当前位置:文档之家› 概率论与数理统计答案 第二章 离散型随机变量

概率论与数理统计答案 第二章 离散型随机变量

概率论与数理统计答案    第二章 离散型随机变量
概率论与数理统计答案    第二章 离散型随机变量

第二章 离散型随机变量

2.1 下列给出的是不是某个随机变量的分布列? (1)????

??2.03.05.0531 (2) ???

? ??1.01.07.0321

(3) ????? ?

???? ????? ????? ?? n n 31213121312121

2102 (4)????

?

????? ????? ?? 2221212121

n 解 (1)是

(2)11.01.07.0≠++,所以它不是随机变量的分布列。

(3)4

33121312131212

12

=+??

? ??++??

? ??+??

? ??+ n

,所以它不是随机变量的分布列。

(4),021>??? ??n n 为自然数,且1211=??

? ??∑∞

=n n

,所以它是随机变量的分布列。 2.2 设随机变量ξ的分布列为:5,4,3,2,1,15

)(==

=k k

k P ξ,求(1))21(==ξξ或P ; (2)2

5

21(

<<ξP ) ; (3) )21(≤≤ξP 。 解 (1) 5

1152151)21(=+=

==ξξ或P ; (2) 5

1)2()1()2521(==+==<<ξξξP P P ;

(3) )21(≤≤ξP 5

1

)2()1(==+==ξξP P .

2.3 解 设随机变量ξ的分布列为3,2,1,32)(=??

? ???==i C i P i

ξ。求C 的值。 解 1

32323232=???????

???? ??+??? ??+C ,所以3827=C 。

2.4 随机变量ξ只取正整数N ,且)(N P =ξ与2N 成反比,求ξ的分布列。

解 根据题意知2)(N C N P ==ξ,其中常数C 待定。由于162

12

=?=∑

∞=πC N

C N ,所以26π=C ,即ξ的分布列为2

26)(N N P πξ=

=,N 取正整数。

2.5 一个口袋中装有m 个白球、m n -个黑球,不返回地连续从袋中取球,直到取出黑球时停止。设此时取出了ξ个白球,求ξ的分布列。

解 设“k =ξ”表示前k 次取出白球,第1+k 次取出黑球,则ξ的分布列为:

.,,1,0,)

()1()

)(1()1()(m k k n n n m n k m m m k P =---+--=

2.6 设某批电子管的合格品率为4

3,不合格品率为

4

1,现在对该批电子管进行测试,设第ξ次为首

次测到合格品,求ξ的分布列。

解 .,2,1,4

3

41)(1

=??

? ??==-k k P k ξ 2.7 一个口袋中有5个同样大小的球,编号为1、2、3、4、5,从中同时取出3只球,以ξ表示取出球的取大号码,求ξ的分布列。

解 .5,4,3,3521)(=???

? ???

??? ??-==k k k P ξ 2.8 抛掷一枚不均匀的硬币,出现正面的概率为p )10(<

所需要的次数,求ξ的分布列。

解 ,3,2,)(11=+==--k q p p q k P k k ξ

,其中p q -=1。

2.9 两名篮球队员轮流投篮,直到某人投中时为止,如果第一名队员投中的概率为0.4,第二名队员投中的概率为0.6,求每名队员投篮次数的分布列。

解 设ξ,η表示第二名队员的投篮次数,则

4.04.06.0)(11--==k k k P ξ+6.04.06.01-k k ,2,1,24.076.01=?=-k k ; 6.04.06.0)(1-==k k k P η4.04.06.0k k + ,2,1,4.06.076.01=?=-k k k 。

2.10 设随机变量ξ服从普哇松分布,且==)1(ξ

P )2(=ξP ,求)4(=ξP 。

解 ,2,1,0)0(!

)(=>=

=-k e k k P k

λλξλ

。由于,2

2

λλ

λλ--=

e e

得,21=λ02=λ(不

合要求)。所以2

243

2!42)4(--===e e P ξ。 2.11 设某商店中每月销售某种商品的数量服从参数为7的普哇松分布,问在月初进货时应进多少件此种商品,才能保证当月不脱销的概率为0.999。

解 设ξ为该种商品当月销售数,x 为该种商品每月进货数,则999.0)(≥≤x P ξ

。查普哇松分布

的数值表,得16≥x 。

2.12 如果在时间t (分钟)内,通过某交叉路口的汽车数量服从参数与t 成正比的普哇松分布。已知在一分钟内没有汽车通过的概率为0.2,求在2分钟内有多于一辆汽车通过的概率。

解 设ξ为时间t 内通过交叉路口的汽车数,则

,2,1,0),0(!

)()(=>==-k e k t k P t

k λλξλ

1=t 时,2.0)0(===-λξe P ,所以5ln =λ;2=t 时,5ln 2=t λ,因而

=>)1(ξP -=-)0(1ξP ==)1(ξP 83.025/)25ln 24(≈-。

2.13 一本500页的书共有500个错误,每个错误等可能地出现在每一页上(每一页的印刷符号超过500个)。试求指定的一页上至少有三个错误的概率。

解 在指定的一页上出现某一个错误的概率

500

1

=

p ,因而,至少出现三个错误的概率为 k

k k k -=?

?? ????? ?

????? ??∑500500

35004995001500k

k

k k -=?

??

????? ?

????? ??-=∑5002

050049950015001

利用普哇松定理求近似值,取1500

1

500=?

==np λ

,于是上式右端等于 080301

.025

1!

1112

0≈-=--=∑e e k k 2.14 某厂产品的不合格品率为0.03,现在要把产品装箱,若要以不小于0.9的概率保证每箱中至少有100个合格品,那么每箱至少应装多少个产品?

解 设每箱至少装x +100个产品,其中有k 个次品,则要求x ,使

k

x k x

k k x -+=∑???

? ??+≤100097.003.01009.0, 利用普哇松分布定理求近似值,取303.0)100(≈?+=x λ,于是上式相当于3

0!

39.0-=∑≤e k x

k k ,查普哇松分布数值表,得5=x 。

2.15 设二维随机变量),(ηξ的联合分布列为:

)10,0()

!(!)1(),(<<>--=

==--p e m n m p p m n P m

n m n λληξλ

,2,1,0,,1,0==n n

m

求边际分布列。

解 ∑=====n

m m n P n P 0

),()(ηξξ

m n m n

m n p p m n m n n e -=---=

∑)1()!

(!!

!0λ

λ ,2,1,0!

==

-n n e n λ

λ

=====0

),()(n m n P m P ηξηm n m m n m p p m n m n m e p -∞

=---=

∑)1()!

(!!

,2,1,0!

)(==

-m m e p p

m λλ。

2.17 在一批产品中一等品占50%,二等品占30%,三等品占20%。从中任取4件,设一、二、三等品的件数分别为ξ、η、ζ,求),,(ζηξ的联合分布列与各自的边际分布列。

解 k n m k n m k n m P 2.03.05.0!

!!!

4),,(=

===ζηξ

,.44,3,2,1,0,,=++=k n m k n m

m m m m P -???

? ??==45

.05.04)(ξ ,

4,3,2,1,0=m ; n

n n n P -???? ??==47.03.04)(η ,4,3,2,1,0=n ;

k

k k k P -???

? ??==48.02.04)(ζ ,4,3,2,1,0=k 。

2.18 抛掷三次均匀的硬币,以ξ表示出现正面的次数,以η表示正面出现次数与反面出现次数之差的绝对值,求),(ηξ的联合分布列及边际分布列。

2.21 设随机变量ξ与η独立,且)1(=ξ

P 0)1(>===p P η,

又)0(=ξ

P 01)0(>-===p P η,定义??

?++=为奇数

若为偶数若ηξηξζ01,问p 取什么值时ξ与ζ独立?

解)1()1()0()0()1(==+====ηξηξζ

P P P P P =22)1(p p +-

)1()0()1()0()0(==+====ηξηξζP P P P P )1(2p p -=

而)1,1(==ζξP 2)1,1(p P ====ηξ,由)1,1(==ζξP )1()1(===ζξP P 得21=p

2.22 设随机变量ξ与η独立,且)1(±=ξP 2

1

)1(=

±==ηP ,定义ξηζ=,证明ηξζ,,两两独立,但不相互独立。

证明2

1)1()1()1()1()1(=

-=-=+====ηξηξζ

P P P P P 2

1)1()1()1()1()1(=

=-=+-===-=ηξηξζP P P P P 因为4

1

)1,1()1,1(=

=====ηξζξ

P P )1)1(===ζξP P

41

)1,1()1,1(=

-===-==ηξζξP P )1)1(-==ζξP P 41

)1,1()1,1(=-=-===-=ηξζξP P )1()1(=-=ζξP P

4

1

)1,1()1,1(==-==-=-=ηξζξP P )1()1(-=-=ζξP P

所以ξζ,相互独立。同理η与ζ相互独立。 但是)1()1()1()1,1,1(===≠===ζηξζηξ

P P P P ,因而ηξζ,,不相互独立。

2.23设随机变量ξ与η独立,,且只取值1、2、3、4、5、6,证明ηξ

+不服从均匀分(即不可能有

12,,3,2,11

1

)( ==

=+k k P ηξ。) 证明 设,)(k p k P ==ξ

6,,2,1,)( ===k q k P k η。

若12,,3,2,11

1

)( ==

=+k k P ηξ

,则 11

1

)2(11===+q p P ηξ )1(

11

1

)7(165261=+++==+q p q p q p P ηξ )2(

11

1

)12(66===+q p P ηξ )3(

将(2)式减去(1)式,得:

0)(116<-q p p ,于是16p p <。同理16q q <。因此

11

1

1166=

?

?

??412

14

120

ππ

,求23

2

+=ξη

与ξζcos =的分布列。

解 η分布列为41)2(=

P ,21)32(=+=πηP ,41

)322(=+

=πηP ; ζ的分布列为41)1(=-=ζP ,21)0(==ζP ,4

1

)1(==ζP 。

2.25 已知离散型随机变量ξ的分布列为?

??? ??--301115151615

1

31012,求2

ξη=的分布列。

解51)0(=

P , 307)1(==ηP , 51)4(==ηP , 30

11

)9(==ηP 2.26 设离散型随机变量ηξ与的分布列为ξ:?

??

?

??818321310 , η :???? ??323110,且ηξ与相互独

立,求ηξζ+=的分布列。

解 ?

??

? ??1212414

124116

1

43210

2.27 设独立随机变量ηξ与分别服从二项分布:),;(1p n k b 与),;(2p n k b ,求ηξ+的分布列。

解 设ξ为1n 重贝努里试验中事件A 发生的次数(在每次试验中p A P =)(),η为2n 重贝努里试

验中事件

A 发生的次数(在每次试验中p A P =)(),而ηξ与相互独立,所以ηξ+为21n n +重贝努

里试验中事件

A 发生的次数,因而

,,,1,0,)(2121 =???

? ??+==+-+k q

p k n n k P k

n n k ηξ21n n +。

2.28 设ηξ与为独立同分布的离散型随机变量,其分布列为 ,2,1,2

1

)()(==

===n n P n P n ηξ 求ηξ

+的分布列。

解n

k n n k k n k n k n P k P n P 21

212

1)()()(1

11

1

-=?=-====+--=-=∑

∑ηξηξ

2.29 设随机变量ξ具有分布:5,4,3,2,1,5

1

)(===k k P ξ,求ξE 、2ξE 及2)2(+ξE 。

解,3)54321(51=++++=ξE ,11)54321(5

12

22222=++++=ξE

=+2)2(ξ

E 2

ξE +4ξE +4=27

2.30设随机变量ξ具有分布: ,2,1,2

1

)(==

=k k P k ξ,求ξE 及ξD 。

解 221212

1

11=???

??==-∞=∞

=∑∑k k k k

k k E ξ,621212

1

12122

=?

??

??==-∞=∞

=∑∑k k k k k k E ξ

2)(22=-=ξξξ

E E D

2.31设离散型随机变量ξ的分布列为: ,2,1,2

1

]2)1([==-=k k P k k k

ξ,问ξ是否有数学期望?

解 ∑∑∞=∞

==?-111

21|2)1(|k k k k k

k

k ,因为级数∑∞=11k k 发散,所以ξ没有数学期望。

2.32 用天平秤某种物品的重量(砝码仅允许放在一个秤盘中),物品的重量以相同的概率为1克、2克、…、10克,现有三组砝码:

(甲组)1,2,2,5,10(克) (乙组)1,2,3,4,10(克) (丙组)1,1,2,5,10(克) 问哪一组砝码秤重时所用的平均砝码数最少?

解 设1ξ、2ξ、3ξ分别表示及甲组、乙组、丙组砝码秤重时所用的砝码数,则有 物品重量度 1 2 3 4 5 6 7 8 9 10 1ξ 1 1 2 2 1 2 2 3 3 1 2ξ 1 1 1 1 2 2 2 3 3 1 3ξ 1 1 2 3 1 2 2 3 4 1 于是 8.1)1332212211(10

1

1=+++++++++=

ξE 7.1)1332221111(101

2

=+++++++++=

ξE 2)1432213211(10

1

3=+++++++++=ξE

所以,用乙组砝码秤重时所用的平均砝码数最少。

2.33某个边长为500米的正方形场地,用航空测量法测得边长的误差为:0米的概率是0.49, 10±米的概率各是0.16,20±

米的概率各是0.08,30±米的概率各是0.05,求场地面积的数学期望。

解 设场地面积为

2

米S ,边长的误差为

ξ

米,则

2

)500(+=ξS 且

0=ξE 186)05.03008.02016.010(22222=?+?+?=ξE

所以)(2501862500001000)500(222米=++=+=ξξξE E E ES

2.34 对三架仪器进行检验,各仪器发生故障是独立的,且概率分别为1p 、2p 、3p 。试证发生故

障的仪器数的数学

1p +2p +3p 。

证 令3,2,101=???=i i i i

架仪器未发生故障

第架仪器发生故障

第ξ

ξ为发生故障的仪器数,则3,2,1,)1(====i p P E i i i ξξ,

所以=++=321ξξξξ

E E E E 1p +2p +3p 。

2.37 如果在15000件产品中有1000件不合格品,从中任意抽取150件进行检查,求查得不合格品数的数学期望。

解 设,

则i η的分布列为???

? ??151415101,因而151

=i E η。设ξ为查得的不合格品数,则

∑==150

1

i i

ηξ,所以10150

1

==∑=i i E E ηξ

2.38 从数字0,1,…,n 中任取两个不同的数字,求这两个数字之差的绝对值的数学期望。 解 设ξ为所选两个数字之差的绝对值,则n k n k n k P ,,2,1,211

)( =???

? ??++-=

于是32])1[()1(221112

1

+=-++=???

? ??++-=∑∑==n k k n n n n k n k E n

k n

k ξ。 2.39 把数字n ,,2,1 任意在排成一列,如果数字k 恰好出现在第k 个位置上,则称有一个匹配,求匹配数的数学期望。

解 设??

?=个位置上

不在第数字个位置上

出现在第数字k k k k k 01ξ则k ξ的分布列为:????

??-n n

111

01 于是n P E k k 1

)1(===ξξ,设匹配数为ξ,则∑==n

k k

1

ξξ,因而11

==∑=n

k k E E ξξ

2.40 设ξ为取非负整数值的随机变量,证明:

(1) ∑∞

=≥=1

)(n n P E ξξ

;

(2) ).1()(21

+-≥=∑∞

=ξξξξ

E E n nP D n

证明 (1)由于∑∞

===0

)(n n nP E ξξ

存在,所以该级数绝对收敛。从而

=

==∑∞

=1

)(n n nP E ξξ∑∑∑∑

∞=∞=∞=====111

)()(i i

n n n

i n P n P ξξ∑∞

=≥=1

)(i i P ξ。

(2) ξD 存在,所以级数∑∞

===0

22

)(n n P n E ξξ

也绝对收敛,从而

)1(2

+-+=ξξξξξE E E E D ∑∞

=+-=+=1

)1()()1(n E E n P n n ξξξ

)1()(2)1()(2111+-==+-==∑∑∑∑∞=∞

=∞==ξξξξξξE E n iP E E n P i i i

n n n i

).1()(21

+-≥=∑∞

=ξξξE E n nP n

2.41 在贝努里试验中,每次试验成功的概率为p ,试验进行到成功与失败均出现时停止,求平均试

验次数。

解 设成功与失败均出现时的试验次数为ξ,则

1)1(=≥ξP ,)1(,3,2,)(11p q n q p n P n n -==+=≥-- ξ

利用上题的结论,=ξ

E )1(≥ξP +∑∞=≥2

)(n n P ξ=1+)(112

--∞

=+∑n n n q p

)

1(1

1112p p p p q q p p -+-=

-+-+= 2.42 从一个装有m 个白球、n 个黑球的袋中摸球,直至摸到白球时停止。如果(1)摸球是为返回的,(2)摸球是返回的,试对这两种不同的摸球方式求:取出黑球数的数学期望。

解 设摸到白球时已取出的黑球数为ξ。 (1)若摸球是无返回的,则

(), 0,1,,k

n k n m C m

P k k n C m n k

ξ+==?=+-

01

k n

n k k n m C m n

E k C m n k m ξ=+=??=

+-+∑ (2)若摸球有返回的,则

(), 0,1,,k

n n P k k m n m n

ξ??

==?= ?

++?? 故

0k

k n n n E k m n m n m

ξ∞

=??

=??= ?

++??∑

2.43 对一批产品进行检验,如果检查到第0n 件仍未发现不合格品就认为这批产品合格,如在尚未抽到第0n 件时已检查到不合格品即停止继续检查,且认为这批产品不合格。设产品数量很大,可以认为每次检查到不合格品的概率都是

p ,问平均每批要检查多少件?

解 设每批检查ξ件产品,则ξ的分布列为:

0100()(1), 1,2,,1,()(1)n k P k p p k n P n p ξξ-==-?=-==-

0000

00

1

1

01100(1)(1)1(1)(1) =(1)1(1) =

n n k k n n n n E k p p n p p n p p n p p p p

ξ--=-=?-+?-----+?---∑

2.44 流水作业线上生产出的每个产品为不合格品的概率p ,当生产出k 个不合格品时即停工检修一

次。求在两次检修之间产品总数的数学期望与方差。

解 设第1-i 个不合格出现后到第i 个不合格品出现时的产品数为i ξ,.,,2,1k i

=又在两次检修

之间产品总数为ξ,则.1

∑==k

i i ξξ

因i ξ独立同分布,)1(,2,1,)(1p q j p q j P j i

-====- ξ,由此得:

p

p jq E j j i 11

1=

=

=-ξ,2

1

122

2p p p q j E j j i

-=

=∑∞

=-ξ,

2

221)(p p

E E D i i i -=

-=ξξξ。 p k

E E k

i i ==∑=1ξξ,2

1

)1(p p k D D k

i i -==∑=ξξ。 2.46 设随机变量ξ与η独立,且方差存在,则有

22)()()(ηξηξηξξηE D D E D D D ?+?+?=(由此并可得ηξξηD D D ?≥)()

证明 222)()

(ξηηξξηE E D -=2222)()(ηξηξE E E E -=

22222222)()()()(ηξηξηξηξE E E E E E E E -+-=

ξηηξD E D E 22)(-=

22)()(ηξηξηξE D D E D D ?+?+?=

2.47 在整数0到9中先后按下列两种情况任取两个数,记为ξ和η:(1)第一个数取后放回,再取第二个数;(2)第一个数取后不放回就取第二个数,求在)90(≤≤=k k η

的条件下ξ的分布列。

解 (1) 9,,1,010

1

)|( ==

==i k i P ηξ

.

(2) ),9,,1,0(9

1)|(k i i k i P ≠==

== ηξ , 0)|(===k k P ηξ 2.49 在n 次贝努里试验中,事件

A 出现的概率为p ,令

n i A i A i i ,,2,101 =??

?=不出现

次试验中在第出现次试验中在第ξ

求在)0(21

n r r n ≤≤=+++ξξξ

的条件下,)0(n i i ≤≤ξ的分布列。

解 )

(),0()|0(2111121

n n i i i n i P r P r P ξξξξξξξξξξξξ+++=+++++===+++=+-

n r n q p r n q p q n q r

n r r n r -=

???

? ?????? ??-=---11 )|1(21r P n i =+++=ξξξξ n

r n r n =--

=1。

2.50 设随机变量1ξ,2ξ相互独立,分别服从参数为1λ与2λ的普哇松分布,试证:

k

n k

k n n k P -???

?

??+-???

? ??+???? ??==+=211211211)|(1λλλλλλξξξ

证明 )

()

,()|(2121121

1n P n k P n k P =+=+==

=+=ξξξξξξξξ

)

()()(2121n P k n P k P =+-===ξξξξ

由普哇松分布的可加性知1ξ+2ξ服从参数为1λ+2λ的普哇松分布,所以

)

(2121

21

212

1

1!

)()!(!)|(λλλλλλλλξξξ

+----+-?

=

=+=e n e

k n e

k n k P n k

n k k

n k

k n -?

???

?

?+-?

??

? ??+???? ??=2112111λλλλλλ

2.51 设1ξ,2ξ,…,r ξ为r 个相互独立随机变量,且)1(r i

i ≤≤ξ服从同一几何分布,即有

p q r i k qp k P k i -=≤≤===-1),1(,,2,1,)(1其中 ξ。试证明在n r =+++ξξξ 21的

条件下,),,,(21

r ξξξ

的分布是均匀分布,即

???

? ??--=

=+++==111

|,,(2111r n n n n P r r r ξξξξξ ,其中n n n n r =+++ 21

.

证明 =+++==r r r n n P ξξξξξ 211

1|,,()

(),,,(1111n P n n n P r r r r =++=++==ξξξξξξ

)

(),,(111n P n n P r r r =++===

ξξξξ

由于1ξ,2ξ,…,r ξ相互独立且服从同一几何分布,所以

r n r r

i k n k k r

i k r p q r n p

q n P i r i -===++=-???

? ??--=?=

=+++∑∏11)()(,,1,2,11

1

211 ξξξ。

从而)|,,(2111

n n n P r r r =+++==ξξξξξ r n r r

n r p

q r n p q --???

? ??--=11????

??--=

111r n 。

高中数学第二章概率1离散型随机变量及其分布列知识导航北师大版选修2-3

§1 离散型随机变量及其分布列 自主整理 1.随机现象中试验(或观测)的每一个可能的结果都对应于一个数,这种对应称为一个_____________. 2.随机变量的取值能够_____________的随机变量称为离散型随机变量. 3.设离散型随机变量X 的取值为a 1,a 2,…,随机变量X 取a i 的概率为p i (i=1,2,…),记作 p(X=a i )=P i (i=1,2,…) 称为__________________________________________________________________________。 并且有①p i _____________0,②p 1+p 2+…=_____________. 如果随机变量X 的分布列如上表,则称随机变量X 服从这一分布(列),并记为_____________. 高手笔记 1.随机变量是将随机试验的结果数量化. 2.随机变量的取值对应于随机试验的某一随机事件. 3.随机变量X 取每一个值a i 的概率P(X=a i )等于其相应的随机事件A i 发生的概率P(A i ). 4.若X 为一个随机变量,则Y=aX+b(a,b 为常数)也为随机变量. 5.离散型随机变量的分布列中 第一行表述了随机变量X 的所有可能的取值,在这里要注意按一定的次序来填写;第二行表述了随机变量X 取相应上行中数值a i 的概率的大小p i =P(X=a i ),i=1,2,… 6.一般地,离散型随机变量在某一范围内取值的概率等于其在这个范围内取每一个值的概率之和. 7.离散型随机变量的分布列不仅清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值的概率大小,从而反映了随机变量在随机试验中取值的分布状况,是进一步研究随机试验数量特征的基础. 名师解惑 1.随机变量与以前学过的变量有什么区别与联系? 剖析:随机变量作为一个变量,当然有它的取值范围,这和以前学过的变量一样.不仅如此,还有它取每个值的可能性的大小,如:从装有无差别的6只黑球、4只白球的袋中,随机抽取3只球,所得的白球个数是一随机变量X ,其取值为X=0,1,2,3;而取每个值的可能性的大小,可通过其相应的随机事件发生的大小——即其概率来反映.即“若X=2”,对应事件A 2:“取出的3只球中恰有两只白球”,其概率: P(A 2)=.1031238910123 46310 2416=??????? =C C C 若“X=3”对应事件A 3:“取出的3只球中恰有三只白球”的概率: P(A 3)=.10112389101232 34310 34=????????=C C

高中数学第二章概率5第2课时离散型随机变量的方差学案北师大版选修

第2离散型随机变量的方差 学习目标1.理解取有限个值的离散型随机变量的方差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题. 知识点离散型随机变量的方差 甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为X和Y,X和Y的分布列为 X 01 2 P 6 10 1 10 3 10 Y 01 2 P 5 10 3 10 2 10 思考1试求EX,EY. 思考2能否由EX与EY的值比较两名工人技术水平的高低? 思考3试想用什么指标衡量甲、乙两工人技术水平的高低? 梳理(1)离散型随机变量的方差的含义 设X是一个离散型随机变量,用E(X-EX)2来衡量X与EX的________________,E(X-EX)2是(X-EX)2的________,称E(X-EX)2为随机变量X的方差,记为________. (2)方差的大小与离散型随机变量的集中与分散程度间的关系 方差越____,随机变量的取值越分散;方差越____,随机变量的取值就越集中在其均值周

围. (3)参数为n,p的二项分布的方差 当随机变量服从参数为n,p的二项分布时,其方差DX=np(1-p). 类型一求离散型随机变量的方差 命题角度1已知分布列求方差 例1已知X的分布列如下: X -10 1 P 1 2 1 4 a (1)求X2 (2)计算X的方差; (3)若Y=4X+3,求Y的均值和方差. 反思与感悟方差的计算需要一定的运算能力,公式的记忆不能出错!在随机变量X2的均值比较好计算的情况下,运用关系式DX=EX2-(EX)2不失为一种比较实用的方法.另外注意方差性质的应用,如D(aX+b)=a2DX. 跟踪训练1已知η的分布列为 η010205060 P 1 3 2 5 1 15 2 15 1 15 (1)求方差; (2)设Y=2η-Eη,求DY.

离散型随机变量及其分布列教案

离散型随机变量及其分布列第一课时 2.1.1离散型随机变量 教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量. 2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想 描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识. 3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识 数学的科学价值和应用价值. 教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究. 教学方法:启发讲授式与问题探究式. 教学手段:多媒体 教学过程: 一、创设情境,引出随机变量 提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示? 启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系. 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果. 再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗? 让学生思考得出结论:投进零个球——— 0分 投进一个球——— 1分 投进两个球——— 2分 投进三个球——— 3分 得分结果可以用数字0、1、2、3表示. 二、探究发现 1、随机变量 问题1.1:任何随机试验的所有结果都可以用数字表示吗? 引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量. 问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念? 引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量. 随机变量常用字母X、Y、ξ、η来表示. 问题1.3:随机变量与函数有类似的地方吗? 引导学生回顾函数的理解: 函数 实数实数 在引导学生类比函数的概念,提出对随机变量的理解:

第2章 2.1 2.1.1 离散型随机变量

2.1离散型随机变量及其分布列 2.1.1离散型随机变量 学 习目标核心素养 1.理解随机变量及离散型随机变量的含义.(重 点) 2.了解随机变量与函数的区别与联系.(易混点) 3.能写出离散型随机变量的可能取值,并能解释其意义.(难点)通过学习随机变量及离散型随机变量,培养数学抽象的素养. 1.随机变量 (1)定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化的变量称为随机变量. (2)表示:随机变量常用字母X,Y,ξ,η,…表示. 2.离散型随机变量 (1)定义:所有取值可以一一列出的随机变量,称为离散型随机变量. (2)特征: ①可用数值表示. ②试验之前可以判断其出现的所有值. ③在试验之前不能确定取何值. ④试验结果能一一列出. 思考:离散型随机变量的取值必须是有限个吗? [提示]离散型随机变量的取值可以是有限个,例如取值为1,2,…,n;也

可以是无限个,如取值为1,2,…,n,…. 1.下列变量中,是离散型随机变量的是() A.到2019年10月1日止,我国发射的人造地球卫星数 B.一只刚出生的大熊猫,一年以后的身高 C.某人在车站等出租车的时间 D.某人投篮10次,可能投中的次数 D[根据离散型随机变量的定义:其可能取到的不相同的值是有限个或可列为有限个,即可以按一定次序一一列出,试验前可以判断其出现的所有值.选项A,B,C的数值均有不确定性,而选项D中,投篮10次,可能投中的次数是离散型随机变量.] 2.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止时,所需要的取球次数为随机变量X,则X的可能取值为() A.1,2,3,…,6B.1,2,3,…,7 C.0,1,2,…,5 D.1,2,…,5 B[由于取到白球游戏结束,由题意可知X的可能取值为1,2,3,4,5,6,7.] 3.下列随机变量不是离散型随机变量的是________. ①某景点一天的游客数X; ②某手机一天内收到呼叫次数X; ③水文站观测到江水的水位数X; ④某收费站一天内通过的汽车车辆数X. ③[①②④中的随机变量X可能取的值,我们都可以按一定的次序一一列出,因此都是离散型随机变量;③中X可以取一区间内的一切值,无法按一定次序一一列出,故③不是离散型随机变量.] 随机变量的概念 【例1】件,则下列可作为随机变量的是()

2019-2020学年高中数学 2.3.1离散型随机变量的期望学案 新人教A版选修2-3.doc

2019-2020学年高中数学 2.3.1离散型随机变量的期望学案 新人教 A 版选修2-3 【教学目标】 1了解离散型随机变量的期望的意义,会根据离散型随机变量的分布列求出期望. ⒉理解公式“E (a ξ+b )=aE ξ+b ”,以及“若ξ~Β(n ,p),则E ξ=np ”.能熟练地应用它们求相应的离散型随机变量的期望 【教学重难点】 教学重点:离散型随机变量的期望的概念 教学难点:根据离散型随机变量的分布列求出期望 【教学过程】 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量并且不改变其属性(离 散型、连续型) 5. 分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…, ξ取每一个值xi (i=1,2,…)的概率为 ()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 6. 分布列的两个性质: ⑴Pi ≥0,i =1,2,…; ⑵P1+P2+…=1. 7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ, (k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 0 1 … k … n P n n q p C 00 1 11-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B(n ,p),其中n ,p 为参数,并记k n k k n q p C -=

高中数学选修2-3第二章随机变量及其分布教案

第二章 随机变量及其分布 2.1.1离散型随机变量 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y ,ξ,η,… 表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,…. 思考3:电灯的寿命X 是离散型随机变量吗? 电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量. 在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量: ??≥?0,寿命<1000小时;Y=1,寿命1000小时. 与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易. 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验 注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上, ξ=1,

52.3.2离散型随机变量的方差导学案(选修2-3)

§2.3.2离散型随机变量的方差导学案 高二数学组 一、教学目标 1、通过实例,理解离散型随机变量的方差; 2、能计算简单离散型随机变量的方差。 重点:离散型随机变量的方差的概念 难点:根据离散型随机变量的分布列求出方差 二、自学引入: 问题1:某射手在10次射击中所得环数为:10,9,8,10,8,10,10,10,8,9. 求这名射手所得环数的方差。 问题2:某射手在一次射击中所得环数 能否根据分布列求出这名射手所得环数的方差? 引入概念: (1)方差的概念:设一个离散型随机变量X所有可能取得值是x1,x2,…,x n;这些值对应的概率为p1,p2,…,p n,则 D(X)= , 叫做这个离散型随机变量X的方差。 离散型随机变量的方差反映了离散型随机变量的取值。 (2)D(X)的叫做随机变量X的标准差。 三、问题探究: (1)若随机变量X服从参数为p的二点分布,则D(X)= ()。 (2)若随机变量X服从参数为n,p的二项分布,则D(X)= ()。 四、典例解析: 例1 甲、乙两射手在同样条件下进行射击,成绩的分布列如下: 射手甲: 射手乙: 谁的射击水平比较稳定。 变式训练设X是一个离散型随机变量,其分布列如下表,试求D(X)

例2 已知某离散型随机变量X 服从下面的二项分布: k k k C k X P -==449.01.0)( (k=0,1,2,3,4). 求E (X )和D (X )。 变式训练 一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为 0.02。设发病的牛的头数为X ,求E (X )和D (X )。 五、小结: 六、作业:课后练习A 、B 。 §2.3. 2离散型随机变量的方差当堂检测 高二数学组 1、已知()~,,8, 1.6B n p E D ξξξ==,则,n p 的值分别是( ) A .1000.08和; B .200.4和; C .100.2和; D .100.8和 2、设投掷1颗骰子的点数为ξ,则( ) A.E ξ=3.5,D ξ=3.52 B.E ξ=3.5,D ξ=12 35 C.E ξ=3.5,D ξ=3.5 D.E ξ=3.5,D ξ= 16 35 3、有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为X ,求E (X ),D (X ) 4、A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示: A 机床 B 机床 问哪一台机床加工质量较好

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概 率()i i P X x p ==(12)i =、……称为X 的概率分 布或分布律,表格表示形式如下: [2] 性质: ? 0i p ≥ ?11n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞= ? 则称X 为连续型随机变量,()f x 称为概率密度函 数或者密度函数。

[2] 连续型随机变量的密度函数的性质 ?()0f x ≥ ? ()1f x dx +∞ -∞=? ?{}()()()P a X b F b F a f x dx +∞ -∞<≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= (3) 连续型随机变量和离散型随机变量的区别: [1] 由连续型随机变量的定义,连续型随机变量的定义域是 (),-∞+∞,对于任何x ,000 {}()()0P X x F x F x ==--=;而对于离散型随机变量的分布函数有有限个或可列个间 断点,其图形呈阶梯形。 [2] 概率密度()f x 一定非负,但是可以大于1,而离散型随 机变量的概率分布i p 不仅非负,而且一定不大于1. [3] 连续型随机变量的分布函数是连续函数,因此X 取任何 给定值的概率都为0. [4] 对任意两个实数a b <,连续型随机变量X 在a 与b 之间 取值的概率与区间端点无关,即:

第二章 离散型随机变量

第二章离散型随机变量 教学目的与要求 1.熟练掌握一维离散型随机变量及其分布的概念,会求一维随机变量的分布列. 2.熟练掌握二维离散型随机变量的概念及其分布,了解常见的二维随机变量的分布. 3.掌握二维离散型随机变量的边际分布及其计算公式. 4.了解多维随机变量的概念及其分布. 5.理解随机变量相互独立的关系及其判别方法. 6.掌握一维、二维离散型随机变量函数的分布列的求法. 7.准确理解数学期望、方差的概念及其相关的性质,熟练掌握常见的几种分布的数学期 望和方差. 8.了解条件分布与条件期望及其性质. 教学重点一、二维随机变量及其分布 教学难点随机变量的分布 教学方法讲解法 教学时间安排 1~2 第一节一维随机变量及分布列 3~4 第二节多维随机变量、联合分布列和边际分布列 5~6 习题辅导 7~8 随机变量函数的分布列 9~10 数学期望的定义及性质 11~12方差的定义及性质 13~14条件分布与条件数学期望 15~16 习题辅导 教学内容

1~2. 第一节一维随机变量及分布列 一、随机变量 在上一章所讲的有些随机试验的样本空间中基本事件是用数值描述的,这就提示我们,无论什么随机试验,如果用一个变量的不同取值来描述它的全部可能结果,样本空间的表达及其相应的概率就显得更明了、更简单.事实上,这种想法是可以的,为此,引入一个新概念. 定义2.1 设E 维随机试验,()ωΩ=为其样本空间,若对任意的ω∈Ω,有唯一的实数与之对应,则称()ξω为随机变量. 这样,事件可通过随机变量的取值来表示,随机变量,(),(), b a b ξξξ≤<≤等都表 示为事件,其中,a b 表示任意实数.即用随机变量的各种取值状态和取值范围来表示随机事件. 二、一维离散型随机变量的概念 定义 2.2 定义在样本空间Ω上,取之于实数域R ,且只取有限个或可列个值的变量 ()ξξω=,称作是一维(实值)离散型随机变量,简称为离散型随机变量.称 ()i i P a p ξ==, 1,2,i = 为随机变量()ξω的概率分布列,也称为分布律,有时就简称为分布. 离散型随机变量()ξω的分布列常常习惯地把它们写成表格的形式或矩阵形式: 121 2 a a p p ?? ??? 例2.1 在5n =的贝努里试验中,设事件A 在一次试验中出现的概率为p ,令 ξ=5次试验中事件A 出现的次数 则 55(),05k k k P k C p q k ξ-==≤≤ 于是,ξ的分布列为:

《离散型随机变量的概念》教学设计

离散型随机变量的概念》教学设计 一、教材分析 《离散型随机变量的概念》是人教 A 版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第一课时。本章是在必修三中学习了基本的概率统计知识的基础上,进一步学习随机变量及其分布的知识。本节内容一方面承接了必修三的知识;另一方面,掌握好这一节课将有助于后续的学习,因此它在知识体系上起着承上启下的作用。随机变量是连接随机现象和实数空间的一座桥梁,从而使得更多的数学工具有了用武之地。离散型随机变量是最简单的随机变量。本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法。 二、学情分析 学生在必修 3 概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1 中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括。 三、教学策略分析 学生是教学的主体,本节课要给学生提供各种参与机会。本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,培养学生分析问题、 解决问题的能力

四、目标分析 1知识与技能目标:理解随机变量和离散型随机变量的概念,能够运用随机变量表示随机事件,学会恰当的定义随机变量; 2、过程与方法目标:在教学过程中,以不同的实际问题为导向,弓I导学生分析问题的特点,归纳问题的共性,提高理解分析能力和抽象概括能力; 3、情感与态度目标:通过列举生活中的实例,提高学生学习数学的积极性, 使学生进一步感受到数学与生活的零距离,增强数学应用意识。 五、教学重点与难点 教学重点:随机变量、离散型随机变量概念的理解及随机变量的实际应用;教学难点:对随机变量概念的透彻理解及对引入随机变量目的的认识。 六、教学过程设计:

高中数学选修2-3离散型随机变量导学案

2.1.1离散型随机变量 【学习要求】 1.理解随机变量及离散型随机变量的含义. 2.了解随机变量与函数的区别与联系. 【学法指导】 引进随机变量的概念,就可以用数字描述随机现象,建立连接数和随机现象的桥梁,通过随机变量和函数类比,可以更好地理解随机变量的定义,随机变量是函数概念的推广. 【知识要点】 1.随机试验:一般地,一个试验如果满足下列条件: (1)试验可以在相同的情形下重复进行; (2)试验所有可能的结果是明确的,并且不只一个; (3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验. 2.随机变量:在随机试验中,随着变化而变化的变量称为随机变量. 3.离散型随机变量:所有取值可以的随机变量,称为离散型随机变量. 【问题探究】 探究点一随机变量的概念 问题1掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢? 问题2随机变量和函数有类似的地方吗? 例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)上海国际机场候机室中2013年10月1日的旅客数量; (2)2013年某天济南至北京的D36次列车到北京站的时间; (3)2013年某天收看齐鲁电视台《拉呱》节目的人数; (4)体积为1 000 cm3的球的半径长. 小结随机变量从本质上讲就是以随机试验的每一个可能结果为自变量的一个函数,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能的值,而不知道究竟是哪一个值. 跟踪训练1指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. (1)某人射击一次命中的环数; (2)任意掷一枚均匀硬币5次,出现正面向上的次数; (3)投一颗质地均匀的骰子两次出现的点数(最上面的数字)中的最小值; (4)某个人的属相. 探究点二离散型随机变量的判定 问题1什么是离散型随机变量? 问题2非离散型随机变量和离散型随机变量有什么区别? 例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ; ③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是() A.①②③④B.①②④C.①③④D.②③④ 小结该题主要考查离散型随机变量的定义,判断时要紧扣定义,看是否能一一列出. 跟踪训练2指出下列随机变量是否是离散型随机变量,并说明理由. (1)白炽灯的寿命ξ; (2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ; (3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ; (4)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数. 探究点三离散型随机变量的应用 例3(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ.写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果. (2)抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么? 小结解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果. 跟踪训练3下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果. (1)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ,所含红粉笔的支数η. (2)从4张已编有1~4的卡片中任意取出2张,被取出的卡片号数之和ξ. (3)离开天安门的距离η. (4)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ. 【当堂检测】 1.下列变量中,不是随机变量的是() A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度 C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数 2.10件产品中有3件次品,从中任取2件,可作为随机变量的是() A.取到产品的件数B.取到正品的概率 C.取到次品的件数D.取到次品的概率 3.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是() A.2枚都是4点B.1枚是1点,另1枚是3点 C.2枚都是2点D.1枚是1点,另1枚是3点,或者2枚都是2点 4.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出2个球,以ξ表示取出的球的最大号码,则“ξ=6”表示的试验结果是___________________. 【课堂小结】 1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件.

2020届二轮复习 离散型随机变量 学案(全国通用)

离散型随机变量 学习目标 1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系. 知识点一随机变量 思考1抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果,这种试验结果能用数字表示吗? 答案可以,可用数字1和0分别表示正面向上和反面向上. 思考2在一块地里种10棵树苗,棵数为x,则x可取哪些数字? 答案x=0,1,2,3, (10) (1)定义 在随机试验中,可以确定一个对应关系,使得每一个试验结果都用一个确定的数字表示,数字随试验结果的变化而变化,像这种随着试验结果变化而变化的变量称为随机变量. (2)表示:随机变量常用字母X,Y,ξ,η…表示. 知识点二随机变量与函数的关系 思考随机变量和函数有类似的地方吗? 答案随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.试验结果相当于函数的自变量,随机变量相当于函数的函数值,随机变量可以看作函数概念的推广. 知识点三离散型随机变量 1.定义:所有取值可以一一列出的随机变量称为离散型随机变量. 2.特征: (1)可用数值表示. (2)试验之前可以判断其出现的所有值. (3)在试验之前不能确定取何值.

(4)试验结果能一一列出. 类型一随机变量的概念 例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)某机场一年中每天运送乘客的数量. (2)某单位办公室一天中接到电话的次数. (3)明年5月1日到10月1日期间所查酒驾的人数. (4)明年某天济南一青岛的某次列车到达青岛站的时间. 解(1)某机场一年中每天运送乘客的数量可能为0,1,2,3,…,是随机变化的,因此是随机变量. (2)某单位办公室一天中接到电话的次数可能为0,1,2,3,…,是随机变化的,因此是随机变量. (3)明年5月1日到10月1日期间,所查酒驾的人数可能为0,1,2,3,…,是随机变化的,因此是随机变量. (4)济南一青岛的某次列车到达青岛站的时间每次都是随机的,可能提前,可能准时,亦可能晚点,故是随机变量. 反思与感悟随机变量的辨析方法 1.随机试验的结果是否具有可变性,即每次试验对应的结果不尽相同. 2.随机试验的结果的确定性.即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量. 跟踪训练1下列变量中,不是随机变量的是() A.一射击手射击一次命中的环数 B.标准状态下,水沸腾时的温度 C.抛掷两枚骰子,所得点数之和 D.某电话总机在时间区间(0,T)内收到的呼叫次数 答案 B 解析B中求沸腾时的温度是一个确定的值. 类型二离散型随机变量的判定

人教A版选修2-3 第二章2.1.1离散型随机变量 学案

2.1.1 离散型随机变量 知识点随机变量 (1)定义:在随机试验中,确定了一个对应关系,使得每一个试验结果都用一个□01确定的数字表示.在这个对应关系下,□02数字随着□03试验结果的变化而变化.像这种随着□04试验结果变化而变化的变量称为随机变量. (2)表示:随机变量常用字母□05X,Y,ξ,η表示. 知识点随机变量与函数的关系 相同点随机变量和函数都是一种映射 随机变量是随机试验的结果到□01实数的映射,函数是□02实数到□03实区别 数的映射 随机试验结果的范围相当于函数的□04定义域,随机变量的取值范围相联系 当于函数的□05值域 知识点离散型随机变量 所有取值可以□01一一列出的随机变量,称为离散型随机变量. 随机试验的特点 (1)试验的所有结果可以用一个数来表示; (2)每次试验总是恰好出现这些结果中的一个,但在一次试验之前,却不能肯定这次试验会出现哪一个结果.判断一个变量是否为离散型随机变量,首先看它是不是随机变量,其次看可能取值是否能一一列出,也就是说变量的取值若是有限的,或者是可以列举出来的,就可以视为离散型随机变量,否则就不是离散型随机变量.

1.判一判(正确的打“√”,错误的打“×”) (1)离散型随机变量的取值是任意的实数.( ) (2)随机变量的取值可以是有限个,也可以是无限个.( ) (3)离散型随机变量是指某一区间内的任意值.( ) 答案(1)×(2)√(3)× 2.做一做 (1)甲进行3次射击,甲击中目标的概率为1 2 ,记甲击中目标的次数为ξ,则 ξ的可能取值为________. (2)同时抛掷5枚硬币,得到硬币反面向上的个数为ξ,则ξ的所有可能取值的集合为________. (3)在8件产品中,有3件次品,5件正品,从中任取一件取到次品就停止,抽取次数为X,则X=3表示的试验是________. 答案(1)0,1,2,3 (2){0,1,2,3,4,5} (3)共抽取3次,前两次均是正品,第3次是次品 解析(1)甲可能3次全击中,也可能一次未中,中1次,2次,所以ξ的取值为0,1,2,3. (2)当硬币全部为正面向上时,ξ=0,硬币反面向上的个数还可能有1个,2个,3个,4个,也可能都反面向上,即5个. (3)由随机试验可知X=3表示抽取3次,前两次均是正品,第3次是次品. 探究1 随机变量的概念 例1 下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)某机场一年中每天运送乘客的数量. (2)某单位办公室一天中接到电话的次数. (3)明年5月1日到10月1日期间所查酒驾的人数. (4)明年某天济南—青岛的某次列车到达青岛站的时间. [解] (1)某机场一年中每天运送乘客的数量可能为0,1,2,3,…,是随机变化的,因此是随机变量. (2)某单位办公室一天中接到电话的次数可能为0,1,2,3,…,是随机变化的,因此是随机变量. (3)明年5月1日到10月1日期间,所查酒驾的人数可能为0,1,2,3,…,是随机变化的,因此是随机变量.

离散型随机变量及其分布范文

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ??????、ξ取每一个值()1,2,i x i =???的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) 01,2,i p i ≥=???,;12(2) 1P P ++ = 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+ 知识点二:两点分布: 若随机变量X 的分布列: 则称 X 的分布列为两点分布列. 特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1) 为成功率. (2)两点分布又称为0-1分布或伯努利分布 (3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

2020版高中数学 第二章 2.1.1 离散型随机变量学案 新人教A版选修2-3

2.1.1 离散型随机变量 学习目标 1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系. 知识点一随机变量 思考1 抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果,这种试验结果能用数字表示吗? 答案可以,可用数字1和0分别表示正面向上和反面向上. 思考2 在一块地里种10棵树苗,成活的棵数为x,则x可取哪些数字? 答案x=0,1,2,3, (10) 梳理(1)定义 在随机试验中,可以确定一个对应关系,使得每一个试验结果都用一个确定的数字表示,数字随着试验结果的变化而变化,像这种随着试验结果变化而变化的变量称为随机变量. (2)随机变量常用字母X,Y,ξ,η,…表示. 知识点二随机变量与函数的关系 相同点随机变量和函数都是一种一一对应关系 区别随机变量是随机试验的结果到实数的一一对应,函数是实数到实数的一一对应 联系随机试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域

知识点三离散型随机变量 1.定义:所有取值可以一一列出的随机变量称为离散型随机变量. 2.特征: (1)可用数字表示. (2)试验之前可以判断其出现的所有值. (3)在试验之前不能确定取何值. (4)试验结果能一一列出. 1.离散型随机变量的取值是任意的实数.( ×) 2.随机变量的取值可以是有限个,也可以是无限个.( √) 3.离散型随机变量是指某一区间内的任意值.( ×) 类型一随机变量的概念 例1 下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)某机场一年中每天运送乘客的数量; (2)某单位办公室一天中接到电话的次数; (3)明年5月1日到10月1日期间所查酒驾的人数; (4)明年某天济南—青岛的某次列车到达青岛站的时间. 考点随机变量及离散型随机变量的概念 题点随机变量的概念 解(1)某机场一年中每天运送乘客的数量可能为0,1,2,3,…,是随机变化的,因此是随机变量. (2)某单位办公室一天中接到电话的次数可能为0,1,2,3,…,是随机变化的,因此是随机变量. (3)明年5月1日到10月1日期间,所查酒驾的人数可能为0,1,2,3,…,是随机变化的,因此是随机变量. (4)济南—青岛的某次列车到达青岛站的时间每次都是随机的,可能提前,可能准时,也可能晚点,故是随机变量. 反思与感悟随机变量的辨析方法 (1)随机试验的结果具有可变性,即每次试验对应的结果不尽相同. (2)随机试验的结果的不确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量. 跟踪训练1 掷均匀硬币一次,随机变量为( ) A.掷硬币的次数 B.出现正面向上的次数

最新《2.1.1离散型随机变量》导学案

高一数学必修2-3 2.1--01 《2.1.1离散型随机变量》导学案 编撰崔先湖姓名班级组名. 【学习目标】1.理解随机变量的意义; 2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量 的例子; 3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量. 【学习重点】随机变量、离散型随机变量、连续型随机变量的意义 【学习难点】随机变量、离散型随机变量、连续型随机变量的意义 【学法指导】自主与讨论相结合 【导学过程】 一教材导读 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:称为随机变量.随机变量常用字母…表示.思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的映为,函数把映为.在这两种映射之间,试验结果的范围相当于函数的,随机变量的取值范围相当于函数的.我们把随机变量的取值范围叫做随机变量的. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品”, {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出3 件以上次品”又如何用X 表示呢? 定义2:,称为离散型随机变量. 离散型随机变量的例子很多.例如某人射击一次可能命中的环数X 是一个离散型随机变量,它的所有可能取值为;某网页在24小时内被浏览的次数Y也是一个离散型随机变量,它的所有可能取值为。 思考3:电灯的寿命X是离散型随机变量吗? 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变 4.离散型随机变量与连续型随机变量的区别与联系: 注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上 (2)若ξ是随机变量,b a b a, , + =ξ η是常数,则η也是随机变量 二、题型导航 题型一、随机变量概念的辨析 【例1】将一颗均匀骰子掷两次,不能作为随机变量的是:() (A)两次出现的点数之和;(B)两次掷出的最大点数; (C)第一次减去第二次的点数差;(D)抛掷的次数。 变式1 (1)洪湖车站每天候车室候车的人数X,(2)张三每天走路的步数Y,(3)下落的篮球离地面的距离Z,(4)每天停靠洪湖港的船的数量S.不是离散型随机变量的是 解题总结 题型二、随机变量的值域 【例2】写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果 (1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ; (2)某单位的某部电话在单位时间内收到的呼叫次数η 变式2写出下列各随机变量可能取得值: (1)抛掷一枚骰子得到的点数。 (2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。 (3)抛掷两枚骰子得到的点数之和。 (4)某项试验的成功率为0.001,在n次试验中成功的次数。 (5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值 解题总结

相关主题
文本预览
相关文档 最新文档