当前位置:文档之家› 盖革氏计数器的结构及工作原理

盖革氏计数器的结构及工作原理

盖革氏计数器的结构及工作原理

盖革计数器是根据射线对气体的电离性质设计成的。其探测器(称“盖革管”)的通常结构是在一根两端用绝缘物质密闭的金属管内充入稀薄气体(通常是掺加了卤素的稀有气体,如氦、氖、氩等),在沿管的轴线上安装有一根金属丝电极,并在金属管壁和金属丝电极之间加上略低于管内气体击穿电压的电压。

这样在通常状态下,管内气体不放电;而当有高速粒子射入管内时,粒子的能量使管内气体电离导电,在丝极与管壁之间产生迅速的气体放电现象,从而输出一个脉冲电流信号。通过适当地选择加在丝极与管壁之间的电压,就可以对被探测粒子的最低能量,从而对其种类加以甄选。

盖革计数器也可以用于探测γ射线,但由于盖革管中的气体密度通常较小,高能γ射线往往在未被探测到时就已经射出了盖革管,因此其对高能γ射线的探测灵敏度较低。在这种情况下,碘化钠闪烁计数器则有更好的表现。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/ea3769521.html,/

约翰逊计数器

环形计数器是由移位寄存器加上一定的反馈电路构成的,用移位寄存器构成环形计数器的一般框图见图23-5-1,它是由一个移位寄存器和一个组合反馈逻辑电路闭环构成,反馈电路的输出接向移位寄存器的串行输入端,反馈电路的输入端根据移位寄存器计数器类型的不同,可接向移位寄存器的串行输出端或某些触发器的输出端。 图23-5-1 移位寄存器型计数器方框图 23.5.1 环形计数器 23.5.1.1 电路工作原理 图23-5-2为一个四位环形计数器,它是把移位寄存器最低一位的串行输出端Q1反馈到最高位的串行输入端(即D触发器的数据端)而构成的,环形计数器常用来实现脉冲顺序分配的功能(分配器)。 假设寄存器初始状态为[Q4Q3Q2Q1]=1000,那么在移位脉冲的作用下,其状态将按表23-11 中的顺序转换。 当第三个移位脉冲到来后,Q1=1,它反馈到D4输入端,在第四个移位脉冲作用下Q4=1,回复到初始状态。表23-11中的各状态将在移位脉冲作用下,反复在四位移位寄存器中不断循环。

由上述讲讨论可知,该环形计数的计数长度为N=n。和二进制计数器相比,它有2n-n个状态没有利用,它利用的有效状态是少的。 23.5.1.2 状态转换图和工作时序 表23-11中是以1000为初始状态的,它所对应的状态转换图见图23-5-3。如果移位寄存器中的初始状态不同,就会有不同的状态转换图。图23-5-4给出了四位环形计数器可能有的其它几种状态转换图。 图23-5-3 状态转换图 (a) (b) (c) (d) 图23-5-4 四位环行计数器其它的状态转换图 图23-5-4(a)、(b)、(c)三个状态转换图中各状态是闭合的,相应的时序为循环时序。当计数器处于图23-5-4(d)所示的状态0000或1111时,计数器的状态将不发生变化。这两个状态称为悬态或死态。 四位环形计数器可能有这么多不同的循环时序,是我们不希望的,只能从这些循环时序中选出一个来工作,这就是工作时序,或称为正常时序,或有效时序。其它末被选中的循环时序称为异常时序或无效时序。一般选图23-5-3的时序为工作时序,因为它只循环一个“1”,不用经过译码就可从各触发器的Q端得到顺序脉冲输出,参看图23-5-5。

控制器的工作原理介绍

控制器的工作原理介绍 控制器是指按照预定顺序改变主电路或控制电路的接线和改变电路中电阻值来控制电动机的启动、调速、制动和反向的主令装置。由程序计数器、指令寄存器、指令译码器、时序产生器和操作控制器组成,它是发布命令的“决策机构”,即完成协调和指挥整个计算机系统的操作。 控制器的分类有很多,比如LED控制器、微程序控制器、门禁控制器、电动汽车控制器、母联控制器、自动转换开关控制器、单芯片微控制器等。 1.LED控制器(LED controller):通过芯片处理控制LED灯电路中的各个位置的开关。控制器根据预先设定好的程序再控制驱动电路使LED阵列有规律地发光,从而显示出文字或图形。 2.微程序控制器:微程序控制器同组合逻辑控制器相比较,具有规整性、灵活性、可维护性等一系列优点,因而在计算机设计中逐渐取代了早期采用的组合逻辑控制器,并已被广泛地应用。在计算机系统中,微程序设计技术是利用软件方法来设计硬件的一门技术。 3.门禁控制器:又称出入管理控制系统(Access Control System) ,它是在传统的门锁基础上发展而来的。门禁控制器就是系统的核心,利用现代的计算机技术和各种识别技术的结合,体现一种智能化的管理手段。 4.电动汽车控制器:电动车控制器是用来控制电动车电机的启动、运行、进退、速度、停止以及电动车的其它电子器件的核心控制器件,它就象是电动车的大脑,是电动车上重要的部件。 上述只是简单的介绍了几种控制器的名称和主要功能,控制器的种类繁多、技术不同、领域不同。 在控制器领域内,高标科技作为一家国家级的高新企业,其主打产品是电动车控制器,并且在电动车控制领域内占有很重要的地位,之前已经说到电动车控制器是用来控制电动车电机的启动、运行、进退、速度、停止以及电动车的其它电子器件的核心控制器件,它就象是电动车的大脑,是电动车上重要的部件。高标科技在这里为大家介绍一下高标控制器的基本工作原理: (一)高标科技电动车控制器的结构 电动车控制器是由周边器件和主芯片(或单片机)组成。周边器件是一些功能

计数器工作原理及应用

计数器工作原理及应用 除了计数功能外,计数器产品还有一些附加功能,如异步复位、预置数(注意,有同步预置数和异步预置数两种。前者受时钟脉冲控制,后者不受时钟脉冲控制)、保持(注意,有保持进位和不保持进位两种)。虽然计数器产品一般只有二进制和十进制两种,有了这些附加功能,我们就可以方便地用我们可以得到的计数器来构成任意进制的计数器。下面我们举两个例子。在这两个例子中,我们分别用同步十进制加法计数器74LS160构成一个六进制计数器和一个一百进制计数器。 因为六进制计数器的有效状态有六个,而十进制计数器的有效状态有十个,所以用十进制计数器构成六进制计数器时,我们只需保留十进制计数器的六个状态即可。74LS160的十个有效状态是BCD编码的,即0000、0001、0010、0011、0100、0101、0110、0111、1000、1001[图5-1]。 图5-1 我们保留哪六个状态呢?理论上,我们保留哪六个状态都行。然而,为了使电路最简单,保留哪六个状态还是有一点讲究的。一般情况下,我们总是保留0000和1001两个状态。因为74LS160从100 1变化到0000时,将在进位输出端产生一个进位脉冲,所以我们保留了0000和1001这两个状态后,我们就可以利用74LS160的进位输出端作为六进制计数器的进位输出端了。于是,六进制计数器的状态循环可以是0000、0001、0010、0011、0100和1001,也可以是0000、0101、0110、0111、1000和1001。我们不妨采用0000、0001、0010、0011、0100和1001这六个状态。 如何让74LS160从0100状态跳到1001状态呢?我们用一个混合逻辑与非门构成一个译码器[图5. 3.37b],当74LS160的状态为0100时,与非门输出低电平,这个低电平使74LS160工作在预置数状态,当下一个时钟脉冲到来时,由于等于1001,74LS160就会预置成1001,从而我们实现了状态跳跃。

盖勒-弥勒计数器和放射性探测实验方案

盖勒-弥勒计数器和放射性探测实验方案 一.实验目的 1.理解盖革—弥勒计数器的工作原理和掌握测量方法; 2.了解核辐射计数(放射衰变)的统计分布规律及计数率测定的标准偏差计算方法。 二.实验内容 1.测定盖革—弥勒计数器的工作原理和掌握测量方法; 2.用盖革—弥勒计数器测定放射源的强度及其衰变规律。 三.实验原理 1.盖革-弥勒计数器的工作原理 盖革-弥勒计数器简称G-M计数器。它由G-M计数管、高压电源和定标器组成。常见的G-M计数管,是在一密封的玻璃管内,中心张紧一根钨丝作为阳极,紧贴玻璃管的内表面装一金属圆筒作为阴极。管内充以惰性气体。 用G-M计数管作测量时,高压电源通过高电阻R加在计数管的两极上。于是,在管内的两极间产生一柱对称电场,愈靠近阳极,电场愈强。当有粒子射入计数管后,将引起管内的气体电离,产生少量的离子对。但所产生的负离子(实际上是电子)被电场加速向阳极运动。在趋向阳极的过程中,与气体分子多次发生碰撞,打出很多次极电子。这些次极电子仍可获得足够的能量又产生新的电离,因此在阳极附近,次极电子急剧倍增,出现所谓“雪崩”现象,同时,雪崩过程向阳极丝两端扩展,从而导致整个计数管放电。 由于电场在阳极附近最强,所以绝大多数离子对是在阳极附近产生的,在电场作用下,电子的迁移速度比正离子大得多,很快趋向阳极被中和,而正离子还仍然包围着阳极,形成所谓“正离子鞘”。正离子鞘大大削弱了阳极附近的电场,从而使电子暂时失去电离气体分子的能量,雪崩过程就自动停止。之后,正离子鞘在电场作用下向阴极运动。 计数管的两极间具有一定的电容,加上高电压后使两面三刀极带有一定量值的电荷。随着正离子鞘运动到阴极中和后,两极上的电荷量将减少,阳极电位降低,于是高压电源通过电阻R向计数管充电,使阳极电位得到恢复,从而在阳极上得到一个负电压脉冲。脉冲的大小决定于计数管中的场强,而与入射粒子引起的原始离子对的数目无关(在计数评区内)。只要脉冲幅度足以触发定标器,定标器就记录下这个负脉冲,作为一次计数。 正离子到达阴极后会从阴极上打出电子,因为这时阳极附近的电场已经恢复,被打出的电子经过电场加速又会引起计数管放电。这样只要有一个辐射粒子射入计数管,将会引起一次又一次循环不断的放电,从而使计数管无法再记录第二个入射的粒子。 为了使第一次放电后不再引起下一次放电,就在计数客内加入少量能使放电猝来的其他气体。当第一次放电后形成的正离子鞘向阴极运动途中,和猝灭气体分子碰撞,使其电离、隋性气体离子吸收其放出的电子而成为中性分子。于是到达阴极的几乎全是猝灭气体的正离子,它们吸收阴极上的早子使自身离解成小分子,而不打出电子,第二次放电被猝灭。 计数管每计数一次,就有一部分猝灭气体分子被电离,因此,其浓度逐渐降低。在正常条件下,这类管子达107—108次以后,就不能猝灭第二次放电了。 2.G-M计数管的坪特性

计数器在实际生活中的应用

计数器在实际生活中的应用 华中科技大学文华学院10环境工程2班 100205021126 黄丹 【关键词】计数器生活应用发展 【内容摘要】计数器除了计数功能外,计数器产品还有一些附加功能,可以方便地用我们可以得到的计数器来构成任意进制的计数器。智能计数器是未来计数器发展的方向。 计数是一种最简单基本的运算,计数器就是实现这种运算的逻辑电路,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时兼有分频功能,计数器是由基本的计数单元和一些控制门所组成,计数单元则由一系列具有存储信息功能的各类触发器构成,这些触发器有RS触发器、T触发器、D触发器及JK触发器等。 如果按照计数器中的触发器是否同时翻转分类,可将计数器分为同步计数器和异步计数器两种。如果按照计数过程中数字增减分类,又可将计数器分为加法计数器、减法计数器和可逆计数器,随时钟信号不断增加的为加法计数器,不断减少的为减法计数器,可增可减的叫做可逆计数器。另外还有很多种分类方法。 计数器除了计数功能外,计数器产品还有一些附加功能,如异步复位、预置数(有同步预置数和异步预置数两种。前者受时钟脉冲控制,后者不受时钟脉冲控制)、保持(有保持进位和不保持进位两种)。虽然计数器产品一般只有二进制和十进制两种,有了这些附加功能,我们就可以方便地用我们可以得到的计数器来构成任意进制的计数器。 计数器在数字系统中应用广泛,如在电子计算机的控制器中对指令地址进行计数,以便顺序取出下一条指令,在运算器中作乘法、除法运算时记下加法、减法次数,又如在数字仪器中对脉冲的计数等等。计数器可以用来显示产品的工作状态,一般来说主要是用来表示产品已经完成了多少份的折页配页工作。它主要的指标在于计数器的位数,常见的有3位和4位的。很显然,3位数的计

盖革计数器基本原理

蓋革計數器基本原理 蓋革-牟勒計數器( G ei ger-M uel l er count er)俗稱G-M計數器或簡稱為蓋革管(G ei ger t ube),是現存幾種陳舊的輻射偵檢器之一。在1928年由蓋革(Geiger)和牟勒(Mueller)所提出,其基本的結構是包括兩個電極,外電極(負極)為空心圓柱,內電極(正極)則是位於圓柱內中心軸的細金屬線,在兩電極間則是充滿氣體(一般為鈍氣)。 一個典型的Tow ns end aval anche是由一單獨的原始電子所產生,而許多激態的氣體分子是由電子碰撞二次離子所形成。激動態的分子大約是在幾毫微秒的時間內降回基態,至於激動態與基態間的能量差,則釋出光子的方式帶出,其波長大約是介於可見光和紫外線之間。這些光子所帶有的能量是傳遞連鎖反應的主要關鍵,亦即構成蓋革放電的主要機制。當光子經由光電吸收作用而與陰極表面的氣體或管內其他位置的氣體互相作用時,則釋出一新的電子,此電子隨即遷移至陽極,然後再觸發另一次的突崩(avalanche)。 通常產生所有離子對和激動態分子所需的時間,對一突崩而言,僅為幾毫微秒(~10-9sec)。因為激動態分子的壽命相當的短且光子以光速前進,所以管內兩次自由電子( s econd f r ee el ect r on)的產生幾乎是符合於首次突崩,而這些兩次自由電子僅需漂移至放大區即可產生二次突崩,其所需的時間亦僅需一微秒的一小部分而已,因此對整個蓋革放電過程所需的時間而言,大約也僅需一微秒而已。從單一突崩的發生到脈衝完整輸出所需的時間,較上述的蓋革放電為長,所以此時的脈衝振幅僅簡單地表為蓋革放電所產生全部電荷的總和。

浙江省“七彩阳光”新高考研究联盟2021届高三上学期期中联考试题 物理 Word版含答案

绝密★考试结束前 浙江省“七彩阳光”新高考研究联盟期中联考 高三物理学科试题 考生须知: 1.本试题卷分选择题和非选择题两部分,共8页,满分100分,考试时间90分钟。 2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号。 3.所有答案必须写在答题卷上,写在试卷上无效。 4.考试结束后,只需上交答题卷。 选择题部分 一、选择题I(本题共13小题,每小题3分,共39分,每小题给出的四个备选项中,只有一项是符合题目要求的) 1.下列由科学家命名国际单位对应的物理量是矢量 A.韦伯 B.特斯拉 C.安培 D.焦耳 2.小明在手机中“12306”APP上查找到一辆从温岭站到杭州东站的动车时间表,如图所示,已知温岭到杭州的路程约为300km,下列说法正确的是 A.动车进站过程中可以把动车看做质点 B.从温岭站到杭州东站的平均速度为120km/h C.若动车出站速度从零加速到200km/h用时5min,动车启动加速度约为0.2m/s2 D.若动车进站减速过程中,动车对乘客的作用力竖直向上 3.小孩用一轻质弹簧拉水平地面上的箱子,但没有拉动,已知弹簧与水平面有一定夹角θ(且θ≠0),以下说法正确的是

A.箱子对地面的压力大于箱子的重力 B.小孩对弹簧的拉力大小等于箱子受到的摩擦力大小 C.小孩对弹簧的拉力和箱子对弹簧的拉力是一对相互作用力 D.小孩受到的地面摩擦力大小和箱子受到地面的摩擦力大小相同 4.关于原子物理知识方面,下列说法正确的是 A.随着温度的升高,黑体辐射强度的极大值向波长较长的方向移动 B.盖革-米勒计数器不仅能用来计数,还能区分射线的种类 C.质子、中子、电子都参与强相互作用 D.原子中电子的坐标没有确定的值,只能说某时刻电子在某点附近单位体积内出现的概率 5.图甲是某燃气灶点火装置的原理图。转换器将直流电压转换为图乙所示的正弦交流电压,并加在一理想变压器的原线圈上,电压表为交流电表。当变压器副线圈电压值大于5000V时,就会在钢针和金属板间引发电火花进而点燃气体。则下列说法正确的是 A.开关闭合后,电压表示数为5V B.转换器产生的交流电在1s时间内电流变化5次 C.若原、副线圈匝数比至少满足1:1000才能使钢针放电 D.若原、副线圈匝数比为1:2000,在一个周期内钢针放电时间为0.1s 6.“跳楼机”以惊险刺激深受年轻人的欢迎,它的基本原理是将巨型娱乐器械由升降机送到离地面一定高处,然后让座舱自由落下。一段时间后,制动系统开始启动,使座舱均匀减速,到达地面时刚好停下,下列说法正确的是

(工作分析)计数器工作原理的模式化分析

(工作分析)计数器工作原理的模式化分析

计数器工作原理的模式化分析 时序逻辑电路是《脉冲和数字电路》这门课程的重要组成部分,计数器是时序逻辑电路基础知识的实际应用,其应用领域非常广泛。计数器原理是技工学校电工电子专业学生必须重点掌握的内容,也是本课程的考核重点,更是设计计数器或其他电子器件的基础。 但近年来技校学生的文化理论基础和理解能力普遍较差,按照课件体系讲授计数器这个章节的知识,超过70%的学生听不懂。 我先后为四届学生讲授过这门课,于教学实践中摸索出壹套分析计数器的方法——模式化分析,即把分析步骤模式化,引导学生按部就班地分析计数器。用这种方法分析,我只要以其中壹种计数器(如异步二进制计数器)为例讲解,学生便能够自行分析其他计数器。 教学实践证明,用这种方法讲授计数器知识,学生比较感兴趣,觉得条理清晰,易于理解,掌握起来比较轻松。这种方法仍有壹个好处,不管是同步计数器仍是异步计数器,不管是二进制计数器仍是十进制计数器,不管是简单的计数器仍是复杂的计数器,只要套用这种方法,计数器工作原理迎刃而解。即使是平时基础很差的学生,只要记住几个步骤,依葫芦画瓢,也能把计数器原理分析出个大概来。 一、明确计数器概念 分析计数器当然要先清楚什么是计数器啦。书上的概念是:

计数器是数字系统中能累计输入脉冲个数的数字电路。我告诉学生,计数器就是这样壹种电子设备:把它放于教室门口,每个进入教室的同学均于壹个按钮上按壹下,它就能告诉你壹共有多少位同学进入教室。其中,每个同学按壹下按钮就是给这个设备壹个输入信号,N个同学就给了N个信号,这N个信号就构成计数器的输入CP脉冲,计数器要统计的就是这个CP脉冲系列的个数。当然,如果没有接译码器,计数器的输出端显示的是二进制数而非十进制数,比如有9位同学进入教室,它不显示“9”,而是显示“1001”。 随后,我简要介绍了计数器的构成和分类,且强调,计数器工作前必须先复位,即每个触发器的输出端均置零。 二、回顾基础知识 分析计数器要用到触发器的关联知识,其中JK触发器最常用,偶尔用到T触发器和D触发器。因此,介绍完计数器概念后,我不急于教学生分析其原理,而是先提问JK、T、D触发器的关联知识,包括触发器的逻辑符号、特性方程、特性表等。 由于计数器的控制单元由逻辑门电路构成,分析前仍要简要回顾壹下和、或、非等常用逻辑门电路的关联知识。另外,用模式化方法分析计数器仍要用到逻辑代数的运算方法、逻辑函数的化简方法等关联知识。 三、画出解题模板 准备工作做完了,下面进入核心部分——列出分析计数器的

单片机原理课后习题整理

第1章思考题及习题1参考答案 一、填空 1. 除了单片机这一名称之外,单片机还可称为或。答:微控制器,嵌入式 控制器. 3. AT89S52单片机工作频率上限为 MHz。答:33 MHz。 三、判断对错 1. STC系列单片机是8051内核的单片机。对 2. AT89S52与AT89S51相比,片内多出了4KB的Flash程序存储器、128B的RAM、1个中断 源、1个定时器(且具有捕捉功能)。对 3. 单片机是一种CPU。错 4. AT89S52单片机是微处理器。错 5. AT89C52片内的Flash程序存储器可在线写入,而AT89S52则不能。错 6. 为AT89C51单片机设计的应用系统板,可将芯片AT89C51直接用芯片AT89S51替换。对 7. 为AT89S51单片机设计的应用系统板,可将芯片AT89S51直接用芯片AT89S52替换。对 8. 单片机的功能侧重于测量和控制,而复杂的数字信号处理运算及高速的测控功能则是DSP 的长处。对 四、简答 4. 解释什么是单片机的在系统编程(ISP)与在线应用编程(IAP)。 答:单片机的在系统编程ISP(In System Program),也称在线编程,只需一条与PC机USB口或串口相连的ISP下载线,就可把仿真调试通过的程序代码从PC机在线写入单片机的Flash存储器内,省去了编程器。在线应用编程(IAP)就是可将单片机的闪存内的应用程序在线修改升级。

第2章思考题及习题2参考答案 一、填空 1. 在AT89S52单片机中,如果采用6MHz晶振,一个机器周期为。答:2μs 2. AT89S52单片机的机器周期等于个时钟振荡周期。答:12 9. AT89S52单片机程序存储器的寻址范围是由程序计数器PC的位数所决定的,因为AT89S52单片机的PC是16位的,因此其寻址的范围为 KB。答:64 10. AT89S52单片机复位时,P0~P3口的各引脚为电平。答:高 11. AT89S52单片机使用片外振荡器作为时钟信号时,引脚XTAL1接,引脚XTAL2的接法是。答:片外振荡器的输出信号,悬空 二、判断对错 1. 使用AT89S52单片机且引脚EA=1时,仍可外扩64KB的程序存储器。错 2. 区分片外程序存储器和片外数据存储器的最可靠的方法是看其位于地址范围的低端还是高端。错 3. AT89S52单片机共有32个特殊功能寄存器,它们的位都是可以用软件设置的,因此,都

高二3-5原子核练习

高中物理选修3-5同步练习 原子核的组成 2.下列哪些事实表明原子核具有复杂的结构() A.α粒子的散射实验 B.天然放射现象 C.阴极射线的发现 D.X射线的发现 3.有三种射线,射线a很容易穿透黑纸,速度接近光速;射线b可穿透几十厘米厚的混凝土,能量很高;用射线c照射带电的导体,可使电荷很快消失。则下列判断中正确的是() A.a是α射线,b是β射线,c是γ射线 B.a是β射线,b是γ射线,c是α射线 C.a是γ射线,b是α射线,c是β射线 D.a是γ射线,b是β射线,c是α射线 4.下列哪些现象能说明射线来自原子核() A.三种射线的能量都很高 B.放射线的强度不受温度、外界压强等物理条件的影响 C.元素的放射性与所处的化学状态(单质、化合态)无关 D.α射线、β射线都是带电的粒子流 5.若用x代表一个中性原子中核外的电子数,y代表此原子核内的质子数,z代表此原子的原子核内的中子数,则对23490Th的原子来说() A.x=90y=90z=234 B.x=90y=90z=144 C.x=144y=144z=90 D.x=234y=234z=324 6.氢有三种同位素,分别是氕11H、氘21H、氚31H,则() A.它们的质子数相等B.它们的核外电子数相等 C.它们的核子数相等D.它们的中子数相等 8.如图所示,天然放射性元素,放出α、β、γ三种射线同时射入互相垂直的匀强电场和匀强磁场中,射入时速度方向和电场、磁场方向都垂直,进入场区后发现β射线和γ射线都 沿直线前进,则α射线() A.向右偏B.向左偏 C.直线前进D.无法判定

9.如图所示,R 是一种放射性物质,虚线方框内是匀强磁场,LL ′是厚纸板,MN 是荧光屏,实验时,发现在荧光屏的O 、P 两点处有亮斑,由此可知磁场的方向、到达O 点的射线种类、到达P 点的射线种类应属于下表中的( ) 10.如图所示,x 为未知的放射源,L 为薄铝片,若在放射源和计数器之间加上L 后,计数器的计数率大幅度减小;在L 和计数器之间再加竖直向下的匀强磁场,计数器的计数率不变,则x 可能是( ) A .α和β的混合放射源 B .纯α放射源 C .α和γ的混合放射源 D .纯γ放射源 11.如图所示,是利用放射线自动控制铝板厚度的装置,假如放射源能放射出α、β、γ三种射线,而根据设计,该生产线压制的是3 mm 厚的铝板,那么是三种射线中的哪种射线对控制铝板厚度起主要作用?当探测接收器单位时间内接收到的放射性粒子的个数超过标准值时,将会通过自动装置将M 、N 两个轧辊间的距离如何调节? 12.质谱仪是一种测定带电粒子的质量及分析同位素的重要工具,它的构造原理如图所示,离子源S 产生的各种不同正离子束(速度可看成为零),经加速电场加速后垂直进入有界匀强磁场,到达记录它的照相底片P 上,设离子在P 上的位置到入口处S 1的距离为x 。 (1)设离子质量为m 、电荷量为q 、加速电压为U 、磁感应强度大小为B ,求x 的大小; (2)氢的三种同位素11H 、21H 、31H 从离子源S 出发,到达照相底片的位置距入口处S 1的距 离之比x H x D x T 为多少?

计数器原理分析及应用实例

计数器原理分析及应用实例 除了计数功能外,计数器产品还有一些附加功能,如异步复位、预置数(注意,有同步预置数和异步预置数两种。前者受时钟脉冲控制,后者不受时钟脉冲控制)、保持(注意,有保持进位和不保持进位两种)。虽然计数器产品一般只有二进制和十进制两种,有了这些附加功能,我们就可以方便地用我们可以得到的计数器来构成任意进制的计数器。下面我们举两个例子。在这两个例子中,我们分别用同步十进制加法计数器74LS160构成一个六进制计数器和一个一百进制计数器。 因为六进制计数器的有效状态有六个,而十进制计数器的有效状态有十个,所以用十进制计数器构成六进制计数器时,我们只需保留十进制计数器的六个状态即可。74LS160的十个有效状态是BCD编码的,即0000、0001、0010、0011、0100、0101、0110、0111、1000、1001[图5-1]。 图5-1 我们保留哪六个状态呢?理论上,我们保留哪六个状态都行。然而,为了使电路最简单,保留哪六个状态还是有一点讲究的。一般情况下,我们总是保留0000和1001两个状态。因为74LS160从1001变化到0000时,将在进位输出端产生一个进位脉冲,所以我们保留了0000和1001这两个状态后,我们就可以利用74LS160的进位输出端作为六进制计数器的进位输出端了。于是,六进制计数器的状态循环可以是0000、0001、0010、0011、0100和1001,也可以是0000、0101、0110、0111、1000和1001。我们不妨采用0000、0001、0010、0011、0100

和1001这六个状态。 如何让74LS160从0100状态跳到1001状态呢?我们用一个混合逻辑与非门构成一个译码器[图5.3.37b],当74LS160的状态为0100时,与非门输出低电平,这个低电平使74LS160工作在预置数状态,当下一个时钟脉冲到来时,由于等于1001,74LS160就会预置成1001,从而我们实现了状态跳跃。 图5.3.37b用置数法将74160接成六进制计数器(置入1001) 比这个方案稍微繁琐一点的是利用74LS160的异步复位端。下面这个电路中[图5.3.34],也有一个由混合逻辑与非门构成的译码器。 图5.3.34用置零法将74LS160接成六进制计数器

试验1盖革—弥勒计数器的特性预习提要试验目的试验仪器

实验1 盖革—弥勒计数器的特性 [ 预习提要 ] 1.弄清实验原理及操作方法和注意事项。 2.坪曲线怎样进行测绘?测量中要注意什么问题? 3.如何由坪曲线求得G-M计数管的性能参量和确定工作电压? 4.设计各项实验数据记录表格。 [ 实验目的 ] 1.了解盖革—弥勒计数器的结构、原理和主要性能参数的测定方法,了解核辐射探测常识。2.熟悉放射性测量误差的表示方法及其与测量次数和时间之间的关系。 3.应用微机系统处理实验数据。 [ 实验仪器 ] 盖革—弥勒计数管1支,长寿命放射源1个,铅室1个,FJ-367型通用闪烁探头1个,FH-408型自动定标器2台,长余辉示波器1台,微机及计算软件1套。 [ 实验基础知识 ] 在原子核物理领域内的实验技术可分为三个方面:加速器技术、反应堆技术和探测技术。它们构成一套完整的和物理实验技术。加速器核反应堆是产生核辐射的工具,也就是粒子源。探测技术则包括探测和研究这些核辐射的性质,以及它们与物质的相互作用等课题。在我们做得和物理实验中,主要是掌握一些辐射探测技 术。近四十年来探测技术发展很快,就放射性计数测量的装置就有各式各样的很多,如盖革—弥勒计数器(简称G-M计数器),正比计数器,脉冲电离室,闪烁计数器,半导体探测器等等。本实验要介绍和使用的G-M计数器是核辐射探测器中较简单的一种。它本身只能用于测定辐射粒子的数目。它是最早使用的核辐射探测器,近年来随着闪烁计数器和半导体探测器的发展,其重要性有所下降,但由于它设备简单,使用方便,仍广泛用于有关放射性测量的工作中。 阴 管 阳极a. 钟罩型 b. 长圆管形型 图1-1-1 G-M计数管

实验八程序计数器PC 实验

实验八程序计数器PC 实验 【实验要求】 利用CP226实验箱上的K16…K23 开关做为DBUS 数据的输入端,其它开关做为控制信号的输入端,实现程序计数器PC预置与加1功能。 【实验目的】 掌握模型机中程序计数器PC的功能及其功能实现的工作原理与控制方法,程序执行过程中顺序和跳转的实现。 【主要集成电路芯片及其逻辑功能】 1. 计数器74HC161 本实验所涉及的主要集成电路芯片之一为74HC161,用于实现程序计数器PC预置与加1功能。74HC161是四位二进制可预置同步加法计数器,芯片包含一条时钟输入线CP、四条数据输入线(P0~P3)、一条清零信号线MR、二条使能信号线CEP和CET、一条预置信号线PE、四条数据输出线(Q0~Q3)、一条进位输出TC(TC= Q0·Q1·Q2·Q3·CET)。74HC161引脚结构如下图所示,其功能逻辑如下表所示。 2. 数据选择器74HC151 本实验所涉及的主要集成电路芯片之二为74HC151,用于指令执行过程中形成跳转条件。74HC151为互补输出的8选1数据选择器,芯片包含三条选择控制线(地址端,S0、S1、S2)、

8 条数据输入线(I0~I7)、二条互反输出线(Z 、~Z)、二条使能信号线E 。74HC161引脚结构如下图所示,其功能逻辑如下表所示。 【实验涉及的逻辑电路及原理】 1. 程序计数器PC 程序计数器PC 是由两片74HC161构成的八位带预置计数器,预置数据来自于数据总线。PC 输出可以通过由PCOE(低电平有效)控制的74HC245送到地址总线,还可以通过由PCOE_D (低电平有效)控制的另一片74HC245送回到数据总线。程序计数器PC 实验原理逻辑电路如下图所示,其中PC+1、LDPC 、RST 、PCOE_D 、PCOE 分别为计数器使能、计数器预置、计数器清0、数据总线收发器使能、地址总线收发器使能控制信号,CK 为脉冲信号。在CPP226实验箱中,PC+1由PCOE 取反产生,LDPC 由指令执行过程中形成跳转条件逻辑电路形成。 当LDPC=0时,在CK 的上升沿,预置数据被打入程序计数器PC 。 当PC+1=1时,在CK 的上升沿,程序计数器PC 加1 D 7 D 7 1 1 1 D 6 D 6 0 1 1 0 D 5 D 5 1 0 1 0 D 4 D 4 0 0 1 0 D 3 D 3 1 1 0 0 D 2 D 2 0 1 0 0 D 1 D 1 1 0 0 0 D 0 D 0 0 0 0 0 1 0 × × × 1 W Y A 0(A) A 1(B) A 2(C) S

高中物理-探测射线的方法课后训练

高中物理-探测射线的方法课后训练 基础巩固 1.用威耳逊云室探测射线,其中粒子在威耳逊云室中径迹直而粗的是( ) A.α粒子B.β粒子 C.γ粒子D.以上都不是 2.关于威耳逊云室探测射线,下述正确的是( ) A.威耳逊云室内充满过饱和蒸气,射线经过时可显示出射线运动的径迹 B.威耳逊云室中径迹粗而直的是α射线 C.威耳逊云室中径迹细而长的是γ射线 D.威耳逊云室中显示粒子径迹原因是电离,所以无法由径迹判断射线所带电荷的正负3.下列说法中错误的是( ) A.威耳逊云室和盖革—米勒计数器都是利用了放射线使气体电离的性质 B.盖革—米勒计数器除了用来计数,还能区分射线的种类 C.用威耳逊云室探测射线时,径迹比较细且常常弯曲的是β粒子的径迹 D.根据气泡室中粒子径迹的照片上记录的情况,可以分析粒子的带电、动量、能量等情况 4.在威耳逊云室中,关于放射源产生的射线径迹,下列说法中正确的是( ) A.由于γ射线的能量大,容易显示其径迹 B.由于β粒子的速度大,其径迹粗而且长 C.由于α粒子的速度小,不易显示其径迹 D.由于α粒子的电离作用强,其径迹直而粗 5.带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹。如图是在有匀强磁场的云室中观察到的粒子的轨迹,a和b是轨迹上的两点,匀强磁场B垂直纸面向里。该粒子在运动时,其质量和电荷量不变,而动能逐渐减少,下列说法正确的是( ) A.粒子先经过a点,再经过b点B.粒子先经过b点,再经过a点 C.粒子带负电D.粒子带正电 能力提升 6.用盖革—米勒计数器测定放射源的放射强度为每分钟405次,若将一张厚纸板放在计数器与放射源之间,计数器几乎测不到射线。10天后再次测量,测得该放射源的放射强度为每分钟101次,则下列关于射线性质及它的半衰期的说法正确的是( ) A.放射源射出的是α射线 B.放射源射出的是β射线 C.这种放射性元素的半衰期是5天 D.这种放射性元素的半衰期是2.5天 7.用α粒子照射充氮的云室,摄得如图所示的照片,下列说法中正确的是( ) A.A是α粒子的径迹,B是质子的径迹,C是新核的径迹 B.B是α粒子的径迹,A是质子的径迹,C是新核的径迹 C.C是α粒子的径迹,A是质子的径迹,B是新核的径迹

双栅极空气计数器猝熄脉宽算法

双栅极空气计数器猝熄脉宽算法! 史仪凯"张海南"王爱军"卢健康 #西北工业大学机械系"陕西西安$%&&$’( 摘要)针对双栅极空气计数器#*+,-(放电猝熄的物理过程"提出了计数器猝熄脉宽的一种新算法.该算法理论简便实用"能够较好地用于计数器的优化设计.算例结果验证了这种算法的有效性. 关键词)猝熄脉宽"计数器"气体放电 中图分类号)/01$234文献标识码),文章编号)%&&&5’$61#’&&&(&’5&%125&2 为了对空气中低能电子#外逸电子7光电子等( 进行准确有效地计数"在研究盖革弥勒计数器 #+8-(的基础上"设计了一种改进型双栅极空气计 数器#*+,-(9%"’:.所谓的双栅极)一个是围绕阳极 的栅极为猝熄栅极"用于熄灭放电;另一个是装在猝 熄栅极与试件间的栅极为抑制栅极"主要用于防止 正离子轰击试件.放电的熄灭和正离子的抑制是靠 加在猝熄栅极和抑制栅极上的正脉冲完成的92"4:.猝 熄时间过长则增加计数器的死时间"增加漏计数.过 短则放电熄灭不彻底"容易造成误计数.因此"脉冲 宽度#即猝熄时间(是一个极其重要的参数.本文在 分析*+,-工作物理过程基础上"提出了猝熄脉冲 宽度的新算法.算例结果表明"该算法不仅与实验数 据完全一致"而且为*+,-控制电路的设计提供了 可靠的理论依据. <=>?@放电工作原理 *+,-的结构如图%所示.阴极通过电阻A接 高压电源.B %为猝熄栅极"初始电压为C%&&D;B ’ 为抑制栅极"初始电压为C1&D. 低能电子由试件发射"在两个栅极和阳极形成电场的作用下向计数器内运动.由于阳极附近电场强度足够大"电子在一个平均自由程内获得足够的能量使气体电离.控制阳极工作电压"计数器工作在+8区"一次放电生成约%&$个正离子电子对.正离子和电子分别顺着和逆着电场方向运动"在阳极上感应出脉冲"如图’所示.当电子运动速度加快时"则形成脉冲的线性部分.如果不加限制"阳离子到达阴极后又会放出二次电子"引起多次放电.利用第一次放电脉冲的线性段"通过隔直电容E引入控制电路.控制电路在放电脉冲的作用下"在B %7B’ 上分别施加C4&&D和F2&D的电压.猝熄栅极电压的迅速升高降低了阳极附近的电场强度"从而使放电很快熄灭.正离子绝大多数在猝熄栅极被中和.少数穿过猝熄栅极"被加有F2&D电压的抑制栅极所吸收.当放电完全被熄灭后"恢复初始工作状态" 以待 图%*+,- 的结构 图’*+,-放电脉冲 ’&&&年6月第%1卷第’期 西北工业大学学报 G H I J K L M H N O H J P Q R S T P S J KU H M V P S W Q K X W L M Y K X Z S J T X P V 8L V’&&& D H M3%1O H3’ !收稿日期)%[[1F%’F%\基金项目)航空科学基金资助#[\]62%2&(作者简介)史仪凯#%[6’F(男"陕西省兴平市人"西北工业大学教授"主要从事机电控制及自动化研究. 万方数据

计算机组成原理实验报告4-微程序计数器uPC实验

2.4 微程序计数器uPC实验 姓名:孙坚学号:134173733 班级:13计算机日期:2015.5.15 一.实验要求:利用CPTH实验仪上的K16..K23 开关做为DBUS的数据,其它开关做为控制信号,实现微程序计数器uPC的写入和加1功能。 二.实验目的:1、了解模型机中微程序的基本概念。 2、了解uPC的结构、工作原理及其控制方法。 三.实验电路:74HC161 是一片带预置的4 位二进制记数器。功能如下:当RST = 0 时,记数器被清0 当IREN = 0 时,在CK的上升沿,预置数据被打入记数器 当IREN = 1 时,在CK的上升沿,记数器加一 TC为进位,当记数到F(1111)时,TC=1 CEP,CET 为记数使能,当CEP,CET=1 时,记数器工作,CEP,CET=0 时,记数器保持原记数值 uPC原理图

uPC工作波形图 在CPTH 中,指令IBUS[7:0]的高六位被接到uPC 预置的高六位,uPC 预置的低两位被置为0。一条指令最多可有四条微指令。 微程序初始地址为复位地址00,微程序入口地址由指令码产生,微程序下一地址有计数器产生。 连接线表 四.实验数据及步骤: 实验1:uPC 加一实验 置控制信号为: 按一次STEP脉冲键,CK产生一个上升沿,数据uPC 被加一。 实验2:uPC 打入实验 二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据12H

置控制信号为: 当EMWR,EMEN=0时,数据总线(DBUS)上的数据被送到指令总线(IBUS)上。 按住STEP脉冲键,CK由高变低,这时寄存器uPC的黄色预置指示灯亮,表明uPC被预置。放开STEP键,CK由低变高,产生一个上升沿,数据10H被写入uPC寄存器。 五.心得体会: 通过这次实验,我们更好的掌握了微程序计数器uPC的结构,工作原理和控制方法。

案例4生活中的放射线

案例6-4 生活中的放射线 三门中学何赛君 一、教学设计思路 根据建构主义学习理论,学生的学习是基于经验基础上的知识建构。学生是知识建构的主体。选修课程的教学应该根据内容特点和要求,通过教学方式和学习方式的多样整合,实现三维目标的整体达成。本课时的教学设计根据内容的实践性和知识性特点,首先采用学生“信息搜集---信息整理---交流分享”的形式获得对放射线天使和魔鬼双重特点的认识。探测射线的方法需要调动学生的已有知识(如射线的电离能力、带电粒子在磁场、电场中的偏转 -辐射个人剂量报警仪等)综合分析,加上威尔逊云室、气泡室、盖革-米勒计数器、xγ 的技术结构,理解难度很大,宜采用教师讲授的方法。实践性作业的设计使课堂教学得以延伸。 二、前期分析 本课题是浙江省首批推荐使用的网络视频选修课程《魔法城探秘-有关核电发展的安全与环境问题的专题活动》的第一讲。放射线是这个课程的一个重要概念。放射线的成分和产生机理如果学生没有学过原子物理知识是陌生的,即使学过原子物理知识的学生,对放射线的了解也是不全面的。在民众谈核色变的背景下,我们的学生要有别于一般的民众,要敢于质疑,要有实事求是的辩证观,不能人云亦云,这就要让我们的学生见多识广,让学生通过实例从较深层次认识放射性的魔鬼与天使的双重特征。要驾驭放射线,使之为民众造福,就得知道放射线的探测方法。作业的设计除了知识性的巩固,还有研究性的作业内容。对改变学习方式,通过渗透与巩固、课堂听课与实践活动想结合的学习方式,增强学习的自主性和主动性。 重点与难点: 1.教学重点 搜集材料,知道放射性的危害和防护,知道放射性在医疗、农业、工业上的应用实例。2.教学难点 知道显示放射线的原理和常见探测方法。 三、教学目标 1.知识与技能 (1)知道放射性的危害和防护措施 (2)能举例说明放射性在医疗、农业、工业上的应用

程序存储器 指令寄存器 程序计数器(PC,IP) 地址寄存器的区别与联系

先明白定义再说区别和原理: 1、程序存储器(program storage) 在计算机的主存储器中专门用来存放程序、子程序的一个区域。 2、指令寄存器(IR ):用来保存当前正在执行的一条指令。当执行一条指令时,先把它从内存取到数据寄存器(DR)中,然后再传送至IR。指令划分为操作码和地址码字段,由二进制数字组成。为了执行任何给定的指令,必须对操作码进行测试,以便识别所要求的操作。指令译码器就是做这项工作的。指令寄存器中操作码字段的输出就是指令译码器的输入。操作码一经译码后,即可向操作控制器发出具体操作的特定信号。 3、程序计数器(PC):为了保证程序(在操作系统中理解为进程)能够连续地执行下去,CPU必须具有某些手段来确定下一条指令的地址。而程序计数器正是起到这种作用,所以通常又称为指令计数器。在程序开始执行前,必须将它的起始地址,即程序的一条指令所在的内存单元地址送入PC,因此程序计数器

(PC)的内容即是从内存提取的第一条指令的地址。当执行指令时,CPU将自动修改PC的内容,即每执行一条指令PC增加一个量,这个量等于指令所含的字节数,以便使其保持的总是将要执行的下一条指令的地址。由于大多数指令都是按顺序来执行的,所以修改的过程通常只是简单的对PC加1。 当程序转移时,转移指令执行的最终结果就是要改变PC的值,此PC值就是转去的地址,以此实现转移。有些机器中也称PC为指令指针IP(Instruction Pointer) 4、地址寄存器:用来保存当前CPU所访问的内存单元的地址。由于在内存和CPU之间存在着操作速度上的差别,所以必须使用地址寄存器来保持地址信息,直到内存的读/写操作完成为止。 当CPU和内存进行信息交换,即CPU向内存存/ 取数据时,或者CPU从内存中读出指令时,都要使用地址寄存器和数据缓冲寄存器。同样,如果我们把外围设备的设备地址作为像内存的地址单元那样来看待,那么,当CPU和外围设备交换信息时,我们同样使用地址寄存器和数据缓冲寄存器。

第十九章第三节探测射线的方法、第四节放射性的应用与防护

第三节探测射线的方法 第四节放射性的应用与防护 [学习目标] 1.知道探测射线的几种方法,了解探测射线的几种仪器. 2.知道核反应及其遵循的规律,会正确书写核反应方程. 3.知道放射性同位素和人工放射性同位素,了解放射性的应用与防护. 一、探测射线的方法(阅读教材P73~P75) 1.探测方法 (1)组成射线的粒子会使气体或液体电离,以这些离子为核心,过饱和的蒸气会产生雾滴,过热液体会产生气泡. (2)射线能使照相乳胶感光. (3)射线能使荧光物质产生荧光. 2.探测仪器 (1)威耳逊云室:①原理:粒子在云室内气体中飞过,使沿途的气体分子电离,过饱和酒精蒸气就会以这些离子为核心凝结成雾滴,于是显示出射线的径迹. ② (2)气泡室:气泡室的原理同云室的原理类似,所不同的是气泡室里装的是液体,如液态氢. 粒子通过过热液体时,在它的周围产生气泡而形成粒子的径迹. (3)盖革—米勒计数器: ①优点:G-M计数器非常灵敏,使用方便. ②缺点:只能用来计数,不能区分射线的种类. 拓展延伸?———————————————————(解疑难) 不同探测方法的对比 威耳逊云室和气泡室都是依据径迹探测射线的性质和种类,而盖革—米勒计数器只能计数,不能区分射线的种类. 1.(1)射线中的粒子与其他物质作用时,产生一些现象,可以显示射线的存在.() (2)云室和气泡室都是应用射线的穿透能力研究射线的径迹.() (3)盖革—米勒计数器既可以统计粒子的数量,也可以区分射线的种类.() 提示:(1)√(2)×(3)× 二、放射性的应用与防护(阅读教材P76~P78)

1.核反应 (1)定义:原子核在其他粒子的轰击下产生新原子核的过程. (2)原子核的人工转变 ①1919年卢瑟福用α粒子轰击氮原子核,产生了氧的一种同位素,同时产生一个质子. ②卢瑟福发现质子的核反应方程: 147N +42He →178O +11H . (3)遵循规律:质量数守恒,电荷数守恒. 2.人工放射性同位素 (1)放射性同位素的定义:有些同位素具有放射性,叫做放射性同位素. (2)人工放射性同位素的发现: ①1934年,约里奥—居里夫妇发现经过α粒子轰击的铝片中含有放射性磷3015P. ②发现磷同位素的方程:42He +2713Al →3015P +10n . 3.放射性同位素的应用与防护 (1)应用射线:应用射线可以测厚度、医疗方面的放射治疗、照射种子培育优良品种等. (2)示踪原子:有关生物大分子的结构及其功能的研究,要借助于示踪原子. (3)辐射与安全:人类一直生活在放射性的环境中,过量的射线对人体组织有破坏作用.要防止放射性物质对水源、空气、用具等的污染. 拓展延伸?———————————————————(解疑难) 1.放射线在我们的生活中无处不在.在合理应用放射性的同时,又要警惕 它的危害,进行必要的防护.过量的放射性会对环境造成污染,对人类和自然产生破坏作用.如图是世界通用的辐射警示标志. 2.(1)衰变和原子核的人工转变都属于核反应.( ) (2)在用到射线时,利用人工放射性同位素和天然放射性物质都可以.( ) (3)用放射性同位素代替非放射性的同位素来制成各种化合物做“示踪原子”.( ) 提示:(1)√ (2)× (3)√

相关主题
文本预览
相关文档 最新文档