当前位置:文档之家› 高考物理“二级结论”及常见模型

高考物理“二级结论”及常见模型

高考物理“二级结论”及常见模型
高考物理“二级结论”及常见模型

高考物理“二级结论”及常见模型

三轮冲刺抢分必备,掌握得越多,答题越快。

一般情况下,二级结论都是在一定的前提下才成立的,因此建议你先确立前提,再研究结论。

一、静力学:

1.物体受几个力平衡,则其中任意一个力都是与其它几个力的合力平衡的力,或者说“其中任意一个力总与其它力的合力等大反向”。 2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。

三个大小相等的共点力平衡,力之间的夹角为120°。

3.力的合成和分解是一种等效代换,分力或合力都不是真实的力,对物体进行受力分析时只分析实际“受”到的力。

4.①物体在三个非平行力作用下而平衡,则表示这三个力的矢量线段必组成闭合矢量三角形;且有

312

123

sin sin sin F F F ααα==(拉密定理)。 ②物体在三个非平行力作用下而平衡,则表示这三个力的矢量线段或线段延长线必相交于一点。

5.物体沿斜面不受其它力而自由匀速下滑,则tan μα=。

6.两个原来一起运动的物体“刚好脱离”瞬间:

力学条件:貌合神离,相互作用的弹力为零。

运动学条件:此时两物体的速度、加速度相等,此后不等。

7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。

8.轻弹簧两端弹力大小相等,弹簧发生形变需要时间,因此弹簧的弹力不能发生突变。 9.轻杆能承受拉、压、挑、扭等作用力。力可以发生突变,“没有记忆力”。 10.两个物体的接触面间的相互作用力可以是:

()?????无一个,一定是弹力二个最多,弹力和摩擦力

11.在平面上运动的物体,无论其它受力情况如何,所受平面支持力和滑动摩擦力的合力方向总与平面成N f 1

tan tan F ==F αμ

二、运动学:

1.在描述运动时,在纯运动学问题中,可以任意选取参照物;

在处理动力学问题时,只能以地为参照物。

2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便,思路是:位移

→时间→平均速度,且1212

222t/s s T

++===

v v v v 3.匀变速直线运动:

时间等分时, 2

1n n s s aT --= ,这是唯一能判断所有匀变速直线运动的方法;

位移中点的即时速度2

s/=

v , 且无论是加速还是减速运动,总有22s/t/>v v

纸带点痕求速度、加速度: 1222t/s s T +=

v ,212s s

a T -=,()12

1n s s a n T

-=- 4.匀变速直线运动,0v = 0时:

时间等分点:各时刻速度之比:1:2:3:4:5

各时刻总位移之比:1:4:9:16:25 各段时间内位移之比:1:3:5:7:9

位移等分点:各时刻速度之比:1∶……

到达各分点时间之比1∶……

通过各段时间之比1∶)

1……

5.自由落体(取2

10m/s g=):

n 秒末速度(m/s ): 10,20,30,40,50 =gt n 秒末下落高度(m):5、20、45、80、125 212

=gt 第n 秒内下落高度(m):5、15、25、35、45

22

11122

n n-=at -at

6.上抛运动:对称性:t t 下上=,=v v 下上, 2

m 2h g

=v

7.相对运动:①共同的分运动不产生相对位移。

②设甲、乙两物体对地速度分别为12v v 、,对地加速度分别为12a a 、,则乙相对

于甲的运动速度和加速度分别为 2112=a =a a ''v v v 、,同向为“-”,反向为“+”。

8.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。先求滑行时间,确定了滑行时间小于给出的时间时,用2

2as =v 求滑行距离。

9.绳端物体速度分解:对地速度是合速度,分解为沿绳的分速度和垂直绳的分速度。即物体的速度产生两个效果

{

使绳端沿绳的方向伸长或缩短使绳端绕滑轮转动

10.两个物体刚好不相撞的临界条件是:接触时速度相等或者匀速运动的速度相等。 11.物体刚好滑到小车(木板)一端的临界条件是:物体滑到小车(木板)一端时与小车速度相等。

12.在同一直线上运动的两个物体距离最大(小)的临界条件是:速度相等。 13.平抛运动: ①在任意相等时间内,重力的冲量相等;

②任意时刻,速度与水平方向的夹角α的正切总等于该时刻前位移与水平方向的夹角β的正切的2倍,即tan 2tan =αβ,如图所示,且212x =x ;

③两个分运动与合运动具有等时性,

且由下降的高度决定,与初速度0v 无关; ④任何两个时刻间的速度变化量=g t ???v ,且方向恒为竖直向下。

三、运动定律:

1.水平面上滑行:a =μg

2.系统法:动力-阻力=m 总a 3.沿光滑斜面下滑:a=g sin α 时间相等: 45°时时间最短: 无极值:

4.一起加速运动的物体,合力按质量正比例分配: 2

N 12

m F F m m =+,(或12F=F -F ),与有无摩擦(μ相同)无关,平面、斜面、竖直

都一样。

5.几个临界问题: 注意α或θ角的位置!

且A 、B 及小车的加速

度tan a=g α

A cot a g θ

≤,向右; A 不沿斜面上滑,则系统tan a g θ≤,向左。

斜面光滑,小球与斜面相对静止

时tan a=g θ

6.若物体所受外力有变力,则速度最大时合力为零:

7.判断物体的运动性质

①直接由加速度a 或合外力F 是否恒定以及与初速度0v 的方向关系判断; ②由速度表达式判断,若满足

{=b =b+at v v ,匀速直线运动,匀加速直线运动

③由位移表达式判断,若满足212

s=bt s=bt+at ?

????,匀速直线运动

,匀加速直线运动;

四、圆周运动 万有引力:

1.向心力公式:222

22244m F m R m R m f R m R T

πωπω=====v v 2.在非匀速圆周运动中使用向心力公式的办法:沿半径方向的合力是向心力。

3.竖直平面内的圆运动

(1)“绳”,

上、下两点拉力差6mg 。

要通过顶点,最小下滑高度2.5R 。 最高点与最低点的拉力差6mg 。

(2)绳端系小球,从水平位置无初速下摆到最低点:弹力3mg ,向心加速度2g (3)“杆”、球形管:最高点最小速度0

则小球从最高点离开球面做平抛运动。

4.重力加速2GM

g r =,g 与高度的关系:()

202

R g g R h =?+,0g 为地面附近的加速度。 5.解决万有引力问题的基本模式:“引力=向心力”

6.人造卫星:高度大则速度小、周期大、加速度小、动能小、重力势能大、机械能大。 速率与半径的平方根成反比,周期与半径的平方根的三次方成正比。

同步卫星轨道在赤道上空,h =5.6T ,v = 3.1 km/s

7.卫星因受阻力损失机械能:高度下降、速度增加、周期减小。 8.“黄金代换”:重力等于引力,GM=gR 2 9.在卫星里与重力有关的实验不能做。

10.双星:引力是双方的向心力,两星角速度相同,星与旋转中心的距离跟星的质量成反比。

11

.第一宇宙速度:1=

v

1=

v ,v 1=7.9km/s 12.两种天体质量或密度的测量方法:

①观测绕该天体运动的其它天体的运动周期T 和轨道半径r ; ②测该天体表面的重力加速度。 13.卫星变轨问题 ①圆→椭圆→圆

a .在圆轨道与椭圆轨道的切点短时(瞬时)变速;

b .升高轨道则加速,降低轨道则减速;

c .{

()()升高加速后,机械能增大,动能减小,向心加速度减小,周期增大降低减速后,机械能减小,动能增大,向心加速度增大,周期减小

②连续变轨:(如卫星进入大气层)螺旋线运动,规律同①c 。

五、机械能:

1.求机械功的途径:

(1)用定义求恒力功。 (2)用做功和效果(用动能定理或能量守恒)求功。 (3)由图象求功。 (4)用平均力求功(力与位移成线性关系时) (5)由功率求功。

2.恒力做功与路径无关。 3.在cos W=Fs α中,位移s

对各部分运动情况都相同的物体(质点),一定要用物体的位移

对各部分运动情况不同的物体(如绳、轮、人行走时脚与地面间的摩擦力),则是力的作用点的位移

4.机动车启动问题中的两个速度 ①匀加速结束时的速度1v :当P=P 额时,匀加速结束,

f 11f P F-F =ma P =F =

F +ma

v v 额额,,

②运动的最大速度m v :当f F=F 时,f

m P =

F v 额

5.功能关系:摩擦生热Q =f·S 相对=系统失去的动能,Q 等于滑动摩擦力作用力与反作用力总功的大小。

v v

加速加速

6.保守力的功等于对应势能增量的负值:p W E =-?保。

7.作用力的功与反作用力的功不一定符号相反,其总功也不一定为零。

8.传送带以恒定速度运行,小物体无初速放上,达到共同速度过程中,相对滑动距离等于小物体对地位移,摩擦生热等于小物体获得的动能。

9.在传送带问题中,物体速度v 达到与传送带速度'v 相等时是受力的转折点 ①

f f f f 0cos sin cos sin =F =F m

g

v v ≥传送带水平:后,变为沿斜面向上,仍滑动

传送带与水平成角且由静止下滑:

变为沿斜面向上,变静

②物块轻放在以速度v 运动的传送带上,当物块速度达到v 时

()2112212

s =s =t Q=f s -s =fs =m ?????v v 物带带物物产生的热量 10.求某个力做的功,则该功用“+”表示,其正负由结果的“+、-”判断。

六、动量:

1.反弹:动量变化量大小()12p m ?=+v v

2.“弹开”(初动量为零,分成两部分):速度和动能都与质量成反比。

3.一维弹性碰撞:()121221

12

2m m m m m -+'=+v v v ,()212112

12

2m m m m m -+'=+v v v

动物碰静物:v 2=0, ()12111

1

2

12

12

2,m m m m m m m -''==

++v v v v

①质量大碰小,一起向前;小碰大,向后转;质量相等,速度交换,即1221==''v v v v ,;

②碰撞中动能不会增大,反弹时被碰物体动量大小可能超过原物体的动量大小。

4.A 追上B 发生碰撞,则

(1)v A >v B (2)A 的动量和速度减小,B 的动量和速度增大

(3)动量守恒 (4)动能不增加 (5)A 不穿过B (A B ''

。 5.碰撞的结果总是介于完全弹性与完全非弹性之间。

6.双弹簧振子在光滑直轨道上运动,弹簧为原长时一个振子速度最大,另一个振子速度最小;弹簧最长和最短时(弹性势能最大)两振子速度一定相等。

7.解决动力学问题的思路:

(1)如果是瞬时问题只能用牛顿第二定律去解决。

如果是讨论一个过程,则可能存在三条解决问题的路径。

高考物理常用的二级结论

高考物理常用的 “二级结论” 一、静力学: 1.几个力平衡,则一个力是与其它力合力平衡的力。 2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。 三个大小相等的共点力平衡,力之间的夹角为1200。 3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。 4.三力共点且平衡,则312123 sin sin sin F F F ααα==(拉密定理)。 5.物体沿斜面匀速下滑,则tan μα=。 6.两个一起运动的物体“刚好脱离”时: 貌合神离,弹力为零。此时速度、加速度相等,此后不等。 7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。 8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。 9.轻杆能承受纵向拉力、压力,还能承受横向力。力可以发生突变,“没有记忆力”。 二、运动学: 1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。 2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: T S S V V V V t 2221212 +=+== 3.匀变速直线运动: 时间等分时, S S aT n n -=-12 , 位移中点的即时速度V V V S 212222=+, V V S t 22 > 纸带点痕求速度、加速度:T S S V t 2212+= ,212T S S a -=,()a S S n T n =--12 1 4.匀变速直线运动,v 0 = 0时: 时间等分点:各时刻速度比:1:2:3:4:5 各时刻总位移比:1:4:9:16:25 各段时间内位移比:1:3:5:7:9 位移等分点:各时刻速度比:1∶2∶3∶…… 到达各分点时间比1∶2∶3∶…… 通过各段时间比1∶() 12-∶(23-)∶…… 5.自由落体: n 秒末速度(m/s ): 10,20,30,40,50

高中物理常见结论公式(二级结论)

高中物理二级结论集 温馨提示 1、“二级结论”是常见知识和经验的总结,都是可以推导的。 2、先想前提,后记结论,切勿盲目照搬、套用。 3、常用于解选择题,可以提高解题速度。一般不要用于计算题中。 一、静力学: 1.几个力平衡,则一个力是与其它力合力平衡的力。 2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。 三个大小相等的共面共点力平衡,力之间的夹角为1200。 3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。 4.三力共点且平衡,则312123 sin sin sin F F F ααα==(拉密定理)。 5.物体沿斜面匀速下滑,则tan μα=。 6.两个一起运动的物体“刚好脱离”时: 貌合神离,弹力为零。此时速度、加速度相等,此后不等。 7.轻绳不可伸长,其两端拉力大小相等,线上各点力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。 8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。 9.轻杆能承受纵向拉力、压力,还能承受横向力。力可以发生突变,“没有记忆力”。 10、轻杆一端连绞链,另一端受合力方向:沿杆方向。 二、运动学: 1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。 2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: T S S V V V V t 2221212 +=+== 3.匀变速直线运动: 时间等分时, S S aT n n -=-12 , 位移中点的即时速度V V V S 212222=+, V V S t 22 > 纸带点痕求速度、加速度: T S S V t 2212+= ,212T S S a -=,()a S S n T n =--12 1 4.匀变速直线运动,v 0 = 0时: 时间等分点:各时刻速度比:1:2:3:4:5 各时刻总位移比:1:4:9:16:25 各段时间位移比:1:3:5:7:9 位移等分点:各时刻速度比:1∶2∶3∶……

完整word版,高中物理重要二级结论(全)

物理重要二级结论 一、静力学 1.几个力平衡,则任一力是与其他所有力的合力平衡的力。 三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。 2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同 3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即 γ βαsin sin sin 321F F F == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。 5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。 7.绳上的张力一定沿着绳子指向绳子收缩的方向。 8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。 9 .已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。 用“三角形”或“平行四边形”法则 二、运动学 1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T 内· ·····位移比:S 1:S 2:S 3=12:22:32 ② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5 ④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2 位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n = ② 经过1S 0时、2 S 0时、3 S 0时···时间比: ) ::3:2:1n Λn ::3:2:1ΛF 已知方向 F 2的最小值 F 2的最小值 F 2的最小值 F 2

物理重要二级结论

熟记“二级结论”,在做填空题或选择题时,就可直接使用。在做计算题时,虽必须一步步列方程,一般不能直接引用“二级 结论”,但只要记得“二级结论”,就能预知结果,可以简化计算和提高思维起点,也是有用的。细心的学生,只要做的题多了,并 注意总结和整理,就能熟悉和记住某些“二级结论”,做到“心中有数”,提高做题的效率和准确度。运用“二级结论”,谨防“张冠 李戴”,因此要特别注意熟悉每个“二级结论”的推导过程,记清楚它的适用条件,避免由于错用而造成不应有的损失。 下面列出一些“二级结论”,供做题时参考,并在自己做题的实践中,注意补充和修正。 一、静力学 1.几个力平衡,则任一力是与其他所有力的合力平衡的力。三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。2.两个力的合力: 2 1 2 1 F F F F F+ ≤ ≤ -方向与大力相同 3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角 之正弦成正比,即 γ β αsin sin sin 3 2 1 F F F = = 4.两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知 方向不知大小的那个力垂直时有最小值。 5.物体沿倾角为α的斜面匀速下滑时,μ= tanα 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。 7.绳上的张力一定沿着绳子指向绳子收缩的方向。 8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。 9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。用“三角形”或“平行四边形”法则 二、运动学 1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T):① 1T内、2T内、3T内······位移比:S1:S2:S3=12:22:32 ② 1T末、2T末、3T末······速度比:V1:V2:V3=1:2:3 ③ 第一个T内、第二个T内、第三个T内···的位移之比: SⅠ:SⅡ:SⅢ=1:3:5 ④ΔS=aT2 S n-S n-k= k aT2a=ΔS/T2 a =( S n-S n-k)/k T2 位移等分(S0):① 1S0处、2 S0处、3 S0处···速度比:V1:V2:V3:···V n= ② 经过1S0时、2 S0时、3 S0时···时间比: ③ 经过第一个1S0、第二个2 S0、第三个3 S0···时间比 2.匀变速直线运动中的平均速度 3.匀变速直线运动中的中间时刻的速度中间位置的速度 4.变速直线运动中的平均速度 前一半时间v1,后一半时间v2。则全程的平均速度:前一半路程v1,后一半路程v2。则全程的平均速度: 5.自由落体 6.竖直上抛运动 同一位置v上=v下 7.绳端物体速度分解:分解与绳有角度的速度,分解成沿着绳 和垂直于绳的方向,沿绳方向速度相等。 8.“刹车陷阱”,应先求滑行至速度为零即停止的时间t0,确定了滑行时间t大于t0时,用as v t 2 2=或S=v o t/2,求滑行距离; 若t小于t0时2 02 1 at t v s+ = 9.匀加速直线运动位移公式:S = A t + B t2式中a=2B(m/s2) V0=A(m/s) 10.追赶、相遇问题:匀减速追匀速:恰能追上或恰好追不上 V匀=V匀减 V0=0的匀加速追匀速:V匀=V匀加时,两物体的间距最大 S max同时同地出发两物体相遇:位移相等,时间相等。A与B相距△S,A追上B:S A=S B+△S,相向运动相遇时:S A=S B+△S。 11.小船过河: ⑴ 当船速大于水速时①船头的方向垂直于水流的方向时,所用时间最短, 船 v d t/ = ②合速度垂直于河岸时,航程s最短 s=d d为河宽 ⑵当船速小于水速时①船头的方向垂直于水流的方向时,所用时间最短, 船 v d t/ = )1 (: :)2 3 (:)1 2 (:1 : : : : 3 2 1 - - - - =n n t t t t n ) : :3 :2 :1n n : :3 :2 :1 T S S v v v v t t2 2 2 1 2/ + = + = = - 2 2/ t t v v v v + = = - 2 2 2 2/ t t v v v + = 2 2 1 v v v + = - 2 1 2 1 2 v v v v v + = -g h t 2 = g H g v t t o 2 = = = 下 上

高中物理重要二级结论全

精心整理 物理重要二级结论(全) 一、静力学 1.几个力平衡,则任一力是与其他所有力的合力平衡的力。 三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。 γ sin 3 F = 9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。 用“三角形”或“平行四边形”法则 二、运动学 1 时间等分(T):①1T内、2T内、3T内······位移比:S1:S2:S3=12:22:32 F2

②1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③第一个T 内、第二个T 内、第三个T 内···的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5 ④ΔS=aT 2S n -S n-k =kaT 2 a=ΔS/T 2 a=(S n -S n-k )/kT 2 位移等分(S 0):①1S 0处、2S 0处、3S 0处···速度比:V 1:V 2:V 3:···V n = ②经过1S 0时、2S 0时、3S 0时···时间比: t 0as v t 2=o 002 at t v s +=9.匀加速直线运动位移公式:S=At+Bt 2式中a=2B (m/s 2)V 0=A (m/s ) 10.追赶、相遇问题 )::3:2:1n Λn ::3:2:1Λ

匀减速追匀速:恰能追上或恰好追不上V 匀=V 匀减 V 0=0的匀加速追匀速:V 匀=V 匀加时,两物体的间距最大S max = 同时同地出发两物体相遇:位移相等,时间相等。 A 与 B 相距△S ,A 追上B :S A =S B +△S ,相向运动相遇时:S A =S B +△S 。 11.小船过河: 3 4 5. α

高中物理二级结论集

高中物理二级结论集 物理概念、规律和课本上的知识是“一级物理知识”,此外,有一些在做题时常常用到的物理关系 或者做题的经验,叫做“二级结论”。这是在一些常见的物理情景中,由基本规律和基本公式导出的推 论,或者解决某类习题的经验,这些知识在做题时出现率非常高,如果能记住这些二级结论,那么在做填空题或者选择题时就可以直接使用。在做论述、计算题时,虽然必须一步步列方程,不能直接引用二级结论,但是记得二级结论能预知结果,可以简化计算和提高思维起点,也是有用的。 一般地讲,做的题多了,细心的学生自然会熟悉并记住某些二级结论。如果刻意加以整理、理解和记忆,那么二级结论就能发挥出更大的作用。常说内行人“心中有数”,二级结论就是物理内行心中 的“数”。 运用“二级结论”的风险是出现张冠李戴,提出两点建议: 1每个“二级结论”都要熟悉它的推导过程,一则可以在做论述、计算题时顺利列出有关方程,二则可以在记不清楚时进行推导。 2 ?记忆“二级结论”,要同时记清它的使用条件,避免错用。 一、静力学 1. 几个力平衡,则一个力是与其它力合力平衡的力。 几个力平衡,仅其中一个力消失,其它力保持不变,则剩余力的合力是消失力的相反力。 几个力平衡,将这些力的图示按顺序首尾相接,形成闭合多边形。 2 .两个力的合力:F大'F小亠F合亠F大- F小 三个大小相等的共点力平衡,力之间的夹角为1200o 3 .研究对象的选取 「整体法——分析系统外力;典型模型:几物体相对静止 1隔离法——分析系统内力必须用隔离法(外力也可用隔离法) 4 .重力一一考虑与否 ①力学:打击、碰撞、爆炸类问题中,可不考虑,但缓冲模型及其他必须考虑; ②电磁学:基本粒子不考虑,但宏观带电体(液滴、小球、金属棒等)必须考虑重力。 5 .轻绳、轻杆、轻弹簧弹力 (1)轻绳:滑轮模型与结点模型 ①滑轮模型一一轻绳跨过光滑滑轮(或光滑挂钩)等,则滑轮两侧的绳子是同一段绳子,而同一段绳中张力处处相等; ②结点模型一一几段绳子打结于某一点,则这几段绳子中张力一般不相等。 (2)轻杆:铰链模型与杠杆模型 ①铰链模型一一轻杆,而且只有两端受力,则杆中弹力只沿杆的方向;②杠杆模型一一轻杆中间也受力,或者重杆(重力作用于重心),则杆中弹力一般不沿杆的方向,杆中弹力方向必须用平衡条件 或动力学条件分析。“杠杆模型”有一个变化,即插入墙中的杆或者被“焊接”在小车上的杆。 (3)轻弹簧:①弹簧中弹力处处相等,②若两端均被约束,则弹力不能突变;一旦出现自由端,弹力立即消失。 6. 物体沿斜面匀速下滑,则J = tan>。 7. 被动力分析 1)被动力:弹力、静摩擦力(0乞f乞f max) (2)分析方法:①产生条件法一一先主动力,后被动力 ②假设法一一假设这个力存在,然后根据平衡或动力学条件计算:若算得为负,即这个力存在, 且方向与假设方向相反;若算得为零,则表示此力不存在。 、运动学 1. 在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题(用运动定律求加速度、求功、算动量)时,只能以地为参照物。 2. 匀变速直线运动:用平均速度思考匀变速直线运动问题,总会带来方便: J X=V=V t—V1+V2S1+S t P 3. 匀变速直线运动:五个参量,知三才能求二。 X2、X3…,注意计数周期T与打点周期T0的关系 ②依据x m?n- X m = n aT2,若是连续6段位移,则有: X5 - X2= 3aT2, X6 - X3= 3aT2 (X6 X5 X4)-(X3 X2 X1) a — 4 .匀变速直线运动,V0 = 0时: 时间等分点:各时刻速度比: 各时刻总位移比:各段时 间内位移比: 到达各分点时间比 2 5 .自由落体:g取10m∕s n秒末速度(m∕s): n 秒末下落高度(m): 5、20、45、80、125 第n秒内下落高度(m): 5、15、25、35、45 6 .上抛运动:对称性:t上=t下,V上=V下,h 2 2T 纸带法求速度、加速度: S1 S2 _ 2T S^-Sl X1、 逐差法:①在纸带上标出 X^X I= 3aT2, 三式联立,得: 9T2 4: 3:4: 5 16: 25 1: 3: 5: 7: 9 位移等分点:各时刻速度比: 1 : 2 :、3 : 通过各段时间比1 : 、2 -1 :( ? 3—2 ): 10, 20, 30, 40, 50 2 v m _ 2g 位移中点的瞬时速度: Vt "2 V S V t "2 "2

初中物理二级结论总结(部分)

【声学边缘知识点总结】 1、自然界中次声波的产生源有:地震,火山爆发,台风,海啸等 2、共鸣:物体因共振而发声的现象。例如两个频率相同的音叉靠近,其中一个振动发声时,另一个也会发声。两个玻璃杯也可以共鸣。 3、固体传声比气体传声效果好;某某物比某某物传声效果好。 4、由于双耳效应,人们可以准确地判断声音传来的方位,而且听到的声音是立体的。 【平均速度的计算】 <一级> A1 已知总时间为800s,前一半时间的平均速度为3m/s,后一半时间的平均速度为5m/s,求全程的平均速度。 A2 已知总路程为3km,前一半路程的平均速度为3m/s,后一半路程的平均速度为5m/s,求全程的平均速度。 <二级> B1 已知前一半时间的平均速度为3m/s,后一半时间的平均速度为5m/s,求全程的平均速度。 B2 已知前一半路程的平均速度为3m/s,后一半路程的平均速度为5m/s,求全程的平均速度。 <三级> C1 已知前一半时间的平均速度为v1,后一半时间的平均速度为v2,求全程的平均速度。 C2 已知前一半路程的平均速度为v1,后一半路程的平均速度为v2,求全程的平均速度。 <四级> D1 已知前2/5的时间里物体的平均速度为v1,剩余时间下物体的平均速度为v2,求全程的平均速度。 D2 已知前2/5的路程里物体的平均速度为v1,剩余路程中物体的平均速度为v2,求全程的平均速度。 【平面镜成像实验考点总结】 1、使用透明玻璃的目的:便于观察和确定A的像的位置。 2、使用等大蜡烛B的目的:便于比较像与物的大小。 3、使用刻度尺的目的:便于测量并比较像距与物距的大小关系。 4、出现两个像的原因:玻璃板太厚,前后两个面各成一个像。 4-1、蜡烛B应该与离玻璃板近的像重合。 5、对着玻璃板可以看到A在玻璃板后成的像是光的反射,又看到玻璃板后的蜡烛B是光的折射形成的。 6、为确定玻璃板是否垂直于纸面,可以使用直角三角板或重锤仪检查。 7、为确定像的位置,应在玻璃板前从多个方向观察蜡烛B,直到它与A的像完全重合。 8、无论怎样移动,都不能使B与A的像完全重合,原因是玻璃板与桌面不垂直。 9、要想多做几次实验,应保持玻璃板的位置不变,移动蜡烛A的位置,再做几次。 10、此实验应该在较暗的环境下进行。 11、保持物体不动,透明玻璃竖直向上移动,则像不动; 保持透明玻璃不动,物体竖直向上移动,则像竖直向上移动。 【凸透镜成像规律总结】 1.成实像时:物近像远像变大成虚像时:物近像近像变小 2.一倍焦点分虚实,两倍焦点分大小 3.成实像时:1/f=1/u+1/v成虚像时:1/f=1/u-1/v 4.速度大小比较,当u>2f时:物的速度>像的速度 当f<u<2f时:物的速度<像的速度 5.用不透光的板,遮住凸透镜的一半(无论上下左右),则成的像:仍完整但变暗 6.凸透镜不动,物体竖直向上移动,则像向下移动; 物体不动,凸透镜竖直向上移动,则像向上移动 7.凸透镜不动,从同一方向看去,若物体顺时针转动,则像也是顺时针转动 物体不动,从同一方向看去,若凸透镜顺时针转动,则像不转动 8.u+v≤4f,当且仅当u=v时,等号成立

物理重要二级结论(全)讲义

1.几个力平衡,则任一力是与其他所有力的合力平衡的力。 三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。 2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同 3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即 γ βαsin sin sin 321F F F == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。 5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。 7.绳上的张力一定沿着绳子指向绳子收缩的方向。 8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。 9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。 用“三角形”或“平行四边形”法则 F 已知方向 F 2的最小值 F 2的最小值 F 2的最小值 F 2

1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32 ② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5 ④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2 位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n = ② 经过1S 0时、2 S 0时、3 S 0时···时间比: ③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比 2.匀变速直线运动中的平均速度 3.匀变速直线运动中的中间时刻的速度 中间位置的速度 4.变速直线运动中的平均速度 前一半时间v 1,后一半时间v 2。则全程的平均速度: 前一半路程v 1,后一半路程v 2。则全程的平均速度: 5.自由落体 6.竖直上抛运动 同一位置 v 上=v 下 7.绳端物体速度分解 )::3:2:1n n ::3:2:1 T S S v v v v t t 222 102/+=+==- 2 02/t t v v v v += =- 2 2202 /t t v v v += 22 1v v v +=- 2 1212v v v v v +=- g h t 2=g H g v t t o 2===下 上) 1(::)23(:)12(:1::::321----=n n t t t t n

高中物理常用二级结论集合

2010物理高考总复习“二级结论”集 一、静力学: 1.几个力平衡,则一个力是与其它力合力平衡的力。 2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。 三个大小相等的力平衡,力之间的夹角为1200 。 3.物体沿斜面匀速下滑,则μα =t g 。 4.两个一起运动的物体“刚好脱离”时: 貌合神离,弹力为零。此时速度、加速度相等,此后不等。 二、运动学: 1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。 2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: T S S V V V V t 2221212+=+== 3.匀变速直线运动: 时间等分时, S S a T n n -=-1 2 , 位移中点的即时速度V V V S 2 1222 2 =+, V V S t 22 > 纸带点痕求速度、加速度:T S S V t 2212 += ,212T S S a -=,()a S S n T n =--121 4.自由落体: V t (m/s ): 10,20,30,40,50 H 总(m): 5、20、45、80、125 H 分(m): 5、15、25、35、45 5.竖直上抛运动:对称性:t 上= t 下,V 上= -V下 6.相对运动:共同的分运动不产生相对位移。 7.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。先求滑行时间,确定了滑行时间小 于给出的时间时,用V 2 =2aS 求滑行距离。 8.“S=3t+2t 2”:a=4m/s2 ,V0=3m/s。 9.绳端物体速度分解:对地速度是合速度,分解为沿绳的分速度和垂直绳的分速度。 三、运动定律: 1.水平面上滑行:a=-μg 2.系统法:动力-阻力=m总a 3.沿光滑斜面下滑:a=gSin α 时间相等: 450 时时间最短: 无极值: 4.一起加速运动的物体: F m m m N 2 12+=,与有无摩擦(μ相同)无关,平面、斜面、竖直都一样。 5.几个临界问题: αgtg a = 注意α角的位置! 光滑,相对静止 弹力为零 弹力为零 6.速度最大时合力为零: 汽车以额定功率行驶 四、圆周运动 万有引力: 1.向心力公式:R m R f m R T m m R mv F ωππω=====22222 244 2.在非匀速圆周运动中使用向心力公式的办法:沿半径方向的合力是向心力。 3.竖直平面内的圆运动 (1)“绳”类:最高点最小速度gR ,最低点最小速度5g R , 上、下两点拉力差6mg 。 要通过顶点,最小下滑高度2.5R 。 最高点与最低点的拉力差6mg 。 (2)绳端系小球,从水平位置无初速下摆到最低点:弹力3mg ,向心加速度2g (3)“杆”:最高点最小速度0,最低点最小速度gR 4。 4.重力加速2r GM g =,g 与高度的关系:() g h R R g ?+=2 2 5.解决万有引力问题的基本模式:引力=向心力 6.人造卫星:h 大V 小T 大a 小F 小。 速率与半径的平方根成反比,周期与半径的平方根的三次方成正比。 同步卫星轨道在赤道上空,h=4.6R,V=3.1km/s 7.卫星因受阻力损失机械能:高度下降、速度增加、周期减小。 8.变换:GM=gR 2 9.在卫星里与重力有关的实验不能做。 10.双星引力是双方的向心力,两星角速度相同,星与旋转中心的距离跟星的质量成反比。 11.第一宇宙速度:Rg V =1,R GM V = 1,V 1=7.9km/s

高中物理高分必备二级结论

物理重要二级结论(全) 熟记 “二级结论”,在做填空题或选择题时,就可直接使用。在做计算题时,虽必须一步步列方程,一般不能直接引用“二级结论”,但只要记得“二级结论”,就能预知结果,可以简化计算和提高思维起点,也是有用的。 细心的学生,只要做的题多了,并注意总结和整理,就能熟悉和记住某些“二级结论”,做到“心中有数”,提高做题的效率和准确度。 运用“二级结论”,谨防“张冠李戴”,因此要特别注意熟悉每个“二级结论”的推导过程,记清楚它的适用条件,避免由于错用而造成不应有的损失。 下面列出一些“二级结论”,供做题时参考,并在自己做题的实践中,注意补充和修正。 一、电磁感应 1.楞次定律:(阻碍原因) 内外环电流方向:“增反减同”自感电流的方向:“增反减同” 磁铁相对线圈运动:“你追我退,你退我追” 通电导线或线圈旁的线框:线框运动时:“你来我推,你走我拉” 电流变化时:“你增我远离,你减我靠近” 2.i 最大时( 0=??t I ,0=框I )或i 为零时(最大t I ??最大框I )框均不受力。 3.楞次定律的逆命题:双解,加速向左=减速向右 4.两次感应问题:先因后果,或先果后因,结合安培定则和楞次定律依次判定。 5.平动直杆所受的安培力:总 R V L B F 22=,热功率:总热R V L B P 2 22=。 6.转杆(轮)发电机:ωε2 2 1 BL = 7.感生电量:总 R n Q φ ?= 。

图1线框在恒力作用下穿过磁场:进入时产生的焦耳热小于穿出时产生的焦耳热。 图2中:两线框下落过程:重力做功相等甲落地时的速度大于乙落地时的速度。 二、运动学 1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、 2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32 ② 1T 末、2T 末、3T 末 ·· ·· ··速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5 ④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2 位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n = ② 经过1S 0时、2 S 0时、3 S 0时···时间比: ③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比 ) 1(::)23(:)12(:1::::321----=n n t t t t n ) ::3:2:1n n ::3:2:1

高中物理常用二级结论汇总

高中物理常用二级结论 汇总 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、静力学: 1.几个力平衡,则一个力是与其它力合力平衡的力。 2.两个力的合力: 三个大小相等的共点力平衡,力之间的夹角为120°。 3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。 4.三力共点且平衡,则有 5.物体沿斜面匀速下滑,则 6.两个一起运动的物体“刚好脱离”时: 貌合神离,弹力为零。此时速度、加速度相等,此后不等。 7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。 8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。 9.轻杆能承受纵向拉力、压力,还能承受横向力。力可以发生突变,“没有记忆力”。 二、运动学: 1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。 2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:

3.匀变速直线运动: 4.匀变速直线运动,v0 = 0时: 时间等分点:各时刻速度比:1:2:3:4:5 各时刻总位移比:1:4:9:16:25 各段时间内位移比:1:3:5:7:9 5.自由落体: n秒末速度(m/s): 10,20,30,40,50 n秒末下落高度(m):5、20、45、80、125

第n秒内下落高度(m):5、15、25、35、45 6.上抛运动:有对称性: 7.相对运动:共同的分运动不产生相对位移。 8.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。先求滑行时间,确定了滑行时间小于给出的时间时,用求滑行距离。9.绳端物体速度分解:对地速度是合速度,分解为沿绳的分速度和垂直绳的分速度。 10.两个物体刚好不相撞的临界条件是:接触时速度相等或者匀速运动的速度相等。 11.物体刚好滑到小车(木板)一端的临界条件是:物体滑到小车(木板)一端时与小车速度相等。 12.在同一直线上运动的两个物体距离最大(小)的临界条件是:速度相等。 三、运动定律:

高中物理二级结论(超全)

高中物理二级结论集 温馨提示 1、“二级结论”就是常见知识与经验得总结,都就是可以推导得。 2、先想前提,后记结论,切勿盲目照搬、套用。 3、常用于解选择题,可以提高解题速度。一般不要用于计算题中。 一、静力学: 1.几个力平衡,则一个力就是与其它力合力平衡得力。 2.两个力得合力:F 大+F 小F 合F 大-F 小。 三个大小相等得共面共点力平衡,力之间得夹角为1200 。 3.力得合成与分解就是一种等效代换,分力与合力都不就是真实得力,求合力与分力就是处理力学问题时得一种方法、手段。 4.三力共点且平衡,则(拉密定理)。 5.物体沿斜面匀速下滑,则。 6.两个一起运动得物体“刚好脱离”时: 貌合神离,弹力为零。此时速度、加速度相等,此后不等。 7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。 8.轻弹簧两端弹力大小相等,弹簧得弹力不能发生突变。 9.轻杆能承受纵向拉力、压力,还能承受横向力。力可以发生突变,“没有记忆力”。 10、轻杆一端连绞链,另一端受合力方向:沿杆方向。 10、若三个非平行得力作用在一个物体并使该物体保持平衡,则这三个力必相交于一点。它们按比例可平移为一个封闭得矢量三角形。(如图3所示) 11、若F 1、F 2、F 3 得合力为零,且夹角分别为θ1、θ2、θ3;则有F 1/sin θ1=F 2/sin θ2=F 3/sin θ3,如图4所示。 12、已知合力F 、分力F 1得大小,分力F 2于F 得夹角θ,则F 1>Fsin θ时,F 2有两个解:;F 1=Fsin θ时,有一个解,F 2=Fcos θ;F 1

物理重要二级结论

物理重要二级结论(全) 一、静力学 1.几个力平衡,则任一力是与其他所有力的合力平衡的力。 三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。 2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。 5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。 7.绳上的张力一定沿着绳子指向绳子收缩的方向。 8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。 9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。 用“三角形”或“平行四边形”法则 二、运动学 1 .初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32 ② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5 ④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2 位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处··· 速度比:V 1:V 2:V 3:···V n = ② 经过1S 0时、2 S 0时、3 S 0时···时间比: ③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比 ) 1(::)23(:)12(:1::::321----=n n t t t t n ΛΛ)::3:2:1n Λn ::3:2:1ΛF 已知方向 F 2的最小值 F 2的最小值 F 2的最小值 F 2

(完整word版)高中物理二级结论(最新整理)

高三物理——结论性语句及二级结论 一、力和牛顿运动定律 1.静力学 (1)绳上的张力一定沿着绳指向绳收缩的方向. (2)支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G . (3)两个力的合力的大小范围:|F 1-F 2|≤F ≤F 1+F 2. (4)三个共点力平衡,则任意两个力的合力与第三个力大小相等,方向相反,多个共点力平衡时也有这样的特点. (5)两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值. 图1 (6)物体沿斜面匀速下滑,则tan μα=. 2.运动和力 (1)沿粗糙水平面滑行的物体:a =μg (2)沿光滑斜面下滑的物体:a =g sin α (3)沿粗糙斜面下滑的物体:a =g (sin α-μcos α) (4)沿如图2所示光滑斜面下滑的物体: (5)一起加速运动的物体系,若力是作用于m 1上,则m 1和m 2的相互作用力为N =m 2F m 1+m 2,与有无 摩擦无关,平面、斜面、竖直方向都一样.

(6)下面几种物理模型,在临界情况下,a=g tan α. (7)如图5所示物理模型,刚好脱离时,弹力为零,此时速度相等,加速度相等,之前整体分析,之后隔离分析. (8)下列各模型中,速度最大时合力为零,速度为零时,加速度最大.

(9)超重:a 方向竖直向上(匀加速上升,匀减速下降). 失重:a 方向竖直向下(匀减速上升,匀加速下降). (10)系统的牛顿第二定律 x x x x a m a m a m F 332211++=∑ (整体法——求系统外力) y y y y a m a m a m F 332211++=∑ 二、直线运动和曲线运动 一、直线运动 1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)的常用比例 时间等分(T ):①1T 末、2T 末、3T 末、…、nT 末的速度比:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . ②第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比:x 1∶x 2∶x 3∶…∶x n =1∶3∶5∶…∶(2n -1). ③连续相等时间内的位移差Δx =aT 2,进一步有x m -x n =(m -n )aT 2,此结论常用于求加速度a =Δx T 2= x m -x n m -n T 2 . 位移等分(x ):通过第1个x 、第2个x 、第3个x 、…、第n 个x 所用时间比: t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1). 2.匀变速直线运动的平均速度 ①v =v t 2=v 0+v 2=x 1+x 2 2T . ②前一半时间的平均速度为v 1,后一半时间的平均速度为v 2,则全程的平均速度:v =v 1+v 2 2. ③前一半路程的平均速度为v 1,后一半路程的平均速度为v 2,则全程的平均速度:v =2v 1v 2 v 1+v 2 . 3.匀变速直线运动中间时刻、中间位置的速度 v t 2=v =v 0+v 2,v x 2 =v 20 +v 2 2 . 4.如果物体位移的表达式为x =At 2+Bt ,则物体做匀变速直线运动,初速度v 0=B (m/s),加速度a =2A (m/s 2). 5.自由落体运动的时间t = 2h g .

高中物理中的常用公式和二级结论总结

一、运动学 公式整理: 匀变速直线运动基本公式推论: 1、 1、 2、 2、 3、 3、 4、无论加速、减速总有不变关系V t/2 V s/2 5、 无初速的匀加速直线运动比例式: 时间等分点:各时刻速度比: 各时刻总位移比: 各段时间内位移比: 位移等分点:各时刻速度比: 到达各分点时间比 通过各段时间比 纸带法求速度和加速度: 有用结论:

1、在v-t图象中,图象上各点切线的斜率表示;某段图线下的“面积”数值上与该段相等。 特殊图像(a-x图像包围面积=1/2(v t2-v02)(1/v-x图像面积为时间) 2、在初速度为V0的竖直上抛运动中,返回原地的时间T= ;抛体上升的最大高度H= 。 对称性的应用;竖直上抛物体与自由落体物体相遇时速度相等,则两物体运动情况类似。 3、平抛(类平抛)物体运动中,速度夹角的正切值等于位移夹角正切的两倍;速度的反向延长线交于位移中点; 从斜面平抛的小球落回斜面时与斜面夹角一定。(落回斜面的时间、位置、距斜面最远) 平抛落到台阶问题 4、初速为零以a1匀加速t秒加速度变为a2再经过t秒回到出发点,a2= a1 5、小船渡河时,船头总是直指对岸所用的最短; 满足什么条件航程最短(两种情况) 6、追及相遇问题临界条件 7、质点做简谐运动时,靠近平衡位置时,加速度而速度;离开平衡位置时,加速度而速度。 8、紧靠点光源向对面墙平抛的物体,在对面墙上的影子的运动是运动。

9、等时圆的结论: 时间相等: 450时时间最短: 无极值: 10、“刹车陷阱” 11、速度分解问题:绳和杆相连的物体,在运动过程中沿绳或杆的分速度大小相等; 加速度关系与速度关系不同 12、平均速率一般不等于平均速度的大小,只有在单向(不返回)直线(不转弯)运动中二者才相等。这是由于位移和路程的区别所导致的。但瞬时速率与瞬时速度的大小相等。 13、在一根轻绳的上下两端各拴一个小球$若人站在高处手拿上端的小球由静止释放则两小球落地的时间差随开始下落高度的增大而减小 14、飞机投弹问题 15、皮带轮问题(专题总结) 16、质心系的选取(弹簧双振子模型) 18、多普勒效应:f u V v V f ±='(f 为波源频率,f’为接收频率,V 为波在介质中的 传播速度,v 为观察者速度,u 为波源速度) 19、几个做抛体运动的物体,相对匀速直线运动。(参考系的选择) 20、空气阻力f =kv ,竖直上抛到回到抛出点过程,阻力冲量为零。

物理二级结论

物理二级结论 I.运动学 1. 初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ):① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32 ② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5 ④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2 位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n = ② 经过1S 0时、2 S 0时、3 S 0时···时间比: ③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比 2.) 匀变速直线运动中的平均速度: 3. 匀变速直线运动中的中间时刻的速度: 4. 变速直线运动中的平均速度 前一半时间v 1,后一半时间v 2。则全程的平均速度: 前一半路程v 1,后一半路程v 2。则全程的平均速度: 5. 小船过河: ⑴ 当船速大于水速时 ①船头的方向垂直于水流的方向时,所用时间最短,船v d t /= ②合速度垂直于河岸时,航程s 最短 s=d d 为河宽 ⑵当船速小于水速时 ①船头的方向垂直于水流的方向时,所用时间最短,船v d t /= ②合速度不可能垂直于河岸,最短航程船 水v v d s ? = ) 1(::)23(:)12(:1::::321----=n n t t t t n )::3:2:1n n ::3:2:1 T S S v v v v t t 222 102/+=+= =- 2 02/t t v v v v += =- 2 2 1v v v += - 2 12 12v v v v v += -

相关主题
文本预览
相关文档 最新文档