当前位置:文档之家› 盖革米勒计数器实验报告

盖革米勒计数器实验报告

盖革米勒计数器实验报告
盖革米勒计数器实验报告

近代物理实验报告

指导教师:得分:

实验时间: 2009 年 10 月 22 日,第九周,周四,第 5-8 节

实验者:班级材料0705 学号 200767025 姓名童凌炜

同组者:班级材料0705 学号 2007670 姓名车宏龙

实验地点:综合楼 507

实验条件:室内温度℃,相对湿度 %,室内气压

实验题目:盖革-米勒计数器

实验仪器:(注明规格和型号)

圆柱形γ计数管一支,自动定标器一台(带高压电源),示波器一台,137Cs放射源一枚。

实验目的:

1.掌握盖革-米勒计数器的结构、原理、使用方法

2.验证核衰变的统计规律,熟悉放射性测量误差的表示方法

实验原理简述:

1.计数管的构造与工作原理

GM计数管有圆柱形和钟罩型两种,其共同结构为

圆筒状的阴极和装在轴线上的阳极丝共同密封在

玻璃管内而成。管内通常充有约10kpa的惰性气

体及相应的猝熄气体。

当带电粒子进入计数管的灵敏区域时,将引起管

内气体的电离,电力产生的电子在电场加速下向

阳极运动,一方面因电场加速获得能量,一方面

又因与气体分子碰撞而损失能量。在充有猝熄气

体的计数管中,这些光子大部分将被猝熄气体所吸收,因而达不到阴极,但却会逐步沿铅丝极方向扩展并产生新的电子(光电作用),这些电子又会进一步产生雪崩式的放电。

当电子到达阳极的时候,因为正离子移动的很慢,基本上没有移动能力,从而形成了围绕着丝级的正离子鞘。

由于放电后电子中和了阳极上的一部分电荷, 使得阳极电位降低, 随着正粒子向着阳极运动, 高压电源便通过电阻R 向计数管充电, 使得阳极电位回复, 在阳极上变得到一个负的脉冲电压。 这个负的脉冲电压, 便起到了计数的显示作用。

2. 计数管的特性

2.1 坪特性——包括起始电压、 坪长、 坪斜等 当射入计数管的粒子数目不变时, 改变计数管两级之间所加的高压值, 发现由定标器测得的计数率有变化, 如图所示的曲线。 在这个图中, V0称为起始电压, ΔV=V2-V1称为坪长, 在坪区内, 电压每升高1V 是, 计数率增加的百分数称为坪斜, 由公式表示为

%100*)

(1211

2V V n n n k l --=

坪特性曲线反映了计数管的性能, 所以使用前必须对它进行测量。

2.2死时间, 回复时间与分辨时间

将正离子鞘从r0移动到rc 这段不能输出脉冲的死寂时间称为死时间td , 而此后正离子鞘从rc 移动到阴极这段时间内, 阳极附近的电场逐步恢复到原来的大小, 这段所消耗的时间称为恢复时间tg 。

将从一个正常呗记录的脉冲之后, 到能产生第二个可触动定标器的脉冲这段时间τ, 叫做分辨时间。 即是说, 只有飞来的两个粒子的时间间隔大于这个分辨时间时, 才能够触发两个能够被识别的定标器脉冲。

由于分辨时间的存在, 有很多粒子将会被漏记, 影响测量值的准确度。 因而需要计数率修正公式进行修正, 修正公式如下

τ

m m

n -=

2

2.3 计数管的本底

计数管处于工作电压下, 在没有放射源时所测得的计数率叫本底。 在实际测量中需要在实测值中减去本底

2.4计数管的探测效率

探测效率是指当有一个粒子通过计数管的灵敏体积时, 引起一个输出脉冲的概率。

3. 核衰变的统计规律以及放射性测量的统计误差

3.1 核衰变的统计规律

放射性核衰变的统计性是指, 放射性元素的每一个核的衰变与否是相互独立的事件, 彼此无关。 每一个核什么时候衰变纯属偶然事件。 但是对于大量的放射性核来说, 实践证明其衰变规律遵从统计

规律, 即)ex p(0t N N λ-=

3.2 泊松分布与高斯分布 泊松分布: 若有N 0个未衰变的放射性原子核, 其寿命很长, 即λ很小, 单位时间内平均衰变数为n , 而且0N n <, 则可以认为在测量过程中0N n <近似不变。显然, 考虑到一些可以简化和忽略的条件,

在单位时间内有n 个核衰变, 其余核不衰变的概率为n N n N n n n n P --=0)

1(!)()(0

, 而P(n)同时可以表达为, 在满足以上假定的条件下, 进行多次测量时, 测量结果为n 的概率分布。

上式可以进一步简化为)ex p(!

)()(n n n n P n

-=

高斯分布: 当n 比较大时, 使用泊松分布来计算, 会因为阶乘的存在而使得计算困难, 因而改用

高斯分布来表达统计规律, 公式为)2ex p(21

)(22

σπ

σ?-=

?P 3.3 标准误差的概率含义

3.4 放射性测量中统计误差的表示 测量结果的表示式为N

N ±

相对标准误差为N N N 1±=±

实验步骤简述:

1.按照图连接电路,经检查无误后,接通电源使仪器预热

将放射源置于合适的位置,并用铅砖屏蔽好。将“高压细调”反时针调节至最低位置,打开“高压”

开关,是定标器处于纪录状态。缓缓提高电压,找出起始电压V0,然后每增加20V测量一次,每次1min,直到测完坪区为止,然后立即降下高压,保护计数管。

画出坪曲线,标出某几个点的标准误差。由坪曲线求出坪长。坪斜率,选择工作电压。

2.用示波器观测计数管的死时间与整个测量系统的分辨时间

打开示波器电源,调整示波器有关旋钮,使屏上呈现2-1-4所示的波形,测出定标器输入时的阈值电压,以及td和τ值。

3.测量时间和测量次数对计数率标准误差的影响

固定测量时间为5min,重复3次,分别算出每次测量的相对标准误差,在算出3次的平均计数率和相对标准误差。固定测量时间为10min。算出测量的相对标准误差,然后针对测量时间与测量次数对误差的影响进行讨论。

4.验证统计规律

在没有放射源的情况下,利用本底验证泊松分布。先对本底测量5min,根据所得的计数大小,选定一个测量时间,使每次测量的平均值在3~7之间,然后以这个选定的时间,重复测量300次以上。

并记录每个值出现的次数。在同一坐标纸上做出泊松分布的实验曲线和理论曲线,并加以比较讨论。

原始数据、 数据处理及误差计算: 1. 坪特性的测量与计算

测量的电压与计数数据如下: v(kV) 0.9 0.9 0.91 0.92 0.93 0.94 0.96 0.98 1 1.02 n 324 324 1904 2807 2948 2942 3042 2943 3012 2993 v(kV) 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22 n 3140 3052 3308 3292 3477 3851 4172 4411 5408 6952

作出坪特性曲线如下:

可以看到, 起始电压为V0=0.9kV ,坪区从V5=0.94kV 开始, 从V11=1.06kV 结束 坪长为ΔV=V2-V1=1.06kV-0.94kV=0.12kV 对应的计数差为Δn=3052-2942=110

可得, 坪斜为%

031.0%100*)

12.0(2942110

)(1%100*)(12112==??=--=

kV V n n V V n n n k l

2. 有源计数实验的计算处理

有源计数实验的数据如下:

计数次数A=3, 平均计数值为33.29606==

∑A

Ni N 计数平均值的标准误差为341.99±=±

=A

N

N σ 而通过无源计数得到的本底值为M=695, 本底值的标准误差为36.26±=±=M M σ 因而实际的计数值为33.2891169533.29606=-=-M N

实际计数值标准误差为934.5300

695300.333.29606'±=+±=+?±

=t M t A N final σ

最终的实际计数值表达为: N=28911 ± 5 (为符合测量实际, 数据结果仅保留到个位)

3. 本底计数验证泊松分布

本底验证的计数结果及出现次数见下页表格:

将这些计数的分布结果表达为图像, 并且在同一坐标系上绘制标准的泊松分布图样作比较, 如下页图所示:

可以看到, 实际测量的分布曲线虽然与理论值存在偏移, 但是形状上较好地保持了泊松分布的特征, 因而可以认为本底计数的验证是成功的。

思考题, 实验感想, 疑问与建议:

1. 坪曲线如何测量? 如何由坪曲线选定工作电压

坪曲线的测量方法如下:将放射源置于合适的位置, 并用铅砖屏蔽好。 将“高压细调”反时针调节至最低位置, 打开“高压”开关, 是定标器处于纪录状态。 缓缓提高电压, 找出起始电压V0, 然后每增加20V 测量一次, 每次1min , 每次测量后清零计数, 再次测量。 直到测完坪区为止(离开坪区时表现为计数值迅速上升), 然后立即降下高压, 保护计数管。

通过测得的数据可以看出坪区的始末电压V1和V2, 根据实验中所得, 工作电压选在坪区的1/3处, 即工作电压设置为(V2+V1)/3较为合适

2. 什么是放射性核衰变的统计性?

放射性核衰变的统计性是指, 放射性元素的每一个核的衰变与否是相互独立的事件, 彼此无关。 每一个核什么时候衰变纯属偶然事件。但是对于大量的放射性核来说, 实践证明其衰变规律遵从统计规

律, 即)

ex p(0t N N λ-=

3. 如何验证泊松分布?

方法是在没有放射源的情况下, 利用本底验证泊松分布。 先对本底测量5min , 根据所得的计数大小, 选定一个测量时间, 使每次测量的平均值在3~7之间, 然后以这个选定的时间, 重复测量300次以上。 并记录每个值出现的次数, 之后将这个计数结果表达为泊松分布曲线, 并与该条件下的理想分布曲线进行比较。

4. “标准误差”的意义是什么?

对于某一个实验, 多次重复进行, 得到的结果表示为σ±n 的话, 表示测量值落在这个范围内的概率是某一个实现约定的可信值(特定值, 如0.95)

5. 对实验的一些改进与看法

在实验中发现, 调节计数管高压的旋钮以及显示表的设计上存在缺陷, 一方面电压表的最小刻度过大, 不便于读数, 另一反面旋钮不方便细调。 建议改为数显与按钮调节式, 并且数显的精确位数要多, 以满足实验的要求。

原始记录及图表粘贴处:(见附页)

数字钟设计报告——数字电路实验报告

数字钟设计实验报告 专业:通信工程 姓名:王婧 班级:111041B 学号:111041226

数字钟的设计 目录 一、前言 (3) 二、设计目的 (3) 三、设计任务 (3) 四、设计方案 (3) 五、数字钟电路设计原理 (4) (一)设计步骤 (4) (二)数字钟的构成 (4) (三)数字钟的工作原理 (5) 六、总结 (9) 1

一、前言 此次实验是第一次做EDA实验,在学习使用软硬件的过程中,自然遇到很多不懂的问题,在老师的指导和同学们的相互帮助下,我终于解决了实验过程遇到的很多难题,成功的完成了实验,实验结果和预期的结果也是一致的,在这次实验中,我学会了如何使用Quartus II软件,如何分层设计点路,如何对实验程序进行编译和仿真和对程序进行硬件测试。明白了一定要学会看开发板资料以清楚如何给程序的输入输出信号配置管脚。这次实验为我今后对 EDA的进一步学习奠定了更好的理论基础和应用基础。 通过本次实验对数电知识有了更深入的了解,将其运用到了实际中来,明白了学习电子技术基础的意义,也达到了其培养的目的。也明白了一个道理:成功就是在不断摸索中前进实现的,遇到问题我们不能灰心、烦躁,甚至放弃,而要静下心来仔细思考,分部检查,找出最终的原因进行改正,这样才会有进步,才会一步步向自己的目标靠近,才会取得自己所要追求的成功。 2

二、设计目的 1.掌握数字钟的设计方法。 2熟悉集成电路的使用方法。 3通过实训学会数字系统的设计方法; 4通过实训学习元器件的选择及集成电路手册查询方法; 5通过实训掌握电子电路调试及故障排除方法; 6熟悉数字实验箱的使用方法。 三、设计任务 设计一个可以显示星期、时、分、秒的数字钟。 要求: 1、24小时为一个计数周期; 2、具有整点报时功能; 3、定时闹铃(未完成) 四、设计方案 一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器和定时器组成。干电路系统由秒信号发生 3

实验五 时序逻辑电路实验报告 计数器

实验五 时序逻辑电路实验 一、实验目的 1.掌握同步计数器设计方法与测试方法。 2.掌握常用中规模集成计数器的逻辑功能和使用方法。 二、实验设备 1.直流稳压电源、信号源、示波器、万用表、面包板 2.74LS190、74LS393、74LS04 3.1kΩ电阻、发光二极管 三、实验原理 1.计数器 计数器不仅可用来计数,也可用于分频、定时和数字运算。在实际工程应用中,一般很少使用小规模的触发器组成计数器,而是直接选用中规模集成计数器。 2.(1) 四位二进制(十六进制)计数器74LS161(74LS163) 74LSl61是同步置数、异步清零的4位二进制加法计数器,其功能表见表5.1。 74LSl63是同步置数、同步清零的4位二进制加法计数器。除清零为同步外,其他功能与74LSl61相同。二者的外部引脚图也相同,如图5.1所示。 表5.1 74LSl61(74LS163)的功能表 3.集成计数器的应用——实现任意M进制计数器 一般情况任意M进制计数器的结构分为3类,第一类是由触发器构成的简单计数器。第二类是由集成二进制计数器构成计数器。第三类是由移位寄存器构成的移位寄存型计数器。第一类,可利用时序逻辑电路的设计方法步骤进行设计。第二类,当计数器的模M较小时用一片集成计数器即可以实现,当M较大时,可通过多片计数器级联实现。两种实现方法:反馈置数法和反馈清零法。第三类,是由移位寄存器构成的移位寄存型计数器。 4.实验电路: 十进制计数器

六进制扭环计数器 具有方波输出的六分频电路 图5.1 74LS161(74LS163)外部引脚图 四、实验内容及步骤 1.集成计数器实验 (1)按电路原理图使用中规模集成计数器74LS163和与非门74LS00,连接成一个同步置数或同步清零十进制计数器,并将输出连接至数码管或发光二极管。然后使用单次脉冲作为触发输入,观察数码管或发光二极管的变化,记录得到电路计数过程和状态的转换规律。 (2)根据电路图,首先用D触发器74LS7474构成一个不能自启的六进制扭环形计数器,同样将输出连接至数码管或发光二极管。然后使用单次脉冲作为触发输入,观察数码管或发光二极管的变化,记录得到电路计数过程和状态的转换规律。注意观察电路是否能自启,若不能自启,则将电路置位有效状态。接下来再用D触发器74LS7474构成一个能自启的六进制扭环形计数器,重复上述操作。 2.分频实验 同步置数法 同步清零法

盖勒-弥勒计数器和放射性探测实验方案

盖勒-弥勒计数器和放射性探测实验方案 一.实验目的 1.理解盖革—弥勒计数器的工作原理和掌握测量方法; 2.了解核辐射计数(放射衰变)的统计分布规律及计数率测定的标准偏差计算方法。 二.实验内容 1.测定盖革—弥勒计数器的工作原理和掌握测量方法; 2.用盖革—弥勒计数器测定放射源的强度及其衰变规律。 三.实验原理 1.盖革-弥勒计数器的工作原理 盖革-弥勒计数器简称G-M计数器。它由G-M计数管、高压电源和定标器组成。常见的G-M计数管,是在一密封的玻璃管内,中心张紧一根钨丝作为阳极,紧贴玻璃管的内表面装一金属圆筒作为阴极。管内充以惰性气体。 用G-M计数管作测量时,高压电源通过高电阻R加在计数管的两极上。于是,在管内的两极间产生一柱对称电场,愈靠近阳极,电场愈强。当有粒子射入计数管后,将引起管内的气体电离,产生少量的离子对。但所产生的负离子(实际上是电子)被电场加速向阳极运动。在趋向阳极的过程中,与气体分子多次发生碰撞,打出很多次极电子。这些次极电子仍可获得足够的能量又产生新的电离,因此在阳极附近,次极电子急剧倍增,出现所谓“雪崩”现象,同时,雪崩过程向阳极丝两端扩展,从而导致整个计数管放电。 由于电场在阳极附近最强,所以绝大多数离子对是在阳极附近产生的,在电场作用下,电子的迁移速度比正离子大得多,很快趋向阳极被中和,而正离子还仍然包围着阳极,形成所谓“正离子鞘”。正离子鞘大大削弱了阳极附近的电场,从而使电子暂时失去电离气体分子的能量,雪崩过程就自动停止。之后,正离子鞘在电场作用下向阴极运动。 计数管的两极间具有一定的电容,加上高电压后使两面三刀极带有一定量值的电荷。随着正离子鞘运动到阴极中和后,两极上的电荷量将减少,阳极电位降低,于是高压电源通过电阻R向计数管充电,使阳极电位得到恢复,从而在阳极上得到一个负电压脉冲。脉冲的大小决定于计数管中的场强,而与入射粒子引起的原始离子对的数目无关(在计数评区内)。只要脉冲幅度足以触发定标器,定标器就记录下这个负脉冲,作为一次计数。 正离子到达阴极后会从阴极上打出电子,因为这时阳极附近的电场已经恢复,被打出的电子经过电场加速又会引起计数管放电。这样只要有一个辐射粒子射入计数管,将会引起一次又一次循环不断的放电,从而使计数管无法再记录第二个入射的粒子。 为了使第一次放电后不再引起下一次放电,就在计数客内加入少量能使放电猝来的其他气体。当第一次放电后形成的正离子鞘向阴极运动途中,和猝灭气体分子碰撞,使其电离、隋性气体离子吸收其放出的电子而成为中性分子。于是到达阴极的几乎全是猝灭气体的正离子,它们吸收阴极上的早子使自身离解成小分子,而不打出电子,第二次放电被猝灭。 计数管每计数一次,就有一部分猝灭气体分子被电离,因此,其浓度逐渐降低。在正常条件下,这类管子达107—108次以后,就不能猝灭第二次放电了。 2.G-M计数管的坪特性

浙江省“七彩阳光”新高考研究联盟2021届高三上学期期中联考试题 物理 Word版含答案

绝密★考试结束前 浙江省“七彩阳光”新高考研究联盟期中联考 高三物理学科试题 考生须知: 1.本试题卷分选择题和非选择题两部分,共8页,满分100分,考试时间90分钟。 2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号。 3.所有答案必须写在答题卷上,写在试卷上无效。 4.考试结束后,只需上交答题卷。 选择题部分 一、选择题I(本题共13小题,每小题3分,共39分,每小题给出的四个备选项中,只有一项是符合题目要求的) 1.下列由科学家命名国际单位对应的物理量是矢量 A.韦伯 B.特斯拉 C.安培 D.焦耳 2.小明在手机中“12306”APP上查找到一辆从温岭站到杭州东站的动车时间表,如图所示,已知温岭到杭州的路程约为300km,下列说法正确的是 A.动车进站过程中可以把动车看做质点 B.从温岭站到杭州东站的平均速度为120km/h C.若动车出站速度从零加速到200km/h用时5min,动车启动加速度约为0.2m/s2 D.若动车进站减速过程中,动车对乘客的作用力竖直向上 3.小孩用一轻质弹簧拉水平地面上的箱子,但没有拉动,已知弹簧与水平面有一定夹角θ(且θ≠0),以下说法正确的是

A.箱子对地面的压力大于箱子的重力 B.小孩对弹簧的拉力大小等于箱子受到的摩擦力大小 C.小孩对弹簧的拉力和箱子对弹簧的拉力是一对相互作用力 D.小孩受到的地面摩擦力大小和箱子受到地面的摩擦力大小相同 4.关于原子物理知识方面,下列说法正确的是 A.随着温度的升高,黑体辐射强度的极大值向波长较长的方向移动 B.盖革-米勒计数器不仅能用来计数,还能区分射线的种类 C.质子、中子、电子都参与强相互作用 D.原子中电子的坐标没有确定的值,只能说某时刻电子在某点附近单位体积内出现的概率 5.图甲是某燃气灶点火装置的原理图。转换器将直流电压转换为图乙所示的正弦交流电压,并加在一理想变压器的原线圈上,电压表为交流电表。当变压器副线圈电压值大于5000V时,就会在钢针和金属板间引发电火花进而点燃气体。则下列说法正确的是 A.开关闭合后,电压表示数为5V B.转换器产生的交流电在1s时间内电流变化5次 C.若原、副线圈匝数比至少满足1:1000才能使钢针放电 D.若原、副线圈匝数比为1:2000,在一个周期内钢针放电时间为0.1s 6.“跳楼机”以惊险刺激深受年轻人的欢迎,它的基本原理是将巨型娱乐器械由升降机送到离地面一定高处,然后让座舱自由落下。一段时间后,制动系统开始启动,使座舱均匀减速,到达地面时刚好停下,下列说法正确的是

24小时制时、分、秒计时器设计报告

时钟仿真实验报告 一、任务及要求 用51单片机设计时、分、秒计时器,具体要求如下。 1、具有时、分、秒计时功能和8位数码管显示功能,显示格式为:“时-分-秒”; 2、用Proteus设计仿真电路进行结果仿真; 3、4人组成设计小组完成,小组成员有明确分工,1人负责总体方案设计及报告撰写,2人负责功能模块函数设计,1人负责仿真电路设计及调试。 4、完成程序设计、仿真电路设计、结果仿真,完成报告并上传空间课程栏目中的课程设计报告子栏目中。 二、设计方案: 1、总体方案构思:通过使用定时计数器以及中断溢出,50ms中断溢出一次,溢出20次为1S。所以当定时溢出计数变量temp自加20次时计数变量miao自加1,直到加到第60次时miao(秒)清零,并且计数变量fen自加1,直到fen加到第60次时,fen(分)清零且shi(时)

自加1,直到shi加到第24次时,shi(小时)清零。最后经译码后,通过扫描显示模块程序将得到的时钟结果以动态显示的方式显示在8位一体共阳数码管上。 2、程序功能模块说明:此时钟程序包括时钟中断计时、延时函数、显示函数等模块 3、仿真电路构成:此次时钟程序的仿真电路的设计较简单,硬件部分主要有AT89C52单片机芯片一块、八位一体LED共阳数码管一块、8个普通电阻以及8个逻辑非门。其中8个普通电阻用作P0口上拉电阻。另外,由于数码管是共阳的,而实际程序中的位码是以低电平有效的,所以八个逻辑非门用来取反单片机输出的位码。 4、时钟计时程序设计思想分析:采用定时计数器T0,工作方式1,定时50ms,再对定时溢出中断次数计数,若溢出了20次则时间为1秒! 5、函数模块程序流程图:

高二3-5原子核练习

高中物理选修3-5同步练习 原子核的组成 2.下列哪些事实表明原子核具有复杂的结构() A.α粒子的散射实验 B.天然放射现象 C.阴极射线的发现 D.X射线的发现 3.有三种射线,射线a很容易穿透黑纸,速度接近光速;射线b可穿透几十厘米厚的混凝土,能量很高;用射线c照射带电的导体,可使电荷很快消失。则下列判断中正确的是() A.a是α射线,b是β射线,c是γ射线 B.a是β射线,b是γ射线,c是α射线 C.a是γ射线,b是α射线,c是β射线 D.a是γ射线,b是β射线,c是α射线 4.下列哪些现象能说明射线来自原子核() A.三种射线的能量都很高 B.放射线的强度不受温度、外界压强等物理条件的影响 C.元素的放射性与所处的化学状态(单质、化合态)无关 D.α射线、β射线都是带电的粒子流 5.若用x代表一个中性原子中核外的电子数,y代表此原子核内的质子数,z代表此原子的原子核内的中子数,则对23490Th的原子来说() A.x=90y=90z=234 B.x=90y=90z=144 C.x=144y=144z=90 D.x=234y=234z=324 6.氢有三种同位素,分别是氕11H、氘21H、氚31H,则() A.它们的质子数相等B.它们的核外电子数相等 C.它们的核子数相等D.它们的中子数相等 8.如图所示,天然放射性元素,放出α、β、γ三种射线同时射入互相垂直的匀强电场和匀强磁场中,射入时速度方向和电场、磁场方向都垂直,进入场区后发现β射线和γ射线都 沿直线前进,则α射线() A.向右偏B.向左偏 C.直线前进D.无法判定

9.如图所示,R 是一种放射性物质,虚线方框内是匀强磁场,LL ′是厚纸板,MN 是荧光屏,实验时,发现在荧光屏的O 、P 两点处有亮斑,由此可知磁场的方向、到达O 点的射线种类、到达P 点的射线种类应属于下表中的( ) 10.如图所示,x 为未知的放射源,L 为薄铝片,若在放射源和计数器之间加上L 后,计数器的计数率大幅度减小;在L 和计数器之间再加竖直向下的匀强磁场,计数器的计数率不变,则x 可能是( ) A .α和β的混合放射源 B .纯α放射源 C .α和γ的混合放射源 D .纯γ放射源 11.如图所示,是利用放射线自动控制铝板厚度的装置,假如放射源能放射出α、β、γ三种射线,而根据设计,该生产线压制的是3 mm 厚的铝板,那么是三种射线中的哪种射线对控制铝板厚度起主要作用?当探测接收器单位时间内接收到的放射性粒子的个数超过标准值时,将会通过自动装置将M 、N 两个轧辊间的距离如何调节? 12.质谱仪是一种测定带电粒子的质量及分析同位素的重要工具,它的构造原理如图所示,离子源S 产生的各种不同正离子束(速度可看成为零),经加速电场加速后垂直进入有界匀强磁场,到达记录它的照相底片P 上,设离子在P 上的位置到入口处S 1的距离为x 。 (1)设离子质量为m 、电荷量为q 、加速电压为U 、磁感应强度大小为B ,求x 的大小; (2)氢的三种同位素11H 、21H 、31H 从离子源S 出发,到达照相底片的位置距入口处S 1的距 离之比x H x D x T 为多少?

数字电路实验报告计数器的逻辑功能及应用word精品

数字电路实验报告 计数器逻辑功能及其应用 实验目的: 1. 熟悉中等规模集成电路计数器 74LS160的逻辑功能,使用方法及应用。 2. 掌握构成任意进制计数器的方法。 实验设备及器件: 1. 数字逻辑电路实验板 1片 2. 74HC160同步加法二进制计数器 2片 3. 74HC00二输入四与非门 1片 三、实验原理: 计数器是一个用以实现计数功能的时序部件, 它不仅可用来计脉冲数,还常用作数字系 统的定时、分频和执行数字运算以及其它特定的逻辑功能。 计数器种类很多。按构成计数器中的各触发器是否使用一个时钟脉冲源来分, 有同步计 数器和异步计数器。 根据计数制的不同, 分为二进制计数器,十进制计数器和任意进制计数 器。根据计数的增减趋势,又分为加法、 减法和可逆计数器。还有可预置数和可编程序功能 计数器等等。目前,无论是 TTL 还是CMOS 集成电路,都有品种较齐全的中规模集成计 数器。使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列, 就能正确 地运用这些器件。 集成计数器74HC160是二-五-十进制计数器,其管脚排列如图。 四、实验内容 1.构成摸10计数器 实验原理图 c T 叱Tc % s c r Qa

实验结果:数码管显示为从 0到5之间变化。 3、组成模100计数器 实验结果:个位数码管随时间显示 0、1、2、3、4、5、6、7、& 9,十位数码管显示个位 进位计数结果,按 0、1、2、3、4、5、6、7、8、9变化。 五、实验心得: 本次实验,通过对计数器工作过程的探索,基本上了解了数码计数器的工作原理, 以及 74HC160 的数字特点,让我更进一步掌握了如何做好数字电子数字实验,也让我认识 到自身理论知识的不 > CL 160 实验结果:数码管显示为从 2、组成模6计数器 实验原理 图 OC LI) 0到9之间变化。

数电实验报告 计数器

实验报告 实验七计数器原理测试及其设计 2.7.1 实验目的 1.掌握中规模集成计数器74LS160、74LS161、74LS163的逻辑功能及使用方法。 2.掌握同步清零与异步清零的区别及74LS160计数器的级联方法。 3.学习用中规模集成计数器设计任意进制计数器。 2.7.2 实验仪器设备与主要器件 实验箱一个;双踪示波器一台;稳压电源一台;函数发生器一台。 74LS160,74LS161和74LS163。 2.7.3 实验原理 计数器的功能是记录输入脉冲的个数。他所能记忆的最大脉冲个数称为该计数器的模。计数器不仅能统计输入脉冲的个数,还可以用作分频、定时、产生节拍脉冲等。根据进位方式,可分为同步和异步两类。根据进制,可分为二进制、十进制和任意进制等。根据逻辑功能,可分为加法计数器、减法计数器和可逆计数器等。根据电路集成度,可分为小规模集成计数器和中规模集成计数器。 2.7.4 实验内容 1.分别用74LS161和74LS163设计模13计数器,采用清零法实现,并用数码管显示实验结果。 设计思路:74LS161是十六进制计数器,所以我在它计数到13(1101)清零就行了,再利用二进制数与BCD码对应关系,即利用74LS283的逻辑功能使数码管显示实验结果。计数时电路状态转换关系: 0000→0001→0010→0011→0100→0101→0110→0111→1000→1001→1010→1011→1100→0000

设计思路:74LS163接法与74LS161基本一样,只是163的清零信号是12不是13,如图: 2.设计一个用3位数码管指示的六十进制计数器,并用三只开关控制计数器的数据保持、计数及清零功能。 设计思路:用Cr=0控制计数器清零,用EP*ET=0控制计数器数据保持,用高低电平和CP脉冲进行与运算控制计数器计数功能。U1的清零信号是在计数到6时,U1清零的同时U3开始计数,这样就能实现用3位数码管指示的六十进制计数器。如图:

试验1盖革—弥勒计数器的特性预习提要试验目的试验仪器

实验1 盖革—弥勒计数器的特性 [ 预习提要 ] 1.弄清实验原理及操作方法和注意事项。 2.坪曲线怎样进行测绘?测量中要注意什么问题? 3.如何由坪曲线求得G-M计数管的性能参量和确定工作电压? 4.设计各项实验数据记录表格。 [ 实验目的 ] 1.了解盖革—弥勒计数器的结构、原理和主要性能参数的测定方法,了解核辐射探测常识。2.熟悉放射性测量误差的表示方法及其与测量次数和时间之间的关系。 3.应用微机系统处理实验数据。 [ 实验仪器 ] 盖革—弥勒计数管1支,长寿命放射源1个,铅室1个,FJ-367型通用闪烁探头1个,FH-408型自动定标器2台,长余辉示波器1台,微机及计算软件1套。 [ 实验基础知识 ] 在原子核物理领域内的实验技术可分为三个方面:加速器技术、反应堆技术和探测技术。它们构成一套完整的和物理实验技术。加速器核反应堆是产生核辐射的工具,也就是粒子源。探测技术则包括探测和研究这些核辐射的性质,以及它们与物质的相互作用等课题。在我们做得和物理实验中,主要是掌握一些辐射探测技 术。近四十年来探测技术发展很快,就放射性计数测量的装置就有各式各样的很多,如盖革—弥勒计数器(简称G-M计数器),正比计数器,脉冲电离室,闪烁计数器,半导体探测器等等。本实验要介绍和使用的G-M计数器是核辐射探测器中较简单的一种。它本身只能用于测定辐射粒子的数目。它是最早使用的核辐射探测器,近年来随着闪烁计数器和半导体探测器的发展,其重要性有所下降,但由于它设备简单,使用方便,仍广泛用于有关放射性测量的工作中。 阴 管 阳极a. 钟罩型 b. 长圆管形型 图1-1-1 G-M计数管

高中物理-探测射线的方法课后训练

高中物理-探测射线的方法课后训练 基础巩固 1.用威耳逊云室探测射线,其中粒子在威耳逊云室中径迹直而粗的是( ) A.α粒子B.β粒子 C.γ粒子D.以上都不是 2.关于威耳逊云室探测射线,下述正确的是( ) A.威耳逊云室内充满过饱和蒸气,射线经过时可显示出射线运动的径迹 B.威耳逊云室中径迹粗而直的是α射线 C.威耳逊云室中径迹细而长的是γ射线 D.威耳逊云室中显示粒子径迹原因是电离,所以无法由径迹判断射线所带电荷的正负3.下列说法中错误的是( ) A.威耳逊云室和盖革—米勒计数器都是利用了放射线使气体电离的性质 B.盖革—米勒计数器除了用来计数,还能区分射线的种类 C.用威耳逊云室探测射线时,径迹比较细且常常弯曲的是β粒子的径迹 D.根据气泡室中粒子径迹的照片上记录的情况,可以分析粒子的带电、动量、能量等情况 4.在威耳逊云室中,关于放射源产生的射线径迹,下列说法中正确的是( ) A.由于γ射线的能量大,容易显示其径迹 B.由于β粒子的速度大,其径迹粗而且长 C.由于α粒子的速度小,不易显示其径迹 D.由于α粒子的电离作用强,其径迹直而粗 5.带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹。如图是在有匀强磁场的云室中观察到的粒子的轨迹,a和b是轨迹上的两点,匀强磁场B垂直纸面向里。该粒子在运动时,其质量和电荷量不变,而动能逐渐减少,下列说法正确的是( ) A.粒子先经过a点,再经过b点B.粒子先经过b点,再经过a点 C.粒子带负电D.粒子带正电 能力提升 6.用盖革—米勒计数器测定放射源的放射强度为每分钟405次,若将一张厚纸板放在计数器与放射源之间,计数器几乎测不到射线。10天后再次测量,测得该放射源的放射强度为每分钟101次,则下列关于射线性质及它的半衰期的说法正确的是( ) A.放射源射出的是α射线 B.放射源射出的是β射线 C.这种放射性元素的半衰期是5天 D.这种放射性元素的半衰期是2.5天 7.用α粒子照射充氮的云室,摄得如图所示的照片,下列说法中正确的是( ) A.A是α粒子的径迹,B是质子的径迹,C是新核的径迹 B.B是α粒子的径迹,A是质子的径迹,C是新核的径迹 C.C是α粒子的径迹,A是质子的径迹,B是新核的径迹

8254定时计数器应用实验报告

XX 大学实验报告 课程名称: 实验项目名称:8254定时/计数器应用实验学院:信息工程学院 专业:通信工程 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间:

教务处制

单元的内容外,还可以读出状态寄存器的内容。 (6)计数脉冲可以是有规律的时钟信号,也可以是随机信号。计数初值公式为: n=fCLKi÷fOUTi、其中fCLKi 是输入时钟脉冲的频率,fOUTi 是输出波形的频率。 图(1)是8254 的内部结构框图和引脚图,它是由与CPU 的接口、内部控制电路和三个计数器组成。8254 的工作方式如下述:(1)方式0:计数到0 结束输出正跃变信号方式。 (2)方式1:硬件可重触发单稳方式。 (3)方式2:频率发生器方式。 (4)方式3:方波发生器。 (5)方式4:软件触发选通方式。 (6)方式5:硬件触发选通方式。 图(1)8254的内部借口和引脚8254 的控制字有两个:一个用来设置计数器的工作方式,称为方式控制字;另一个用来设置读回命令,称为读回控制字。这两个控制字共用一个地址,由标识位来区分。控制字格式如表

1所示。 表1 8254的方式控制字 表2 8254 读出控制字格式 表3 8254 状态字格式 8254 实验单元电路图如下图所示:

五、实验步骤及相应操作结果 1. 计数应用实验 编写程序,将8254 的计数器0 设置为方式3,计数值为十进制数4,用单次脉冲KK1+ 作为CLK0 时钟,OUT0 连接MIR7,每当KK1+按动5 次后产生中断请求,在屏幕上显示字符“M”。 实验步骤: (1)实验接线如图2所示。 (2)编写实验程序,经编译、链接无误后装入系统。 (3)运行程序,按动KK1+产生单次脉冲,观察实验现象。(4)改变计数值,验证8254 的计数功能。

双栅极空气计数器猝熄脉宽算法

双栅极空气计数器猝熄脉宽算法! 史仪凯"张海南"王爱军"卢健康 #西北工业大学机械系"陕西西安$%&&$’( 摘要)针对双栅极空气计数器#*+,-(放电猝熄的物理过程"提出了计数器猝熄脉宽的一种新算法.该算法理论简便实用"能够较好地用于计数器的优化设计.算例结果验证了这种算法的有效性. 关键词)猝熄脉宽"计数器"气体放电 中图分类号)/01$234文献标识码),文章编号)%&&&5’$61#’&&&(&’5&%125&2 为了对空气中低能电子#外逸电子7光电子等( 进行准确有效地计数"在研究盖革弥勒计数器 #+8-(的基础上"设计了一种改进型双栅极空气计 数器#*+,-(9%"’:.所谓的双栅极)一个是围绕阳极 的栅极为猝熄栅极"用于熄灭放电;另一个是装在猝 熄栅极与试件间的栅极为抑制栅极"主要用于防止 正离子轰击试件.放电的熄灭和正离子的抑制是靠 加在猝熄栅极和抑制栅极上的正脉冲完成的92"4:.猝 熄时间过长则增加计数器的死时间"增加漏计数.过 短则放电熄灭不彻底"容易造成误计数.因此"脉冲 宽度#即猝熄时间(是一个极其重要的参数.本文在 分析*+,-工作物理过程基础上"提出了猝熄脉冲 宽度的新算法.算例结果表明"该算法不仅与实验数 据完全一致"而且为*+,-控制电路的设计提供了 可靠的理论依据. <=>?@放电工作原理 *+,-的结构如图%所示.阴极通过电阻A接 高压电源.B %为猝熄栅极"初始电压为C%&&D;B ’ 为抑制栅极"初始电压为C1&D. 低能电子由试件发射"在两个栅极和阳极形成电场的作用下向计数器内运动.由于阳极附近电场强度足够大"电子在一个平均自由程内获得足够的能量使气体电离.控制阳极工作电压"计数器工作在+8区"一次放电生成约%&$个正离子电子对.正离子和电子分别顺着和逆着电场方向运动"在阳极上感应出脉冲"如图’所示.当电子运动速度加快时"则形成脉冲的线性部分.如果不加限制"阳离子到达阴极后又会放出二次电子"引起多次放电.利用第一次放电脉冲的线性段"通过隔直电容E引入控制电路.控制电路在放电脉冲的作用下"在B %7B’ 上分别施加C4&&D和F2&D的电压.猝熄栅极电压的迅速升高降低了阳极附近的电场强度"从而使放电很快熄灭.正离子绝大多数在猝熄栅极被中和.少数穿过猝熄栅极"被加有F2&D电压的抑制栅极所吸收.当放电完全被熄灭后"恢复初始工作状态" 以待 图%*+,- 的结构 图’*+,-放电脉冲 ’&&&年6月第%1卷第’期 西北工业大学学报 G H I J K L M H N O H J P Q R S T P S J KU H M V P S W Q K X W L M Y K X Z S J T X P V 8L V’&&& D H M3%1O H3’ !收稿日期)%[[1F%’F%\基金项目)航空科学基金资助#[\]62%2&(作者简介)史仪凯#%[6’F(男"陕西省兴平市人"西北工业大学教授"主要从事机电控制及自动化研究. 万方数据

案例4生活中的放射线

案例6-4 生活中的放射线 三门中学何赛君 一、教学设计思路 根据建构主义学习理论,学生的学习是基于经验基础上的知识建构。学生是知识建构的主体。选修课程的教学应该根据内容特点和要求,通过教学方式和学习方式的多样整合,实现三维目标的整体达成。本课时的教学设计根据内容的实践性和知识性特点,首先采用学生“信息搜集---信息整理---交流分享”的形式获得对放射线天使和魔鬼双重特点的认识。探测射线的方法需要调动学生的已有知识(如射线的电离能力、带电粒子在磁场、电场中的偏转 -辐射个人剂量报警仪等)综合分析,加上威尔逊云室、气泡室、盖革-米勒计数器、xγ 的技术结构,理解难度很大,宜采用教师讲授的方法。实践性作业的设计使课堂教学得以延伸。 二、前期分析 本课题是浙江省首批推荐使用的网络视频选修课程《魔法城探秘-有关核电发展的安全与环境问题的专题活动》的第一讲。放射线是这个课程的一个重要概念。放射线的成分和产生机理如果学生没有学过原子物理知识是陌生的,即使学过原子物理知识的学生,对放射线的了解也是不全面的。在民众谈核色变的背景下,我们的学生要有别于一般的民众,要敢于质疑,要有实事求是的辩证观,不能人云亦云,这就要让我们的学生见多识广,让学生通过实例从较深层次认识放射性的魔鬼与天使的双重特征。要驾驭放射线,使之为民众造福,就得知道放射线的探测方法。作业的设计除了知识性的巩固,还有研究性的作业内容。对改变学习方式,通过渗透与巩固、课堂听课与实践活动想结合的学习方式,增强学习的自主性和主动性。 重点与难点: 1.教学重点 搜集材料,知道放射性的危害和防护,知道放射性在医疗、农业、工业上的应用实例。2.教学难点 知道显示放射线的原理和常见探测方法。 三、教学目标 1.知识与技能 (1)知道放射性的危害和防护措施 (2)能举例说明放射性在医疗、农业、工业上的应用

EDA实验报告-实验3计数器电路设计(DOC)

暨南大学本科实验报告专用纸 课程名称EDA实验成绩评定 实验项目名称计数器电路设计指导教师郭江陵 实验项目编号03 实验项目类型验证实验地点B305 学院电气信息学院系专业物联网工程 组号:A6 一、实验前准备 本实验例子使用独立扩展下载板EP1K10_30_50_100QC208(芯片为EP1K100QC208)。EDAPRO/240H实验仪主板的VCCINT跳线器右跳设定为3.3V;EDAPRO/240H实验仪主板的VCCIO跳线器组中“VCCIO3.3V”应短接,其余VCCIO均断开;独立扩展下载板“EP1K10_30_50_100QC208”的VCCINT跳线器组设定为 2.5V;独立扩展下载板“EP1K10_30_50_100QC208”的VCCIO跳线器组设定为3.3V。请参考前面第二章中关于“电源模块”的说明。 二、实验目的 1、了解各种进制计数器设计方法 2、了解同步计数器、异步计数器的设计方法 3、通过任意编码计数器体会语言编程设计电路的便利 三、实验原理 时序电路应用中计数器的使用十分普遍,如分频电路、状态机都能看到它的踪迹。计数器有加法计数器、可逆计数器、减法计数器、同步计数器等。利用MAXPLUSII已建的库74161、74390分别实现8位二进制同步计数器和8位二——十进制异步计数器。输出显示模块用VHDL实现。 四、实验内容 1、用74161构成8位二进制同步计数器(程序为T3-1); 2、用74390构成8位二——十进制异步计数器(程序为T3-2); 3、用VHDL语言及原理图输入方式实现如下编码7进制计数器(程序为T3-3): 0,2,5,3,4,6,1 五、实验要求 学习使用Altera内建库所封装的器件与自设计功能相结合的方式设计电路,学习计数器电路的设计。 六、设计框图 首先要熟悉传统数字电路中同步、异步计数器的工作与设计。在MAX+PLUS II中使用内建的74XX库选择逻辑器件构成计数器电路,并且结合使用VHDL语言设计转换模块与接口模块,最后将74XX模块与自设计模块结合起来形成完整的计数器电路。并借用前面设计的数码管显示模块显示计数结果。 ◆74161构成8位二进制同步计数器(程序为T3-1)

第十九章第三节探测射线的方法、第四节放射性的应用与防护

第三节探测射线的方法 第四节放射性的应用与防护 [学习目标] 1.知道探测射线的几种方法,了解探测射线的几种仪器. 2.知道核反应及其遵循的规律,会正确书写核反应方程. 3.知道放射性同位素和人工放射性同位素,了解放射性的应用与防护. 一、探测射线的方法(阅读教材P73~P75) 1.探测方法 (1)组成射线的粒子会使气体或液体电离,以这些离子为核心,过饱和的蒸气会产生雾滴,过热液体会产生气泡. (2)射线能使照相乳胶感光. (3)射线能使荧光物质产生荧光. 2.探测仪器 (1)威耳逊云室:①原理:粒子在云室内气体中飞过,使沿途的气体分子电离,过饱和酒精蒸气就会以这些离子为核心凝结成雾滴,于是显示出射线的径迹. ② (2)气泡室:气泡室的原理同云室的原理类似,所不同的是气泡室里装的是液体,如液态氢. 粒子通过过热液体时,在它的周围产生气泡而形成粒子的径迹. (3)盖革—米勒计数器: ①优点:G-M计数器非常灵敏,使用方便. ②缺点:只能用来计数,不能区分射线的种类. 拓展延伸?———————————————————(解疑难) 不同探测方法的对比 威耳逊云室和气泡室都是依据径迹探测射线的性质和种类,而盖革—米勒计数器只能计数,不能区分射线的种类. 1.(1)射线中的粒子与其他物质作用时,产生一些现象,可以显示射线的存在.() (2)云室和气泡室都是应用射线的穿透能力研究射线的径迹.() (3)盖革—米勒计数器既可以统计粒子的数量,也可以区分射线的种类.() 提示:(1)√(2)×(3)× 二、放射性的应用与防护(阅读教材P76~P78)

1.核反应 (1)定义:原子核在其他粒子的轰击下产生新原子核的过程. (2)原子核的人工转变 ①1919年卢瑟福用α粒子轰击氮原子核,产生了氧的一种同位素,同时产生一个质子. ②卢瑟福发现质子的核反应方程: 147N +42He →178O +11H . (3)遵循规律:质量数守恒,电荷数守恒. 2.人工放射性同位素 (1)放射性同位素的定义:有些同位素具有放射性,叫做放射性同位素. (2)人工放射性同位素的发现: ①1934年,约里奥—居里夫妇发现经过α粒子轰击的铝片中含有放射性磷3015P. ②发现磷同位素的方程:42He +2713Al →3015P +10n . 3.放射性同位素的应用与防护 (1)应用射线:应用射线可以测厚度、医疗方面的放射治疗、照射种子培育优良品种等. (2)示踪原子:有关生物大分子的结构及其功能的研究,要借助于示踪原子. (3)辐射与安全:人类一直生活在放射性的环境中,过量的射线对人体组织有破坏作用.要防止放射性物质对水源、空气、用具等的污染. 拓展延伸?———————————————————(解疑难) 1.放射线在我们的生活中无处不在.在合理应用放射性的同时,又要警惕 它的危害,进行必要的防护.过量的放射性会对环境造成污染,对人类和自然产生破坏作用.如图是世界通用的辐射警示标志. 2.(1)衰变和原子核的人工转变都属于核反应.( ) (2)在用到射线时,利用人工放射性同位素和天然放射性物质都可以.( ) (3)用放射性同位素代替非放射性的同位素来制成各种化合物做“示踪原子”.( ) 提示:(1)√ (2)× (3)√

数字时钟设计实验报告

电子课程设计题目:数字时钟

数字时钟设计实验报告 一、设计要求: 设计一个24小时制的数字时钟。 要求:计时、显示精度到秒;有校时功能。采用中小规模集成电路设计。 发挥:增加闹钟功能。 二、设计方案: 由秒时钟信号发生器、计时电路和校时电路构成电路。 秒时钟信号发生器可由振荡器和分频器构成。 计时电路中采用两个60进制计数器分别完成秒计时和分计时;24进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。 校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。 三、电路框图: 图一数字时钟电路框图 四、电路原理图: (一)秒脉冲信号发生器 秒脉冲信号发生器是数字电子钟的核心部分,它的精度和稳定度决定了数字钟的质

量。由振荡器与分频器组合产生秒脉冲信号。 振荡器: 通常用555定时器与RC构成的多谐振荡器,经过调整输出1000Hz 脉冲。 分频器: 分频器功能主要有两个,一是产生标准秒脉冲信号,一是提供功能 扩展电路所需要的信号,选用三片74LS290进行级联,因为每片为1/10分频器,三片级联好获得1Hz标准秒脉冲。其电路图如下: 图二秒脉冲信号发生器 (二)秒、分、时计时器电路设计 秒、分计数器为60进制计数器,小时计数器为24进制计数器。 60进制——秒计数器 秒的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。当计数到59时清零并重新开始计数。秒的个位部分的设计:利用十进制计数器CD40110设计10进制计数器显示秒的个位。个位计数器由0增加到9时产生进位,连在十位部计数器脉冲输入端CP,从而实现10进制计数和进位功能。利用74LS161和74LS11设计6进制计数器显示秒的十位,当十位计数器由0增加到5时利用74LS11与门产生一个高电平接到个位、十位的CD40110的清零端,同时产生一个脉冲给分的个位。其电路图如下: 图三 60进制--秒计数电路 60进制——分计数电路 分的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。当计数到59时清零并重新开始计数。秒的个位部分的设计:来自秒计数电路的进位脉冲使分的个位加1,利用十进制计数器CD40110设计10进制计数器显示秒的个位。个位计数器由0增加到9时产生进位,连在十位部计数器脉冲输入端CP,从而实现10进制计数和进位功能。利用74LS161和74LS11设计6进制计数器显示秒的十位,当十位计数器由0

同步计数器的设计实验报告文档

2020 同步计数器的设计实验报告文档 Contract Template

同步计数器的设计实验报告文档 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 同步计数器的设计实验报告 篇一:实验六同步计数器的设计实验报告 实验六同步计数器的设计 学号: 姓名: 一、实验目的和要求 1.熟悉JK触发器的逻辑功能。 2.掌握用JK触发器设计同步计数器。 二、实验仪器及器件 三、实验预习 1、复习时序逻辑电路设计方法。 ⑴逻辑抽象,得出电路的状态转换图或状态转换表 ①分析给定的逻辑问题,确定输入变量、输出变量以及电路的状态数。通常都是取原因(或条件)作为输入逻辑变量,取结

果作输出逻辑变量。 ②定义输入、输出逻辑状态和每个电路状态的含意,并将电路状态顺序编号。 ③按照题意列出电路的状态转换表或画出电路的状态转换图。通过以上步骤将给定的逻辑问题抽象成时序逻辑函数。 ⑵状态化简 ①等价状态:在相同的输入下有相同的输出,并且转换到同一次态的两个状态。 ②合并等价状态,使电路的状态数最少。 ⑶状态分配 ①确定触发器的数目n。因为n个触发器共有2n种状态组合,所以为获得时序电路所需的M个状态,必须取2n1<M2n ②给每个电路状态规定对应的触发器状态组合。 ⑷选定触发器类型,求出电路的状态方程、驱动方程和输出方程 ①根据器件的供应情况与系统中触发器种类尽量少的原则谨慎选择使用的触发器类型。 ②根据状态转换图(或状态转换表)和选定的状态编码、触发器的类型,即可写出电路的状态方程、驱动方程和输出方程。 ⑸根据得到的方程式画出逻辑图 ⑹检查设计的电路能否自启动 ①电路开始工作时通过预置数将电路设置成有效状态的一种。 ②通过修改逻辑设计加以解决。

2020-2021学年人教版高中物理选修3-5分层训练(十一)探测射线的方法

分层训练(十一)探测射线的方法放射性的应用与防护 [基础达标练] 1.原子核A Z X与氘核21H反应生成一个α粒子和一个质子.由此可知() A.A=2,Z=1B.A=2,Z=2 C.A=3,Z=3 D.A=3,Z=2 2.下列说法正确的是() A.给农作物施肥时,在肥料里放一些放射性同位素,是因为农作物吸收放射性同位素后生长更好 B.输油管道漏油时,可以在输的油中放一些放射性同位素探测其射线,确定漏油位置C.天然放射元素也可以作为示踪原子加以利用,只是较少,经济上不划算 D.放射性元素被植物吸收,其放射性将发生改变 3.用α粒子轰击铍-9核,生成一个碳-12核和一个粒子,则该粒子() A.带正电,能在磁场中发生偏转 B.带负电,能在磁场中发生偏转 C.电离本领特别强,是原子的组成部分之一 D.在任何方向的磁场中都不会发生偏转 4.(多选)有关放射性同位素3015P的下列说法,正确的是() A.3015P与3014X互为同位素 B.3015P与其同位素有相同的化学性质 C.用3015P制成化合物后它的半衰期变长 D.含有3015P的磷肥中,3015P可用作示踪原子,观察磷肥对植物的影响 5.1934年,约里奥—居里夫妇用α粒子轰击铝核2713Al,产生了第一个人工放射性核素X:α+2713Al―→n+X.X的原子序数和质量数分别为() A.15和28 B.15和30 C.16和30 D.17和31 6.(多选)关于放射线的探测,下列说法正确的是() A.气泡室探测射线的原理与云室探测射线的原理类似 B.由气泡室内射线的径迹可以分析粒子的带电、动量、能量等情况 C.盖革-米勒计数器探测射线的原理中也利用射线的电离本领 D.盖革-米勒计数器不仅能计数,还能用来分析射线的性质 7.在充氮的云室中做α粒子轰击氮核的实验,如图所示的云室照片中,正确的是() 8.以下是物理学史上3个著名的核反应方程 X+73Li→2Y Y+14 7N→X+17 8O Y+94Be→Z+12 6C X、Y和Z是3种不同的粒子,其中Z是() A.α粒子B.质子 C.中子D.电子 9.如图为查德威克实验示意图,由天然放射性元素钋(Po)放出的α射线轰击铍时会产生粒子流A,用粒子流A轰击石蜡时会打出粒子流B,经研究知道()

FPGA_触发器与计数器实验报告

电力学院 FPGA应用开发实验报告 实验名称:触发器与计数器 专业:电子科学与技术 姓名: 班级: 学号:

1.触发器功能的模拟实现 实验目的: 1.掌握触发器功能的测试方法。 2.掌握基本RS触发器的组成及工作原理。 3.掌握集成JK触发器和D触发器的逻辑功能及触发方式。 4.掌握几种主要触发器之间相互转换的方法。 5.通过实验,体会EPLD芯片的高集成度和多I/O口。 实验说明: 将基本RS触发器,同步RS触发器,集成J-K触发器,D触发器同时集一个FPGA芯片中模拟其功能,并研究其相互转化的方法。 实验的具体实现要连线测试,实验原理如图所示:

2.计数器 在VHDL中,可以用Q<=Q+1简单地实现一个计数器,也可以用LPM来实现。下面分别对这两种方法进行介绍。 方法一: 第1步:新建一个Quartus项目。 第2步:建立一个VHDL文件,实现一个8位计数器。计数器从“00000000”开始计到“11111111”,计数器的模是256。计数器模块还需要包含一个时钟clock、一个使能信号en、一个异步清0信号aclr和一个同步数据加载信号sload。模块符号如下图所示: 第3步:VHDL代码如下: 第4步:将VHDL文件另存为counter_8bit.vhd,并将其设定为项目的最顶层文件,再进行语法检查。

第5步:语法检查通过以后,用KEY[0]表示clock,SW[7..0]表示data,SW[8~10]分别表示en、sload和aclr;LEDR[7..0]表示q。 第6步:引脚分配完成后,编译并下载。 第7步:修改上述代码,把计数器的模更改为100,应如何操作。 模为100的计数器,VHDL代码如下: 方法二:使用LPM实现8位计数器。 LPM是指参数化功能模块,用LPM可以非常方便快捷地实现一个计数器。 第1步:选择Tools->MegaWizard Plug-In Manager命令,打开如下图所示的对话框。

相关主题
文本预览
相关文档 最新文档