成CO与H2。中变炉利用H2与CO还原保持高水碳比也就是保持较低的天然气的进气量。从而保证中变的进口H2与CO的量防止中变还原升温过快不好控制。

7.转化管中为强吸热反应正常反应时炉管颜色为黑色3-4米,若为1米是否正常?

答:不正常,若黑只有一米即是热量在上部以上,说明负压偏低。带来危害:顶部催化剂负担太重使催化剂寿命减少。

正常情况炉管上段黑到暗红,下段红到亮红。

炉管中的催化剂上段为小颗粒蜂窝煤状,下段为大颗粒蜂窝煤状。

8.进料温度变化对PSA有何影响?

答:变压吸附是物理吸附过程,进料温度的高低直接影响吸附剂的吸附性能。进料温度太高,吸附剂的吸附能力下降,因而造成氢收率下降,同时还影响产品纯度和吸附剂的使用寿命。而温度太低了再生困难,如果因此造成吸附剂再生不完全,则恶性循环的后果将导致杂质超载的现象而损害吸附剂。由联碳公司提供的资料可知,常温下,10 - 30℃范围内几乎有相等的氢收率,进料温度太高或太低,氢收率都有所下降。

9.转化炉炉管出现热斑是什么情况?

答:催化剂装填有空隙造成炉管温度不平均,用铜锤小心敲击炉管震动。

10.盲板与阀门的不同?

答盲板可以把物料放心的隔断,阀门可能内漏,无论再好的阀门随着使用时间的推移(其中包括介质腐蚀,构件老化等原因)都会出现内漏情况所以想要更好更安全的隔断介质必须使用相应型号的盲板。

球阀、气动球阀:阀芯为球型气密封性比较好

截止阀:从外观可以看出介质的走向,介质自上而下(上进.下出)长期运行时密封型不可靠。

闸阀(平板阀):阀板的运动方向与流体方向垂直,闸阀,只能用作全开和全关不能调节和节流。(阀板随阀杆一起做直线运动)

天然气制氢的基本原理及工业技术进展

天然气制氢的基本原理及工业技术进展 一、天然气蒸汽转化的基本原理 1.蒸汽转化反应的基本原理 天然气的主要成分为甲烷,约占90%以上,研究天然气蒸汽转化原理可以甲烷为例来进行。 甲烷蒸汽转化反应为一复杂的反应体系,但主要是蒸汽转化反应和一氧化碳的变换反应。 主反应: CH4+H2O===CO+3H2 CH4+2H2O===CO2+4H2 CH4+CO2===2CO+2H2 CH4+2CO2===3CO+H2+H2O CH4+3CO2===4CO+2H2O CO+H2O===CO2+H2 副反应: CH4===C+2H2 2CO===C+CO2 CO+H2===C+H2O 副反应既消耗了原料,并且析出的炭黑沉积在催化剂表面将使催化剂失活,因此必须抑制副反应的发生。 转化反应的特点如下:

1)可逆反应在一定的条件下,反应可以向右进行生成CO 和H2,称为正反应;随着生成物浓度的增加,反应也可以 向左进行,生成甲烷和水蒸气,称为逆反应。因此生产中必须控制好工艺条件,是反应向右进行,生成尽可能多的CO 和H2。 2)气体体积增大反应一分子甲烷和一分子水蒸气反应后,可以 生成一分子CO和三分子H2,因此当其他条件确定时,降低压力有利于正反应的进行,从而降低转化气中甲烷的含 量。 3)吸热反应甲烷的蒸汽转化反应是强吸热反应,为了使 正反应进行的更快、更彻底,就必须由外界提供大量的热量,以保持较高的反应温度。 4)气-固相催化反应甲烷的蒸汽转化反应,在无催化剂的 参与的条件下,反应的速度缓慢。只有在找到了合适的催化 剂镍,才使得转化的反应实现工业化称为可能,因此转化反 应属于气-固相催化反应。 2.化学平衡及影响因素 3.反应速率及影响速率 在没有催化剂的情况时,即使在相当高的温度下,甲烷蒸汽转化反应的速率也是很慢的。当有催化剂存在时,则能大大加快反应速率;甲烷蒸汽转化反应速率对反应温度升高而加快,扩散

制氢技术比较及分析报告

制氢技术综述&制氢技术路线选择 一、工业制氢技术综述 1.工业制氢方案 工业制氢方案很多,主要有以下几类: (1)化石燃料制氢:天然气制氢、煤炭制氢等。 (2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。 (3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。 (4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电 解、生物光解、热化学水解。 (5)生物质制氢。 (6)生物制氢。 2.工业制氢方案对比选择 (1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。 (2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含量高、纯度较低,不能达到GT等技术提供商的氢气纯度要求。 (3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比: (A)天然气制氢 (B)甲醇制氢 (C)水电解制氢 3. 天然气制氢

(1)天然气部分氧化制氢因需要大量纯氧增加了昂贵的空分装置投资和制氧成本。 (2)天然气自热重整制氢由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低的特点。 (3)天然气绝热转化制氢大部分原料反应本质为部分氧化反应。 (4)天然气高温裂解制氢其关键问题是,所产生的碳能够具有特定的重要

用途和广阔的市场前景。否则,若大量氢所副产的碳不能得到很好应用,必将限制其规模的扩大。 (5)天然气水蒸汽重整制氢,该工艺连续运行, 设备紧凑, 单系列能力较大, 原料费用较低。 因此选用天然气水蒸汽重整制氢进行方案对比。 4.甲醇制氢 (1)甲醇分解制氢,该反应是合成气制甲醇的逆反应,在低温时会产生少量的二甲醚。 (2)甲醇水蒸汽重整制氢,是甲醇制氢法中氢含量最高的反应。这种装置已经广泛使用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等

天然气制氢气

天然气,是一种主要由甲烷组成的气态化石燃料。它主要存在于油田和天然气田,也有少量出于煤层。 天然气 天然气,是一种多组分的混合气体,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般还含有硫化氢、二氧化碳、氮和水气,以及微量的惰性气体,如氦和氩等。 纯天然气含:CH4(98%) C3H8(0.3%) C4Hm(0.3%) CmHn(0.4%) N2(1.3%),低发热值为(36220KJ/Nm3). 在标准状况下,甲烷至丁烷以气体状态存在,戊烷以上为液体。天然气在燃烧过程中产生的能影响人类呼吸系统健康的物质极少,产生的二氧化碳仅为煤的40%左右,产生的二氧化硫也很少。天然气燃烧后无废渣、废水产生,相较于煤炭、石油等能源具有使用安全、热值高、洁净等优势。

从广义的定义来说,天然气是指自然界中天然存在的一切气体,包括大气圈、水圈、生物圈和岩石圈中各种自然过程形成的气体。 而人们长期以来通用的“天然气”的定义,是从能量角度出发的狭义定义,是指天然蕴藏于地层中的烃类和非烃类气体的混合物,主要存在于油田气、气田气、煤层气、泥火山气和生物生成气中。天然气又可分为伴生气和非伴生气两种。伴随原油共生,与原油同时被采出的油田气叫伴生气;非伴生气包括纯气田天然气和凝析气田天然气两种,在地层中都以气态存在。凝析气田天然气从地层流出井口后,随着压力和温度的下降,分离为气液两相,气相是凝析气田天然气,液相是凝析液,叫凝析油。 依天然气蕴藏状态,又分为构造性天然气、水溶性天然气、煤矿天然气等三种。而构造性天然气又可分为伴随原油出产的湿性天然气、不含液体成份的干性天然气。 天然气管道 天然气与石油生成过程既有联系又有区别:石油主要形成于深成作用阶段,由催化裂解作用引起,而天然气的形成则贯穿于成岩、深成、后成直至变质作用的始终;与石油的生成相比,无论是原始物质还是生成环境,天然气的生成都更广泛、更迅速、更容易,各种类型的有机质都可形成天然气——腐泥型有机质则既生油又生气,腐植形有机质主要生成气态烃。因此天然气的成因是多种多样的。归纳起来,天然气的成因可分为生物成因气、油型气和煤型气。近年来无机成因气尤其是非烃气受到高度重视,这里一并简要介绍,最后还了解各种成因气的判别方法。 生物成因气 1.概念

天然气管道环境影响评价报告(优秀环评)

1概述 1.1项目背景 新沂市位于徐州、淮安、连云港、临沂、宿迁五市中心位置,区域位置优越,是苏鲁接壤地区新兴的交通枢纽,是徐连经济带重要的物资集散地和流通中心及商贸流通中心,是沿东陇海线产业带上的重要节点城市和工业城市。改革开放以来,新沂市的经济得到快速发展,城市人口和规模不断扩大。面积1586多平方公里,2006年末全市总人口达99.06万。 目前,新沂市城市能源结构以煤、电、液化石油气为主,清洁能源(天然气)所占比例很低。能源消费结构制约着经济高速增长及生态环境的改善,与城市可持续发展的要求不相适应。随着经济的持续发展、城市人口的不断增加以及工业化程度的不断深入,新沂市生态环境与传统的以燃煤为主的燃料结构之间的矛盾日益突出。为了提高城市居民的生活质量,减少环境污染,改善城市环境状况,实现可持续发展战略,新沂市急需建设管道天然气。 西气东输连云港支线天然气管道已于2006年到达新沂,并在249省道上为新沂市预留了DN150的高压预留口,为新沂市采用西气东输气源提供了便利条件。截至目前,新沂市部分主城区已敷设天然气中压管道。根据目前已敷设的管道,并结合新沂近年发展用户情况及道路建设情况,近期规划拟向主城区、经济技术开发区和无锡—新沂工业园开发区的部分用户供气。 根据新沂市天然气利用工程规划,管道在经市府路和大桥路向无锡—新沂工业园开发区布置时,需穿越沭河。 为开发新沂市城市天然气利用,受新沂城市中燃城市燃气发展有限公司的委托,河北省石油化工规划设计院承担了新沂市天然气工程(近期)

的初步设计工作,初步设计工作于2005年8月完成。2008年1月,重庆市川东燃气工程设计研究院编制了《新沂市天然气利用工程沭河燃气管道定向钻穿越》施工图。 根据《中华人民共和国防洪法》的要求,建设跨河、穿河、穿堤、临河的桥梁、码头、道路、渡口、管道、缆线、取水、排水等工程设施,应当符合防洪标准、岸线规划、航运要求和其他技术要求,不得危害堤防安全,影响河势稳定、妨碍行洪畅通;其可行性研究报告按照国家规定的基本建设程序报请批准前,其工程建设方案应当经有关水行政主管部门根据前述防洪要求审查同意;在洪泛区、蓄滞洪区内建设非防洪建设项目,应当就洪水对建设项目可能产生的影响和建设项目对防洪可能产生的影响作出评价,编制洪水影响评价报告,提出防御措施。建设项目可行性研究报告按照国家规定的基本建设程序报请批准时,应当附具有关水行政主管部门审查批准的防洪评价报告。 2008年3月,受新沂中燃城市燃气发展有限公司委托,中水淮河工程有限责任公司承担了新沂天然气中压管道穿越沭河工程的防洪评价工作。 2008年4月,水利部淮河水利委员会委托沂沭泗管理局在徐州主持召开了《新沂市天然气中压管道穿越沭河工程防洪评价报告》专家评审会,会后根据审查意见(附后)进行了修改,形成本报告。 新沂天然气管道穿越沭河工程位置示意图见附图一。 1.2评价依据 1.2.1法律法规 1、《中华人民共和国水法》(2002年8月29日第九届全国人民代表大会常务委员会第29次会议通过); 2、《中华人民共和国防洪法》(1997年8月29日第八届全国人民代表大会常务委员会第二十七次会议通过); 3、《中华人民共和国河道管理条例》(1988年6月10日国务院令发布)。

天然气制氢

天然气制氢 1.制氢原理 1.天然气脱硫本装置采用干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采用铁锰系转化吸收型脱硫催化剂,并在原料气中加入约1?5%1 勺氢,在约400C高温 下发生下述反应: RSH+H 2=H2S+RH H 2S+MnO=MnS2+OH 经铁锰系脱硫剂初步转化吸收后,剩余勺硫化氢,再在采用勺氧化锌催化剂作用下发生下述脱硫反应而被吸收: H 2S+ZnO=ZnS+2OH C 2H5SH+ZnO=ZnS+2HC4+H2O 氧化锌吸硫速度极快,因而脱硫沿气体流动方向逐层进行,最终硫被脱除至O.lppm以下,以满足蒸汽转化催化剂对硫的要求。 2蒸汽转化和变换原理原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃--- 蒸汽转化反应, 主要反应如下: CH 4+H3CO+3HQ ⑴ 一氧化碳产氢CO + H 2O CO2 + H 2 +Q (2) 前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。 在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积炭,氧化等。 在转化反应中,要使转化率高,残余甲烷少,氢纯度高,反应温度就要高。但要考虑设备承受能力和能耗,所以炉温不宜太高。为缓和积炭,增加收率,要控制较大的水碳比。 3变换反应的反应方程式如下: CO+H 2O=CO2+H2+Q 这是一个可逆的放热反应,降低温度和增加过量的水蒸汽,均有利于变换反应向右侧进行,变换反应如果不借助于催化剂,其速度是非常慢的,催化剂能大大加速其反应速度。为使最终CO浓度降到低的程度,只有低变催化剂才能胜任。高低变串联不仅充分发挥了两种催化剂各自的特点,而且为生产过程中的废热利用创造了良好的条 4改良热钾碱法 改良热钾碱溶液中含碳酸钾,二乙醇胺及VO。碳酸钾做吸收剂、二乙醇胺做催化剂、它起着加快吸收和解吸的作用。VO5为缓蚀剂,可以使碳钢表面产生致密的保护膜,从而防止碳钢的腐蚀。KCO吸收CO的反应机理如下: K2CO+CO+H

天然气转化制氢工艺进展及其催化剂发展趋势

专论与综述 天然气转化制氢工艺进展及其催化剂发展趋势 催化剂厂谢建川 摘 要 介绍了以天然气为原料的转化制氢工艺技术的发展概况以及天然气蒸汽转化用催化剂的发展趋势。 关键词 天然气 转化 催化剂 自从20世纪中期天然气在美国得以发展,壳牌化学公司首次在世界上用天然气生产合成氨以来,转化制氢工艺在世界范围内迅速发展。天然气、油田伴生气、焦炉气、石脑油(国内称为轻油)、渣油、炼厂气和煤等成为了当今制氢、制氨原料的主流。就转化制氢制氨工艺而言,其发展主要是以节能、降耗、扩产、缩小装置尺寸、降低投资费用以及延长运转周期等为目标进行工艺改进。而在转化催化剂方面,国内外研究人员也进行了大量的研究开发工作,主要是围绕不同原料和不同工艺开发新型转化催化剂,并且还要保证开发的新催化剂在适合于不同原料和工艺的前提下,提高催化剂的活性、抗压强度、抗碳性和抗毒性等。 1 天然气转化制氢工艺进展 我国自20世纪70年代从国外引进大型合成氨装置,现已有14套以天然气或炼厂气为原料的大型合成氨装置。近年来国外推出了一系列节能型工艺,如美国Kellogg公司MEAP节能流程, Tops e公司低能耗流程;美国Braun低能耗深冷净化工艺,I CI的AMV节能工艺以及德国UHDE-I C I-AMV工艺等,主要从以下几方面达到节能降耗的目的。 (1)将传统流程转化炉的热效率从原有的85%提高到90%~92%,烟气排出温度降至120 ~125 ,增加燃烧空气预热器等。 (2)提高一段炉操作压力,由原来的2.8M Pa 提高到4.0~4.8MPa。 (3)降低一段炉出口温度,由原来的820 降到695~780 。 (4)转化炉管采用新型材料MANAUR I T E (25C r-35N-i Nb-T i),使管壁厚度降低,并使管壁中因温度梯度造成的热应力降低至接近内部压力的水平,与HK-40转化管相比,工作寿命更长,性能更稳定。 (5)降低水碳比,由原来的3.5降到2.5~ 2.7。 (6)增加二段炉燃烧空气量,提高燃烧空气温度至610~630 ,采用性能更好的二段燃烧器。 (7)降低一段炉负荷,增加预转化工艺,将一段炉负荷部分转移到二段炉。 预转化工艺是在一段炉前,在较低的水碳比下进行原料的预转化,主要用于以石脑油等高碳烃为原料的转化制氢工艺。但近年来为了降低一段炉负荷,达到增产节能,提高效益,以天然气为原料的装置,在新建和改造中也开始采用预转化工艺技术。国内锦西大化就率先采用了该技术。 Tops e公司首次在合成氨装置中采用预转化技术是在20世纪80年代,使现有制氢装置在增产节能方面取得了明显效果:减少了一段炉燃烧量,增加生产能力,延长了炉管使用周期,降低了工艺蒸汽使用量,减少了设备投资以及在装置改造中的所谓瓶颈问题。国外使用预转化工艺除了在制氢制氨厂使一部分甲烷转化成氢或使部分石脑油预转化为较低级的甲烷外;另一方面是用石脑油制取富甲烷气,可直接作城市煤气使用,也

中国石油天然气集团公司建设项目环境保护管理办法

中国石油天然气集团公司建设项目环境保护管理办法

关于印发《中国石油天然气集团公司建设项目环境保护管理办法》的通 知 中油安〔〕7号 各企事业单位: 《中国石油天然气集团公司建设项目环境保护管理办法》已经集团公司常务会议审议经过,现印发给你们,请依照执行。 附件:中国石油天然气集团公司建设项目环境保护管理办法 中国石油天然气集团公司 二〇一一年一月七日 中国石油天然气集团公司建设项目 环境保护管理办法 第一章总则 第一条为加强和规范中国石油天然气集团公司(以下简称集团公司)建设项目环境保护管理,依据《中华人民共和国环境影响评价法》和《建设项目环境保护管理条例》,制定本办法。 3

第二条本办法适用于集团公司及其全资子公司、直属企事业单位(以下统称所属企业)建设项目的环境保护管理。 集团公司及所属企业的控(参)股子公司建设项目的环境保护管理,参照本办法执行。 第三条本办法所称建设项目包括国家审批项目和省级及以下审批项目。国家审批项目是指由国务院环境保护行政主管部门负责审批环境影响评价文件的建设项目,省级及以下审批项目是指由省级及以下环境保护行政主管部门负责审批环境影响评价文件的建设项目。 本办法所称建设项目环境保护管理包括立项环境影响评价、设计和施工建设环境保护、试生产环境保护和竣工环境保护等全过程管理。 第四条集团公司建设项目环境保护实行统一管理、分级负责体制。 第五条集团公司建设项目环境保护应当遵循“环保优先、统筹协调、综合决策”的原则,环境保护与项目建设应当同步规划、同步实施、同步监督,从源头防止污染和保护生态。 第二章管理机构和职责 第六条集团公司安全环保部是集团公司建设项目环境保护归口管理部门,主要履行以下职责: 4

天然气制氢装置技术方案

目录 一、原料/燃料气条件 (2) 二、产品及要求 (2) 三、工艺技术方案 (2) 1. 工艺流程示意图 (2) 2. 工艺原理 (3) 3. 装置国产化水平 (4) 四、消耗指标 (4) 1. 氢气产品 (4) 2. 消耗 (4) 五、制氢装置生产成本估算 (5) 六、装置投资 (5) 七、说明 (5) 八、附件 (5)

一、原料气条件 原料气:天然气 温度:40℃ 压力:3.6MPa(G) 低热值:8795kcal/Nm3 组分: 组分含量%(体积) CH4 92.81 C2H6 4.255 C3 H8 0.783 iC4 H10 0.129 nC4 H10 0.129 iC5 H12 0.054 nC5 H12 0.024 C6+ 0.032 H2 0.02 N2+Ar 0.774 CO2 0.99 总S ≤20ppm ∑ 100.00 二、产品及要求 产品气:氢气 三、工艺技术方案 1. 工艺流程示意图 工艺流程示意图

2. 工艺原理 (1)烃类蒸汽转化 烃类的蒸汽转化是以水蒸汽为氧化剂,烃类物质与水蒸汽在镍催化剂的作用下进行反应,从而得到合成气。这一过程为吸热过程,需外供热量。一段转化炉转化所需的热量由转化管外的高温燃烧烟气提供。一段转化气进入二段转化炉后与适量的氧气混合,进行H 2与O 2的燃烧反应及CH 4部分氧化反应,所产生的热量供二段转化气中的甲烷进行深度转化。 在镍催化剂存在下烃类蒸汽转化反应为: 烃类蒸汽一段转化反应 CH 4+H 2O CO+3H 2-Q 6 C n H 2n+2+nH 2O nCO+(2n+1)H 2-Q 7 CO+H 2O H 2+CO 2+Q 8 二段转化反应 22291O H O()Q 2 H +=汽+ CH 4+2O 2 CO 2+2H 2+Q 2212 CO O CO Q +=+ 上述反应放出的反应热足以将二段转化炉炉头温度升至1200~1400℃,这就为二段炉内CH 4深度转化反应提供了足够的热源,发生如下转化反应: CH 4+H 2O CO+3H 2-Q CO+H 2O H 2+CO 2+Q (2)MDEA 脱碳 活化MDEA 法脱碳工艺原理简述如下: MDEA 化学名为N-甲基二乙醇胺,分子式C 5H 13NO 2,分子量119.17。 MDEA 与CO 2的反应如下: 2232323CO H O H HCO H R NCH R CH NH +- +++++= 上面二式相加为总反应: 2322233R NCH H O CO R CH NH HCO -++=++ CO 2和H 2O 的反应的速度很慢,为MDEA 吸收CO 2反应的控制步骤,加活化

天燃气制氢操作规程

天然气制氢 第一章天然气制氢岗位基本任务 以天燃气为原料的烃类和蒸汽转化,经脱硫、催化转化、中温变化,制得丰富含氢气的转化气,再送入变压吸附装置精制,最后制得纯度≥99.9%的氢气送至盐酸。 1.1工艺流程说明

由界区来的天然气压力为1.8~2.4MPa,经过稳压阀调节到1.8Mpa,进入原料分离器F0101后,经流量调节器调量后入蒸汽转化炉B0101对流段的原料气预热盘管预热至400℃左右,进入脱硫槽D0102,使原料气中的硫脱至0.2PPm以下,脱硫后的原料气与工艺蒸汽按水碳比约为3.5进行自动比值调节后进入混合气预热盘管,进一步预热到~590℃左右,经上集气总管及上猪尾管,均匀地进入转化管中,在催化剂层中,甲烷与水蒸汽反应生产CO和H2。甲烷转化所需热量由底部烧咀燃烧燃料混合气提供。转化气出转化炉的温度约650--850℃,残余甲烷含量约3.0%(干基),进入废热锅炉C0101的管程,C0101产生2.4MPa(A)的饱和蒸汽。出废热锅炉的转化气温度降至450℃左右,再进入转化冷却器C0102,进一步降至360℃左右,进入中温变换炉。转化气中含13.3%左右的CO,在催化剂的作用下与水蒸气反应生成CO2和H2,出中变炉的转化气再进入废热锅炉C0101的管程换热后,再经锅炉给水预热器C0103和水冷器C0104被冷至≤40℃,进入变换气分离器F0102分离出工艺冷凝液,工艺气体压力约为1.4MPa(G)。 燃料天然气和变压吸附装置来的尾气分别进入转化炉的分离烧嘴燃烧,向转化炉提供热量≤1100℃。 为回收烟气热量,在转化炉对流段内设有五组换热盘管:(由高温段至低温段)蒸汽-A原料混合气预热器, B 原料气预热器,C烟气废锅,D燃料气预热器, E尾气预热器 压力约为1.4的转化工艺气进入变化气缓冲罐,再进入PSA装置。采用5-1-3P,即(5个吸附塔,1个塔吸附同时3次均降)。常温中压下吸附,常温常压下解吸的工作方式。每个吸附塔在一次循环中均需经历;吸附A,→一均降E1D,→二均降E2D,→顺放PP,→三均降E3,→逆放D,→冲洗P,→三均升E3R,→二均升E2R,→一均升E1R,→终升FR,等十一个步骤。五个吸附塔在执行程序的设定时间相互错开,构成一个闭路循环,以保证转化工艺气连续输入和产品气不断输出。 1.2原料天然气组份表

天然气环境影响评价

7、环境风险评价 (1)物料的危险性分析 天然气的理化性质和危险特性见表19。 表19 天然气特性一览表

(2)火灾爆炸危险 天然气属易燃、易爆体,如果在储存、输送过程发生跑、冒、滴、漏,卸气过程中如果静电接地不好或管线、接头等有渗漏,加气过程加气设备及管线出现故障或加气过程操作不当等引起泄漏;蒸发出来的天然气在一定的浓度范围内,能够与空气形成爆炸性混合物,遇明火、静电及高温或与氧化剂接触等易引起燃烧或爆炸;同时其蒸汽比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃,也会造成火灾爆炸事故。 (3)生产过程风险识别 根据《危险化学品重大危险源辨识》(GB18218-2009)中规定,天然气属于所列的构成重大危险源的危险化学品,规定临界量为50t。 该项目所用CNG通过CNG拖车运至加气站,车载气瓶水容积为18m3,项目设储气瓶组总水容积为6m3,则该项目储存CNG总水容积为24m3(储气瓶与CNG 拖车长管气瓶压力均为25MPa,天然气在1标准大气压、0℃时密度按0.7174kg/m3计算),天然气储量为4.3t。 辨识结果列于表20。 表20 重大风险源辨别 根据表20,该项目天然气存储量未超过临界量,属非重大危险源。该项目工艺过程风险因素识别见表21。 表21 工艺过程风险因素识别表

(4)事故易发部位及危险点辨识 加气岛(加气场地及加气机): 加气岛为各种机动车辆加气的场所。由于汽车尾气带火星、加气过满溢出、加气机漏气、加气机防爆电气故障等原因,容易引发火灾爆炸事故。 站房(包括营业室、值班室等): 如有天然气窜入站房,遇到明火,值班人员烧水、热饭和随意吸烟、乱扔烟头余烬等,会招致火灾或爆炸。 气罐及管道: 在加气站的各类事故中,气罐和管道发生的事故占很大比例。如地下管沟未填实,使天然气窜入,遇明火爆炸;气罐注气过量溢出;卸气时气外逸遇明火引爆;气罐、卸气接管等处接地不良,通气管遇雷击或静电闪火引燃引爆。 装卸气作业: 加气车不熄火,送气车静电没有消散,气罐车卸气连通软管导静电性能差;雷雨天往气罐卸气或往汽车车箱加气速度过快,加气操作失误;密闭卸气接口处漏气;对明火源管理不严等,都会导致火灾、爆炸或设备损坏或人身伤亡事故。 防雷装置: 加气站已经安装规定的防雷装置,避免雷雨天容易造成设备损坏,如果产生电火花,就容易引起火灾。 (5)环境风险防范措施 加气站属易燃易爆场所,如果在设计和安装存在缺陷,设备质量不过关,生

天然气制氢成本

天然气制氢 一、装置概况 20万吨/年天然气制硝酸铵装置配套,10万吨/年合成氨装置,需要氢气量25625Nm3/h. 本制氢装置由脱硫造气工序、变换工序、PSA制氢工序组成,工艺路线及产品规格 该制氢装置已天然气为原料,采用干法脱硫、3.8MPa压力下的蒸汽转化,一氧化碳中温变换, PSA工艺制得产品氢气。 二、天然气制氢工艺原理 2.1 天然气脱硫 本装置采用干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采用铁锰系转化吸收型脱硫催化剂,并在原料气中加入约1-5%的氢,在约400℃高温下发生下述反应: RSH+H2=H2S+RH H2S+MnO=MnS+H2O 经铁锰系脱硫剂初步转化吸收后,剩余的硫化氢,再在采用的氧化锌催化剂作用下发生下述脱硫反应而被吸收: H2S+ZnO=ZnO+H2O C2H5SH+ZnS+C2H5+H2O 氧化锌吸硫速度极快,因而脱硫沿气体流动方向逐层进行,最终硫被脱除至0.1ppm以下,以满足蒸汽转化催化剂对硫的要求。 2.2蒸汽转化和变换原理 原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃—蒸汽转化反应,主要反应如下: CH4+H2O= CO+3H2-Q (1) 一氧化碳产氢 CO+H2O=CO2+H2+Q (2) 前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。 在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积碳,氧化等。 在转化反应中,要使转换率高,残余甲烷少,氢纯度高,反应温度要高,但要考虑设备承受能力和能耗,所以炉温不宜太高。为缓和积碳,增加收率,要控制较大的水碳比。

天然气制氢装置工艺技术规范

天然气制氢装置工艺技术规程 1.1装置概况规模及任务 本制氢装置由脱硫造气工序、变换工序、PSA制氢工序组成 1.2工艺路线及产品规格 该制氢装置已天然气为原料,采纳干法脱硫、3.8MPa压力下的蒸汽转化,一氧化碳中温变换, PSA工艺制得产品氢气。 1.3消耗定额(1000Nm3氢气作为单位产品) 2.1工艺过程原料及工艺流程 2.1.1工艺原理 1.天然气脱硫 本装置采纳干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采纳铁锰系转化汲取型脱硫催化剂,并在原料气中加入约1-5%的氢,在约400℃高温下发生下述反应:

RSH+H2=H2S+RH H2S+MnO=MnS+H2O 经铁锰系脱硫剂初步转化汲取后,剩余的硫化氢,再在采纳的氧化锌催化剂作用下发生下述脱硫反应而被汲取: H2S+ZnO=ZnO+H2O C2H5SH+ZnS+C2H5+H2O 氧化锌吸硫速度极快,因而脱硫沿气体流淌方向逐层进行,最终硫被脱除至0.1ppm以下,以满足蒸汽转化催化剂对硫的要求。 2.蒸汽转化和变换原理 原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃—蒸汽转化反应,要紧反应如下: CH4+H2O= CO+3H2-Q (1) 一氧化碳产氢 CO+H2O=CO2+H2+Q (2) 前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。 在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积碳,氧化等。 在转化反应中,要使转换率高,残余甲烷少,氢纯度高,反应温度要高,但要考虑设备承受能力和能耗,因此炉温不宜太高。为缓和

1500Nm3-h天然气转化制氢装置项目建议书

xxxx集团有限公司 1500Nm3/h天然气转化制氢装置 项目建议书 编号:xxxx-xxxx-1112

一、总论 1.1 装置名称及建设地点 装置名称:1500Nm3/h 天然气制氢装置 建设地点:xxxx 1.2 装置能力和年操作时间 装置能力: :1500Nm3/h; H 2 纯度: ≧99.99(V/V) 压力≧2.0 MPa(待定) 年操作时间:≧8000h 操作范围:40%-110% 1.3 原料 天然气(参考条件,请根据实际组分修改完善): 1.4 产品 氢气产品

1.5 公用工程规格 1.5.1 脱盐水 ●温度:常温 ●压力:0.05MPa(G) ●水质:电导率≤5μS/cm 溶解O2 ≤2 mg/kg 氯化物≤0.1 mg/kg 硅酸盐(以SiO2计) ≤0.2 mg/kg Fe ≤0.1 mg/kg 1.5.2 循环冷却水 ●供水温度:≤28℃ ●回水温度:≤40℃ ●供水压力:≥0.40MPa ●回水压力:≥0.25MPa ●氯离子≤25 mg/kg 1.5.3 电 ●交流电:相数/电压等级/频率 3 PH/380V/50Hz ●交流电:相数/电压等级/频率 1 PH/220V/50Hz ● UPS交流电:相数/电压等级/频率 1 PH/220V/50Hz 1.5.4 仪表空气 ●压力: 0.7MPa

●温度:常温 ●露点: -55 ℃ ●含尘量: <1mg/m3,含尘颗粒直径小于3μm。 ●含油量:油份含量控制在1ppm以下 1.5.5 氮气 ●压力: 0.6MPa ●温度: 40℃ ●需求量:在装置建成初次置换使用,总量约为5000 Nm3 正常生产时不用 1.6 公用工程及原材料消耗 注:电耗与原料天然气压力有关。

天然气生态环境影响评价

8.生态环境影响评价 8.1 生态环境现状调查与评价 8.1.1 土地利用现状调查 8.1.1.1 技术方法与手段 评价区土地利用现状调查图例系统按照全国土地利用分类系统标准,采用2003年中国科学院遥感中心接收的美国陆地卫星TM影像数据;参考有关资料,通过采用GPS定位,建立地面解译标志和线路调查等方法,按1:60000精度解译遥感影像,编绘土地利用现状图,在REDGIS信息系统软件支持下,进行数据采集、编辑、分析、编绘成图。在此基础上,分析评价区土地利用现状。 5.1.1.2 结果分析 (1)一般评价区(管道沿线两侧10km):该区域为平原,面积为4522.3km2,主要是农田,面积为3470.8km2,占总面积的76.8%;有4个县城和160多个居民点;非农用地占比重相对较大,主要是城镇和交通用地,面积约为664.4km2,占总面积的14.7%;区域内树木零散分布,成片林地较少。 从总体来看,评价区土地利用结构较合理,利用率较高。 (2)重点评价区(管道沿线两侧500m):该区域土地利用结构比较单一,主要为农田,农作物多是以小麦、玉米为主的粮食作物。 一般评价区土地利用见表8.1-1,图8.1-1。 重点评价区土地利用现状见表5.1-2,图5.1-2。 表8.1-1 一般评价区土地利用现状情况 表8.1-2 重点评价区土地利用现状情况

8.1.2 植被现状调查与评价 评价区的植被属暖温带落叶阔叶林带,以华北植物区系为主。管道沿线所经过的区域均位于山东省的中北部,是山东省生物多样性较为贫乏的地区,植被特征为鲁北滨海平原栽培植被和鲁西北平原栽培植被,多属生态幅度较大的种类,区内现有维管植物289种。 由于经历了人类漫长的经济活动,原始植被发生了很大变化,自然植被很少,现有植被类型多为栽培植被,以农作物为主。本区缺林少树,林木覆盖率极低,基本上没有片林。本区散生的树木常见的多为落叶阔叶树种,多分布于村落周围和田间地头。常见树种有:旱柳、榆、槐、臭椿、白蜡树、桑、白蜡树、加拿大杨。农田植被是该区的主体植被,主要粮食作物为小麦、玉米、大豆、小杂粮等。经济作物有棉花、花生、芝麻、油菜、烟叶、麻类、大蒜、芦笋、牡丹、玫瑰、药材、瓜菜等。林果类主要有桃、杏、苹果、梨、枣、山楂、葡萄的等。属国家重点保护的植物有单叶蔓荆、紫花补血草、野大都、白刺等。 5.1.3 动物资源 管道沿线生物多样性较为贫乏,以田园动物较多,尤以鼠、兔等啮齿类最为常见。管道沿线各类野生动物1500多种,属国家重点保护的兽类有5种;淡水鱼类108种,属国家重点保护的有3种;鸟类260种,属国家一级保护的有7种,二级重点保护的有33种,省级重点保护的有40种。应重点保护的稀有种有小天鹅、赤腹鹰、鹊鹞等31种。 5.1.4 土壤类型 由于受地形、地貌、成土母质、气候、植被等因素的影响,评价区内主要有

天然气项目环境风险分析模板

天然气项目环境风险分析模板

1环境风险分析 1.1评价目的 风险评价主要考虑项目的突发性事故,包括易燃、易爆和有毒有害物质失控状态下的泄漏、技术系统故障时的非正常排放等。发生这种事故的概率虽然很小,但其影响的程度往往较大。本篇主要分析和预测建设项目可能发生的突发性事件,引起天然气泄漏,提出合理可行的防范、应急措施,以使项目事故率、损失和环境影响达到可接受水平。 1.2编制依据 HJ/T169—2004《建设项目环境风险评价技术导则》; 中华人民共和国国务院令第344号《危险化学品安全管理条例》; 环发[2005]152号《关于防范环境风险加强环境影响评价管理的通知》。 1.3环境风险评价工作等级、评价工作范围及评价工作内容 1.3.1 风险源辩识 本项目原料及产品涉及的物质主要为天然气等。根据《重大危险源辨识》及《建设项目环境风险评价技术导则》中规定,辨识结果见表1-1。 表1-1 危险源识别表 天然气贮存场所10 10 本项目天然气最大储存量10t,根据表1.1可知,其最大储存量等于临界量标准(10t),根据《建设项目环境风险评价技术导则规定》中的有关规定,该项目的天然气储配站为重大危险源。

1.3.2风险评价等级 《建设项目环境风险评价技术导则》HJ /T169-2004中规定,根据评价项目的物质危险性和功能单元重大危险源判定结果以及环境敏感程度等因素,判定风险评价工作等级。 根据《建设项目环境风险评价技术导则》HJ /T169-2004规定的《物质危险性判定标准》进行判别,本项目所涉及的危险物质为天然气,属于易燃性危险物质,贮存场所功能单元属重大危险源;同时,项目建在弓长岭水源地二级保护区内,属环境敏感目标。根据《建设项目环境风险评价技术导则》HJ /T169-2004关于评价级别的预测,说明影响范围和程度,提出防范、减缓和应急措施。 本项目环境风险评价的级别的判定具体见表1-2。 表1-2 环境风险评价级别的判定 项 目 剧毒危险 性物质 一般毒性 危险物质 可燃易燃危 险物质 爆炸危 险物质 评价等 级判定 重大 危险源 导则规定 一 二 一 一 一级 本工程 × × √ √ 非重大 危险源 导则规定 二 二 二 二 本工程 × × × × 环境敏 感地区 导则规定 一 一 一 一 本工程 × × √ √ 1.3.3评价范围 本项目环境风险评价的级别为一级,根据《建设项目环境风险评价技术导则》中规定,本环境风险评价范围为距离风险源源点5公里的范围内。 1.4风险评价保护目标

天然气蒸汽转化制氢装置节能降耗技术

天然气蒸汽转化制氢装置节能降耗技术 发表时间:2019-11-14T11:35:56.040Z 来源:《科学与技术》2019年第12期作者:王永吴庆军罗超高丽敏[导读] 本文主要针对目前使用的天然气蒸汽转化制氢装置工艺流程能耗进行了深入分析,并在此基础上,对天然气蒸汽转化制氢装置节能降耗提出了一些可行的建议。 摘要:本文主要针对目前使用的天然气蒸汽转化制氢装置工艺流程能耗进行了深入分析,并在此基础上,对天然气蒸汽转化制氢装置节能降耗提出了一些可行的建议。通过在整个装置中增强冷凝液回收系统,并进一步提升了盐水温度,从而使得浓水的排放量减小。通过一系列的节能改造后使得天然气蒸汽转化制氢装置节能效果进一步提升,企业带来了更大的经济效益以及环境效应。【关键词】天然气;蒸汽重整;制氢装置;节能改造;效益提升引言 随着当前整个化工行业的快速发展,从而使得烃类蒸汽转化制氢也逐渐形成了成熟的工艺,目前很多国外制氢装置采用的都是这种方法,我国目前主要在工业生产中使用的工艺装置有烃类蒸汽转化制氢以及煤气化制氢装置等两种。与煤气制氢相比较,天然气制氢装置在实际的应用过程中设备整体投入量较小,而且在生产过程中整体能耗较低,污染量也较小,二氧化碳排放也相对比较小。油田化工企业为了进一步提升制氢装置的经济效益,并主要针对当前的天然气制氢装置在实际应用过程中的节能降耗进行深入的分析,某石油化工企业针对制氢装置运行过程中存在的问题,提出了冷凝液回收利用、提升脱氢水站收率等几种节能改造措施,从根本上有效提升了制氢装置实际应用的经济效益。1工艺冷凝回收1.1现状分析 当整个制氢装置在满负荷运行状态下,其实际产生的工业蒸汽量能够达到12t/h,在这部分工业蒸汽中过剩的水蒸气量能够达到8t/h,过程水蒸气基本上都经过冷却形成了工艺冷凝液。当年受到一定的压力作用后工艺冷凝液会溶解一定量的二氧化碳,因此,通常情况下工艺冷凝液都呈现出酸性会对工艺设备以及工艺管线产生一定的腐蚀作用,因此在脱盐水站的各种装置运行过程中不能将其作为原水来使用,导致大部分的工艺冷凝水都会直接进行外排,并会导致出现一定的资源浪费现象[1]。 工艺冷凝液的PH值以及电导率等各种参数与脱盐水站装置原水相比较出现了非常严重的超标现象。鉴于此,要想充分实现工艺冷凝水的回收利用,但必须要解决其PH值问题,这样才能够将其直接引入到脱盐水站反渗透膜中。 1.2改进措施(1)在装置中通过设置合理规则的管线将冷凝液引出。 (2)然后在整个制氢装置中增加了气液分离器装置,这样就能让该装置发挥出作用实现对工艺冷凝液的有效清除。 (3)在整套系统中增加了解吸塔装置,空气以及本工艺流程中的二氧化碳饱和度以及蒸气压都存在一定的差异,这样就能够有效的将溶液中溶解的二氧化碳气体脱离出来,也就达到了降低工艺冷凝液电导率的效果。工艺冷凝液在经过上述几种改进装置的处理后,完全达到了脱盐水的相关标准要求。 与此同时,为了有效避免二氧化碳解吸塔中混入可燃性气体,在整个装置加入气液分离器就能够实现可燃性气体的有效分离。另外在解析塔的上部位置设置了一个除沫器,这样就能够有效避免在处理过程中产生气体外溢夹带液体,也能实现对环境污染的进一步控制。经过上述几部的处理之后如果盐分的含量仍然比较高,还可以充分借助耳机反渗透膜的作用来实现进一步的深度处理,经过上步的处理之后就能够完全达到脱盐水站实际的生产需求,从而实现了对冷凝液的有效回收,也能进一步提升水资源的利用效率。2提高脱盐水收率2.1现状分析 制氢装置脱盐水站主要是充分利用反渗透原理将水分中的大部分盐分以及相关的杂质进行有效清除,这样就能够为整个制氢装置提供大量符合标准要求的脱盐水。 某企业一直以来制氢装置脱盐水站所使用的原水都是来自于公司生产产生的软化水,在夏季温度较高的情况下原水的温度能够达到30℃,甚至在冬季原水的温度能够达到20℃。该企业由于供应软化水的公司划归到其他领域,从而使得软化水来水温度产生了较大的变化,即使在夏季原水的温度也仅仅达到了20℃,在冬季水温只能达到8℃,环境温度较低的情况下,水温甚至只能达到5℃。这样在一定程度上对该企业的脱盐水站产水量产生了较大的影响,产水收率下降非常明显,从而使水资源出现了非常严重的浪费现象 [2]。在具体针对原水的温度以及实际的产水率进行深入的分析之后可以知道,在原水温度较低的情况下,必须要对其进行加热处理,这样才能保证其不对脱水干其他生产作业缓解造成影响,也能够实现对脱盐水站水受率的有效提升。 2.2改进措施 据上述分析中原水温度与产水率之间的关系,在原水管增设了一台原水预热器,以此来有效提升原水温度,这样就实现了对浓水排放量的进一步控制,也有效提升了脱盐水站产水量。 2.3应用技术特点 针对整个预热系统并没有设置相应的副线,在充分结合原水温度之后,对原水预热器进行合理的使用,与此同时,可在原水预热器出现故障的时候,切断预热器,这样就实现了预热转换的便捷性,不会对脱盐水站的生产造成影响。 (1)鉴于两种介质进行直接换热实际产生的温差相对比较大,为了有效避免在换热过程中对板式换热器造成强烈的冲击,因此,在板式换热器入口位置处设置了一个相应的减温减压换热器。 (2)该装置在正常运行过程中对整个转化工序运行中副产物的低压蒸汽进行充分利用,而低压蒸汽在正常状态下是处于放空的,因此通过改进后进一步提升了企业厂区内部蒸汽的有效利用率。 3 结束语天然气蒸汽转化制氢装置在国内外的应用非常广泛,是整个行业中主要的制氢装置之一,而实际应用中不可避免的还会出现能耗的问题,针对实际执行装置进行节能改造后取得了良好的节能效果。参考文献

天然气制氢工艺与技术

天然气制氢工艺与技术 利用天然气制氢,存在成本低,规模效应显著等优点,研究和开发更为先进的天然气制氢新工艺技术是解决廉价氢源的重要保证。天然气作为优质、洁净的工业能源,在我国能源发展过程中具有重要的战略意义。因为天然气不仅是人们日常生活的重要燃料,同时也是众多化工次产品的基础性原料。 天然气制氢就是众多天然气产品中的一种,辽河油田作为全国第三大油气田,本身就具有丰富的天然气资源,特别是从事油气集中处理企业,我们在油气生产过程中,能够生产出相当规模的伴生干气,对于天然气深加工具有得天独厚的条件,对于推进天然气制氢工艺的开发推广具有更为广泛的实际意义。 1 天然气制氢的选择理论分析 氢作为一种二次化工产品,在医药、精细化工、电子电气等行业具有广泛的用途。特别是氢作为燃料电池的首选燃料,在未来交通和发电领域将具有广阔的市场前景,在未来能源结构中将占有越来越重要的位置。采用传统制氢的方法,如轻烃水蒸气转化制氢、水电解制氢、甲醇裂解制氢、煤汽化制氢、氨分解制氢等,技术相对成熟,但是,存在成本高、产出率低、人工效率低等“一高两低”的问题。辽河油田在油气生产过程中,有干气、石脑油等烃类资源伴生,采用此类方法生产氢,可以实现资源的利用率最大化,而且伴生天然气的主要成分是甲烷,利用烃类蒸汽转化即可制成氢,且生产纯度高,生产效率高。 2 天然气制氢工艺原理 天然气的主要加工过程包括常减压蒸馏、催化裂化、催化重整和芳烃生产。同时,包括天然气开采、集输和净化。在一定的压力和一定的高温及催化剂作用下,天然气中烷烃和水蒸气发生化学反应。转化气经过费锅换热、进入变换炉使CO变换成H2和CO2。再经过换热、冷凝、汽水分离,通过程序控制将气体依序通过装有三种特定吸附剂的吸附塔,由变压吸附(PSA)升压吸附N2、CO、CH4、CO2提取产品氢气。降压解析放出杂质并使吸附剂得到再生. 反应式:CH4+H2O→CO+3H2-Q CO+H2O→CO2+H2+Q 主要技术指标。压力: 1.0-2.5MPa;天然气单耗: 0.5-0.56Nm3/ Nm3氢气;电耗: 0.8-1.5/ Nm3氢气;规模: 1000 Nm3/h ~100000 Nm3/h;纯度: 符合工业氢、纯氢(GB/T7445-1995);年运行时间: 大于8000h。 3、天然气水蒸汽重整制氢需解决的关键问题

天然气制氢

天然气制氢 利用天然气制氢,存在成本低,规模效应显著等优点,研究和开发更为先进的天然气制氢新工艺技术是解决廉价氢源的重要保证。天然气作为优质、洁净的工业能源,在我国能源发展过程中具有重要的战略意义。因为天然气不仅是人们日常生活的重要燃料,同时也是众多化工次产品的基础性原料。 天然气制氢就是众多天然气产品中的一种,辽河油田作为全国第三大油气田,本身就具有丰富的天然气资源,特别是从事油气集中处理企业,我们在油气生产过程中,能够生产出相当规模的伴生干气,对于天然气深加工具有得天独厚的条件,对于推进天然气制氢工艺的开发推广具有更为广泛的实际意义。 1 天然气制氢的选择理论分析 氢作为一种二次化工产品,在医药、精细化工、电子电气等行业具有广泛的用途。特别是氢作为燃料电池的首选燃料,在未来交通和发电领域将具有广阔的市场前景,在未来能源结构中将占有越来越重要的位置。采用传统制氢的方法,如轻烃水蒸气转化制氢、水电解制氢、甲醇裂解制氢、煤汽化制氢、氨分解制氢等,技术相对成熟,但是,存在成本高、产出率低、人工效率低等“一高两低”的问题。辽河油田在油气生产过程中,有干气、石脑油等烃类资源伴生,采用此类方法生产氢,可以实现资源的利用率最大化,而且伴生天然气的主要成分是甲烷,利用烃类蒸汽转化即可制成氢,且生产纯度高,生产效率高。 2 天然气制氢工艺原理 天然气的主要加工过程包括常减压蒸馏、催化裂化、催化重整和芳烃生产。同时,包括天然气开采、集输和净化。在一定的压力和一定的高温及催化剂作用下,天然气中烷烃和水蒸气发生化学反应。转化气经过费锅换热、进入变换炉使CO变换成H2和CO2。再经过换热、冷凝、汽水分离,通过程序控制将气体依序通过装有三种特定吸附剂的吸附塔,由变压吸附(PSA)升压吸附N2、CO、CH4、CO2提取产品氢气。降压解析放出杂质并使吸附剂得到再生. 反应式:CH4+H2O→CO+3H2-Q CO+H2O→CO2+H2+Q 主要技术指标。压力:1.0-2.5MPa;天然气单耗: 0.5-0.56Nm3/ Nm3氢气;电耗: 0.8-1.5/ Nm3氢气;规模: 1000 Nm3/h ~100000 Nm3/h;纯度: 符合工业氢、纯氢(GB/T7445-1995);年运行时间: 大于8000h。 3、天然气水蒸汽重整制氢需解决的关键问题 天然气水蒸汽重整制氢需吸收大量的热,制氢过程能耗高,燃料成本占生产成本的50-70%。辽河油田在该领域进行了大量有成效的研究工作,在油气集输企业建有大批工业生产装置,考虑到氢在炼厂和未来能源领域的应用,天然气水蒸气转化工艺技术不能满足未能满足大规模制氢的要求。因此研究和开发更为先进的天然气制氢新工艺技术是解决廉价氢源的重要保证,新工艺技术应在降低生产装置投资和减少生产成本方面应有明显的突破。 4、天然气制氢新工艺和新技术分析 天然气绝热转化制氢。该技术最突出的特色是大部分原料反应本质为部分氧化反应,控速步骤已成为快速部分氧化反应,较大幅度地提高了天然气制氢装置的生产能力。天然气绝热转化制氢工艺采用廉价的空气做氧源,设计的含有氧分布器的反应器可解决催化剂床层热点问题及能量的合理分配,催化材料的反应稳定性也因床层热点降低而得到较大提

相关主题
文本预览
相关文档 最新文档