当前位置:文档之家› 基于遗传算法的模糊控制调整寻优方法

基于遗传算法的模糊控制调整寻优方法

基于遗传算法的模糊控制调整寻优方法
基于遗传算法的模糊控制调整寻优方法

基于遗传算法的模糊控制调整寻优方法

作者:姚玲英

作者单位:广东教育学院,物理系,广东,广州,510310

刊名:

广东教育学院学报

英文刊名:JOURNAL OF GUANGDONG EDUCATION INSTITUTE

年,卷(期):2004,24(2)

被引用次数:2次

参考文献(5条)

1.李敏强遗传算法的基本理论与应用 2002

2.陈理君;姚玲英;李晓辉适用于窑炉的多参数解析式模糊控制方法[期刊论文]-中国建材科技 2003(06)

3.Yang Li;CHEN Li-jun A News AI Control and Application to Shuttle KilnTemperature Control System[外文会议] 1998

4.陈理君;沈丽模糊控制规则表和控制解析式的研究 2000

5.陈理君;刘雨青;李晓辉基于遗传算法的模糊控制调整方法 2002

引证文献(2条)

1.姚玲英多参数解析描述的模糊控制规则及其优化方法[期刊论文]-广东教育学院学报 2005(3)

2.姜雷基于遗传算法的模糊神经网络控制器设计[学位论文]硕士 2005

本文链接:https://www.doczj.com/doc/ea11818893.html,/Periodical_gdjyxyxb200402027.aspx

MATLAB实验遗传算法和优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率, ρ为电阻率。可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2)

模糊遗传算法及其应用研究

第19卷第2期计算技术与自动化V o l119 N o12 2000年6月COM PU T I N G T ECHNOLO GY AND AU TOM A T I ON Jun 2000 文章编号:1003—6199(2000)02—0005—05 模糊遗传算法及其应用研究 王兴成 郑紫微 贾欣乐 (大连海事大学轮机工程研究所,辽宁大连 116026) 摘 要:针对多目标遗传算法化的特点,基于模糊集理论,提出模糊遗传算法的概念及其算法结构。将系统设计的要求转化为模糊遗传算法的约束条件,利用模糊遗传算法对其进行优化设计。具体的设计示例说明了该算法的有效性。 关键词:遗传算法;模糊优化;模糊遗法算法 中图分类号:T P13 文献标识码:A 1 引 言 在工程科学中,存在着很多困难的组合优化问题和复杂的函数优化问题。这些问题大多是非线性的、有些甚至是不连续的。对这些问题,常规的数学优化技术仅能对问题作简化的近似处理,而无法有效地求解。由于遗传算法只要求所要解决的问题是可计算的,而无可微性及其它要求,所以,它的适用范围很广。大量的应用结果已经证明了遗传算法极强的计算能力。经过多年的发展,遗传算法已经成为一种实际可行、鲁棒性强的优化技术和搜索方法,并且遗传算法在诸多领域中都得到了广泛的应用[1]。在遗传算法的应用过程中,通常需要解决如下三个方面的问题:参数控制(P a ram eter Con trol);过早收敛(P er m a tu re Converg ence);误导性问题(D ecep tive P roble m)[2][3]。对于上面三个方面的问题,至今仍未得到较好的解决。模糊性是人类思维和客观事物普遍具有的属性之一,模糊优化设计思想自从其被提出以来,已经得到了较快的发展和实际应用。针对遗传算法和模糊优化各自的特点,本文提出了一种融合模糊优化设计思想的模糊遗传算法(F uz zy_Genetic A lg orithm,简称F uz zy_GA)。文中定义了模糊遗传算法的概念,给出了模糊遗传算法的算法结构,并用实际系统的示例说明了该方法有的效性。 2 模糊遗传算法 211 多目标遗传算法优化 利用遗传算法进行多个目标同时优化的系统设计往往会加大其优化的难度。针对多目标优化,采取适当的选择方法和设计性能优良的遣传算子也就格外重要,因为它直接影响到遗传算法优化的效果。在进行多目标遗传算法优化设计时,往往都是将系统的设计要求转化为遣传算法优化的约束条件及优化的目标函数,以使得容易进行编程设计。由格式定理和遗传算法的 收稿日期:2000—02—03 基金项目:国家教委博士点专项科研基金资助项目(98015101);国家自然科学基金国际合作资助项目(6981010032)作者简介:王兴成,(1956—),男,教授,研究方向;分布参数H∞控制;郑紫微,(1975—),男,研究生,研究方向;混合智能控制,H∞控制;贾欣乐,(1932—),男,教授,博士导师,研究方向;船舶运动控制。

第4章续 多变量寻优方法

4.4:梯度法 解析法(间接法):在确定搜索方向时,需要计算目标函数导数的方法。 梯度法,共轭梯度法,变尺度法,牛顿法。 ● 方法 又称最速下降法,它是在n X 点附近沿负梯度方向一维搜索,并按负梯度方向逐步进行寻优的方法。最简单最基本的无约束优化问题方法 ● 收敛性判别准则 给定允许误差0>ε,如果)(k x k X f p -=满足 ε≤k p 则搜索停止,从而得到问题的近似解。 ● 迭代步骤 1:取初始点0 X ,梯度模的允许误差ε,最大迭代次数MAXI ,令k =0; 2:计算梯度 )(k x k X f p -= 3:检验是否满足收敛性判别准则 ε≤k p 若满足,则迭代停止,得到k X X ≈min ;否则进行4 4:求单变量极值问题的最优解k λ )()(0 k k k k k p X f p X f Min λλλ+=+> 5:令k k k k p X X λ+=+1 6:判断是否满足 ε? ≤-+) ()(1k k X f X f ) (0.1)(0.10.1)(k k k X f X f X f =≥=

若满足,则迭代停止(非正常),取k X X ≈min ,否则转向2 ● 迭代框图 ● 优点 程序简单,计算机实现起来容易。对起始点要求也不甚严格,即使从一个较差的初始点出发,一般也能收敛到极小点。 ● 缺点

在极小点附近收敛得很慢,对于目标函数而言,在起始点远离极小点时,开头几步下降较快,到了极值点时,下降便开始变缓慢,甚至在极小点附近出现来回摆动的情况。 它的收敛快慢与变量尺度关系很大。 2221)(x x X f += 一次迭代 [0,0] 22 219)(x x X f += 十次迭代 ]10165.6,10276.5[66--?? 对于小扰动会出现不稳定。舍入误差或者一维搜索步长的确定不准确,带来小扰动,这 些小扰动在个别情况下甚至可能使实际下降方向与理论下降方向成正交的荒谬结论,破坏了方法的收敛性。 4.5:共轭梯度法(FR 法) 找到某一个方向的共轭方向,可以一步直接达极值点。 ● 计算方法 正定二次函数X Z CX X X f T T += 2 1)(,C 为n n ?对称正定阵。 若n p p ,,1 为任意一组C 的共轭向量,则由任意初始点1 X 出发,按如下格式迭代 )()(k k k k k p X f p X f Min λλλ +=+ n k p X X k k k k ,,11 =+=+λ 则至多迭代n 步即收敛。 ● 找共轭方向 取1 X 处的目标函数负梯度方向作为第一个搜索方向 )(1)1(1X f g p x -=-= 然后沿着1p 方向作一维搜索 )()(11111p X f p X f Min λλ+=+ 由此得到一个新的点2 X ,并计算出相应的梯度方向 1112p X X λ+= )(2)2(X f g x = 因为梯度方向和前一搜索方向在1λ处正交 0)()()()2()1(21=-=-g g X f X f T x T x 为了在) 1(g 和) 2(g 构成的正交系中寻求共轭方向2 p ,令

寻北仪的方位引出方法

寻北仪的方位引出方法 陀螺寻北仪的寻北测量结果需要传递给使用者,这就需要解决寻北方位引出问题。早期的摆式-液浮的和吊丝式寻北仪-都与经纬仪相连,以经纬仪望远镜光轴为寻北方位输出。 理论上讲,寻北方位输出应该以敏感地速水平分量的陀螺敏感轴为寻北方位输出轴,但是由于理论上的陀螺敏感轴难以直接观测或者引出不便因此通常以陀螺的安装基面或通过标定,将敏感轴传递到寻北仪的某个固定轴线例如经纬仪的水平光轴或者某个固定垂直基面的法线作为寻北结果的输出轴。 根据使用方法的不同采用不同的引出方法,此时需要考虑的是:标定和引出方便、易于检测和常数标定、与理论敏感轴之间的关系稳定、使用过程中易于保护等。 1.车载寻北仪 车体本身是机动的但是车载寻北仪是直接安装在车上的,寻北仪的寻北测量结果需要传递给车载导航仪或者车载雷达、火炮、火箭发射装置等,因此通常是以寻北仪外壳的侧向安装基面(法线)与车载导航仪建立固定的关系,经过标定测量来确定两者之间的固定安装角。为了防止传递关系的变化需要定期检测。见图1 自寻北航向仪是具有自寻北功能的惯性航向保持装置其航向仪的水平安装基面既是航向仪的输出基面也是寻北结果的输出基面。 2摆式(吊丝)陀螺寻北仪 2.1.普通吊丝式寻北仪 最初的摆式陀螺寻北仪MW10为半液浮的宝石轴承定位,相当于质心下移的悬浮式自由陀螺。陀螺房上安装的侧向平面镜其法线大致平行于陀螺H轴。 大约在1975年德国研制出上挂摆式(陀螺敏感部安装在经纬仪之上)吊丝式陀螺经纬仪,简称为吊丝式陀螺经纬仪,这是摆式陀螺寻北仪发展的一个里程碑。后来出现下挂式,而上挂式被淘汰。 这些寻北仪与普通经纬仪连接在一起,称为陀螺经纬仪。通过标定,将陀螺H轴与经纬仪望远镜光轴建立稳定的方位角关系,将其寻北结果从经纬仪传递出去。见图2 2.2.美国ALINE陀螺寻北仪(陀螺经纬仪) ALINE寻北仪的方位引出方法是在方位跟踪转台上固定一片倾斜45°的平面镜,其法线的水平投影即为寻北方位引出线。转台上的小型准直经纬仪向下俯45°来准直平面镜即完成寻北方位向经纬仪光轴的传递。经纬仪仰角45°回到水平位置再向用户传递。见图3 此时望远镜的俯仰偏差被带入了,为此需要计入经纬仪的俯仰偏差。 由于每次方位引出都需要经纬仪重新准直倾斜平面镜因此,经纬仪可以临时安置在转台上。 ALINE和下面的MARCS寻北仪中的陀螺房摆动传感器都是感应式的而不是光学的。 2.3.美国MARCS高精度吊丝式寻北仪 MARCS高精度寻北仪是世界最高精度的吊丝式寻北仪(2″级),作为野战条件下校正普通寻北仪的方位基准。其方位转台上没有安装经纬仪因此不能称为陀螺经纬仪。它的方位引出方法是:在方位跟踪转台上安装一个直角棱镜,其法线即为寻北方位引出线。用户通过准直这个直角棱镜得到寻北方位。由于减少了一些方位传递环节因此具有更高的稳定性。其实,就经纬仪本身来说,从底部的安装面到上部的经纬仪望远镜之间以及度盘与上下回转机

遗传算法与优化问题(重要,有代码)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

智能控制作业报告-基于遗传算法的模糊控制器最优设计

西安理工大学 研究生课程论文/研究报告 课程名称:智能控制 任课教师: 论文/研究报告题目: 基于遗传算法的模糊控制器最优设计 完成日期:2016 年8 月27 日学科:电力电子与电力传动 学号: 姓名:

1. 基于遗传算法的模糊控制MATLAB程序: clear all close all clc T=0.1; %控制系统采样时间 TM=200; %控制系统运行次数 time=zeros(1,TM); kp=0.2;ki=0.002;kd=20; tr=0; %定义初始种群参数 N=10; %初始种群数目 M=3; %遗传代数 varb=3; %语言值个数 yout1=zeros(N,TM); yout=zeros(M,TM); fitness=zeros(1,N); %产生初始种群 n=varb^2; n1=varb^2+varb*2; %每条染色体的长度 mfpara1=randint(N,n,[1,varb]); %控制规则表 mfpara2=-1*rand(N,varb); %mfpara2(1),mfpara2(2),mfpara2(3)分别为an,bn,cn mfpara3=rand(N,varb); %mfpara3(1),mfpara3(2),mfpara3(3)分别为ap,bp,cp init=[mfpara1,mfpara2,mfpara3]; %离散化被控对象 num=[1]; den=conv(conv([1,0.1],[1,0.2]),[1,0.7]); g=tf(num,den); yn=c2d(g,T,'zoh'); [tt,ff]=tfdata(yn,'v'); %开始循环 p=1 while p<=M %循环代数从1到3 q=1 while q<=N %染色体数从1到10 y=zeros(1,TM); u=zeros(1,TM); er=zeros(1,TM);

约束条件下多变量函数的寻优方法

第十章约束条件下多变量函数 的寻优方法 ●将非线性规划→线性规划 ●将约束问题→无约束问题 ●将复杂问题→较简单问题 10.1约束极值问题的最优性条件 非线性规划:min f(X) h i(X)=0 (i=1,2,…,m) (10.1.1) g j(X)≥0 (j=1,2,…,l) 一、基本概念 1.起作用约束 设X(1)是问题(10.1.1)的可行点。对某g j(X)≥0而言: 或g j(X(1))=0:X(1)在该约束形成的可行域边界上。 该约束称为X(1)点的起作用约束。 或g j(X(1))>0:X(1)不在该约束形成的可行域边界上。 该约束称为X(1)点的不起作用约束。 X(1)点的起作用约束对X(1)点的微小摄动有某种限制作用。等式约束对所有可行点都是起作用约束。

() θcos ab b a =? 2.正则点 对问题(10.1.1),若可行点X (1)处,各起作用约束的梯度线性无关,则X (1)是约束条件的一个正则点。 3.可行方向(对约束函数而言) 用R 表示问题(10.1.1)的可行域。设X (1)是一个可行点。对某方向D 来说,若存在实数λ1>0,使对于任意λ(0<λ<λ1)均有X (1)+λD ∈R ,则称D 是点X (1)处的一个可行方向。 经推导可知,只要方向D 满足: ▽g j (X (1))T D>0 (j ∈J ) (10.1.3) 即可保证它是点X (1)的可行方向。J 是X (1)点起作用约束下标的集合。 在X (1)点,可行方向D 与各起作用约束的梯度方向的夹角为锐角 。 4.下降方向(对目标函数而言) 设X (1)是问题(10.1.1)的一个可行点。对X (1)的任一方向D 来说,若存在实数λ1>0,使对于任意λ(0<λ<λ1)均有f(X (1)+λD)

基于数据挖掘的遗传算法

基于数据挖掘的遗传算法 xxx 摘要:本文定义了遗传算法概念和理论的来源,介绍遗传算法的研究方向和应用领域,解释了遗传算法的相关概念、编码规则、三个主要算子和适应度函数,描述遗传算法计算过程和参数的选择的准则,并且在给出的遗传算法的基础上结合实际应用加以说明。 关键词:数据挖掘遗传算法 Genetic Algorithm Based on Data Mining xxx Abstract:This paper defines the concepts and theories of genetic algorithm source, Introducing genetic algorithm research directions and application areas, explaining the concepts of genetic algorithms, coding rules, the three main operator and fitness function,describing genetic algorithm parameter selection process and criteria,in addition in the given combination of genetic algorithm based on the practical application. Key words: Data Mining genetic algorithm 前言 遗传算法(genetic algorithm,GAs)试图计算模仿自然选择的过程,并将它们运用于解决商业和研究问题。遗传算法于20世界六七十年代由John Holland[1]发展而成。它提供了一个用于研究一些生物因素相互作用的框架,如配偶的选择、繁殖、物种突变和遗传信息的交叉。在自然界中,特定环境限制和压力迫使不同物种竞争以产生最适应于生存的后代。在遗传算法的世界里,会比较各种候选解的适合度,最适合的解被进一步改进以产生更加优化的解。 遗传算法借助了大量的基因术语。遗传算法的基本思想基于达尔文的进化论和孟德尔的遗传学说,是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法。生物在自然界的生存繁殖,显示对其自然环境的优异自适应能力。受其启发,人们致力于对生物各种生存特性的机制研究和行为模拟。通过仿效生物的进化与遗传,根据“生存竞争”和“优胜劣汰”的原则,借助选择、交叉、变异等操作,使所要解决的问题从随机初始解一步步逼近最优解。现在已经广泛的应用于计算机科学、人工智能、信息技术及工程实践。[2]在工业、经济管理、交通运输、工业设计等不同领域,成功解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。遗传算法作为一类自组织于自适应的人工智能技术,尤其适用于处理传统搜索方法难以解决的复杂的和非线性的问题。 1.遗传算法的应用领域和研 究方向 1.1遗传算法的特点 遗传算法作为一种新型、模拟生物进化过程的随机化搜索方法,在各类结 构对象的优化过程中显示出比传统优 化方法更为独特的优势和良好的性能。 它利用其生物进化和遗传的思想,所以 它有许多传统算法不具有的特点[3]: ※搜索过程不直接作用在变量上,而是 作用于由参数集进行了编码的个体 上。此编码操作使遗传算法可以直接 对结构对象进行操作。 ※搜索过程是从一组解迭代到另一组 解,采用同时处理群体中多个个体的 方法,降低了陷入局部最优解的可能 性,易于并行化。

遗传算法基因对比

2000年4月系统工程理论与实践第4期  文章编号:100026788(2000)0420007206 遗传算法求解旅行商问题时的基因片段保序 梁艳春1,2,冯大鹏1,周春光3 (1.吉林大学数学系,吉林长春130012;21中国科学院现代制造CAD CAM技术开放实验室,辽宁沈阳110015;31吉林大学计算机科学系,吉林长春130012) 摘要: 针对基于遗传算法的T SP问题求解,尝试了多种遗传操作,分析了这些操作在遗传算法中的 作用,讨论了基因片段保序在利用遗传算法求解T SP问题中的重要性. 关键词: 遗传算法;旅行商问题;基因片段 中图分类号: T P301 α O rder P reserving of Gene Secti on fo r So lving T raveling Sales m an P rob lem s U sing Genetic A lgo rithm s L I AN G Yan2chun1,2,FEN G D a2p eng1,ZHOU Chun2guang1 (1.J ilin U n iversity,Changchun130012;2.Open L abo rato ry of CAD CAM T echno logy fo r A dvanced M anufactu ring,Ch inese A cadem y of Sciences,Shenyang110015) Abstract: Several genetic operati on s are tried and the functi on s of these operati on s are analyzed based on so lving traveling sales m an p rob lem s u sing genetic algo rithm s.T he sign ificance of the o rder p reserving of the gene secti on in u sing genetic algo rithm s is discu ssed to so lve traveling sales m an p rob lem s. Keywords: genetic algo rithm s;traveling sales m an p rob lem s;gene secti on 1 前言 旅行商问题(T raveling Salsem an P rob lem s,T SP)是一个典型的、易于描述却难于处理的N P完全问题,是许多领域内出现的多种复杂问题的集中概括和简化形式.对于T SP问题,没有确定的算法能够在多项式时间内得到问题的解.因此,有效地解决T SP问题,在可计算理论上具有重要的理论意义,同时具有重要的实际应用价值.近十几年来,模拟自然进化的过程用以求解T SP问题的研究十分活跃[1~12],这方面的工作有基于遗传算法的研究[1~10],有基于进化规划的研究[11,12],其中以前者居多. T SP问题因其典型已成为许多启发式的搜索、优化算法的间接比较标准.遗传算法就其本质来说,主要是处理复杂问题的一种鲁棒性强的启发式随机搜索算法.遗传算法在T SP问题求解方面的应用研究,对于构造适当的遗传算法框架,建立有效的遗传操作,以及有效地解决T SP问题等具有多方面的重要意义.本文针对基于遗传算法的T SP问题求解,尝试了多种遗传操作,分析了各种操作在遗传算法中的作用,讨论了基因片段保序在利用遗传算法求解T SP问题中的重要性. 2求解TSP问题的遗传算法 2.1TSP问题的数学描述 T SP问题的描述十分简单,即寻找一条最短的遍历n个城市的路径,其数学描述可表达为搜索整数子集X={1,2,…,n}(X的元素表示对n个城市的编号)的一个排列Π={c1,c2,…,c n},使 α收稿日期:1998208224 资助项目:国家自然科学基金(19872027);符号计算与知识工程国家教育部开放研究实验室资助

基于遗传算法的库位优化问题

Logistics Sci-Tech 2010.5 收稿日期:2010-02-07 作者简介:周兴建(1979-),男,湖北黄冈人,武汉科技学院经济管理学院,讲师,武汉理工大学交通学院博士研究生,研究方向:物流价值链、物流系统规划;刘元奇(1988-),男,甘肃天水人,武汉科技学院经济管理学院;李泉(1989-),男,湖北 武汉人,武汉科技学院经济管理学院。 文章编号:1002-3100(2010)05-0038-03 物流科技2010年第5期Logistics Sci-Tech No.5,2010 摘 要:应用遗传算法对邯运集团仓库库位进行优化。在充分考虑邯运集团仓库所存放的货物种类、货物数量、出入库频 率等因素的基础上进行库位预分区规划,建立了二次指派问题的数学模型。利用遗传算法对其求解,结合MATLAB 进行编程计算并得出最优划分方案。 关键词:遗传算法;预分区规划;库位优化中图分类号:F253.4 文献标识码:A Abstract:The paper optimize the storage position in warehouse of Hanyun Group based on genetic algorithm.With thinking of the factors such as goods categories,quantities and frequencies of I/O,etc,firstly,the storage district is planned.Then the model of quadratic assignment problems is build,and genetic algorithm is utilized to resolve the problem.The software MATLAB is used to program and figure out the best alternatives. Key words:genetic algorithm;district planning;storage position optimization 1 库位优化的提出 邯郸交通运输集团有限公司(简称“邯运集团”)是一家集多种业务为一体的大型综合性物流企业。邯运集团的主要业务板块有原料采购(天信运业及天昊、天诚、天恒等)、快递服务(飞马快运)、汽贸业务(天诚汽贸)及仓储配送(河北快运)等。其中,邯运集团的仓储配送业务由河北快运经营,现有仓库面积总共40000㎡,主要的业务范围为医药、日用百货、卷烟、陶瓷、化工产品的配送,其中以医药为主。邯运集团库存货物主要涉及两个方面:一个是大宗的供应商货物,如医药,化工产品等;另一方面主要是大规模的小件快递货物,如日用百货等[1]。经分析,邯运集团在仓储运作方面存在如下问题: (1)存储货物繁多而分拣速度低下。仓库每天到货近400箱,有近200多种规格,缺乏一套行之有效的仓储管理系统。(2)货架高度不当而货位分配混乱。现在采用的货架高度在2米以上,而且将整箱货物直接码垛在货架上,不严格按货位摆放。当需要往货架最上层码放货物需要借助梯子,增加操作难度且操作效率较低。货物在拣货区货架摆放是以件为单位的,分拣和搬运速度较慢。 (3)拣货货架设计不当而仓储效率低下。发货前装箱工作主要由人工协同完成,出库效率低,出错率难以控制。 (4)存储能力和分拣能力不能满足需求。根据邯运集团的业务发展现状及趋势,现有的仓库储存和分拣能力远远达不到集团公司对配送业务量的需求。 当前邯运集团的货位分配主要采用物理地址编码的方式,很少考虑货位分配对仓储管理员工作效率的影响。对其进行库位优化设计不仅直接影响到其库存量的大小、出入库的效率,还间接影响到邯运集团的整体经营效益。本文对邯运集团的仓库货位进行优化时,结合考虑仓库所存放的货物种类、货物数量、出入库频率等因素,对仓库货位进行规划,以提高仓储效率。 2库位预分区规划 在进行仓库货位规划时,作如下假设: (1)货物的存放种类已知; (2)货物每种类的单位时间内存放的数量己知; (3) 每一种货物的存取频率已知。 在仓库货位优化中一个重要的环节即预分区。所谓预分区,是指没有存放货物时的分区,分区时只考虑仓储作业人员的速基于遗传算法的库位优化问题 Optimization of Storage Position in Warehouse Based on Genetic Algorithm 周兴建1,2,刘元奇1,李泉1 ZHOU Xing-jian 1,2,LIU Yuan-qi 1,LI Quan 1 (1.武汉科技学院经济管理学院,湖北武汉430073;2.武汉理工大学交通学院,湖北武汉430063) (1.College of Economics &Management,Wuhan University of Science &Engineering,Wuhan 430073,China; 2.School of Transportation,Wuhan University of Technology,Wuhan 430063,China) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 38

(完整版)遗传算法的基本原理

遗传算法的基本原理和方法 一、编码 编码:把一个问题的可行解从其解空间转换到遗传算法的搜索空间的转换方法。 解码(译码):遗传算法解空间向问题空间的转换。 二进制编码的缺点是汉明悬崖(Hamming Cliff),就是在某些相邻整数的二进制代码之间有很大的汉明距离,使得遗传算法的交叉和突变都难以跨越。 格雷码(Gray Code):在相邻整数之间汉明距离都为1。 (较好)有意义的积木块编码规则:所定编码应当易于生成与所求问题相关的短距和低阶的积木块;最小字符集编码规则,所定编码应采用最小字符集以使问题得到自然的表示或描述。 二进制编码比十进制编码搜索能力强,但不能保持群体稳定性。 动态参数编码(Dynamic Paremeter Coding):为了得到很高的精度,让遗传算法从很粗糙的精度开始收敛,当遗传算法找到一个区域后,就将搜索现在在这个区域,重新编码,重新启动,重复这一过程,直到达到要求的精度为止。 编码方法:

1、二进制编码方法 缺点:存在着连续函数离散化时的映射误差。不能直接反映出所求问题的本身结构特征,不便于开发针对问题的专门知识的遗传运算算子,很难满足积木块编码原则 2、格雷码编码:连续的两个整数所对应的编码之间仅仅只有一个码位是不同的,其余码位都相同。 3、浮点数编码方法:个体的每个基因值用某一范围内的某个浮点数来表示,个体的编码长度等于其决策变量的位数。 4、各参数级联编码:对含有多个变量的个体进行编码的方法。通常将各个参数分别以某种编码方法进行编码,然后再将他们的编码按照一定顺序连接在一起就组成了表示全部参数的个体编码。 5、多参数交叉编码:将各个参数中起主要作用的码位集中在一起,这样它们就不易于被遗传算子破坏掉。评估编码的三个规范:完备性、健全性、非冗余性。 二、选择 遗传算法中的选择操作就是用来确定如何从父代群体中按某种方法选取那些个体遗传到下一代群体中的一种遗传运算,用来确定重组或交叉个体,以及被选个体将产生多少个子代个体。 常用的选择算子: 1、轮盘赌选择(Roulette Wheel Selection):是一种回放式随机采样方法。每个个体进入下一代的概率等于它的适应度值与整个种群中个体适应度值和的比例。选择误差较大。

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

遗传算法入门(上)代码中的进化学说与遗传学说 写在之前 算法所属领域 遗传算法的思想解析 为什么要用遗传算法? 科研现状 应用现状 遗传算法入门系列文章: (中篇)遗传算法入门(中)实例,求解一元函数最值(MATLAB版)(下篇)遗传算法入门(下)实例,求解TSP问题(C++版) 写在之前 说明:本想着用大量篇幅写一篇“关于遗传算法的基本原理”作为本系列入门的第一篇,但是在找寻资料的过程中,看到网络上有大量的关于遗传算法的介绍,觉得写的都挺好,所以本文我就简单写点自己的理解。 推荐几篇关于遗传算法的介绍性文章: 遗传算法详解(GA)(个人觉得很形象,很适合初学者) 算法所属领域 ? 相信每个人学习一门知识之前,都会想知道这门知识属于哪一门学科范畴,属于哪一类技术领域? ? 首先对于这种问题,GA是没有绝对的归属的。算法的定义是解决问题的一种思想和指导理论。而遗传算法也是解决某一问题的一种思想,用

某一编程语言实现这种思想的程序具有很多特点,其中一个便是智能性和进化性,即,不需要大量的人为干涉,程序本身能够根据一定的条件自我筛选,最终得出令人满意的结果。所以按照这种特性,把它列为人工智能领域下的学习门类毫无疑问是可以的。遗传算法的思想是借鉴了达尔文的进化学说和孟德尔的遗传学说,把遗传算法说成是一门十足的仿生学一点都不过分。然而从应用的角度出发,遗传算法是求最优解问题的好方法,如信号处理中的优化、数学求解问题、工业控制参数最优解、神经网络中的激活函数、图像处理等等,所以把遗传算法说成优化范畴貌似也说的过去。为了方便理解,我们可以暂时将其定位为人工智能–智能优化,这也是很多书中描述遗传算法的惯用词汇。 遗传算法的思想解析 遗传算法(gentic algorithms简称GA)是模拟生物遗传和进化的全局优化搜索算法 ? 我们知道,在人类的演化中,达尔文的进化学说与孟德尔的遗传学说起着至关重要的理论指导。每个人作为一个个体组成一个人类种群,正是经历着物竞天择,才会让整个群体慢慢变的更好,即更加适应周围的环境。而每一代正是靠着基因交叉与变异才能繁衍出更加适应大自然规律的下一代个体。总之,在漫长的迭代进化中,一个不适应环境的群体,在物竞天择和交叉变异中慢慢变的适应了环境。 ? GA的思想完全模拟了生物的进化和遗传方式。我们在求解一个问题的最优解时,先人为的产生很多任意的解,组成一个解集(一个解是一个个体,一个解集是一个种群),这些解有好有坏。我们的最终目的是让这

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): min f(X) XeΩ h√X)= OJ = U1 L s.t S i(X)≥ OJ = l9‰u,m 式中f(X)称为目标函数(或求它的极小,或求它的极大),Si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X ,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

■1:顿法的直本思想显*在扱小点附近用-阶T吓1小多顶式近似[3标函数['、宀进而求出极小点的估计值, 老億问题 min FWHElRl < 9i 3. 1 } 令 祕Jr) = /(√i,) +/(J iit Xx-J ut) +y∕(j't,K4T-J01 }' . 耳令 √(+f > - ∕t d时)+ j f*

遗传算法模糊控制

智能控制实验报告 基于遗传算法优化的舵机伺服系统模糊控制

W zf (S)- K Q S v 2333 T QSV S+ 1 0.00245S+ 1 -、液压舵机伺服系统模型的建立 某型飞机液压舵机伺服系统可以简单的视为由两级伺服放大器、小舵 机(包括小舵机作动筒、电液伺服阀)、小舵机反馈传感器、小舵机 反馈传感器解调器、液压作动筒、液压作动筒反馈传感器、液压作动 筒反馈传感器解调器组成的两级闭环控制系统。 图屮:外回路伺服放大器增益K° =7.5V/V,内回路伺服放 大器增益K =8mA/V,综合摇臂传动比K =0.65min/mm,平板 丄 1^ 阀开度梯度= 2deg/nun ,平板阀流量增益K Q = 8.4 X 104nmi 3/deg/s,校正传感器对内回路的影响系数K 。】=1.435, 内回路反馈传感器输出梯度Rs 】 =1.31V/nun,舵机作动筒反馈传 感器输出梯度兀2 =0.182±0.025V/mm,内回路反馈传感器解 调器放人系数K“ =0.5V/V,舵机作动筒反馈传感器解调器放 大系数 I ;。? =0.52V/V O 电液伺服阀传递函数:

舵机作动筒的传递函数: 平尾液压作动筒的传递函数: 二、基于遗传算法的模糊控制器优化设计 1.常规模糊控制器的设计 理论而言,模糊控制器维数越高,系统的控制精度越高。但是维数选 择过高,模糊控制律就过于复杂,基于模糊合成推理的控制算法的计 算机实现相当困难。本文采用二维模糊控制器,考虑到要严格地反映 受控过程中输出量的动态特性并消除静态误差,选取受控变量值和输 入给定值的偏差e 和偏差变化率ec 作为输入量,选取舵机伺服阀系统 的电流u 为输出量。模糊控制的结构方框图如图所示。 将系统误差e 和误差变化率ec 及输岀量u 的变化范围定义 为模糊集上的论域 E, EC ={?3,?2,0,1,2,3}, U={-6, -5, -4, -3, -2,? 101,2,3,4,5,6}。模糊了集均为{NB,NM,NS,ZO,PS,PM,PB} 。依据工程技术人员技术知识和实际操作经验,列出输出变量的模糊 控制规则。 W zT (S) = 1 97.34S W Z1(S) = 1 3570 S

第5章 带约束的寻优方法

第五章:带约束的寻优方法 ● 问题:{} ???=≥==m i X g X R x x x X X f Min i n ,,2,1,0)(|} ,,,{)(21 ● 约束函数:等式约束、不等式约束 ● 内点、外点、边界点 ● 约束非线性规划问题:方法:直接处理约束的方法:约束随机法、复合形法 线性规划去逐次逼近非线性规划问题 有约束化为无约束方法:罚函数法(外点、内点) 5.1:有约束最优化问题化为无约束最优化问题的方法(罚函数法) 附加一项修正函数(惩罚、障碍) 外点法:由外点开始寻优收敛至最优解 内点法:由内点开始寻优收敛至最优解 ● 外点法 原理 设 )(X g u i = ?? ?<∞+≥=0 00 )(u u u p 当当 则: ()∑=+=m i i X g p X f X 1 )()()(? 当R X ∈时, ()0)(1=∑=m i i X g p 当R X ?时, ()+∞=∑=m i i X g p 1 )( ()∑=m i i X g p 1 )(为惩罚项 则: {} ?? ?=≥==m i X g X R x x x X X f Min i n ,,2,1,0)(|} ,,,{)(21 )(X Min ?? 方法: ()∑=+=m i i X g p X f X 1 )()()(?,因为当+∞=)(u p 时,数据溢出,因此在其上进行改进 1:取充分大的罚因子 )(X g u i =

???<+≥=0 100 )(2 u u u u p 当当 ()∑=+=m i i X g p M X f M X 1 )()(),(? 分析:p (u )不连续,当u =0时,导数不存在。 寻优:只能用直接法,不能用方向加速法。 2:一次外点法(1-UMT ) )(X g u i = ?? ?<-≥=0 00)(u u u u p 当当 () () ∑∑==-=+=m i i m i i X g Min M X f X g p M X f M X 1 1)(,0)()()(),(? 分析:p (u )连续,但不可微。 寻优:只能用直接寻优法 3:外点罚函数法 )(X g u i = ???<≥=0 00)(2 u u u u p 当当 () ()[] ∑∑==+=+=m i i m i i X g Min M X f X g p M X f M X 1 2 1)(,0)()()(),(? 分析:p (u )连续,又可微。 寻优:可以用直接寻优法和间接寻优法。 M 的选取 取01>M ,若R M X ?)(1,说明1M 不够大 再取12M M >,若R M X ∈)(1,则停止迭代 迭代步骤: 1:取01>M ,给定允许误差0>ε,令k =1 2:求无约束问题

基于遗传算法的自学习模糊控制器的设计

熊32卷第4辩西安建筑:薅鼓走擎学援№1.32N。.42000华12月J.Xi’allUniv.ofArch.&Tech.Dec.2000 基于遗传算法的自学习模糊控制器的设计 王慧琴“2,孙德1,参人厚, (1.西安交通大学累统工程研究所,陕西西安710049;2,西安建筑科技大学信控学院,陕西西安710055) 摘要:提出了一种自学习模糊控制嚣的设计方法,这种方法采用暾进的连续空间遗传算法对动态系缱的控 制进行捷化,获得基乎一定性嚣据标的期望的状态辘迹跫相应的控锚序列;莱曩基乎摊经孵壤赫摸糍推理系 统监督学习耩棚控制游的参数,可以在知识缺乏的环境完成神经横糊控{}4器的自动设计.本义最后以倒立摆 系统为控制对泉给出了一个设计实例和仿真结果. 美键键:摸朝被稍器靖弪璃等;遘谤鼻海}蓑托拉稍;蓝聱孥萼 中圈分类号:TP182文献标示码,A盘章编号;1006。7930-(2000)04.0342。05 Thedesignofself—learningfuzzycontrollerbased ongeneticalgorithms WANGHui-qln’“,SUN砭≈1,五f Ren—houl(1-InstituteofSystemsEngineering,Xi’anJiaotongUniversity。Xi'an710049。Chlnar (2?Instituteofinformationandcontrolenglnenng,Xi'anUniv.ofArch.&Teeh。,Xi'an710055,China) Abstract:Thispaperpresentsageneralizeddesignmetheedofself-learningfuzzylogiccontrollers。Themethod,ba3edonimprovedGeneticAlgorithmsinContinuousSpace,optimizescontrolinputsofthedynamicsystems,andthenthepa—rametersoffuzzycontrollerhyusingneuralnetworkswithsupervisedlearningmethod.withtheobtaineddesirablere—sponsetrajectoryandthecorrespondingcontrolsequencea3trainingdata.Itcanbeappliedtothe desig=ofneur04uZZylogiccontrollersinknowledge—poorenyironmencs.Theinvertedpendulumsystemisemployed asa忙st~gee,todemoll.sttatetheeffectiveness。ftheproposedfuzzycontrollerdesignmethodandthesimulationresults8”giveninthetastsectionofthepaper. Keywords:fuzzyc张tr0聪er;,礴#r8fnetwor[es;gd-neticMgorithms;optimalcontrol;super∞qsedlearning 模糊控制器的设计不需要建立系统的精确数学模测,具有良好的鲁棒性,在工业过程、家用电器簿复杂、不翁建模的场舍取得了许多成功的应用.然而,在模糊控制器的设计过程中,模糊控制规则和隶属函数的谶取和优化还缺麓系统他的设计方案.设计具有自学习能力的模糊逻辑控制器已成为且前的一个研究簸势.j.R.JangI:毡采用暂存反海传播算攘,秘薅鑫遭盘神经网络实现对褥守刊鞭溺释系统辫谖,并形成模糊控制器.C.K.Chiangcz3采用遗传算法进行增强学习,在缺少“专家知识”或“教师”的情况下产生攘糕控涮蕊鬟藿的后转部分,霞基予神经溺终鹃模壤控裁器遮弱濑爨魅控禚散栗.本文在采燕垂适痰神经网络进行监督学习的基础上,结合般优控制的思想,将连续空间遗传算法成用到动态系统的模糊控 收稿圈期:2000*03—12 作者简舟:王慧鼙(1970-),女,山西长治人,蘧安交遥大学博±生,越安建筑辩技大学数揶,研究授域为鬟杂系统的模鞘筏制,遗传算法,模糊神经褥络,弼络安全荐. 万方数据

相关主题
文本预览
相关文档 最新文档