当前位置:文档之家› 初中数学分式章节知识点及典型例题解析

初中数学分式章节知识点及典型例题解析

初中数学分式章节知识点及典型例题解析
初中数学分式章节知识点及典型例题解析

分式的知识点及典型例题分析

1、分式的定义:

例:下列式子中,y x +15、8a 2

b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、πxy 3、

y

x +3

、m a 1+中分式的个数为( ) (A ) 2 (B 练习题:(1)下列式子中,是分式的有 .

⑴275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -(2)下列式子,哪些是分式?

5a -; 234x +;3y y

; 78x π+;2x xy x y +-;145b -+.

2、分式有,无意义,总有意义:

(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12

+x ≠0)

例2:分式x

x -+212中,当____=x 时,分式没有意义 例4:当x 时,分式1

2+x x

有意义

x y

x y

-+无意义; )

C.133+x x

D.2

5

x x -

2

+x )A .2≠x B .2-≠x C .2->x D .2

例8:要是分式)

3)(1(2

-+-x x x 没有意义,则x 的值为( )A. 2 B.-1或-3 C. -1 D.3

同步练习题:

3、分式的值为零:

使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去。

例1:当x 时,分式121+-a a 的值为0 例2:当x 时,分式1

1

2+-x x 的值为0

例3:如果分式

2

2+-a a 的值为为零,则a 的值为( ) A. 2± B.2 C. 2- D.以上全不对

例4:能使分式1

22--x x

x 的值为零的所有x 的值是 ( )

A 0=x

B 1=x

C 0=x 或1=x

D 0=x 或1±=x

例5:要使分式6

59

22+--x x x 的值为0,则x 的值为( )A.3或-3 B.3 C.-3 D 2

例6:若

01=+a

a

,则a 是( )A.正数 B.负数 C.零 D.任意有理数 4、分式的基本性质的应用:

0的整式,分式的值不变。

75

=成立,则a 的取值范围是________; ) 、不变 ) A .扩大100倍 B .扩大10倍 C .不变 D .缩小到原来的

10

1 例5:如果把分式

y

x xy

+中的x 和y 都扩大2倍,即分式的值( ) A 、扩大2倍; B 、扩大4倍; C 、不变; D 缩小2倍

C B C A ??C B C A B A ÷÷=()0≠C

例6:如果把分式

y

x y

x +-中的x 和y 都扩大2倍,即分式的值( ) A 、扩大2倍; B 、扩大4倍; C 、不变; D 缩小2倍 例7:如果把分式

xy

y

x -中的x 和y 都扩大2倍,即分式的值( )

A 、扩大2倍;

B 、扩大4倍;

C 、不变;

D 例8:若把分式x

y

x 23+的x 、y 同时缩小12倍,则分式的值( A .扩大12倍

B .缩小12倍

C .不变

D .缩小6倍

例9:若x 、y 的值均扩大为原来的2A 、y x 23 B 、223y x C 、y x 232 D 、2

323y

x 例10:根据分式的基本性质,分式

b

a a

--可变形为( ) A b a a -- B b a a + C b a a -- D b

a +-

例11:不改变分式的值,使分式的分子、分母中各项系数都为整数,

=---05.0012

.02.0x x ; 例12:不改变分式的值,使分子、分母最高次项的系数为正数, 2

11x x x

-+--= 。

5、分式的约分及最简分式:

①约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分

(2)c a b a a c a b --=--;(3)1-=--b a a b ;(4)y

x y

x y x y x +-=--+-中个 C 、 3 个 D 、 4 个

A 、3

2x x =; B 、

0=+y x ; C 、x xy x y x 12=++; D 、2

14222=y x xy 例3:下列式子正确的是( ) A

022=++y

x y

x B.1-=-+-y a y a C.x z y x z x y -+=+- D.

0=+--=+--a d c d c a d c a d c 例4:下列运算正确的是( )

A 、a a a b a b =--+

B 、2412x x ÷=

C 、22a a

b b

= D 、1112m m m -= 例5:下列式子正确的是( )

A .22

a

b a b = B .0=++b a b a C .1-=-+-b a b a D .b a b a -=-33.01.0 例6:化简2

293m m

m --的结果是( )A 、3+m m B 、例7:约分:=

-2

2

64xy y

x ;932

--x x = ;例

8:约分:

22444a a a -++= ; =y x xy 2164 ;

=-+2

2y

x ay ax ;=++-168162

2x x x 2x 321a bc 29__________3m m -=+=b a ab 2205例9:分式

3a 2a 2

++,22b a b a --( ) A .1个 B .2个 C =bc

ad

用式子表示就是(

b

a )n

.分式的乘方,是把分子、为正整数)

例题:

计算:(1)7

4

6239251526y

x x x -? (2)13410431005612516a x a y x ÷ (3)a a a 1?÷

计算:(4)2

4222a ab a b a ab a b a --?+- (5)425

5222--?+-x x x x (6)2144122++÷++-a a a a a

计算:(7)3

2

2

346y x y x -? (8)a b ab 2362÷- (9)()2xy xy x x y -?- 计算:(10)

222 计算:(13

求值题:(1 (2 (3y x y

xy x --2例题:

计算:(1)232()3y x 5

3)3

2323???

?

?

?-x y = 计算:(4)222??????? ??a b ()43

ab -÷ 的值。 y

xy x

x 222++的值。

)A y

x x +22 B y x +2

C y 1

D y +11 例题:化简x y x x 1?÷

的结果是( )A. 1 B. xy C. x y D . y

x

计算:(1)422448223-+?++-x x x x x x ;(2)1221

122

2+-÷-+-x x x x x (3)(a 2

-1)·22221a a a +-+÷122a a +-

7、分式的通分及最简公分母:

通分:主要分为两类:第一类:分母是单项式;第二类:分母是多项式(要先把分母因式分解) 分为三种类型:“二、三”型;“二、四”型;“四、六”型等三种类型。 “二、三”型:指几个分母之间没有关系,最简公分母就是它们的乘积。 例如:

2

22--+x x

x 最简公分母就是()()22-+x x 。 “二、四”型:指其一个分母完全包括另一个分母,最简公分母就是其一的那个分母。 例如:

4

222--+x x

x 最简公分母就是[][]()

2242-+=-x x x “四、六”型:指几个分母之间有相同的因式,同时也有独特的因式,最简公分母要有独特的;相同的都要有。

例如:

()()

22

22-+-x x x x 最简公分母是:()22-x x

这些类型自己要在做题过程中仔细地去了解和应用,仔细的去发现之间的区别与联系。 例1:分式

n

m n m n m --+2

,1,122的最简公分母是( ) 22)n -)()(2

n m n -+ D .2

2

n m -

) 2 D.12xy2

)个。

D. 1

例5:分式a 与1

b

的最简公分母为________________;

例6:分式

xy

x y x +--2221

,1的最简公分母为 。

8、分式的加减:

分式加减主体分为:同分母和异分母分式加减。 1、同分母分式不用通分,分母不变,分子相加减。 2、异分母分式要先通分,在变成同分母分式就可以了。

通分方法:先观察分母是单项式还是多项式,如果是单项式那就继续考虑是什么类型,找出最简公分母,进行通分;如果是多项式,那么先把分母能分解的要因式分解,考虑什么类型,继续通分。 分类:第一类:是分式之间的加减,第二类:是整式与分式的加减。

例1:m n m 22-= 例2:

13222-+a a 例3:

x y x y x y -+-= 例计算:(1)4133m m

m -+++ (2)b a a +-

(4) 2253a b ab +-2235a b ab --22

8a b

ab

+.

例5:化简1x +12x +1

3x

等于( ) A .12x .116x D .56x

例6:c a b c a b +- 例8:x x x x ---3)

3(32

22a a +--2

4a - 例11:11--+a a a 2) x x x x +-+-+-2144212 (3) 2129a -+2

3a

-. 5) 2x y

x y y x

---- 例13:计算11--+a a 的结果是( )A 11-a B 11--a C 11

2---a a a D 1-a

例14:请先化简:

21224

x

x x ---,然后选择一个使原式有意义而又喜欢的数代入求值. 例15:已知:0342

=-+x x 求4

42122++--+x x x x x 的值。

9、分式的混合运算:

例1:4421642++-÷-x x x x 例2:3

41

21311222+++-?-+-+x x x x x x x

例3:222)2222(x x x x x x x -?-+-+- 例4:342 ?

?+-x 例5:1111-÷??

? ??

--x x x 例6:21y x y x +--例72

2112(

)2y x y x y x xy y -÷-+-+ 例8: x

x x 12

??--+例9: x x x x x x x x 4

)4

4122(

2

2-÷+----+

练习题:

10、分式求值问题:

例1:已知x 为整数,且

2+2x 值的和.

224()x y ??-?÷11x y x y ??+ ?+-??

的值. 2x+

x

21

的值为________. 3

41

21311222+++-?

-+-+a a a a a a a 的值. ).A .81 B .101 C .21 D .41

例6:已知

3x y -=,求代数式22xy y x xy y

---的值 例7:先化简,再对a 取一个合适的数,代入求值221369

324

a a a a a a a +--+-÷-+-. 练习题:

(1)168422+--x x x x ,其中x=5. (2)1616822-+-a a a ,其中a=5 (3)2222b ab a ab

a +++,其中a=-3,b=2

(4)2

1

44122++÷

++-a a a a a ;其中a=85; (5)x x x x x x x x 4)44122(22-÷+----+,其中x= -1 (6)先化简,再求值:

324x x --÷(x +2-5

2

x -).其中x =-2. (7)3,3

2

,1)()2(

222222-==+--+÷+---b a b a a b a a b ab a a b a a 其中 (8)先化简,2

11

1x x x -??+÷ ???

,再选择一个你喜欢的数代入求值.

11、分式其他类型试题:

例1:观察下面一列有规律的数:32,83,154,245,356,48

7

,……. 根据其规律可知第n个数应是___(n 为正整数) 例2: 观察下面一列分式:2345124816

,,,,,...,x x x x x

-

--根据你的发现,它的第8项是 ,第n 项是 。

例3)

互为相反数. a ☆b =b a 11+,根据这个规则x ☆23

)1(=+x 的解为 1

C .32-=x 或1

D .3

2

=x 或1-

___________,_____,===C B ; 例7: 已知

(1)(2)12

y y y y =+----,则( )

A .10,13A

B =-= B .10,13A B ==

C .10,13A B ==-

D .10,13A B =-=-

例8:已知y x 32=,求2

2222y x y y x xy --

+的值;

例9:设mn n m =-,则

n m 11-的值是( ) A.mn

1 B.0 C.1 D.1-

例10:请从下列三个代数式中任选两个构成一个分式,并化简该分式

x2

-4xy+4y2

x2

-4y2

x-2y

例11①

1-n

12、化为一元一次的分式方程:

(1)分式方程:含分式,并且分母中含未知数的方程——分式方程。

(2)解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

(3)解分式方程的步骤 :(1)能化简的先化简; (2)方程两边同乘以最简公分母,化为整式方程; (3)解整式方程; (4)验根.

的值是 ; =__________。 1

2

.

5,则a = 。

131=-+x

例6:解方程:2

2

416222-+=--+-x x x x x 例7:已知:关于x 的方程x x x a --=-+34

31无解,求a 的值。 例8:已知关于x 的方程

12

-=-+x a

x 的根是正数,求a 的取值范围。

例9:若分式

21+x 与3

2--x x 的2倍互为相反数,则所列方程为___________________________; 例10:当m 为何值时间?关于x 的方程2

1

122---+=--x x x x x x m 的解为负数?

例11:解关于x 的方程

)0(2≠-=

+-a a

b x a

x b

例12:解关于x 的方程:

)0(2112

2≠-=--+++a b

a a

b a x b a x 例13:当a 为何值时,

)

1)(2(21221+-+=

+----x x a

x x x x x 的解是负数? 例14:先化简,再求值:22

2)(222

--+++-?-y x x y x y x y x x ,其中x,y 满足方程组???-=-=+2

32y x y x 例15知关于x 的方程

)

1)(2(121-+=--+-x x m x x x x 的解为负值,求m 的取值范围。 练习题: (1)

164412-=-x x (2)2

13+--x x (3)X X X +--=-1513112

(4)

625+-=-x x x x (5)4245=--x x 11112-=-x x

(7) x x x --=+-213212129x =- (9) 311

223=-+-x

x 13(10,二是其值应是去分母后所的整式方程的根。

0,则整式方程的解

3

42--=+x x

不会产生增根; m 的值。

例5:若关于x 的分式方程3

232

-=--x m x x 无解,则m 的值为__________。 例6:当k 取什么值时?分式方程

0111

x k x x x x +-=--+有增根. 例7:若方程4

41-=--x m

x x 有增根,则m 的值是( )A .4 B .3 C .-3 D .1

例8:若方程

34

2(2)

a x x x x =+

--有增根,则增根可能为( ) A 、0 B 、2 C 、0或2 D 、1

14、分式的求值问题:

例1:已知

31=b a ,分式b a b a 52-+的值为 ;

例2:若ab=1,则1111+++b a 的值为 。 例3:已知13a a -= ,那么2

21a a

+=_________ ;

例4:已知

311=-y x ,则

y

xy x y

xy x ---+55的值为( )A 27-例5:已知y x 32=,求2

22

22y x y y x xy --

+的值; 例6:如果b a =2,则2

22

2b a b ab a ++-=

例7:已知

2+x a 与2-x b 的和等于42x

,则a= , b = 。

例8:若0≠-=y x xy 、x y - C 、1 D 、-1

例9:有一道题“先化简,其中x =”小玲做题时把“x =

a(1+a 1)-1

1

2--a a 的值”,王东在计算时错把“a=2005”

21

x x x x

-÷-+的值,其中2007x =”,某同学把2007x =错抄

15、分式的应用题:

(1)列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.

(2)应用题有几种类型;基本公式是什么?基本上有四种:

a.行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.

b.数字问题: 在数字问题中要掌握十进制数的表示法.

c.工程问题: 基本公式:工作量=工时×工效.

d.顺水逆水问题: v

顺水

=v 静水+v 水. v 逆水=v 静水-v 水.

工程问题:

例1:一项工程,甲需x 小时完成,乙需y

例2:小明和小张两人练习电脑打字,小明每分钟比小张少打6打180个字所用的时间相等。设小明打字速度为x 个/A

x x 1806120=+ B x x 1806120=- C 6180120+=x x 例3:某工程需要在规定日期内完成,如果甲工程队独做,期3天,现在甲、乙两队合作2天,剩下的由乙队独做,为x 天,下面所列方程中错误的是( ) A.

213x x x +=+; B.233x x =+; C.112233x x x x -??+?+= ?++??

例4:一件工程甲单独做a 小时完成,乙单独做b

是( ).(A )b a + (B )

b a 11+ (C )b

a ab

+ 例5:赵强同学借了一本书,共28021

页才能在借期内读完.,平均每天读x 页,则下列方

程中,正确的是( ) A 、

1421140140=-+x x B 、280+x 1211010=++x x D 、1421

140

140=++x x 例6:某煤厂原计划x 天生产1203吨,因此提前2天完成任务,

31202120-=+x x D 32

120

120--=x x 3人挖出的土1人恰好能全部运走,问怎样调配劳动力x 人挖土.列方程①721

3

x x -=;3=. 1)班每小时比八(2)班多种2棵树,

60棵树所用时间相同,求:八(1)、八(2)两班每小时各

例9:某一一项工程预计在规定的日期内完成,如果甲独做刚好能完成,如果乙独做就要超过日期3天,现在甲、乙两人合做2天,剩下的工程由乙独做,刚刚好在规定的日期完成,问规定日期是几天?

例10:服装厂接到加工720件衣服的订单,预计每天做48件,正好可以按时完成,后因客户要求提前5天交货,则每天应比原计划多做多少件?

例11:为加快西部大开发的步伐,决定新修一条公路,甲、乙两工程队承包此项工程。如果甲工程队单独施工,则刚好可以按期完成;如果乙工程队单独施工就要超过6个月才能完成。现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则也刚好可以按期完成。问师宗县原来规定修好这条公路需多长时间?

例12:某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共4350元;乙、丙两队合做10天完成,厂家需付乙、丙两队共4750元;甲、丙两队合做5天完成全部工程的

3

2

,厂家需付甲、丙两队共2750元。 (1)求甲、乙、丙各队单独完成全部工程各需多少天?

(2)若工期要求不超过20

价格价钱问题: 例1:发时又增加了两名同学,结果每个同学比原来少摊了3为 ( ) A .

32180180=+-x x B .31802180=-+x x C .2180180=--x x 例2:用价值100元的甲种涂料与价值240千克售价少3元,比乙种涂料每千克的售价多1涂料每千克的售价为x 元,?则根据题意可列方程为________.

例3:某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙同种工种各招聘多少人时,可使得每月所付的工资最少?

例4:为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次捐款人数多20人,而且两次人均捐款额恰好相等。那么这两次各有多少人进行捐款?

例5:随着IT 技术的普及,越来越多的学校开设了微机课.某初中计划拿出72万元购买电脑,由于团体购买,结果每台电脑的价格比计划降低了500元,因此实际支出了64万元.学校共买了多少台电脑?若每台电脑每天最多可使用4节课,这些电脑每天最多可供多少学生上微机课?(该校上微机课时规定为单人单机)

例6:光明中学两名教师带领若干名三好学生去参加夏令营活动,联系了甲、乙两家旅游公司,甲公司提供的优惠条件是:1名教师收行业统一规定的全票,其余的人按7.5折收费,乙公司则是:所有人全部按8折收费.经核算甲公司的优惠价比乙公司的优惠价便宜

1

32

,那么参加活动的学生人数是多少人?

例7:北京奥运“祥云”火炬2008年5月7日在羊城传递,熊熊燃烧的奥运圣火将在羊城传递和平、友谊、 进步的“和平之旅”,广州市民万众喜迎奥运。某商厦用8万元购进奥运纪念运动休闲衫,面市后供不应求, 商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元,商厦销 售这种运动休闲衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,请问在这两笔生意 中,商厦共赢利多少元?

顺水逆水问题:

例1:A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9 小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A 、

9448448=-++x x B 、9448448=-++x x C 、9448=+x D 、94

96

496=-++x x 例2:一只船顺流航行90km 与逆流航行60km 所用的时间相等,若水流速度是2km/h ,求船在静水中的速

度,设船在静水中速度为xkm/h ,则可列方程( )

A 、290+x =260-x

B 、290-x =260+x

C 、x 90+3=x 60

D 6090

例3:轮船顺流航行66千米所需时间和逆流航行48求轮船在静水中的速度。

行程问题:

例1:在一段坡路,小明骑自行车上坡的速度为每小时V 1段路上、下坡的平均速度是每小时( )

A 、

221v v +千米 B 、2121v v v v +千米 C 、2

12

12v v v v +千米例2:甲、乙两人分别从两地同时出发,若相向而行,则a 么甲的速度是乙的速度的( ) A.

a b

b

+倍 B.

b

a b

+倍 C.

b a

b a

+-倍

例3:八年级A 、B 两班学生去距学校4.5千米的石湖公园游玩,A 班学生步行出发半小时后,B 班学生骑自行车开始出发,结果两班学生同时到达石湖公园,如果骑自行车的速度是步行速度的3倍,求步行和骑自行车的速度各是多少千米/小时?

例4:A 、B 两地的距离是80公里,一辆公共汽车从A 地驶出3小时后,一辆小汽车也从A 地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B 地,求两车的速度。

例5:甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度。

数字问题:

例1:一个分数的分子比分母小6,如果分子分母都加1,则这个分数等于

4

1

,求这个分数. 例2:一个两位数,个位数字是2,如果把十位数字与个位数字对调,所得到的新的两位数与原来的两位数之比是7:4,求原来的两位数。

例3:一个分数的分母加上5,分子加上4,其结果仍是原来的分数,求这个分数。

例4:一个两位数,十位上的数字比个位上的数字小2,个位上的数字加上8以后去除这个两位数时, 所得到的商是2,求这个两位数。

16、公式变形问题:

例1:一根蜡烛在凸透镜下成实像,物距为U 像距为V ,凸透镜的焦距为F ,且满足F

V U 1

11=+,则用U 、V 表示F 应是( )

(A )

UV V U + (B )V U UV + (C )V U (D )U

V

例2:已知公式

12

111

R R R =+(12R R ≠)

,则表示1R 的公式是( ) A .212R R R RR -=

B .212RR R R R =-

C .121

()R R R R += D .2

1RR R = 例3:一根蜡烛在凸透镜下成一实像,物距u 1u +1v =1

f

. 若f =6厘米,v =8例4:已知梯形面积,)(2

1

h b a S +=S 、a 、b 、h A .b a S h +=

2 B. b h S a -=2 C.h S b =2例5:已知a a N b a M ab ++=+++=

=1,1111,1A.M >N B.M =N C .M

《分式》典型例题分析

《分式》典型例题分析

《分式》复习提纲 考点1. 分式的概念 1、下列各有理式 π y y x y x y x x y xy y x x x ,31),(23,,53,81,4, 23,822++-+---中,分式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个 考点2. 分式的意义 分式: B A (A ,B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义? ;② 分式无意义? ;③ 分式值为零? 1、若分式 3 2 -x 有意义,则x__________ 2、 要使分式 ) 5)(32(23-+-x x x 有意义,则( ) A. x ≠2 3 - B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2 3 -或x ≠5 3、 当a 为任意有理数时,下列分式一定有意义的是( ) A . 112++a a B. 12+a a C. 112++a a D. 21 a a + 4、分式 3 24 x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。 5、当x 时,分式2 5 2++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式 x x -+22 的值是零 考点3、最简公分母、最简分式 1、分式 ac b bc a ab c 3,2,2 --的最简公分母是 ;分式1 3x ,11x x +-,225(1)xy x -的最简公分母为________ 2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 1 12 --x x D. 11--x x

3、下列分式中是最简分式的是( ) A. 2 2 2) (y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质 1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。 (1)y x y x 3 22132 21-+; (2)b a b a -+2.05.03.0 2、把分式xy y x +中的分子、分母的x 、y 同时扩大2倍,那么分式的值( ) A. 扩大2倍 B. 缩小为原来的2 1 C. 不变 D. 缩小为原来的4 1 3、约分(1)4 3 22016xy y x -= ;(2)4 4422+--x x x = 4、通分(1)b a 21,2 1ab ; (2)y x -1,y x +1; (3)221y x -,xy x +21. 考点5、计算 1、(1)222222x b yz a z b xy a ÷= ;(2)49 3222--?+-x x x x = ;(3)43222)1.().()( ab a b b a --= (4) x x x x x x 36299622 2+-÷-+- (5)ab a b a a b a b a --+-2224. (6) 22212(1)441x x x x x x x -+÷+?++-

分式知识点总结和练习题讲义

分式知识点总结和题型归纳 (一)分式定义及有关题型 题型一:考查分式的定义: 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子,B 为分母。 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件 分式有意义:分母不为0(0B ≠) 分式无意义:分母为0(0B =) 【例1】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)1 2 2-x (4) 3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件 分式值为0:分子为0且分母不为0(?? ?≠=0 B A ) 【例1】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2)4 2||2--x x (3)6 53222----x x x x 【例2】当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 6252 2+--x x x 题型四:考查分式的值为正、负的条件 分式值为正或大于0:分子分母同号(???>>00B A 或???<<00B A ) 分式值为负或小于0:分子分母异号(???<>00B A 或???><0 B A ) (1)当x 为何值时,分式x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (2)当x 为何值时,分式32 +-x x 为非负数.

题型五:考查分式的值为1,-1的条件 分式值为1:分子分母值相等(A=B ) 分式值为-1:分子分母值互为相反数(A+B=0) 【例1】若 2 2 ||+-x x 的值为1,-1,则x 的取值分别为 (二)分式的基本性质及有关题型 1.分式的基本性质: M B M A M B M A B A ÷÷= ??= 2.分式的变号法则:b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0 题型二:分数的系数变号 【例1】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y x y x --+- (2)b a a --- (3)b a --- 题型三:化简求值题 【例1】 已知:511=+y x ,求y xy x y xy x +++-2232的值 【例2】 已知:21=-x x ,求2 21 x x +的值. 【例3】 若0)32(|1|2=-++-x y x ,求y x 241 -的值. 【例4】 已知:311=-b a ,求a ab b b ab a ---+232的值.

分式的乘除法典型例题

《分式的乘除法》典型例题 例1 下列分式中是最简分式的是() A .264a b B .b a a b --2)(2 C .y x y x ++22 D .y x y x --2 2 例2 约分 (1)36)(12)(3a b a b a ab -- (2)44422 -+-x x x (3)b b 2213432-+ 例3 计算(分式的乘除) (1)22563ab cd c b a -?- (2)42 2 643mn n m ÷- (3)2 33344222++-?+--a a a a a a (4)2 22 22222b ab a b ab b ab b ab a +-+÷-++ 例4 计算 (1))()()(432 2xy x y y x -÷-?- (2)x x x x x x x --+?+÷+--36)3(446222 例5 化简求值 22232232b ab b a b b a ab a b a b +-÷-+?-,其中3 2=a ,3-=b . 例6 约分 (1)3286b ab ; (2)2 22322xy y x y x x --

例7 判断下列分式,哪些是最简分式?不是最简分式的,化成最简分式或整式. (1)44422-+-x x x ; (2)36 ) (4)(3a b b a a --; (3)22 2y y x -; (4)882122++++x x x x 例8 通分: (1)223c a b , ab c 2-,cb a 5 (2)a 392 -, a a a 2312---,652+-a a a

参考答案 例1 分析:(用排除法)4和6有公因式2,排除A .2)(a b -与)(b a -有公因式)(b a -,排除B ,22y x -分解因式为))((y x y x -+与)(y x -有公因式)(y x -,排除D. 故选择C. 解 C 例2 分析(1)中分子、分母都是单项式可直接约分.(2)中分子、分母是多项式,应该先分解因式,再约分.(3)中应该先把分子、分母的各项系数都化为整数,把分子、分母中的最高次项系数化为正整数,再约分. 解:(1)36)(12)(3a b a b a ab --)4()(3)()(3333-?--?-=b a a b b a b a a 3)(4 1b a b --= (2)4 4422-+-x x x )2)(2()2(2-+-=x x x 22+-=x x (3)原式2123486)22 1(6)3432(b b b b -+=?-?+=312482-+-=b b b b b b 634)12)(12(3)12(4-=-++-= 例3 分析(1)可以根据分式乘法法则直接相乘,但要注意符号.(2)中的除式是整式,可以把它看成1 64 mn .然后再颠倒相乘,(3)(4)两题都需要先分解因式,再计算. 解:(1)22563ab cd c b a -?-2253)6(ab c cd b a ?--=b ad 52= (2)422643mn n m ÷-7 43286143n m mn n m -=?-= (3)原式)2)(1)(3)(1()3)(2)(2(++----+=a a a a a a a 1 22--=a a (4)原式)()()()(2b a b a b b a b b a -+÷-+=2 2 22))((b b a b b a b a -=-+= 说明:(1)运算的结果一定要化成最简分式;(2)乘除法混合运算,可将除

初中数学最值问题典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.

(完整word版)分式混合运算练习题(30题)

分式精华练习题 一.解答题 1.计算: (1)(2)(﹣2m2n﹣2)2?(3m﹣1n3)﹣3 2.计算:3.化简:.4.化简:5.计算:. 6.化简?(x2﹣9)7.计算:. 8.计算:+.9.计算:(1);(2).10.. 11.计算:12.计算:﹣a﹣1. 13.计算: (1)(2)14.计算:a﹣2+15.计算:.16.化简:,并指出x的取值范围.17.17.已知ab=1,试求分式:的值.18.计算:﹣19.计算:20.化简 21.计算: 22.化简: 23.计算:(1);(2).24.化简: 25.化简:.26化简: 27.计算:28.计算:()÷.29.化简.30.计算:﹣x﹣2)

1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;62 1 =+x ⑥ 21 1=-+-a x a x . A.2个 B.3个 C.4个 D.5个 2. 关于x 的分式方程15 m x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数 C .5m <-时,方程的解为负数 D .无法确定 3.方程x x x -=++-13 15112 的根是( ) A.x =1 B.x =-1 C.x =8 3 D.x =2 4.,04 412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-1 5.下列分式方程去分母后所得结果正确的是( ) A. 11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B. 1255 52=-+-x x x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2 +=+--x x x x ; D. ,1 1 32-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A. 21140140-+x x =14 B.21280280++x x =14 C.21 140 140++x x =14 D. 21 1010++x x =1 7.若关于x 的方程 01 11=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-1 8.若方程 ,) 4)(3(1 243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-1 9.如果,0,1≠≠= b b a x 那么=+-b a b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.1 1 +-x x 10.使分式442-x 与6 52 632 2+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10 二、填空题(每小题3分,共30分) 11. 满足方程 22 11-=-x x 的x 的值是___ 12. 当x =____时,分式x x ++51的值等于2 1. 13.分式方程 02 22=--x x x 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时. 15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 . 16.已知,54=y x 则=-+2 22 2y x y x . 17.=a 时,关于x 的方程 5 3 221+-=-+a a x x 的解为零. 18.飞机从A 飞到B 的路程S ’、速度是,1v ,返回的速度是2v ,往返一次的平均速度是 . 19.当=m 时,关于x 的方程 3 1 3292 -=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 . 三、解答题(共5大题,共60分) 21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124 x x x -=--. 22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天? 24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多 5 3 倍,问她第一次在供销大厦买了几瓶酸奶?

人教版初中数学专题复习---分式知识点和典型例习题

第十六章分式知识点和典型例习题 【知识网络】 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法:b d bd a c ac ?=,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n; am ÷ a n =am -n 6.积的乘方与幂的乘方:(ab)m = am b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b )(a-b )= a 2 - b 2 ;(a±b )2= a 2±2a b+b2 (一)、分式定义及有关题型 题型一:考查分式的定义 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x ?(2)2 32+x x (3) 1 22-x (4) 3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件

【例3】当x 取何值时,下列分式的值为0. (1)3 1+-x x (2) 4 2 ||2--x x ?(3)653 222----x x x x 题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式 x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (3)当x 为何值时,分式 3 2 +-x x 为非负数. 练习: 1.当x 取何值时,下列分式有意义: (1) 3 ||61 -x (2) 1 )1(32++-x x ??(3) x 111+ 2.当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 6252 2+--x x x 3.解下列不等式 (1) 01 2 ||≤+-x x (2) 03 252 >+++x x x (二)分式的基本性质及有关题型 1.分式的基本性质: M B M A M B M A B A ÷÷=??= 2.分式的变号法则: b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0 题型二:分数的系数变号 【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y x y x --+-? (2)b a a --- ?(3)b a --- 题型三:化简求值题 【例3】已知: 511=+y x ,求 y xy x y xy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出 y x 1 1+.

初中数学10大解题方法及典型例题详解

初中数学10大解题方法及典型例题详解 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 例题: 用配方法解方程x2+4x+1=0,经过配方,得到( ) A.(x+2) 2=5 B.(x-2) 2=5 C.(x-2) 2=3 D.(x+2) 2=3 【分析】配方法:若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算。【解】将方程x2+4x+1=0, 移向得:x2+4x=-1, 配方得:x2+4x+4=-1+4, 即(x+2) 2=3; 因此选D。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 例题: 若多项式x2+mx-3因式分解的结果为(x-1)(x+3),则m的值为()A.-2 B.2 C.0 D.1 【分析】根据因式分解与整式乘法是相反方向的变形,先将(x-1)(x+3)乘法公式展开,再根据对应项系数相等求出m的值。

【解】∵x2+mx-3因式分解的结果为(x-1)(x+3), 即x2+mx-3=(x-1)(x+3), ∴x2+mx-3=(x-1)(x+3)=x2+2x-3, ∴m=2; 因此选B。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 例题: 已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为() A.-5或1 B.1 C.5 D.5或-1 【分析】解题时把x2+y2当成一个整体来考虑,再运用因式分解法就比较简单【解】设x2+y2=t,t≥0,则原方程变形得 (t+1)(t+3)=8,化简得: (t+5)(t-1)=0, 解得:t 1=-5,t 2 =1 又t≥0 ∴t=1 ∴x2+y2的值为只能是1. 因此选B. 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求

分式混合运算练习题(50题)

一.解答题 1.计算: (1)(2)(﹣2m2n﹣2)2?(3m﹣1n3)﹣3 2.计算: 3.化简:. 4.(2007?双柏县)化简: 5.(2006?襄阳)计算:. 6.(2005?江西)化简?(x2﹣9) 7.(2007?北京)计算:. 8.(2005?宜昌)计算:+. 9.(2001?吉林)计算:(1);(2).10.(2001?常州). 11.计算:

12.计算:﹣a﹣1. 13.计算: (1)(2) 14.计算:a﹣2+ 15.计算:. 16.化简:,并指出x的取值范围. 17.已知ab=1,试求分式:的值. 18.计算:﹣ 19.(2010?新疆)计算: 20.(2009?太原)化简: 21.(2009?上海)计算:. 22.(2009?眉山)化简: 23.(2009?江苏)计算:(1);(2).

24.(2009?东营)化简: 25.(2008?白银)化简:. 26.(2007?南昌)化简: 27.(2007?巴中)计算: 28.(2006?宜昌)计算:()÷ . 29.(2006?十堰)化简:. 30.(2006?南充)计算:﹣x ﹣2) 31.(2015?眉山)计算: 1 121222-+÷+--x x x x x x 32.(2015?宜昌)化简:12 1 122 2++-+-x x x x 33.(2015?厦门)计算:12 1++++x x x x 34.(2015?柳州)计算:a a a 1 1+- 35.(2015?佛山)计算:4 8 222---x x

36.(2015?福州)化简:2 22222)(b a ab b a b a +-++ 37.(2015?宜宾)化简:1 )1111(222--÷---a a a a a 38.(2015?青岛)化简:n n n n n 1 )12(2-÷++ 39.(2015?重庆)化简:1 22 )1112(2 ++-÷+-+-x x x x x x 40.(2015?泸州)化简:)11 1(1 22 2+-÷++m m m m 41.(2015?扬州)化简:)11 11(12---+÷-a a a a a 42.(2015?滨州)化简:)3 1 31(96262 +--÷+--m m m m m 43.(2015?广西)化简:2 1 )12(22-÷-+a a a a 44.(2015?连云港)化简:m m m m +-÷++224 )111( 45.(2015?成都)化简:2 1 )412(2+-÷ -++a a a a a 46.(2015?重庆)计算:y y y y y y ++-÷+--2 29 6)181( 47.(2015?南京)计算:b a a a b a b a +÷---)12(222

《分式》典型例题分析

《分式》复习提纲 考点1. 分式的概念 1、下列各有理式 π y y x y x y x x y xy y x x x ,31),(23,,53,81,4,23,822++-+---中,分式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个 考点2. 分式的意义 分式:B A (A , B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义? ;② 分式无意义? ;③ 分式值为零? 1、若分式3 2-x 有意义,则x__________ 2、 要使分式) 5)(32(23-+-x x x 有意义,则( ) A. x ≠23- B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2 3-或x ≠5 ? 3、 当a 为任意有理数时,下列分式一定有意义的是( ) A . 112++a a B. 12+a a C. 112++a a D. 21a a + 4、分式324 x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。 5、当x 时,分式2 52++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式x x -+22 的值是零 考点3、最简公分母、最简分式 1、分式ac b b c a ab c 3,2,2--的最简公分母是 ;分式13x ,11x x +-,225(1)xy x -的最简公分母为________ 2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 1 12--x x D. 11--x x 3、下列分式中是最简分式的是( ) { A. 2 2 2)(y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质 1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。

分式知识点及例题

分式 知识点一:分式的定义 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子, B 为分母。 知识点二:与分式有关的条件 1、分式有意义:分母不为0(0B ≠) 2、分式值为0:分子为0且分母不为0(???≠=0 0B A ) 3、分式无意义:分母为0(0B =) 4、分式值为正或大于0:分子分母同号(?? ?>>00 B A 或? ??<<00B A ) 5、分式值为负或小于0:分子分母异号(?? ?<>00B A 或???><00B A ) 知识点三:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。 字母表示:C B C ??=A B A ,C B C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。 拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即 B B A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意 C ≠0这个限制条件和隐含条件B ≠0。 知识点四:分式的约分 定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。 步骤:把分式分子分母因式分解,然后约去分子与分母的公因。 注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然

后约去分子分母相同因式的最低次幂。 ②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。 知识点四:最简分式的定义 一个分式的分子与分母没有公因式时,叫做最简分式。 知识点五:分式的通分 ① 分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的 同分母分式,叫做分式的通分。 ② 分式的通分最主要的步骤是最简公分母的确定。 最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。 确定最简公分母的一般步骤: Ⅰ 取各分母系数的最小公倍数; Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式; Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。 Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。 注意:分式的分母为多项式时,一般应先因式分解。 知识点六:分式的四则运算与分式的乘方 1、分式的乘除法法则: 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:d b c a d c b a ??=? 分式除以分式:式子表示为 c c ??=?=÷b d a d b a d c b a 2、分式的乘方:把分子、分母分别乘方。式子n n n b a b a =?? ? ?? 3、 分式的加减法则:

初中数学专题典型例题训练

第一讲:实数与代数专题典型例题讲解 一实数 1. 例:在14-和15 -之间,请写出两个有理数: . 2. 有理数2 2 3 1 2, (2), 2, 2 ---- 按从小到大的顺序排列是( ) A .322122< (2) 2-<--<-, B . 223 12< (2) 22 -<--<- C . 22312< (2) 22-<--<-, D . 232 12< 2(2)2 -<--<- 3. 将一刻度尺如图所示放在数轴上 (数轴的单位长度是1CM ),刻度尺上的“0cm ”和 “15cm ”分别对应数轴上的-3.6和x ,则( ) A .9<x <10; B .10<x <11; C .11<x <12; D .12<x <13; 4. 下列说法正确的是( ) A .互为相反数的两个数一定不相等; B .互为倒数的两个数一定不相等; C .互为相反数的两个数的绝对值相等; D .互为倒数的两个数的绝对值相等; 5. 若3x -和7x -是某个实数的平方根,则x = . 6. 若函数()f x 、()g x 满足()()0f x g x +=,当2()f x x x =-+,则函数()g x 的最小值为: 7. 有理数A 、B 、C 在数轴上的位置如图所示,则式子|A |+|B |+|A +B |+|B -C |化简结果为.[ ]. .A .2A +3B -C...B .3B -C..C .B +C....D .C -- 8. 若|A -2|=2-A ,求A 的取值范围。 9. 已知:|x -2|+x -2=0,.求:(1)x +2的最大值; 10. 单项式3x y π - 的系数是_______,次数是_____。 11. 如果21 13 m n a b +--与5 4a b 的同类项,则M =_____,N =_________。 12. 如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心, 3为半径作圆弧.若图中阴影部分的面积分为S 1、S 2.则S 1-S 2= . 13. 以Rt △ACB 两条直角边为直径向外作半圆,如图,其面积分别为1S 和2S ,若△ABC 的面积为S ,则12,S S 与S 的关系为 . 14. 若2 2(3)16x m x +-+是完全平方式,则m 的值为: . 15. 若m 2+m -1=0,求m 3+2m 2+2015的值. 16. 若0,0,x xy <<则15y x x y -+---=

人教版初一数学分式混合运算专题练习

分式的运算 例1、下列分式a bc 1215,a b b a --2 )(3,) (222b a b a ++,b a b a +-22中最简分式的个数是( ). A.1 B.2 C.3 D.4 例2.计算:3234)1(x y y x ? a a a a 2122)2(2+?-+ x y xy 2 2 63)3(÷ 41441)4(222--÷+--a a a a a 例3、 若4 32z y x ==,求222z y x zx yz xy ++++的值. 例4、计算 (1)3 3 22)(c b a - (2) 43222)()()(x y x y y x -÷-?- (3)2 33 2 )3()2(c b a b c a - ÷- (4)232222)()()(x y xy xy x y y x -?+÷- 例5计算:1 814121111842+-+-+-+--x x x x x 练习:1.计算:8 87 4432284211x a x x a x x a x x a x a --+-+-+-- 例6.计算:20 18119171531421311?+?++?+?+?Λ 练习1、()()()()()() ()() 1011001 431 321 211 +++ ++++ +++ ++x x x x x x x x Λ 例7、已知 2 1)2)(1(12++-=+-+x B x A x x x ,求A. B 的值。 计算下列各题: (1)2 222223223x y y x y x y x y x y x ----+--+ (2)11 11322+-+--+a a a a .

分式考点及典型例题分析(最全面)

分式考点及典型例题分析 1、分式的定义: 例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、π xy 3、y x +3、m a 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 . ⑴275x x -+; ⑵ 123 x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +. (2)下列式子,哪些是分式? 5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145 b -+. 2、分式有,无意义,总有意义: (1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12 +x ≠0) 例1:当x 时,分式 51-x 有意义; 例2:分式x x -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。 例4:当x 时,分式12+x x 有意义 例5:x ,y 满足关系 时,分式x y x y -+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A . 122+x x B.12+x x C.133+x x D.2 5x x - 例7:使分式2+x x 有意义的x 的取值围为( )A .2≠x B .2-≠x C .2->x D .2

分式知识点总结和题型归纳

分式知识点总结和题型归纳 (一)分式定义及有关题型 题型一:考查分式的定义: 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子,B 为分母。【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 分式有意义:分母不为0(0B ≠) 分式无意义:分母为0(0B =) 【例1】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- (2)使分式 53-+x x ÷79 -+x x 有意义的x 应满足 . (3)若分式3 21 +-x x 无意义,则x= . 题型三:考查分式的值为0的条件 分式值为0:分子为0且分母不为0(? ??≠=00 B A ) 【例1】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2) 4 2 ||2 --x x (3) 6 5322 2----x x x x 【例2】当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 62522+--x x x 题型四:考查分式的值为正、负的条件 分式值为正或大于0:分子分母同号(?? ?>>00B A 或???<<00 B A ) 分式值为负或小于0:分子分母异号(???<>00B A 或? ??><00 B A ) (1)当x 为何值时,分式x -84为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负;

初中数学知识要点及典型例题

初中数学知识要点及典型例题 第一章实数 第一讲实数的有关概念 【回顾与思考】 知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值 课标要求: 1.使学生复习巩固有理数、实数的有关概念. 2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。 3.会求一个数的相反数和绝对值,会比较实数的大小 4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。 考查重点: 1.有理数、无理数、实数、非负数概念; 2.相反数、倒数、数的绝对值概念; 3.在已知中,以非负数a2、|a|、 a (a≥0)之和为零作为条件,解决有关问题。 实数的有关概念

(1)实数的组成 {} ?????????????????????????????????正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴 时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一 一对应的。数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数 实数的相反数是一对数(只有符号不同的两个数,叫做互为相反 数,零的相反数是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值 ?? ???<-=>=)0()0(0)0(||a a a a a a 从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数 实数a(a ≠0)的倒数是a 1(乘积为1的两个数,叫做互为倒数); 零没有倒数. 【例题经典】 理解实数的有关概念

分式的基本性质-经典例题及答案

讲义编号: ______________ 副校长/组长签字:签字日期: 【考纲说明】 掌握分式的基本性质,灵活运用分式的基本性质进行约分和通分,本部分在中考中通常会以选择题的形式出现,占3--4分。 【趣味链接】 甲、乙两人分别从A、B两地同时出发相向而行,3小时后相遇. 尔后两人都用原来速度继续前进,结果甲达到B地比乙达到A地早1小时21分.已知甲每小时比乙多走1千米,求甲、乙两人的速度。 【知识梳理】 分式 1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中,A叫分式的分子,B叫分式的分母. 2.分式有意义的条件:因为两式相除的除式不能为零,即分式的分母不能为零,所以,分式有意义的条件是:分式的分母必须不等于零,即B≠0,分式有意义.

3.分式的值为零的条件:分子等于0,分母不等于0,二者缺一不可. 有理式 有理式的分类:有理式 分式的基本性质 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为:(其中M≠0) 约分和通分 1.分式的约分:把一个分式的分子与分母中的公因式约去叫约分. 2.分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分. 最简分式与最简公分母: 约分后,分式的分子与分母不再有公因式,我们称这样的分式为最简分式.取各分母所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母. 【经典例题】 【例1】不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以(? ) A.10 B.9 C.45 D.90 【例2】下列等式:①=-;②=;③=-; ④=-中,成立的是() A.①② B.③④ C.①③ D.②④ 【例3】不改变分式的值,使分子、分母最高次项的系数为正数,正确的是(? ) A. B. C. D. 【例4】分式,,,中是最简分式的有() A.1个 B.2个 C.3个 D.4个

分式方程学习知识点及典型例题.doc

第二讲分式方程 【知识要点】 1.分式方程的概念以及解法 ; 2.分式方程产生增根的原因 3.分式方程的应用题 【主要方法】 1. 分式方程主要是看分母是否有外未知数; 2.解分式方程的关健是化分式方程为整式方程; 方程两边同乘以最简公分母 3.解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 题型一:用常规方法解分式方程 解下列分式方程 ( 1) 1 3 ( 2) 2 1 x 1 x x 3 x ( 3)x 1 4 1 ( 4) 5 x x 5 x 1 x2 1 x 3 4 x 题型二:特殊方法解分式方程解下列方程 (1)x4x 4 4 ;(2)x 7 x 9 x 10 x 6 x 1 x x 6 x 8 x 9 x 5 (3) 1 1 1 1 x 2 x 5 x 3 x 4 1

题型三:求待定字母的值 ( 1)若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3 ( 2)若分式方程 2 x a 1 的解是正数,求 a 的取值范围 . x 2 ( 3)若分式方程 x 1 m 无解,求 m 的值。 x 2 2 x ( 4)若关于 x 的方程 x k 2 x 不会产生增根,求 k 的值。 x 1 x 2 1 x 1 ( 5)若关于 x 分式方程 1 k x 2 3 有增根,求 k 的值。 x 2 x 2 4 题型四:解含有字母系数的方程 解关于 x 的方程 (1 ) x a c (c d 0) (2) 1 1 2 (b 2a) ; b x d a x b 2

1a1 b ( 3)(a b) . 题型五:列分式方程解应用题 一、工程类应用性问题 1、一项工程,甲、乙、丙三队合做 4 天可以完成,甲队单独做 15 天可以完成,乙队单独做 12 天可以完成,丙队单独做几天可以完成? 2、某市为治理污水,需要铺设一段全长3000 米的污水输送管道,为了尽量减少施工对城 市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30 天完成了任务,实际每天铺设多长管道? 二、行程中的应用性问题 2、甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车 的平均速度是普通快车平均速度的 1.5 倍.直达快车比普通快车晚出发2h,比普通快车早 4h 到达乙地,求两车的平均速度. 3

相关主题
文本预览
相关文档 最新文档