当前位置:文档之家› 机械用碳石墨材料类别、型号及性能表.doc

机械用碳石墨材料类别、型号及性能表.doc

机械用碳石墨材料类别、型号及性能表.doc
机械用碳石墨材料类别、型号及性能表.doc

机械用碳石墨材料类别、型号及性能表:

包括M191T、M200T、M200K和M180K,详见上表。

机械用碳石墨材料的耐化学腐蚀性能

注:+为稳定; -为不稳定; O为尚稳定。

选型使用注意事项:

1、选材时一定要掌握设备的工况条件:压力、介质、温度、线速度等参数。

2、设计时要考虑到碳石墨材料的脆性特点,考虑零件的整体强度,必要时可考虑热装金属外套来增强。

3、安装时要清洗摩擦副端面,可在摩擦面上涂抹润滑脂。安装后建议先进行低速或短时间试运行,反复数次而后投入正常运行。

4、在高速运转情况下,设计上要采取有效的方法导出摩擦热量。同时建议采用各向同性碳石墨材料。

机械密封标准

序号标准号标准名称

1 GB 5894-1986 机械密封名词术语

2 HB/T 4127.2-1999 机械密封分类方法

10 JB/T1472-94 泵用机械密封

11 HG21571-95 搅拌传动装置——机械密封

12 JB/T4127.3-1999 机械密封技术条件

13 JB/T6619.1-1999 轻型机械密封技术条件

14 JB/T4127.3-1999 机械密封产品验收技术条件

15 JB5086-91 内燃机陶瓷石墨系列水封技术条件

16 HG/T2047-91 纯碱蒸汽煅烧炉旋转接头技术条件

17 HG/T2269-92 釜用机械密封技术条件

18 JB/T6373-92 焊接金属波纹管机械密封技术条件

19 JB/T6614-93 锅炉给水泵用机械密封技术条件

20 JB/T6616-93 橡胶波纹管机械密封技术条件

21 HG/T2477-93 砂磨机用机械密封技术条件

22 HG/T2478-93 搪玻璃泵用机械密封技术条件

23 HG/T2734-95 中压反应釜用机械密封技术条件

24 GB/T14211-93 机械密封试验方法

25 HG/T2099-91 釜用机械密封试验规范

26 JB/T5092-91 内燃机陶瓷石墨系列水封试验方法

27 JB/T6619-93 轻型机械密封试验方法

28 JB/T7369-94 机械密封端面平面度检验方法

29 HG/T2122-91 釜用机械密封辅助装置

30 JB/T6629-93 机械密封循环保护系统

31 JB/T6630-93 机械密封系统用压力罐型式、主要尺寸和基本参数

32 JB/T6631-93 机械密封系统用螺旋管式换热器

33 JB/T6632-93 机械密封系统用过滤器

34 JB/T6633-93 机械密封系统用旋液器

35 JB/T6634-93 机械密封系统用孔板

36 JB/T7055-93 机械密封系统用增压罐型式、主要尺寸和基本参数

37 HG21572-95 搅拌传动装置-机械密封循环保护系统

38 GB3345-88 船用泵轴的机械密封

39 GB3346-88 船用泵轴的变压力机械密封

40 HG/T2057-91 搪玻璃搅拌容器用机械密封

41 HG/T2100-91 液环式氯气泵用机械密封

42 JB/T7371-94 耐碱泵用机械密封

43 JB/T7372-94 耐酸泵用机械密封

44 JB/T8725-1998 旋转接头

45 JB/T5966-95 潜水电泵用机械密封

46 JB/T8723-1998 泵用焊接金属波纹管机械密封

47 HG/T3124-1998 焊接金属波纹管釜用机械密封

48 JB/T7757.1-1995 机械密封用圆柱螺旋弹簧

49 HG/T2479-93 机械密封用波形弹簧技术条件

50 JB/T7757.2-95 机械密封用O形橡胶圈

51 JB/T8724-1998 机械密封用反应烧结氮化硅密封环

52 JB/T8871-1999 机械密封用硬质合金密封环毛坯

53 JB/T8872-1999 机械密封用碳石墨密封环技术条件

54 JB/T8873-1999 机械密封用聚四氟乙烯和聚四氟乙烯毛坯技术条件

55 HG/T2044-91 机械密封用喷涂氧化铬密封环技术条件

56 HG/T2046-91 机械密封用真空铬接环技术条件

57 JB/T6372-92 机械密封用堆焊密封环技术条件

58 JB/T6374-92 机械密封用碳化硅密封环

59 JB/T6615-93 机械密封用碳化硼密封环技术条件

信息来源--密封网(https://www.doczj.com/doc/ea12922587.html,)

密封和密封装置标准目录

GB/T 5894-1986 机械密封名词术语

GB/T 6556-1994 机械密封的型式、主要尺寸、材料和识别标志

GB/T 14211-1993 机械密封试验方法

GB/T 10444-1989 机械密封产品型号编制方法

JB/T 1472-1994 泵用机械密封

JB/T 4127.1-1999 机械密封技术条件

JB/T 4127.2-1999 机械密封分类方法

JB/T 4127.3-1999 机械密封产品验收技术条件 -1

JB/T 4254-1999 液态密封胶

JB/T 5966-1995 替水电泵用机械密封

JB/T 6069-1992 水闸橡塑复合密封件覆面用填充聚四氟乙烯软带

JB/T 6369-1992 柔性石墨金属缠绕垫片技术条件

JB/T 6370-1992 柔性石墨填料环物理机械性能测试方法 J22 1993-1-1 JB/T 6371-1992 碳化纤维编织填料试验方法

JB/T 6372-1992 机械密封用推焊密封环技术条件 J22 1993-1-1

JB/T 6373-1992 焊接金属波纹管机械密封技术条件 J22 1993-1-1

JB/T 6374-1992 机械密封用碳化密封环技术条件 J22 1993-1-1

JB/T 6612-1993 静密封、填料密封术语 J22 1994-1-1

JB/T 6613-1993 柔性石墨板、带分类、代号及标记 J22 1994-1-1

JB/T 6614-1993 锅炉给水泵用机械密封技术条件 J22 1994-1-1

JB/T 6615-1993 机械密封用碳化硼密封环技术条件 J22 1994-1-1

JB/T 6616-1993 橡胶波纹管机械密封技术条件 J22 1994-1-1

JB/T 6617-1993 阀门用柔性石墨填料环技术条件 J22 1994-1-1

JB/T 6618-1993 金属缠绕垫用聚四氟乙烯生料带技术条件 J22 1994-1-1 JB/T 6619-1993 轻型机械密封试验方法 J22 1994-1-1

JB/T 6619.1-1999 轻型机械密封技术条件

JB/T 6620-1993 柔性石墨编织填料试验方法 J22 1994-1-1

JB/T 6621-1993 柔性石墨板线膨胀系数测定方法 J22 1994-1-1

JB/T 6622-1993 柔性石墨板氯含量测定方法 J22 1994-1-1

JB/T 6623-1993 柔性石墨板硫含量测定方法 J22 1994-1-1

JB/T 6624-1993 柔性石墨板肖氏硬度测定方法

JB/T 6625-1993 柔性石墨板应力松驰试验方法 J22 1994-1-1

JB/T 6626-1993 聚四氟乙烯编织填料 J22 1994-1-1

JB/T 6627-1993 碳(化)纤维浸渍聚四氟乙烯编织填料 J22 1994-1-1 JB/T 6628-1993 柔性石墨复合增强(板)垫 J22 1994-1-1

JB/T 6629-1993 机械密封循环保护系统 J22 1994-1-1

JB/T 6630-1993 机械密封系统用压力罐型式、主要尺寸和基本以数 J22 1994-1-1

JB/T 6631-1993 机械密封系统用螺旋管式换热器 J22 1994-1-1

JB/T 6632-1993 机械密封系统过滤器 J22 1994-1-1

JB/T 6633-1993 机械密封系统用旋液器 J22 1994-1-1

JB/T 6634-1993 机械密封系统用孔板 J22 1994-1-1

JB/T 6656-1993 气缸用密封圈安装沟槽型式、尺寸和公差 J22 1994-1-1 JB/T 6994-1993 VD形橡胶密封圈 J22 1994-7-1

JB/T 6997-1993 U形内骨架橡胶密封圈 J22 1994-7-1

JB/T 7052-1993 高压电器设备用橡胶密封件六氟化硫电器设备密封件技术条件 J22 1994-7-1

JB/T 7055-1993 机械密封系统用增压罐型式、主要尺寸和基本参数 J22 1994-7-1

JB/T 7369-1994 机械密封端面平面度检验方法

JB/T 7370-1994 柔性石黑编织填料

JB/T 7371-1994 耐碱泵用机械密封

JB/T 7372-1994 耐酸泵用机械密封

JB/T 7525-1994 聚丙烯-玻璃纤维增强塑料复合管和管件 J22 1995-10-1 JB/T 7757.1-1995 机械密封用圆柱螺旋弹簧

JB/T 7757.2-1995 机械密封用O形橡胶圈

JB/T 7758.1-1995 柔性石墨板氟含量测定方法

JB/T 7758.2-1995 柔性石墨板技术条件

JB/T 7759-1995 芳纶纤维、酚醛纤维编织填料技术条件

JB/T 7760-1995 阀门填料密封试验规范

JB/T 7768-1995 密封件安全技术条件 J22 1996-7-1

JB/T 7852-1995 编织填料用聚丙烯腈预氧化纤维技术条件 J22 1996-7-1 JB/T 8241-1996 同轴密封件词汇 J22 1997-7-1

JB/T 8558-1997 石棉/聚四氟乙烯混编填料 J22 1998-1-1

JB/T 8559-1997 金属包垫片 J22 1998-1-1

JB/T 8560-1997 碳化纤维/聚四氟乙烯混编填料 J22 1998-1-1

JB/T 8723-1998 泵用焊接金属波纹管机械密封

JB/T 8724-1998 机械密封用反应烧结氮化硅密封环

JB/T 8725-1998 旋转接头

JB/T 8726-1998 机械密封腔尺寸

JB/T 8871-2002 机械密封用硬质合金密封环毛坯

JB/T 8872-2002 机械密封用碳石墨密封环技术条件

JB/T 8873-1999 机械密封用填充聚四氟乙烯和聚四乙烯毛坯技术条件JB/T 9141.1-1999 柔性石墨板材密度测试方法

JB/T 9141.2-1999 柔性石墨板材拉伸强度测试方法

JB/T 9141.3-1999 柔性石墨板材压缩强度测试方法

JB/T 9141.4-1999 柔性石墨板材压缩率、回弹率测试方法

JB/T 9141.5-1999 柔性石墨板材灰分测定方法

JB/T 9141.6-1999 柔性石墨板材固定碳含量测定方法

JB/T 9141.7-1999 柔性石墨板材热失重测定方法

JB/T 9141.8-1999 柔性石墨板材滑动摩擦系数测试方法

JB/T 9141.9-1999 柔性石墨板材取样方法

JB/T 9142-1999 阀门用缓蚀石棉填料技术条件

JB/T 9143-1999 缓蚀石棉填料腐蚀试验方法

高纯石墨的原材料及生产工艺简介

高纯石墨的原材料及生产工艺简介 1.原材料石油焦、针状焦、煤沥青 (1)、石油焦:是石油渣油、石油沥青经焦化后得到的可燃固体产物,黑色多空。主要元素为碳,灰分含量很低。石油焦属于易石墨化碳一类,石油焦在化工、冶金中广泛应用,是生产人造石墨制品及电解铝用碳素制品的主要原材料。 石油焦按热处理温度分为:生焦和煅烧焦2种。前者由延迟焦化所得的石油焦,含有大量灰分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业在碳素厂进行。 石油焦按硫分的高低区分,可分为高硫焦(含硫%以上)、中硫焦(含硫)、和低硫焦(含硫%以下)三种。人造石墨生产一般使用低硫焦。 (2)、针状焦 针状焦是外观具有明显纤维纹理,热膨胀系数特别低和容易石墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒。在偏光显微镜下可观察到各项异性的纤维状结构,因而称之为针状焦。 针状焦物理机械性制的各项异性十分明显,平行于颗粒长轴方向具有良好的导电导热性能,热膨胀系数小,抗热震性能好。 针状焦分为以石油油渣为原料生产的油系针状焦和以精制煤沥青原料生产的煤系针状焦。(3)、煤沥青 煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而融化,密度为克每平方厘米。(g/cm3)按其软化点的高低分为低温、中温和高温三种。中温沥青的产量为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青的软化点、甲苯不溶物、结焦值和煤沥青流变性等。 煤沥青在他素工业中作为粘结剂和浸渍剂使用,其性能对碳素制品生产工艺和产品质量品质影响极大。粘结剂沥青一般使用软化点适中、结焦值高的中温或中温改质沥青,浸渍剂使用软化点较低、流变性好的中温沥青。 2.制作工艺 (1)、煅烧 碳质原料在高温下进行热处理,排除所含水分和挥发分,并相应提高原料理化性能的生产工序称为煅烧。一般碳质原料采用燃气及自身挥发分作为热源进行煅烧,最高温度为1250℃-1350℃。 ①、煅烧使碳质原料的组织结构和物理化学性能发生深刻变化,主要体现在提高了焦炭的密度、机械强度和导电性,提高了焦炭的化学稳定性和抗氧化性能,为后续工序奠定了基础。煅烧设备主要有罐式煅烧炉、回转窑和电煅烧炉。煅烧质量控制指标是石油焦真密度不小于cm3,电阻率不大于550μΩ.m,针状焦真密度不小于cm3,电阻率不大于500μΩ.m。 ②、原料的破碎处理和配料 在配料之前,须对大块煅后石油焦和针状焦进行中碎、磨粉、筛分处理 中碎:通常是将50mm左右的物料通过颚式破碎机、锤式破碎机等破碎设备进一步破碎到配料所需的

炭材料知识 3

碳材料知识 前言: 碳,一种神奇的元素,它是地球上一切有机体生物的骨架元素,在人体元素成分中含量为18%,占人体比重的16.3%,位置第二大元素。氧占人体元素成分的65%,鲜重第一,若按干重计算,则碳元素占54%,排第一,是构成人体最重要的元素,所以说碳是生命之源。同样炭也是世界上唯一将对立与统一集于一体的材料,它既是最硬又是最软的材料,既是绝缘体又是导电体,既是隔热材料又是导热材料,既是全吸光材料又是全透光材料,它千变万化,独树一帜。神秘莫测的炭,成为科学家永不放弃研究的课题。 碳材料结构 碳材料原子都是C,但因工艺改变使原子排序发生变化,形成万别千差的分子结构,因此它既是零维结构材料又是多维结构材料,既是晶体结构又是非晶体结构。炭的神奇之处主要体现在可以借助不同的杂化方式(sp、sp2、sp3),形成不同的物理和化学性质的晶体结构,即“同素异形体”。比如石墨、金刚石都属于晶体结构,但石墨原子结构为六方排列,金刚石却为立方结构,因化学成键方式不同具有截然相反的特性。 C60是富勒烯的代表,属于零维结构炭材料,有很好的稳定性,抗辐射和化学腐蚀,耐压程度比金刚石还高。碳纳米管属于一维材料,石墨烯属于二维材料,石墨和金刚石属于三维材料。炭材料结构既具有金属材料的机械性能、导电性、传热性、高强度,又具有无机和有机材料的轻、柔、吸、滑、耐腐蚀、防辐射、解毒、食用等神奇功效。

一、碳材料的发展史 人类起源----------木炭为热能的来源 人类文明时代--------用炭作墨汁、染料、防腐、防病 铜器时代----------用炭还原铜 十八世纪初---------用焦炭炼钢 1895年-----------用炭做电极、电刷 1945年-----------活性炭用于环保 1985年-----------生产等静压石墨 1986年-----------生产热解石墨、热解炭 1988年-----------研究炭纤维、柔性石墨 1990年-----------发现C60富勒烯 1991年-----------发现碳纳米管 2004年-----------发现石墨烯 二、碳材料的种类 3.1传统碳材料有:木炭、竹炭、活性炭、炭黑、焦炭、天然石墨、石墨电极、石墨电刷、炭棒、铅笔等。 3.2新型炭材料料:等静压石墨、金钢石、炭纤维、石墨层间化合物、柔性石墨、核石墨、多孔炭、玻璃炭、储能用炭材料等。 3.3纳米炭材料有:富勒烯、炭纳米管、纳米金刚石、碳气凝胶、石墨烯。 三、碳材料的应用 4.1机械领域:轴承、密封元件、制动元件等; 4.2电子工业:半导体、光纤、电极、电波屏蔽、电子元件等; 4.3电器工业:电刷、电触点、集电体、真空发热体等;

常用注塑材料性能

目录 1.ABS 丙烯腈-丁二烯-苯乙烯共聚物 (2) 2.PA6 聚酰胺6或尼龙6 (3) 3.PA12 聚酰胺12或尼龙12 (3) 4.PA66 聚酰胺66或尼龙66 (4) 5.PBT 聚对苯二甲酸丁二醇酯 (6) 6.PC 聚碳酸酯 (6) 7.PC/ABS 聚碳酸酯和丙烯腈-丁二烯-苯乙烯共聚物和混合物 (7) 8.PC/PBT 聚碳酸酯和聚对苯二甲酸丁二醇酯的混合物 (7) 9.PE-HD 高密度聚乙烯 (8) 10.PE-LD 低密度聚乙烯 (8) 11.PEI 聚乙醚 (9) 12.PET 聚对苯二甲酸乙二醇酯 (9) 13.PETG 乙二醇改性-聚对苯二甲酸乙二醇酯 (10) 14.PMMA 聚甲基丙烯酸甲酯 (10) 15.POM 聚甲醛 (11) 16.PP 聚丙烯 (11) 17.PPE 聚丙乙烯 (12) 18.PS 聚苯乙烯 (13) 19.PVC (聚氯乙烯) (13) 20.SA苯乙烯-丙烯腈共聚物 (14)

ABS 丙烯腈-丁二烯-苯乙烯共聚物 典型应用范围: 汽车(仪表板,工具舱门,车轮盖,反光镜盒等),电冰箱,大强度工具(头发烘干机,搅拌器,食品加工机,割草机等),电话机壳体,打字机键盘,娱乐用车辆如高尔夫球手推车以及喷气式雪撬车等。 注塑模工艺条件: 干燥处理:ABS材料具有吸湿性,要求在加工之前进行干燥处理。建议干燥条件为80~90℃下最少干燥2小时。材料温度应保证小于0.1%。 熔化温度:210~280℃;建议温度:245℃。 模具温度:25~70℃。(模具温度将影响塑件光洁度,温度较低则导致光洁度较低)。 注射压力:500~1000bar。 注射速度:中高速度。 化学和物理特性: ABS 是由丙烯腈、丁二烯和苯乙烯三种化学单体合成。每种单体都具有不同特性:丙烯腈有高强度、热稳定性及化学稳定性;丁二烯具有坚韧性、抗冲击特性;苯乙烯具有易加工、高光洁度及高强度。从形态上看,ABS是非结晶性材料。三中单体的聚合产生了具有两相的三元共聚物,一个是苯乙烯-丙烯腈的连续相,另一个是聚丁二烯橡胶分散相。ABS的特性主要取决于三种单体的比率以及两相中的分子结构。这就可以在产品设计上具有很大的灵活性,并且由此产生了市场上百种不同品质的ABS材料。这些不同品质的材料提供了不同的特性,例如从中等到高等的抗冲击性,从低到高的光洁度和高温扭曲特性等。ABS材料具有超强的易加工性,外观特性,低蠕变性和优异的尺寸稳定性以及很高的抗冲击强度。

石墨化碳和活性碳的不同

活性炭属于无定型碳,在结构上微晶碳是不规则排列,在交叉连接之间有细孔,在活化时会产生碳组织缺陷,是一种多孔碳,堆积密度低,比表面积大。 石墨化碳黑(GCB)是碳黑在惰性气体(通常为氩气)保护下加热到2700 ℃左右生成的一种碳材料。石墨化碳(Carb)由微弱的范德华力结合,排列松驰的网状层面组成的球状质点-胶体单元所组成,属于较低石墨化程度的碳素物质在高温条件下,碳黑内部和表面的大空隙结构被破坏,表面生成光滑、无孔的石墨晶型结构。因此GCB表面的碳原子之间都是SP2杂化,有单电子对和活泼离子,并具有六边形的微观结构。与碳黑和活性炭等材料不同,GCB表面总体表现为憎水性,可以吸附非极性和弱极性化合物;其次表面存在一些极性位点,使它能吸附极性化合物或做阴离子交换剂,因此,它既可以吸附非极性和弱极性的化合物又可以吸附极性化合物,对化合物表现出很广的吸附谱。GCB表面的这种特殊的六边形结构,使它对化合物的吸附和解吸附作用与化合物的几何结构密切相关。例如,GCB最初用做GC的固定相分离同分异构体或同系物的立体异构体。在上世纪80年代人们开始将GCB开发成固相萃取柱的填料,用来分离化合物和去除色素。 活性炭和石墨化炭黑的不同点: 1、结构上比较,活性炭含有大量微孔,具有很大的比表面积,500m2/g或更高,吸附的化合物的种类多,吸附的容量大。石墨化碳黑经过高温高压煅烧,去除了活性炭表面的杂原子,表面形成最致密的排列和刚性结构,无孔,比表面积大致在100m2/g。 2、吸附模式上,活性炭的多孔结构决定了它是多分子层吸收,而石墨化碳黑是单分子层吸收的模式,恒温时,当压力增大到一定值,单分子层吸附饱和以后开始多分子层吸收。吸收模式上的区别导致石墨化碳黑的吸附容量(载样量)远小于活性炭。 3、作用力上,活性炭含有杂原子,多孔结构,表面活性大,分布不均匀,对化合物产生的作用力的类型远多于石墨化碳黑,发生化学吸附和反应的可能性更高。石墨化碳黑表面六边形结构使得它对于平面分子或者含有平面芳香环的分子具有强烈的吸附作用。 4、活性炭是多孔的,石墨化碳是非多孔的,在农药残留分析前处理中,用活性碳吸附的话,好多农药是无非洗脱的,应用上,活性炭的工业用途相当广泛,但是在色谱领域(包括SPE),石墨化碳黑具有更明显的优势,因为化合物在石墨化碳黑上吸附和洗脱的规律容易掌握。石墨化碳黑对色素有很强的吸附能力,只要样品在经过GCB处理之后肉眼还能辨别出有色素,就可以判断样品中农残的回收率不会受到显著的影响,这也是GCB在农残检测中得到广泛应用的原因。相比活性炭,由于活性位点多、作用力复杂,想要得到好的回收率就要难得多了。

金属材料力学性能最常用的几项指标

金属材料力学性能最常用的几项指标 硬度是评定金属材料力学性能最常用的指标之一。 对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的及不可移动工件的硬度检测。 1.布氏硬度计原理 对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验

碳素材料简介

碳素材料简介 炭和石墨材料是以碳元素为主的非金属固体材料,其中炭材料基本上由非石墨质碳组成的材料,而石墨材料则是基本上由石墨质碳组成的材料。为了简便起见,有时也把炭和石墨材料统称为炭素材料(或碳材料)。 主要分类: 碳素散热片是以不干胶的形色直接将碳素散热片贴在芯片表面,碳素散热片因其柔软可与所贴附对象十分紧密的粘合,另外因其高热传导性(树脂的5-15倍)、横向的高热传导性(铜的两倍),与传统使用中的导热硅胶、硅胶片、金属片等比较,高碳素散热片能将热量均匀扩散更大幅度的散热。 高热传导平面用散热片: 利用其平面的高热传导性(铜的两倍),可将热迅速传递到金属壳以及散热型材上,降低发热点的温度,从而达到更好的散热效果。 炭素制品按产品用途可分为石墨电极类、炭块类、石墨阳极类、炭电极类、糊类、电炭类、炭素纤维类、特种石墨类、石墨热交换器类等。石墨电极类根据允许使用电流密度大小,可分为普通功率石墨电极、高功率电极、超高功率电极。炭块按用途可分为高炉炭块、铝用炭块、电炉块等。炭素制品按加工深度高低可分为炭制品、石墨制品、炭纤维和石墨纤维等。炭素制品按原

料和生产工艺不同,可分为石墨制品、炭制品、炭素纤维、特种石墨制品等。炭素制品按其所含灰分大小,又可分为多灰制品和少灰制品(含灰分低于l%)。 我国炭素制品的国家技术标准和部颁技术标准是按产品不同的用途和不同的生产工艺过程进行分类的。这种分类方法,基本上反映了产品的不同用途和不同生产过程,也便于进行核算,因此其计算方法也采用这种分类标准。下面介绍炭素制品的分类及说明。 主要制品 碳素行业的上游企业主要有:1、无烟煤的煅烧企业;2、煤焦油加工生产企业;3、石油焦生产及煅烧企业。炭和石墨制品: (一)石墨电极类 主要以石油焦、针状焦为原料,煤沥青作结合剂,经煅烧、配料、混捏、压型、焙烧、石墨化、机加工而制成,是在电弧炉中以电弧形式释放电能对炉料进行加热熔化的导体,根据其质量指标高低,可分为普通功率、高功率和超高功率。石墨电极包括:(1)普通功率石墨电极。允许使用电流密度低于17A/厘米2的石墨电极,主要用于炼钢、炼硅、炼黄磷等的普通功率电炉。 (2)抗氧化涂层石墨电极。表面涂覆一层抗氧化保护层的石墨电极,形成既能导电又耐高温氧化的保护层,降低炼钢时的电极消耗。

常用岩土材料参数和岩石物理力学性质一览表

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = (7.5) 不排水的泊松比为:

现代碳材料

现代碳材料 材料科学与工程学院材料化学13-1 王倩 22 摘要:现代碳材料就是由传统的碳材料经过一系列的加工工艺而制的一种新型材料。现代碳材料主要有活性炭、碳纤维、石墨烯、石墨、碳纳米管、金刚石、富勒烯、其他新型碳材料。石墨烯是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。碳纳米管,管状的纳米级石墨晶体,是单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝纳米级管,每层的C是sp2杂化,形成六边形平面的圆柱面。富勒烯是由任何由碳一种元素组成,以球状,椭圆状,或管状结构存在的物质。 关键词:石墨烯碳纳米管富勒烯现代碳材料应用 碳材料是一种古老而又年轻的材料,既有古老的产品也有现代科学技术进步所创新的产品,而现代碳材料具有密度小、强度大、刚性好、耐高温、抗化学腐蚀、抗辐射、抗疲劳、高导电、高导热、耐烧蚀、热膨胀小、生理相容性好登一系列优异的特性,是军民两用的新材料,被称为是第四类工业材料。应用于冶金、化工、机械、汽车、医疗、环保、建筑日常生活等领域。特别是航天和核工业部门不可缺少的工程结构材料。现代碳材料的发展和应用对提高军事实力和工业产品是竞争力都是至关重要的,已经成为衡量一个国家科技水平、军事和经济实力是标志之一。 本文主要介绍石墨烯、富勒烯、碳纳米管的结构特征以及应用。 一、石墨烯 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,

石墨烯在复合材料中的应用

石墨烯在复合材料中的应用 龚欣 (东南大学机械工程学院南京211189) 摘要:介绍了石墨烯与有机高聚物、无机纳米粒子以及其它碳基材料的复合物,同时展望了这些材料在相关领域中的应用前景. 关键词:石墨烯纳米复合材料 2004年至今, 关于石墨烯的研究成果已在SCI检索期刊上发表了超过2000篇论文, 石墨烯开始超越碳纳米管成为了备受瞩目的国际前沿和热点.基于石墨烯的纳米复合材料在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出许多优良性能,具有广阔的应用前景.目前研究的石墨烯复合材料主要有石墨烯/聚合物复合材料和石墨烯/无机物复合材料两类,其制备方法主要有共混法、溶胶-凝胶法、插层法和原位聚合法.本文将对石墨烯的纳米复合材料及其性能等方面进行简要的综述. 一、基于石墨烯的复合物 利用石墨烯优良的特性与其它材料复合可赋予材料优异的性质.如利用石墨烯较强的机械性能,将其添加到高分子中,可以提高高分子材料的机械性能和导电性能;以石墨烯为载体负载纳米粒子,可以提高这些粒子在催化、传感器、超级电容器等领域中的应用. 1.1 石墨烯与高聚物的复合物 功能化后的石墨烯具有很好的溶液稳定性,适用于制备高性能聚合物复合材料.根据实验研究,如用异氰酸酯改性后的氧化石墨烯分散到聚苯乙烯中,还原处理后就可以得到石墨烯-聚苯乙烯高分子复合物.该复合物具有很好的导电性,添加体积分数为1%的石墨烯时,常温下该复合物的导电率可达0.1S/M,可在导电材料方面得到的应用. 添加石墨烯还可显著影响高聚物的其它性能,如玻璃化转变温度(Tg)、力学和电学性能等.例如在聚丙稀腈中添加质量分数约1%的功能化石墨烯,可使其Tg 提高40℃.在聚甲基丙烯酸甲酯(PMMA)中仅添加质量分数0.05%的石墨烯就可以将其Tg提高近30℃.添加石墨烯的PMMA比添加膨胀石墨和碳纳米管的PMMA具有更高的强度、模量以及导电率.在聚乙烯醇(PVA)和PMMA中添加质量分数0.6% 的功能化石墨烯后,其弹性模量和硬度有明显的增加.在聚苯胺中添加适量的氧化石墨烯所获得的聚苯胺-氧化石墨烯复合物的电容量(531F/g)比聚苯胺本身的电容量(约为216F/g)大1倍多,且具有较大的拉伸强度(12.6MPa).这些性能为石墨烯-聚苯胺复合物在超级电容器方面的应用创造了条件. 石墨烯在高聚物中还可形成一定的有序结构.通过还原分散在Nafition膜中

机械加工常用金属材料及特性

简介:1. 45——优质碳素结构钢,是最常用中碳调质钢。主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例 1. 45——优质碳素结构钢,是最常用中碳调质钢。 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2. Q235A(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3. 40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。 应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。 4. HT150——灰铸铁。应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等 5. 35——各种标准件、紧固件的常用材料 主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调质后使用应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件 6. 65Mn——常用的弹簧钢。应用举例:小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制做弹簧环、气门簧、离合器簧片、刹车弹簧、冷卷螺旋弹簧,卡簧等。 7. 0Cr18Ni9——最常用的不锈钢(美国钢号304,日本钢号SUS304)特性和应用: 作为不锈耐热钢使用最广泛,如食品用设备,一般化工设备,原于能工业用设备 8. Cr12——常用的冷作模具钢(美国钢号D3,日本钢号SKD1) 特性和应用: Cr12钢是一种应用广泛的冷作模具钢,属高碳高铬类型的莱氏体钢。该钢具有较好的淬透性和良好的耐磨性;由于Cr12钢碳含量高达2.3%,所以冲击韧度较差、易脆裂,而且容易形成不均匀的共晶碳化物;Cr12钢由于具有良好的耐磨性,多用于制造受冲击负荷较小的要求高耐磨的冷冲模、冲头、下料模、冷镦模、冷挤压模的冲头和凹模、钻套、量规、拉丝模、压印模、搓丝板、拉深模以及粉末冶金用冷压模等

机械密封用碳石墨环现状与展望_朱斌

收稿日期: 2012-02-27 修稿日期: 2012-03-03 文章编号: 1005-0329(2012)檭檭檭檭檭檭檭檭檭檭檭檭殐 殐 殐 殐 03-0040-04 技术进展 机械密封用碳石墨环现状与展望 朱 斌,朱 路,林建华,涂丽婵 (福建省闽旋科技股份有限公司,福建泉州362000) 摘 要: 介绍了碳石墨材料的分类、特点以及国内外碳石墨材料的生产概况,结合旋转接头用碳石墨环制造应用,提出 了对现行机械密封用碳石墨环技术标准的补充修订建议,针对国内碳石墨材料存在问题的现状,向行业主管部门提出了攻关愿望,结合国内碳石墨材料的技术进展和发展趋势进行了展望。关键词: 碳石墨;机械密封;旋转接头;生产概况;展望 中图分类号: TH136 文献标识码: A doi :10.3969/j.issn.1005-0329.2012.03.009 Current Situation and Prospect of Carbon Graphite Ring for Mechanical Seal ZHU Bin ,ZHU Lu ,LIN Jian-hua ,TU Li-chan (Fujian Minxuan Technology Co.,Ltd ,Quanzhou 362000,China ) Abstract : The classification ,feature and production overview in domestic and foreign of carbon graphite material were intro- duced ,combineing with the manufacturing application of carbon graphite ring in rotary joints ,it was propose supplement and a-mendment to the current standard of specification for carbon graphite ring for mechanical seals ,in the light of current situation that in domestic carbon graphite material exist problems ,it was propose to industry department to research ,look ahead the technical progress and development trend of current carbon graphite material.Key words : carbon graphite ;mechanical seal ;rotary joint ;production overview ;prospect 1 前言 碳石墨环因具有优良的耐高温性、自润滑性、 低摩擦系数、耐磨损性、耐化学介质腐蚀性和良好的导热性、热膨胀系数小、对高低温交变性能的适应性以及材料的物理力学性能,作为机械密封应用领域中的关键部件已有两千多年的历史,并广泛应用于造纸、纺织、医药、军工等各工业部门 [1,2] 。由于材料性能优良,制造原材料又多来源于炼油化工副产品,所以价格适宜,应用行业广泛,因此碳石墨制品制造在我国得到了快速发展。从1956年前苏联援建哈尔滨电碳厂、1966年四川自贡东新电碳厂成立等几家企业,发展到目前的300多家电碳制造相关企业,不仅有了高等院校 和科研单位,而且也有了行业管理机构和相关产 品的技术标准,促进了碳制品生产的科学性、先进性和实用性。但由于资金,设备,体制等众多因素的影响,目前我国的高性能碳制品质量,较国外发达国家的先进技术水平,仍有较大差距。2 机械密封用碳石墨材料的分类及特点 碳石墨材料的生产,是按照骨料粒径,配方组成与内部结构不同分类的,基本上可分为毫米级(1 10mm )、忽米级(0.1 1mm )、丝米级(0.01 0.1mm )和微米级(0.001 0.01mm )4类,通称为粗、中粗、细、超细结构碳石墨制品。其制造和性能特点分别为: (1)毫米级结构碳石墨制品,通常用2

基于石墨烯的导电复合材料

基于石墨烯的导电复合材料进展 课程:聚合物结构与性能学生:张恩重学号:201110102626 自2004年英国曼彻斯特大学Geim教授首次制备出单层石墨烯[1](graphene)以来,其独特的性质就引起了科学家们的广泛关注。石墨烯是单层碳原子紧密堆积而形成的炭质新材料,单层石墨烯是以二维晶体结构存在,厚度只有0.335nm,是目前世界上最薄的二维材料,它是构筑其它维度碳质材料的基本单元,可以包裹起来,形成零维的富勒烯,卷起来形成一维的碳纳米管,层层堆积形成三维石墨,如图1。石墨烯是一种没有能隙的半导体材料,具有比单晶硅高100倍左右的载流子迁移率(2×105cm(V·s))[2]在室温下具有微米级自由程和大的相干长度,因此它是纳米电路的理想材料。另外,石墨烯还具有良好的导热性(导热率为5000W(m·K)[3]、高强度高达130GPa[4]、高透明度(对自然光的吸收率只有2.3%左右)和超大的比表面积(2630m2/g)[5]。由于石墨烯具有上述优异的性能,使其有望在微电子、能源、信息材料和生物医药等领域具有重大的应用前景。 图1 2D结构的石墨烯片层演变成C60、碳纳米管和石墨的示意图 目前制约石墨烯和其复合材料发展的两个主要因素是:一、具有单层结构石

墨烯的大规模制备;二、石墨烯的可控功能化。本文将从聚合物复合导电材料、聚合物复合材料导电机理,石墨烯的制备和石墨烯聚合物复合导电材料的性能研究进展等方面介绍基于石墨烯的导电复合材料,并了解其未来研究领域。 导电高分子材料 近二十年,尤其导电高分子获得诺贝尔奖以来,导电高分子材料作为高分子材料发展的一个新领域,其研究与开发已成为功能高分子材料研究的一个重要方面。按导电机理的不同,导电高分子材料可以分为复合型和结构型两种:复合型导电高分子材料是利用向高分子材料中加入各种导电填料来实现其导电能力;结构型导电高分子材料是改变高分子结构使高分子自身具有导电性来实现其导电能力[6]。本文主要介绍以石墨烯为填料的复合型导电高分子材料。 复合型导电高分子材料 复合型导电高分子材料是指将各种导电填料和高分子材料通过不同的复合方法制备的具有导电功能的多相复合材料。这类材料既具有导电功能,同时又保持高分子材料的特点,并且成本较低,因而得到了广泛的应用。根据导电填料的不同它又可分为碳基材料填充型及金属材料填充型。 1、碳基材料填充型 碳基材料主要包括石墨烯、足球烯、碳纳米管、石墨。碳基材料填填充型导电材料是目前复合型导电材料中应用最广泛的一种,应用最多的碳基材料是石墨烯、碳纳米管和石墨,它的优点有以下几个方面:一、碳基材料填价格低廉,实用性强;二、碳基材料填能根据不同的导电要求有较大的选择余地;三是导电持久稳定[7]。 2、金属材料填充型 金属材料填充型复合导电材料的导电性能优良,比传统金属材料轻且易成型加工,是具有潜在优势的新型导电材料和屏蔽材料。近年来,金属纤维填充材料发展迅速。 复合型导电高分子材料的导电机理 复合型导电高分子材料导电性主要取决于填料的分散状态[8]。根据逾渗理论,原来孤立分散的填料微粒在体积分散达到某一临界含量以后就会形成连续的导

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

石墨化增碳剂详细

产品:石墨化增碳剂 成分含量: 固定碳:≥98.5% 灰分:≤0.5% 挥发分:≤0.5% 硫:≤0.05% 水分:≤0.5% 氮:≤0.03%(300ppm) 生产不同粒度: 0mm-0.5mm 0.5mm-1mm 1mm-5mm 5mm-8mm 不同粒度报价不一样,可根据客户要求定制粒度 我们工厂采用的是艾奇逊卧式炉锻造,月产量在4000-5000吨 针对的客户: 钢铁冶炼厂,铸造厂,贸易中间商 产品特点: 高固定碳,吸收率高,低硫低氮,并在吸收速度上快于同类石墨化增碳剂,且不吸附炉壁,完全吸收无残留,价格低于同类硫低于0.05以下的石墨化增碳剂,性

价比高。 吸收率高, 根据使用方法吸收率最高能达到90%以上. 吸收速度快,比同类石墨化增碳剂吸收速度快,不吸附炉壁,且无残留,炉中增碳吸收速度优势更加明显. 硫份低,0.05%以下 超高的性价比,综述上述在同类石墨化增碳剂中(硫≤0.05)价格最优优势。效益影响: 石墨增碳剂为您降低成本,提高产品质量。 原材料可增加废钢用量,减少生铁用量或不用生铁,有效避免生铁的遗传性对铸件的影响。 含硫低,稳定可靠,有效节约硫在球化和孕育过程中对合金的不利影响,节省合金费用。 由于熔点低,吸收快,不反渣,可以有效保护和延长炉龄,减少炉衬消耗 化学成分纯净:高碳、低硫、微氮,有害杂质少 物理形态:外观洁净、无杂质,多孔隙结构,吸收速度快,吸收率高 微观形态:晶体度质量优,有效提升铸件铸铁牌号和性能 产品性质稳定:增碳效果稳定,吸收效果好,提温效果明显,不返渣 包装: 25千克/袋,编织袋(内里防水膜),可提供吨袋 如需要特殊包装方式等,请致电 贮存 产品应存放在清洁、干燥的库房内,防止受潮和玷污及踩踏

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

金属材料性能及国家标准

金属材料性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 ???? 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 ???? 材料的工艺性能指材料适应冷、热加工方法的能力。 ???? (一)、机械性能 ???? 机械性能是指金属材料在外力作用下所表现出来的特性。 ??? 1 、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。 ??? 2 、屈服点(бs ):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生 0.2%L 。时应力值,单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 3 、抗拉强度(бb )也叫强度极限指材料在拉断前承受最大应力值。单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 4 、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。 ?? 5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。??? 6 、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度( HBS 、 HBW )和洛氏硬度( HKA 、 HKB 、 HRC ) ??? 7 、冲击韧性( Ak ):材料抵抗冲击载荷的能力,单位为焦耳 / 厘米 2 ( J/cm 2 ) . (二)、工艺性能 ???? 指材料承受各种加工、处理的能力的那些性能。 8 、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。 9 、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。 10 、顶气段性能:指金属材料能承授予顶锻而不破裂的性能。 11 、冷弯性能:指金属材料在常温下能承受弯曲而不破裂性能。弯曲程度一般用弯曲角度α(外角)或弯心直径 d 对材料厚度 a 的比值表示, a 愈大或 d/a 愈小,则材料的冷弯性愈好。 12 、冲压性能:金属材料承受冲压变形加工而不破裂的能力。在常温进行冲压叫冷冲压。检验方法用杯突试验进行检验。 13 、锻造性能:金属材料在锻压加工中能承受塑性变形而不破裂的能力。 (三)、化学性能 ???? 指金属材料与周围介质扫触时抵抗发生化学或电化学反应的性能。 14 、耐腐蚀性:指金属材料抵抗各种介质侵蚀的能力。 15 、抗氧化性:指金属材料在高温下,抵抗产生氧化皮能力。 >> 返回 金属材料的检验

石墨烯和纳米碳材料的导热性能的研究

石墨烯和纳米碳材料的导热性能的研究 Alexander A. Balandin 近年来,在科学领域和工程领域,人们越来越多地去关注导热性能好的材料。散热技术已经成为电子工业持续发展的一个重要的话题,低维结构的材料在热传导方面显示出了优异的性能。就导热能力而言,碳的同素异构体及其衍生品占据了举足轻重的地位。在室温下的碳材料的导热系数跨越了一个非常大的围——超过了五个数量级——从导热系数最低的无定型碳到导热系数最高的石墨烯和碳纳米管。在这里,我回顾一下以石墨烯碳材料为热点的最近热性能的研究成果,碳纳米管和纳米级的碳材料在研究方面遇到了不同程度的难题。在二维晶体材料方面,尤其是石墨烯,人们非常关注尺寸对热传导的影响。我也描述了石墨烯和碳材料在电子传热机理上的应用前景。 实际生产应用和基础科学的发展表明了材料热性能研究的重要性。由于功耗散热水平的提高,导热技术已经成为电子工业持续发展的一个非常重要的热点。对导热性能非常好的材料的研究严重影响着下一代集成电路和3D电子产品的设计进程。在光电子和光子设备领域我们也遇到了类似的需要导热处理的问题。另外,电热能量转换技术需要材料具有很强的抑制热扩散的能力。 材料的导热能力由其电子结构决定,所以一种材料热性能原理可以描述另外一种材料的热性能现象。材料热性能的变化只是在纳米尺度上变化。由于声子散射边界的增多或者声子色散的变化,纳米管和大多数晶体将不再传热。同时,对二维和一维晶体的热传导理论的研究解释了材料在优异的热传导性能的原因。二维晶体导热性能的差异意味着不像非晶体那样,它恢复材料的热平衡不能仅仅靠晶体的非简谐振动,因为这不但需要限制系统的尺寸,而且还需要掺杂进非晶体结构,这样才能符合热传导性能的物理意义。这些发现引发了在低维系统中对傅里叶定律的实用性的非议。 碳材料具有非常多的同素异构体,在热性能方面占据了举足轻重的低位(如图, 1a)。碳材料不同的同素异构体的热传导率跨越了很大的一个围——五个数量级——非晶碳的热导率为0.01W. mK?1,在室温条件下金刚石或者石墨烯的热导率为大约2000W.

相关主题
文本预览
相关文档 最新文档