当前位置:文档之家› 物理化学公式整理

物理化学公式整理

物理化学公式整理
物理化学公式整理

热力学第一定律

功:δW =δW e +δW f

(1) 膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2) 非膨胀功δW f =xdy

非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。

热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的能和焓只是温度的单值函数。 热容 C =δQ/dT

(1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:

(1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:

pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1

1

-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =

1

nR

-δ(T 1—T 2)

热机效率:η=

2

1

2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=

1

21

T T T -

焦汤系数: μJ -T =H p T ????

????=-()p

T C p H ?? 实际气体的ΔH 和ΔU :

ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ???

????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B

B γRT

化学反应热效应与温度的关系:()()()dT B C T H T H 2

1

T T m p B

1m r 2m r ?

∑??,+=γ

热力学第二定律

Clausius 不等式:0T

Q

S B

A B A ≥?∑

→δ—

熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:

(1) 组成恒定、不作非膨胀功的封闭体系的热力学基本方程:

dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2) Maxwell 关系:

T V S ???

????=V

T p ??? ????

T

p S ???? ????=-p T V ??? ???? (3) 热容与T 、S 、p 、V 的关系:

C V =T V T S ??? ???? C p =T p

T S ??? ????

Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()p

T /G ???

??????T =-2T H ? 单组分体系的两相平衡: (1)Clapeyron 方程式:

dT dp

=m

X m X V T H ?? 式中x 代表vap ,fus ,sub 。 (2)Clausius -Clapeyron 方程式(两相平衡中一相为气相):dT dlnp

=2

m vap RT

H ? (3)外压对蒸汽压的影响:()

()**

g e m g

g p p RT

l V p p ln

-= p g 是在惰性气体存在总压为p e 时的饱和蒸汽压。

吉不斯-杜亥姆公式:SdT -Vdp +∑B

B B d n μ=0

dU =TdS -pdV +∑B

B B d n μ dH =TdS +Vdp +∑B

B B d n μ

dF =-SdT -pdV +∑B

B B d n μ dG =-SdT +Vdp +∑B

B B d n μ

在等温过程中,一个封闭体系所能做的最大功等于其Helmbolz 自由能的减少。等温等压下,一个封闭体系所能做的最大非膨胀功等于其Gibbs 自由能的减少。

统计热力学

波兹曼公式:S =kln Ω

一种分布的微观状态数:定位体系:t i =N !∏i i N i N g i ! 非定位体系:t i =∏i i N i N g i

波兹曼分布:N N i =∑∈∈i

k T

i k T

i i i e

g e g -- 在A 、B 两个能级上粒子数之比:B A N N =k T

/B k T

/A B A e

g e g ∈∈--

波色-爱因斯坦统计:N i =

1

e g i i ---∈βα 费米-狄拉克统计:N i =

1

e g i i +--∈βα

分子配分函数定义:q =∑∈i

/i i e g kT - -∈i 为能级能量

q =∑∈i

/i e kT - -∈i 为量子态能量

分子配分函数的分离:q =q n q e q t q r q v

能级能量公式:平动:εt =???

? ??22Z

22Y 22X 2c n b n a n m 8h ++ 转动:εr =()I 8h 1J J 22π+ 振动:εv =γh 21v ??? ?

?

分子配分函数表达式:平动:当所有的平动能级几乎都可被分子到达时

一维:q t =L h mkT 2212??? ??π 二维:q t =2h mkT 2πA 三维:q t =V h mkT 22

32

??

? ??π

转动:线性q r =22h IkT 8σπ=r

T Θ

σ r

Θ=k I 8h 22

π r Θ为转动特征温度 非线性q r =

()()1Z Y X 3

2

32I I I h kT 28σππ

振动:双原子分子q V =kT 2/h kT 2/h e 1e γγ---=T 2/T 2/V V

e 1e ΘΘ--- v

Θ=k h γ 为振动特征温度

多原子线性:q V =∏5

n 31i /2/1-=---kT h kT h i i e e γγ 多原子非线性:q V =∏6

n 31i /2/1

-=---kT

h kT h i i e e

γγ 电子运动:q e =(2j +1)kT

/e 0e

∈- 原子核运动:q n =(2S n +1)

kT

/n

0e

∈-

热力学函数表达式: F =-kTlnq N (定位)

F =-kTln !

N q N

(非定位)

S =klnq N +NkT N V T lnq ,???

??

??(定位) S =kln !N q N +NkT N

V T lnq ,?

??

????(非定位) G =-kTlnq N +NkTV N

T V lnq ,?

??

????(定位)

G =-kTln !N q N +NkTV N

T V lnq ,?

??

????(非定位) U =NkT 2N V T lnq ,??? ???? H =NkT 2N V T lnq ,??? ????+NkTV N

T V lnq ,?

??

???? P =NkT N T V lnq ,??? ???? C V =V N V 2T lnq NkT T ???

????????? ??????,

一些基本过程的ΔS 、ΔG 、ΔF 的运算公式(W f =0)

物理化学公式

第七章 电 化 学 主要公式及其适用条件 1.迁移数及电迁移率 电解质溶液导电是依靠电解质溶液中正、负离子的定向运动而导电,即正、负离子分别承担导电的任务。但是,溶液中正、负离子导电的能力是不同的。为此,采用正(负)离子所迁移的电量占通过电解质溶液的总电量的分数来表示正(负)离子之导电能力,并称之为迁移数,用t + ( t - ) 表示。即 正离子迁移数 -++-++-++++=+=+=u u u Q Q Q t v v v 负离子迁移数 -+--+--+--+=+=+=u u u Q Q Q t v v v 上述两式适用于温度及外电场一定而且只含有一种正离子和一种负离子的电解质溶液。式子表明,正(负)离子迁移电量与在同一电场下正、负离子运动速率+v 与 -v 有关。式中的u + 与u - 称为电迁移率,它表示在一定溶液中,当电势梯度为1V·m -1 时正、负离子的运动速率。 若电解质溶液中含有两种以上正(负)离子时,则其中某一种离子B 的迁移数t B 计算式为 ∑=+B B B B Q Q t z 2.电导、电导率与摩尔电导率 衡量溶液中某一电解质的导电能力大小,可用电导G ,电导率κ与摩尔电导率m Λ来表述。电导G 与导体的横截面A s 及长度l 之间的关系为 l A κR G s ==1 式中κ称为电导率,表示单位截面积,单位长度的导体之电导。对于电解质溶 液,电导率κ则表示相距单位长度,面积为单位面积的两个平行板电极间充满 电解质溶液时之电导,其单位为S · m -1。若溶液中含有B 种电解质时,则该溶

液的电导率应为B 种电解质的电导率之和,即 ∑=B B κκ(溶液) 虽然定义电解质溶液电导率时规定了电极间距离、电极的面积和电解质溶液的体积,但因未规定相同体积电解质溶液中电解质的量,于是,因单位体积中电解质的物质的量不同,而导致电导率不同。为了反映在相同的物质的量条件下,电解质的导电能力,引进了摩尔电导率的概念。电解质溶液的摩尔电导率m Λ定义是该溶液的电导率κ与其摩尔浓度c 之比,即 c κΛ=m m Λ表示了在相距为单位长度的两平行电极之间放有物质的量为1 mol 电解质之溶液的电导。单位为S · m 2 · mol -1 。使用m Λ时须注意:(1)物质的量之基本单元。因为某电解质B 的物质的量n B 正比于B 的基本单元的数目。例如,在25 0C 下,于相距为l m 的两平行电极中放人1mol BaSO 4(基本单元)时,溶液浓度为c ,其 m Λ(BaSO 4 ,298.15K)= 2.870×10-2 S · m 2 · mol -1 。若基本单元取(21 BaS04),则上 述溶液的浓度变为c ',且c '=2c 。于是,m Λ'(21BaS04,298.15K)= 21 m Λ(BaS04,298.15K)=1.435×10-2 S · m 2 · mol -1;(2)对弱电解质,是指包括解离与未解离部分在内总物质的量为1 mol 的弱电解质而言的。m Λ是衡量电解质导电能力应用最多的,但它数值的求取却要利用电导率κ,而κ的获得又常需依靠电导G 的测定。 3. 离子独立运动定律与单种离子导电行为 摩尔电导率m Λ与电解质的浓度c 之间有如下关系: c A ΛΛ-=∞m m 此式只适用于强电解质的稀溶液。式中A 与 ∞m Λ 在温度、溶液一定下均为常数。 ∞m Λ是c →0时的摩尔电导率,故称为无限稀释条件下电解质的摩尔电导率。∞m Λ是电解质的重要特性数据,因为无限稀释时离子间无静电作用,离子独立运动彼此 互不影响,所以,在同一温度、溶剂下,不同电解质的∞m Λ数值不同是因组成电 解质的正、负离子的本性不同。因此,进一步得出 ∞-∞++∞+=,- m , m m ΛνΛνΛ

物化下册公式整理

相律F = C—P + n ,C=S-R-R’ 相图:相态与T,p,x的关系图 实验方法:气液系统,蒸气压法和沸点法; 液固(凝聚),热分析法和溶解度法。杠杆规则:m=m1+m2 范特霍夫方程:lnP2/P1=Δvap H/R*(1/T1-1/T2)=lnx 法拉第定律:Q=n 电 F=Z ζ F=It F=96485.34C/mol 电导G=1/R = κA/l S(西门子) 电导池常数K cell= κ*R 摩尔电导率:Λm= κ/c 稀的强电解质:Λm=Λm∞-A√c 无限稀释溶液:Λm∞= v+Λm∞,+ + v- Λm∞,- 解离度α= Λm /Λm∞ 平衡常数K θ = [ α2/(1-α)]*(cθ/c) 难溶电解质:Λm≈Λm∞ 平均活度及活度系数 a=a v±=a v++a v--,b v±=b v++b v--,v = v+ + v-,a±=γ±b±/ bθ t +=v + Λm∞+/Λm∞ 离子迁移数:n 电解前=n 电解后 ±n 反应 ±n 迁移 (迁进为正,迁出为负) t=n 迁移 /n 反应 德拜-休克尔公式:lgγ ± =-AZ+│Z—│√I ,其中A=0.509(mol-1·kg)1/2离子强度:I = (1/2) ∑ b B Z B2≈(1/2) ∑ C B Z B2 ?G= -zFE 温度系数(? E/? T)p(V/K) ?S= -(?G/?T)p = zF (?E/? T)p (J/mol·K) ?H =?G + T? S = -zFE +zFT(?E/?T)p Q ir = T? S =zFT(?E/?T)p ?r G mθ = -zFEθ = -RT ln Kθ 极化类型:电化学极化和浓差极化 能斯特方程:E=Eθ—RT/ZF lnΠa B vB 当T=298.15K时,E=Eθ-0.05916/Z lnΠa B vB V 电极电势E(电极)=Eθ(电极)+RT/ZF ln{Πa B(电极)}vB(电极) =Eθ(电极)+RT/ZF ln{a B(还原态)/a B(氧化态)} 电池的电动势:E = E+ - E -= E 右 - E 左 浓差电池无液接:E=-RT/ZF lna2/a1 有液接:E 有=E 无 +E 液 =2t+RT/ZFln(a±)1/(a±)2 E液=(2t+-1)RT/ZFln(a±)1/(a±)2 第一类电极:金属、氢、氧、卤素电极等。第二类:金属-难容盐、金属-难容氧化物电极。第三类:氧化还原电极。 比表面a s =A s / V或a s =A s / m 表面功:δW'r = d G =(F/2l) d A s = γ d A s(T,p,n一定) 表面张力:γ = F/2l = (δW'r / d A s )T,p,n = (?G/? A s) T,,p,n=(?U/? A s) S,V,n=(?H/? A s) S,,p,n=(?A/? A s) T,, V,n 表面张力与温度关系:(?S/? A s) T,,p,n=-(?γ/? T) A,,P,n ?G T,P=γΔAs(ΔAs面积差) 高度分散系统的热力学方程:d G = -S d T + V d p +Σμ B d n B + γ d A s

物理化学公式大全

物理化学公式集 热力学第一定律 功:δW=δW e+δW f (1)膨胀功δW e=p外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f=xdy 非膨胀功为广义力乘以广义位移。如δW(机械功)=fdL,δW(电功)=EdQ,δW(表面功)=rdA。热Q:体系吸热为正,放热为负。 热力学第一定律:△U=Q—W 焓H=U+pV 理想气体的内能和焓只是温度的单值函数。 热容C=δQ/dT (1)等压热容:C p=δQ p/dT=(?H/?T)p (2)等容热容:C v=δQ v/dT=(?U/?T)v 常温下单原子分子:C v,m=C v,m t=3R/2 常温下双原子分子:C v,m=C v,m t+C v,m r=5R/2 等压热容与等容热容之差: (1)任意体系C p—C v=[p+(?U/?V)T](?V/?T)p (2)理想气体C p—C v=nR 理想气体绝热可逆过程方程: pVγ=常数TVγ-1=常数p1-γTγ=常数γ=C p/ C v 理想气体绝热功:W=C v(T1—T2)=(p1V1—p2V2) 理想气体多方可逆过程:W=(T1—T2) 热机效率:η=冷冻系数:β=-Q1/W 可逆制冷机冷冻系数:β=

焦汤系数:μJ-T==- 实际气体的ΔH和ΔU: ΔU=+ΔH=+ 化学反应的等压热效应与等容热效应的关系:Q p=Q V+ΔnRT 当反应进度ξ=1mol时,Δr H m=Δr U m+RT 化学反应热效应与温度的关系: 热力学第二定律 Clausius不等式: 熵函数的定义:dS=δQ R/T Boltzman熵定理:S=klnΩ Helmbolz自由能定义:F=U—TS Gibbs自由能定义:G=H-TS 热力学基本公式: (1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程: dU=TdS-pdV dH=TdS+Vdp dF=-SdT-pdV dG=-SdT+Vdp (2)Maxwell关系: ==- (3)热容与T、S、p、V的关系: C V=T C p=T Gibbs自由能与温度的关系:Gibbs-Helmholtz公式=- 单组分体系的两相平衡: (1)Clapeyron方程式:=式中x代表vap,fus,sub。 (2)Clausius-Clapeyron方程式(两相平衡中一相为气相):= (3)外压对蒸汽压的影响:p g是在惰性气体存在总压为p e时的饱和蒸汽压。

物理化学公式复习

物理化学公式复习 第一章气体 1.理气状态方程 2.混合理气的平均摩尔质量 3.道尔顿分压定律(一定T、V条件) 4.分压力和总压力关系 5.阿马格分体积定律(一定T、P条件) 6.压缩因子的定义 7.范德华方程 8 .维里方程 B 、 C 、 D 分别称第二、第三、第四维里系数。 9 .对应状态原理 第二章热力学第一定律 1 . 系统吸热为正,放热为负。 系统得功为正,对环境做功为负。 2 .体积功定义

适用恒外压过程 (可逆过程) (一定量理气恒温可逆过程) (理想气体绝热过程,不论过程是否可 逆都适用) 3 .内能 (1)(W ˊ = 0 dV= 0 的过程) (2) (适用于 n 、 C v,m 恒定,理想气体单纯 PVT 变化的一切过程) 4 .焓的定义式 5 .焓变 (1) (2)() (3) (理气恒定,单纯 PVT 变化的一切过程) 6 .摩尔热容 ( 1 )恒容摩尔热容的定义式 (1mol 物质、, 只有 P 、 T 变化的过程 ) ( 2 )定压摩尔热容的定义式 (3) ( 只适用于理气 ) 7 .反应进度 8 .标准摩尔反应焓

9 .基尔霍夫公式 ( 1 ) (只适用于在 298.155~T 的温度范围内,参加反应各物质的种类和相态皆不发生变化的反应。) ( 2 ) 10 .化学反应的恒压摩尔反应热和恒容摩尔反应热的关系式 (此 式适用于由同 一始态,分别经恒温恒压及恒容反应,达到仅 P 、 V 不同的未态化学反应摩尔热效应的计算。) 11 .理想气体可逆绝热过程方程式 常数 常数 = 常数 12 .节流膨胀系数(焦耳 - 汤姆生系数) 13 .理想气体 14 .火焰最高理论温度 (恒压绝热) 1.隔离系统内发生的可逆变化过程() A .△S=0,△S(环)=0 B. △S>0,△S(环)=0 C. △S=0,△S(环)>0 D.△S>0,△S(环)>0. 2. 实际气体经一不可逆循环( )

物理化学公式大全

1. 热力学第一定律的数学表示式 W Q U +=?或 'amb δδδd δdU Q W Q p V W =+=-+ 系统得功为正,对环境作功为负。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1 d p H nC T ?=? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热与恒压热 V Q U =? (d 0,'0)V W == p Q H =? (d 0,'0)p W == 6. 热容的定义式 (1)定压热容与定容热容 δ/d (/)p p p C Q T H T ==?? δ/d (/)V V V C Q T U T ==?? (2)摩尔定压热容与摩尔定容热容 ,m m /(/)p p p C C n H T ==?? ,m m /(/)V V V C C n U T ==?? 上式分别适用于无相变变化、无化学变化、非体积功为零的恒压与恒容过程。 (3)质量定压热容(比定压热容) 式中m 与M 分别为物质的质量与摩尔质量。 (4) ,m ,m p V C C R -= 此式只适用于理想气体。 7. 摩尔蒸发焓与温度的关系 2 1 vap m 2vap m 1vap ,m ()()d T p T H T H T C T ?=?+?? 式中 vap ,m p C ? = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。 8. 体积功 ,m //p p p c C m C M ==pV U H +=2 ,m 1d V U nC T ?=?

傅献彩_物理化学主要公式及使用条件总结

第一章 气体的pVT 关系 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩尔体积。∑*A A m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。 上述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中pB 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 适用于任意气体。 V RT n p /B B = 适用于理想气体 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 范德华方程 RT b V V a p =-+))(/(m 2m n R T nb V V an p =-+))(/(22

物化各种公式概念总结

第一章热力学第一定律 一、基本概念 系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,能与焓。 二、基本定律 热力学第一定律:ΔU =Q +W 。 三、基本关系式1、体积功的计算 δW = -p 外d V 恒外压过程:W = -p 外ΔV 定温可逆过程(理想气体):W =nRT 1 2 21ln ln p p nRT V V = 2、热效应、焓:等容热:Q V =ΔU (封闭系统不作其他功) 等压热:Q p =ΔH (封闭系统不作其他功) 焓的定义:H =U +pV ; ΔH =ΔU +Δ(pV ) 焓与温度的关系:ΔH =?2 1d p T T T C 3、等压热容与等容热容:热容定义:V V )(T U C ??=;p p )(T H C ??= 定压热容与定容热容的关系:nR C C =-V p 热容与温度的关系:C p ,m =a +bT +cT 2 四、第一定律的应用 1、理想气体状态变化 等温过程:ΔU =0 ; ΔH =0 ; W =-Q =?-p 外d V 等容过程:W =0 ; Q =ΔU =?T C d V ; ΔH =?T C d p 等压过程:W =-p e ΔV ; Q =ΔH =?T C d p ; ΔU =?T C d V 可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,

W =ΔU =?T C d V ;ΔH =?T C d p C V (㏑T 2-㏑T 1)=nR(㏑V 1-㏑V 2)(T 与V 的关系) C p (㏑T 2-㏑T 1)=nR(㏑P 2-㏑P 1) (T 与P 的关系) 不可逆绝热过程:Q =0 ; 利用C V (T 2-T 1)=-p 外(V 2-V 1)求出T 2, W =ΔU =?T C d V ;ΔH =?T C d p 2、相变化 可逆相变化:ΔH =Q =n ΔH ; W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W 3、实际气体节流膨胀:焦耳-汤姆逊系数:μJ-T (理想气体在定焓过程中温度不变,故其值为0;其为正值,则随p 降低气体T 降低;反之亦然) 4、热化学 标准摩尔生成焓:在标准压力和指定温度下,由最稳定的单质生成单位物 质的量某物质的定压反应热(各种稳定单质在任意温度下的生成焓值为0) 标准摩尔燃烧焓:…………,单位物质的量的某物质被氧完全氧化时的反应焓 第二章 热力学第二定律 一、基本概念 自发过程与非自发过程 二、热力学第二定律 热力学第二定律的数学表达式(克劳修斯不等式) T Q dS δ≥ “=”可逆;“>”不可逆

(完整word版)大学物理化学公式大全,推荐文档

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 1 21 T T T - 焦汤系数: μJ -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

物理化学公式汇总

第一章 气体的pVT 关系 主要公式及使用条件 1、 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 此式适用于理想气体,近似地适用于低压的真实气 体。 式中p ,V ,T 及n 单位分别为Pa,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8、314510 J · mol -1 · K -1,称为摩尔气体常数。 2、 气体混合物 (1) (1) 组成 摩尔分数 y B (或x B ) = ∑A A B / n n 体积分数 /y B m,B B *=V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。∑* A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总与。 (2) (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上述各式适用于任 意的气体混合物。 (3) V V p p n n y ///B B B B *=== 式中p B 为气体B,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3、 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 5、 范德华方程 RT b V V a p =-+))(/(m 2m

物理化学主要公式

物理化学主要公式 第一章 气体的pVT 关系 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩尔体积。∑*A A m,A V y 为 在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上述各式适用于任意的 气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律

p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 范德华方程 RT b V V a p =-+))(/(m 2m nRT nb V V an p =-+))(/(22 式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。 此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。 6. 维里方程 ......)///1(3m 2m m m ++++=V D V C V B RT pV 及 ......)1(3'2''m ++++=p D p C p B RT pV 上式中的B ,C ,D,…..及B‘,C‘,D‘….分别称为第二、第三、第四…维里系数,它们皆是与气体种类、温度有关的物理量。 适用的最高压力为1MPa 至2MPa ,高压下仍不能使用。 7. 压缩因子的定义 )/()/(m RT pV nRT pV Z == Z 的量纲为一。压缩因子图可用于查找在任意条件下实际气体的压缩因子。但计算结果常产生较大的误差,只适用于近似计算。 第二章 热力学第一定律 1. 热力学第一定律的数学表示式

大学物理下公式方法归纳

大学物理下公式方法归纳 Modified by JEEP on December 26th, 2020.

大 学物理下归纳总结 电学 基本要求: 1.会求解描述静电场的两个重要物理量:电场强度E 和电势V 。 2.掌握描述静电场的重要定理:高斯定理和安培环路定理(公式内容及物理意义)。 3.掌握导体的静电平衡及应用;介质的极化机理及介质中的高斯定理。 主要公式: 一、 电场强度 1 计算场强的方法(3种) 1、点电荷场的场强及叠加原理 点电荷系场强:∑=i i i r r Q E 304πε 连续带电体场强:?=Q r dQ r E 3 04πε (五步走积分法)(建立坐标系、取电荷元、写E d 、分解、积分) 2、静电场高斯定理: 物理意义:表明静电场中,通过任意闭合曲面的电通量(电场强度沿任意闭合曲面的面积分),等于该曲面内包围的电荷代数和除以0ε。

3、利用电场和电势关系: 二、电势 电势及定义: 1.电场力做功:??=?=2100l l l d E q U q A 2. 静电场安培环路定理:静电场的保守性质 物理意义:表明静电场中,电场强度沿任意闭合路径的线积分为0。 3.电势:)0(00 =?=?p p a a U l d E U ;电势差:??=?B A AB l d E U 电势的计算: 1.点电荷场的电势及叠加原理 点电荷系电势:∑=i i i r Q U 04πε (四步走积分法)(建立坐标系、取电荷元、写dV 、积分) 2.已知场强分布求电势:定义法 三、静电场中的导体及电介质 1. 弄清静电平衡条件及静电平衡下导体的性质 2. 了解电介质极化机理,及描述极化的物理量—电极化强度P , 会用介质中的高斯定 理,求对称或分区均匀问题中的,,D E P 及界面处的束缚电荷面密度 σ。 3. 会按电容的定义式计算电容。 典型带电体系的电势

物化公式归纳

物化公式归纳 第一章 化学热力学基础 公式总结 1.体积功 We = -Pe △V 2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程 .定温可逆时: Wmax=-Wmin= 4.焓定义式 H = U + PV 在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U 在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H 5.摩尔热容 Cm ( J ·K-1·mol-1 ): 定容热容 CV (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程 适用对象 : 任意的气体、液体、固体物质 ) 定压热容 Cp ?=?2 1 ,T T m p dT nC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程 适用对象 : 任意的气体、液体、固体物质 ) 单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R 双原子理想气体: Cv,m = 2.5R , Cp,m = 3.5R 多原子理想气体: Cv,m = 3R , Cp,m = 4R Cp,m = Cv,m + R 6.理想气体热力学过程ΔU 、ΔH 、Q 、W 和ΔS 的总结 1 221ln ln P P nRT V V nRT =n C C m =?=?2 1 ,T T m V dT nC U

7.定义:△fHm θ(kJ ·mol-1)-- 标准摩尔生成焓 △H —焓变; △rHm —反应的摩尔焓变 △rHm θ—298K 时反应的标准摩尔焓变; △fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B) —298K 时物质B 的标准摩尔燃烧焓。 8.热效应的计算 由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程 △rHm (T2) = △rHm (T1) + 如果 ΔCp 为常数,则 △rHm (T2) = △rHm (T1) + △Cp ( T2 - T1) 10.热机的效率为 对于卡诺热机 12 11Q Q Q Q W R +=- =η = 可逆循环过程 < 不可逆循环过程 11.熵变定义式 (体系经历一可逆过程的热温商之和等于该过程的熵变.) 12.热力学第二定律的数学表达式 (不等式中, “ > ”号表示不可逆过程 , “ = ” 号表示可逆过程 “ T ”—环境温度 , 对可逆过程也是体系温度. ) 13.熵增原理 (孤立体系的熵永不减少) △S 孤立 ≥ 0 > 不可逆过程, 自发过程 = 可逆过程, 体系达平衡 .对于封闭体系 △S 孤立 = △S 封闭 + △S 环境 ≥ 0 > 不可逆过程, 自发过程 = 可逆过程, 体系达平衡 14.定温定压的可逆相变 15.化学反应熵变的计算 △rS θm = ∑νBS θm ,B 16.△rH θm 和△rS θm 与温度的关系:△rH θ m (T2) = △rH θ m (T1) + △rS θ m (T2) = △rS θ m (T1) + dT C p T T ? ?2 1 1 212 11Q Q Q Q Q Q W +=+=- =η121T T T -=0 2 211≤+T Q T Q R B A A B T Q S S S )( δ?=-=?∑≥?i i i T Q S ) (δT Q dS δ≥ 环 体环 环环境T Q T Q S - == ?相变 ,相变 T H n S m ?= ?dT C p T T ??2 1 d T T C p T ?? 2

初中物理化学公式大全

初中物理化学公式大全物理 1、匀速直线运动的速度公式: 求速度:v=s/t 求路程:s=vt 求时间:t=s/v 2、变速直线运动的速度公式:v=s/t 3、物体的物重与质量的关系:G=mg (g=9.8N/kg) 4、密度的定义式 求物质的密度:ρ=m/V 求物质的质量:m=ρV 求物质的体积:V=m/ρ 4、压强的计算。 定义式:p=F/S(物质处于任何状态下都能适用) 液体压强:p=ρgh(h为深度) 求压力:F=pS 求受力面积:S=F/p 5、浮力的计算 称量法:F浮=G—F 公式法:F浮=G排=ρ排V排g 漂浮法:F浮=G物(V排<V物) 悬浮法:F浮=G物(V排=V物) 6、杠杆平衡条件:F1L1=F2L2 7、功的定义式:W=Fs 8、功率定义式:P=W/t 对于匀速直线运动情况来说:P=Fv (F为动力) 9、机械效率:η=W有用/W总 对于提升物体来说: W有用=Gh(h为高度) W总=Fs 10、斜面公式:FL=Gh 11、物体温度变化时的吸热放热情况 Q吸=cmΔt (Δt=t-t0) Q放=cmΔt (Δt=t0-t) 12、燃料燃烧放出热量的计算:Q放=qm 13、热平衡方程:Q吸=Q放 14、热机效率:η=W有用/ Q放(Q放=qm) 15、电流定义式:I=Q/t (Q为电量,单位是库仑) 16、欧姆定律:I=U/R 变形求电压:U=IR 变形求电阻:R=U/I 17、串联电路的特点:(以两纯电阻式用电器串联为例) 电压的关系:U=U1 U2

电流的关系:I=I1=I2 电阻的关系:R=R1 R2 18、并联电路的特点:(以两纯电阻式用电器并联为例) 电压的关系:U=U1=U2 电流的关系:I=I1 I2 电阻的关系:1/R=1/R1 1/R2 19、电功的计算:W=UIt 20、电功率的定义式:P=W/t 常用公式:P=UI 21、焦耳定律:Q放=I2Rt 对于纯电阻电路而言:Q放=I2Rt =U2t/R=UIt=Pt=UQ=W 22、照明电路的总功率的计算:P=P1 P1 …… 化学 化合反应 1、镁在空气中燃烧:2Mg O2 点燃2MgO 2、铁在氧气中燃烧:3Fe 2O2 点燃Fe3O4 3、铝在空气中燃烧:4Al 3O2 点燃2Al2O3 4、氢气在空气中燃烧:2H2 O2 点燃2H2O 5、红磷在空气中燃烧:4P 5O2 点燃2P2O5 6、硫粉在空气中燃烧:S O2 点燃SO2 7、碳在氧气中充分燃烧:C O2 点燃CO2 8、碳在氧气中不充分燃烧:2C O2 点燃2CO 9、二氧化碳通过灼热碳层:C CO2 高温2CO 10、一氧化碳在氧气中燃烧:2CO O2 点燃2CO2 11、二氧化碳和水反应(二氧化碳通入紫色石蕊试液):CO2 H2O === H2CO3 12、生石灰溶于水:CaO H2O === Ca(OH)2 13、无水硫酸铜作干燥剂:CuSO4 5H2O ==== CuSO4·5H2O 14、钠在氯气中燃烧:2Na Cl2点燃2NaCl 分解反应 15、实验室用双氧水制氧气:2H2O2 MnO2 2H2O O2↑ 16、加热高锰酸钾:2KMnO4 加热K2MnO4 MnO2 O2↑ 17、水在直流电的作用下分解:2H2O 通电2H2↑ O2 ↑ 18、碳酸不稳定而分解:H2CO3 === H2O C O2↑ 19、高温煅烧石灰石(二氧化碳工业制法):CaCO3 高温CaO CO2↑ 置换反应 20、铁和硫酸铜溶液反应:Fe CuSO4 == FeSO4 Cu 21、锌和稀硫酸反应(实验室制氢气):Zn H2SO4 == ZnSO4 H2↑ 22、镁和稀盐酸反应:Mg 2HCl === MgCl2 H2↑ 23、氢气还原氧化铜:H2 CuO 加热Cu H2O 24、木炭还原氧化铜:C 2CuO 高温2Cu CO2↑ 25、甲烷在空气中燃烧:CH4 2O2 点燃CO2 2H2O 26、水蒸气通过灼热碳层:H2O C 高温H2 CO

物化公式总结(傅献彩第五版)

物理化学(第五版) 公式总结 傅献彩版 专业:化学 姓名:XXX 学号:XXX

物化公式总结 第一章 气体分子动理论 内容 公式 使用条件 气体分子动理论的基本公式 231mnu P = 23 1 mNu PV = 统计概念 压力和温度的统计概念 )(2 1 2T f mu Et == 统计概念 Boyle-Marriote 定律 PV=C 定T Charles-Gay-Lussac 定律 T C V t '= 定P Avogadro 定律 同温同压下,同体积的各种气体所含有的分子个数相同 理想气体状态方程式 nRT RT M m pV ==)/( RT n V p pV ==)/(m p ,V ,T ,n ——Pa ,m 3,K ,mol R =8.3145J · mol -1 · K -1 T Nk PV nRT PV B == ( L R k L N n B = = ) 此式适用于理想气体,近似地适用于低压的真实气 体 Dalton 分压定律 i mix i x N N P P P P P ==++=...... 21 任意气体,T,V 一定 对于理想气体V RT n p /B B = Amagat 分体积定律 i i Vx V V V V =++= (21) 任意气体,T ,P 一定 分子平均平动能与温度关系 T k E B t 2 3 =

摩尔气体常数 113145.6)()(00 -?-?==→→K mol J R T PV PV P m P Maxwell 速率分布定律 2 25.1)2exp()2(4)(v kT mv kT m v f -=π 三个统计 平均值 最概然速率 M RT m T k v B m 22== 数学平均速率 m kT v a π8= 231mnu P = 根均方速率 m kT u π3= 分子平均动能的分布 dE kT E kT N dN kT E N N kT E N N E E E E )exp()exp()exp(2111-= ?-=∞→∞→-=∞→ 气体分子在重力场中的分布 ??? ??=?? ? ??=??? ??=??? ??=kT mgh n n kT mgh kT mgh p p RT Mgh p p -exp -exp -exp -exp 00000ρρ 0~h 的高度T 不变 液体中有悬浮颗粒(悬浮颗粒:.,,V m ρ) ))(0() 1()1(00 0kT gh m n n m m m Vg mg ** =-=- =-ρ ρ ρ ρρ

(完整版)金属及其化合物化学方程式汇总

必修一金属及其化合物化学方程式 一、金属钠及其化合物 1、钠在空气中 (1)钠块在空气中变暗:2Na +O2=Na2O(白色固体)(钠长时间露置在空气中最终变为碳酸钠)(2)在空气中加热4Na+2O2 =2Na2O2(淡黄色固体) 现象:钠融化成小球,然后剧烈燃烧,产生黄色火焰,生成淡黄色固体 (3)2Na2O+O2=2Na2O2 2、钠与水反应(浮、熔、游、响、红) 2Na +2H2O =2NaOH +H2↑ 2Na +2H2O =2Na++2OH-+H2↑ 3、钠与盐溶液反应(先水后盐) (1)与氯化钠溶液:本质上就是与水反应 (2)与硫酸铜溶液: 2Na +2H2O =2NaOH +H2↑ 2NaOH + CuSO4 ==Cu(OH)2↓+ Na2SO4 总:2Na +2H2O + CuSO4=Cu(OH)2↓+ Na2SO4+H2↑ 2Na +2H2O+ Cu2+ =Cu(OH)2↓+H2↑+ 2Na+ (3)与氯化铁溶液: 6Na+6H2O+2FeCl3=2Fe(OH)3↓+6NaCl+3H2↑ 6Na+6H2O+2Fe3+=2Fe(OH)3↓+6Na+ +3H2↑ 4、过氧化钠与水的反应(放热反应、Na2O2是强氧化剂,用于漂白) 2Na2O2+2H2O =4NaOH +O2 ↑ 2Na2O2+2H2O =4Na++4OH -+O2↑ 现象:产生大量气泡,带火星的木条复燃,试管外壁发热,滴加酚酞后溶液变红(振荡后褪色) 碱性氧化物Na2O与水的反应Na2O+H2O=2NaOH Na2O +H2O =2Na++2OH - 5、过氧化钠可用在呼吸面具和潜水艇中作为氧气来源,原因是: 2Na2O2+2CO2=2Na2CO3+O2 碱性氧化物Na2O与二氧化碳的反应Na2O+CO2===Na2CO36、过氧化钠与盐酸的反应 2Na2O2+4HCl =4NaCl +2H2O+O2 ↑2Na2O2+4H+=4Na++2H2O+O2↑ 碱性氧化物Na2O与盐酸的反应 Na2O +2HCl =2NaCl +H2O Na2O +2H+=2Na++H2O 7、氢氧化钠 (1)与酸性氧化物反应 a向NaOH中通入少量CO2:2NaOH+ CO2 (少量)== Na2CO3 + H2O OH -+CO2 (少量)= CO32-+H2O b 继续向该溶液中通入CO2:Na2CO3+H2O +CO2=2NaHCO3 CO32-+H2O +CO2=2HCO3- c向NaOH中通入过量CO2:NaOH+ CO2(过量)== NaHCO3a+b OH -+CO2 (过量)= HCO3- d向Ca(OH)2中通入少量CO2:CO2+Ca(OH)2(过量)===CaCO3↓+H2O Ca2++ 2OH -+CO2 (少量)= CaCO3↓+H2O e继续向该溶液中通入CO2:CaCO3+H2O +CO2=Ca(HCO3)2 CaCO3+H2O +CO2=Ca2++ 2HCO3- f向Ca(OH)2中通入过量CO2:2CO2(过量)+Ca(OH)2===Ca(HCO3)2 d+e OH -+CO2 (过量)= HCO3- CaCl2不与CO2反应:因为一般情况下弱酸不能制强酸 8、苏打(纯碱)与盐酸反应(根据滴加顺序不同,现象不同,所以可以鉴别盐酸和碳酸氢钠) ①向盐酸中滴加纯碱溶液Na2CO3+2HCl =2NaCl +H2O+CO2↑ CO32-+2H+=H2O +CO2↑ 现象:立即有气泡产生 ②纯碱溶液中滴加盐酸,至过量 Na2CO3+HCl =NaHCO3+NaCl CO32-+H+ =HCO3- NaHCO3+HCl=NaCl+H2O+CO2↑HCO3-+H+=H2O +CO2↑ 现象:先无明显现象,然后有气泡产生 9、碳酸氢钠和盐酸反应(无论是向碳酸氢钠中滴加稀盐酸还是向盐酸中滴加碳酸氢钠,现象均为:立 △△

热力学公式汇总

物理化学主要公式及使用条件 第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 /y B m,B B * =V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * ===

式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 第二章 热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 W Q U +=? 或 'amb δδδd δdU Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 pV U H +=

相关主题
文本预览
相关文档 最新文档