当前位置:文档之家› 矩阵的特征值与特征向量的求法

矩阵的特征值与特征向量的求法

矩阵的特征值与特征向量的求法
矩阵的特征值与特征向量的求法

摘要:首先给出了求解矩阵特征值和特征向量的另外两种求法,然后运用特征值的性质讨论了矩阵合同、相似的充要条件,以及逆矩阵的求解等相关问题.

关键词:矩阵的特征多项式,特征值,特征向量,对角矩阵,逆矩阵

Abstract:Firstly,it is given matrix eigenvalues and eigenvectors of two other methods, then with the properties of eigenvalue the contract of matrix discussed,we deeply discuss the sufficient and necessary conditions for the similar matrix contract, and the inverse matrix of the related problem solving.

Keywords:matrix characteristic polynomial, eigenvalue, eigenvector, diagonal matrices, inverse matrix

目录

1 前言 (4)

2 矩阵的特征值和特征向量的求法 (4)

2.1 矩阵的初等变换法 (4)

2.2 矩阵的行列互逆变换法 (6)

3 矩阵特征值的一些性质及应用 (7)

3.1 矩阵之间的关系 (7)

3.1.1 矩阵的相似 (7)

3.1.2 矩阵的合同 (7)

3.2 逆矩阵的求解 (8)

3.3 矩阵相似于对角矩阵的充要条件 (8)

3.4 矩阵的求解 (9)

3.5 矩阵特征值的简单应用 (10)

结论 (11)

参考文献 (12)

致谢 (13)

1 前言

矩阵特征值是高等代数研究的中心问题之一,也是硕士研究生招生考试的热点.而

且在自然科学(如物理学、控制论、弹性力学、图论等)和工程应用(如结构设计、振动系统、矩阵对策)的研究中也同样离不开矩阵特征值问题,因而对其研究具有重要的理论和应用价值.

2 特征值和特征向量的求解方法

求n 阶矩阵A 的特征根和特征向量,传统方法是先求出矩阵A 的特征多项式

()A E f -=λλ的全部特征根,然后对每个特征根 ()n i i ,,2,1 =λ求解齐次线性方程组

()0=-X A E i λ的一个基础解系,即为A 的属于特征根i λ的线性无关的特征向量.现再此基

础上另外介绍两种求矩阵特征值和特征向量的方法.

2.1 矩阵的初等变换法

这种方法在求解矩阵特征向量的同时就得到属于特征根的特征向量.

定理[]

11设齐次线性方程组0m n A X ?=的系数矩阵A 的秩数n r <,00

0r

E PAQ ??

= ???

的非奇异矩阵n n Q ? 的后n r - 列便构成线性方程组的一个基础解系.

在运用传统方法求解矩阵A 的特征值时,我们求()A E f -=λλ的全部特征根时是通过将矩阵()A E -λ经过一系列的初等变换化成三角矩阵,这里我们可以受此启发,将它变

换成下三角矩阵()λG .由定理1知,当矩阵???

? ??-E A E λ经过一系列的初等列变换变换成

()()???? ??λλQ G 时,求 ()0=λG 得的i λ就是矩阵A 的特征值,然后将i λ代入()()???

? ??λλQ G ,()i G λ中的0

列所对应的列就是所对应i λ的特征向量()i Q λ.

例1 已知矩阵211031213A -??

?

=- ? ???,求矩阵A 的特征值和特征向量.

22

2

1120103102121324310010001001000101100110022112254433454100001010010211112E A E λλλλλλλλλλλλλλλλλλλλλλ-?? ???

----???? ? ?-- ? ? ? ?------=→ ? ?

? ? ? ? ? ? ? ?????

--?? ?---- ? ?-+-----+→→ ? ? ? ? ?--??()()2

1001203468001011113.G Q λλλλλλλλ?? ?

? ?

? ? ? ? ???

-?? ?- ?

?---+→ ?

? ?- ? ?-????= ???

由()()2

240λλ--=知A 的特征根122λλ==,43=λ.

当122λλ==时,()()10010021202001011111G Q -??

? ? ???--=

? ??? ? ?

- ? ?-??,特征向量1111ξ??

?

=- ? ?

-??. 当34λ=时,()()10012041004001011111G Q -?? ? ? ???=

? ??? ? ?

- ? ???

,特征向量3111ξ?? ?=- ? ?

??.

2.2 矩阵的行列互逆变换法

定理[]

22 对于任意的矩阵A ,矩阵???? ??

E A 都能经过一系列的行列互逆变换变成???

? ??P J T .其

中()()(){}

()()

()r i P P P P P J J J J T

i i i i r r k k k i

k r ,,2,1,,,,,,,,,,,,21212121 ====βββλλλ.因为若尔当矩阵是下三角形矩阵,在一个若尔当形矩阵中,主对角线上的元素正是特征多项式的全

部根(重根按重数计算).因此在求解矩阵A 的特征值时我们又可以通过将矩阵???

?

??E A 进行

行列互逆变换,从而得到A 特征值i λ,以及它对应的特征向量i

k i i βξ=.

例2 求矩阵211031213A -?? ?

=- ? ???

的特征值与特征向量.

.11

1110111400021002211121102111400021002111010011400121002101010001400131

11110001000131

213011233

3223211

213312

1221

21

?????????

?

??---?→???

???????? ??---??→???????????

??---??→?????????

?? ??---??→??????????? ??--=???

? ??+-+-+-r c r r c c r r c c r r c

c E A

所以特征值4,2321===λλλ,

对应特征值43=λ的特征向量???

?

? ??-=1113ξ,

对应的特征值221==λλ的特征向量????

? ??-=1111ξ.

3 矩阵特征值的一些性质及应用

3.1 矩阵之间的关系 3.1.1 矩阵的相似

性质1 如果存在n 阶可逆矩阵X ,使得n 阶矩阵A 和B 满足AX X B 1

-=,即矩阵A

与矩阵B 相似,i λ为矩阵A 的特征值,i ξ为i λ所对应的特征向量,则i λ也为矩阵B 的特征值,且B 对应于i λ的特征向量为i X ξ1-.

注 反之不成立,即矩阵有相同特征值的矩阵不一定相似.

性质2 矩阵A 与B 都是n 阶矩阵,乘积矩阵BA 与AB 不一定相似,但却有相同的特征值.

证明 若0是AB 的特征值,则0,0≠?=ξξξAB 故AB 不可逆,于是A 与B 中至少有一个不可逆,从而BA 不可逆,故有非零向量ξ使0=ξBA ,即0是BA 的特征值. 设()0≠λλ是AB 的特征值,即存在()0≠ξξ使得λξξ=AB .令ξηB =,则

0≠==λξξηAB A ,因此0≠η于是ληξλλξξη==?==B B BAB BA ,即η是属于BA 的特

征向量,λ是BA 的特征值,同理可证BA 的任何特征值也是AB 的特征值.

例如矩阵???? ??=1001A 和矩阵???? ??=1201B ,BA 与AB 不相似却有相同的特征值1=λ. 例3 设n 阶矩阵B A ,,则矩阵A BA +与A AB +,B BA +与B AB +分别都有相同的特征值.

证明 由于()()E B A A AB A E B A BA +=++=+,,由性质2知B AB A BA ++,有相同的特征值,同理B AB B BA ++,也有相同的特征值.得证.

3.1.2 矩阵的合同

性质3 n 阶对称矩阵A 与B 合同,即存在n 阶可逆矩阵C ,使得AC C B T =,其充要条

件是A 与B 的正负惯性指数相同,即正特征值,零特征值和负特征值的个数分别相等.

这样我们在判断矩阵是否合同的时候又多了一种途径.

例4 判断矩阵???????

?

?=11

1111111111

1111A 与矩阵????

??

? ?

?=00

0000000000000

4B 是否合同. 解 因为矩阵A 是实对称矩阵,可以求得()()34det λλλ--=-E A ,即A 的特征值为

0321===λλλ,44=λ,矩阵B 的特征值为41=λ,0432===λλλ,由性质知矩阵A 和矩阵B 合同.

3.2 逆矩阵的求解

性质[]34对于n 阶矩阵A ,由哈密顿―凯莱定理可以知道()0=A f ,即

00111=++++--E a A a A a A a n n n n .

所以(

)E E

a A a a A n n =??

????++-?-110

1

,从而()

E a A a a A

n n 110

1

1

++-

=-- . 故已知可逆矩阵的特征多项式或全部特征值,那么很容易找到1

-A .

例5 已知矩阵????

?

??=10100132

1

b b b A ,的特征多项式是()()3

1-=λλf ,求1-A . 解 因为()()1331233

++-=-=λλλλλf ,所以E A A A 3321+-=-, 即

???

?

?

??--?-=????? ??+?????

??------+????? ??

?+=-101001

3000300033330330031220120013

2

311

3

2

1

3

3

121

1b b b b b b b b b b b b b A . 由本例可见,任何一个可逆矩阵A 的逆矩阵必是A 的一个多项式,这样又多了一种求逆矩阵的方法.

3.3 矩阵相似于对角矩阵的充要条件

性质[]35 n 阶矩阵A 相似于对角矩阵的充要条件是每一个特征值0λ在A E -λ中的重数等于A 的属于0λ的线性无关的特征向量的个数. 由此可见例1和例2中的矩阵不能相似于对角矩阵.

例6 矩阵 ???

?

?

??=00

01

001

00

λλλA 能否与对角矩阵相似?为什么? 解 不能.

因为0λ是()03

0=-=-λλλA E 的三重根,且秩()2=-A E λ,于是A 的属于0λ的线性

无关向量的个数为123=-,由性质8知,A 不能相似于对角矩阵.

3.4矩阵的求解

我们知道如果设1λ和2λ是2阶实对称矩阵A 的两个不同的特征值,1ξ和2ξ是对应于它们的特征向量,则1ξ和2ξ正交.且设()n i i ,,2,1 =λ是n 阶实对称矩阵A 的互不相同的特征值,()n i i ,,2,1 =ξ是对应于特征值的特征向量,则()n i i ,,2,1 =ξ两两正交.

这样,如果对于n 阶实对称矩阵A ,我们知道它的全部特征值,又知道其中一个特征值所对应的特征向量,我们就可以根据这个应用,不仅可以求出这个矩阵其他特征值所对应的特征向量,也能求解出矩阵A .

例7 设3阶对称矩阵A 的特征多项式是()()2

15+-λλ,且?????

??=1111ξ是对应于5=λ的特

征向量,求矩阵A .

解 由上面的性质我们知道1-=λ对应的特征向量和1ξ正交,

因此设1-=λ所对应的特征向量为???

?

? ??321x x x ,

对应于1-=λ的两个线性无关的向量可取0321=++x x x 的基础解系,

????? ??-=1012ξ,????

? ??-=0113ξ,

将正交向量组

3

21,,ξξξ单位化得到正交矩阵

?????

?

?

?--=02

13121031

212131Q ,

正交矩阵Q 满足????

? ??--=Λ=10001000

5AQ Q T ,

所以 ????

? ??=Λ=456546663T

Q Q A .

补充:同时还能求出k

A () ,2,1=k 的值,

()T k T T T k

T k Q Q Q Q Q Q Q Q Q Q A Λ=ΛΛ?Λ=Λ= )(.

3.5 矩阵特征值的简单应用

性质[]46 n 阶实对称矩阵的特征值都是实数.

性质[]57 n 阶矩阵A 与其转置矩阵T

A 有相同的特征值.

性质8 已知n 阶矩阵A 的特征值为n λλλ,,,21 ,则n A λλλ 21?=. 例8 设n 阶矩阵A 有n 个特征值n ,,2,1 ,且矩阵B 与A 相似,求B E +的值. 解 因为A 的特征值为n ,,2,1 ,矩阵B 与A 相似. 所以B 的特征值也为n ,,2,1 ,

令()1+=λλf ,则()B f 的n 个特征值为()()()1,,32,21+===n n f f f , 因为!21n n A =???= ,

所以()()()()!121+=???=+n n f f f B E .

总结

矩阵是线性代数中的一个重要部分,特征值与特征向量问题是矩阵理论的重要组成部分。特征值与特征向量有着许多具体的应用,本文通过查阅相关的资料并在指导老师的指导和建议下对特征值与特征向量原理进行了归纳总结。首先简单的叙述了特征值与特征向量的概念及其性质,探究了特征值与特征向量的几种解法,在此基础上重点介绍了特征值与特征向量的应用问题。矩阵的高次幂的求解是有技巧的,当矩阵可对角化时,利用特征值与特征向量把矩阵对角化,可以简便的解出矩阵高次幂的值。给出了特征值与特征向量在矩阵运算中使用的性质,并且举例说明了特征值与特征向量在矩阵运算中的应用。运用一些特征值与特征向量的性质和方法,可以使问题更简单,运算上更方便,是简化有关复杂问题的一种有效途径。特征值与特征向量理论的应用是多方面的,不仅在数学领域,而且在力学、物理、科技方面都有十分广泛的应用,值得我们深入探究。

参考文献

[1] 何翼.求矩阵的特征值与特征向量的新方法[J].铜仁学院学报,2009,11(3):139-140.

[2] 黄金伟.矩阵的特征值与特征向量的简易求法[J].福建信息技术教育,2006,33.

[3] 王向东、王士藩.高等代数常用方法[M].科学出版社,1989:224.

[4] 马忠军、刘翠玉.矩阵特征值问题探讨[J].博士专家论坛,6.

[5] 邵逸民.矩阵的公共特征值和特征向量研究[J].太原师范学院学报,2008,7(3):40.

致谢

大学生活一晃而过,回首走过的岁月,心中倍感充实,当我写完这篇毕业论文的时候,有一种如释重负的感觉,感慨良多.

首先诚挚的感谢我的论文指导老师雷雪萍老师.她在忙碌的教学工作中挤出时间来审查、修改我的论文.还有教过我的所有老师们,你们严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;他们循循善诱的教导和不拘一格的思路给予我无尽的启迪.感谢培养教育我的淮阴师范学院,浓浓的学术氛围,舒适的学习环境我将终身难忘!

最后祝母校蒸蒸日上,勇创辉煌!祝各位恩师身体健康,家庭幸福!

一、实验名称:用QR 算法求矩阵的特征值 二、实验目的:1、通过实验进一步熟悉掌握求矩阵特征值的QR 方法及原理。 2、理解QR 方法的计算流程。 3、能够编程实现QR 方法。 三、实验内容:给定矩阵 ??? ? ? ??=111132126A , ?? ??? ?? ? ? ?=0100098 20 087630 7654465432H ,采用QR 方法计算A 和H 矩阵的全部特征值。 四、实验要求: (1) 根据QR 算法原理编写程序求矩阵A 及矩阵H 的全部特征值(要求误差<10 5 -)。 (2) 直接用MATLAB 的内部函数eig 求矩阵A 及矩阵H 的全部特征值,并与(1)的结果比较。 五、QR 方法计算矩阵特征值的程序: function [namda,time,data_na]=qr_tz(A,tol) if nargin==1; tol=1e-5; end wucha=1; time=0; while (wucha>tol)&(time<500) [q,r]=qr(A); A1=r*q; tz0=diag(A1); tz1=diag(A); wucha=norm(tz0-tz1); A=A1; time=time+1; data_na(time,:)=tz1; end namda=tz1; disp(‘特征值为’) namda disp(‘第一个特征在值’) time n1=length(data_na); n2=(1:n1)’; temp1=[n2,data_na]; subplot(2,2,1:2)

plot(date_na(:,1)) title(‘迭代次数为’) grid subplot(2,2,3) plot(data-na(:,2)) title(‘第二个特征值’)grid subplot(2,2,4) plot(data-na(:,3)) title(‘第三个特征值’) grid 六、实验结果: >> A=[6,2,1;2,3,1;1,1,1];[namda,time,data_na]=qr_tz(A,1e-5);特征值为 namda = 迭代次数为 time = 6 图 1

关于特征值与特征向量的求解方法与技巧 摘 要:矩阵的初等变换是高等代数中运用最广泛的运算工具,对矩阵的特征值与特征向量的求解研究具有一定意义。本文对矩阵特征值与特征向量相关问题进行了系统的归纳,得出了通过对矩阵进行行列互逆变换就可同时求出特征值及特征向量的结论。文章给出求解矩阵特征值与特征向量的两种简易方法: 列行互逆变换方法与列初等变换方法。 关键词: 特征值,特征向量; 互逆变换; 初等变换。 1 引言 物理、力学、工程技术的许多问题在数学上都归结为求矩阵的特征值与特征向量问题,直接由特征方程求特征值是比较困难的,而在现有的教材和参考资料上由特征方程求特征值总要解带参数的行列式,且只有先求出特征值才可由方程组求特征向量。一些文章给出了只需通过行变换即可同步求出特征值及特征向量的新方法,但仍未摆脱带参数行列式的计算问题。本文对此问题进行 了系统的归纳,给出了两种简易方法。 一般教科书介绍的求矩阵的特征值和特征向量的方法是先求矩阵A 的特征方程()0A f I A λλ=-=的全部特征根(互异) ,而求相应的特征向量的方法则是对每个i λ 求齐次线性方程组()0i I A X λ-=的基础解系,两者的计算是分离的,一个是计算行列式,另一个是解齐次线性方程组, 求解过程比较繁琐,计算量都较大。

本文介绍求矩阵的特征值与特征向量的两种简易方法, 只用一种运算 ——矩阵运算, 其中的列行互逆变换法是一种可同步求出特征值与特征向量的方法, 而且不需要考虑带参数的特征矩阵。而矩阵的列初等变换法, 在求出特征值的同时, 已经进行了大部分求相应特征向量的运算, 有时碰巧已完成了求特征向量的全部运算。两种方法计算量少, 且运算规范,不易出错。 2 方法之一: 列行互逆变换法 定义1 把矩阵的下列三种变换称为列行互逆变换: 1. 互换i 、j 两列()i j c c ?,同时互换j 、i 两行()j i r r ? ; 2. 第i 列乘以非零数()i k kc , 同时第i 行乘11i c k k ?? ?? ? ; 3. 第i 列k 倍加到第j 列()j i c kc +, 同时第j 行- k 倍加到第i 行 ()i j r kr -。 定理1 复数域C 上任一n 阶矩阵A 都与一个Jordan 标准形矩阵 1212,,....r k k kr J diag J J J λλλ? ? ???????? ??? ? ?? ?? ? ? ? ?? ? ?=相似, 其中 111110...0001...00..................000...1000...0ki ki J λλλλ?? ?? ?? ??=????????称为Jordan 块, 12r k k k n ++ +=并且 这个Jordan 标准形矩阵除去其中Jordan 块的排列次序外被矩阵A 唯一确定, J 称为A 的Jordan 标准形。 定理2 A 为任意n 阶方阵, 若T A J I P ?? ????????→ ? ????? 一系列列行互逆变换其中

第五章 矩阵的特征值与特征向量 5.1矩阵的特征值与特征向量 5.1.1矩阵的特征值与特征向量的概念 设A 是n 阶矩阵,若存在数λ及非零的n 维列向量α,使得:λαα=A (0≠α)成立,则称λ是矩阵A 的特征值,称非零向量α是矩阵A 属于特征值λ的特征向量. 5.1.2矩阵的特征值与特征向量的求法 把定义公式λαα=A 改写为()0=-αλA E ,即α是齐次方程组()0=-x A E λ的非零解.根据齐次方程组有非零解的充分条件可得:0=-A E λ. 所以可以通过0=-A E λ求出所有特征值,然后对每一个特征值i λ,分别求出齐 次方程组()0=-x A E i λ的一个基础解系,进而再求得通解. 【例5.1】求??? ? ? ?????------=324262423A 的特征值和特征向量. 解:根据()()0273 2 4 26 24 23 2 =+-=---= -λλλλλλA E ,可得71=λ,22-=λ. 当7=λ时,??? ? ? ?????? ??? ???????=-0000002124242124247A E , 所以()07=-x A E 的一个基础解系为:()T 0,2,11-=α,()T 1,0,12-=α,则相应的特征向量为2211ααk k +,其中21,k k 是任意常数且()()0,0,21≠k k . 当2-=λ时,???? ? ?????--? ??? ? ??????---=--00012014152428242 52A E ,所以()02=--x A E 的一个基础解系为()T 2,1,23=α,则相应的特征向量为33αk ,其中3k 是任意常数且

本科毕业设计题目:一些特殊矩阵特征值的求法与应用 作者:高英 学号: 2010012491 所属学院:金融与数学书院 专业班级:应数1002班 指导教师:赵建中职称:院长 完成时间: 2014 年 4月 10日 皖西学院教务处制

独创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 学生签名:日期:年月日 论文版权使用授权书 本人完全了解皖西学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件和磁盘,允许论文被查阅和借阅,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。同意皖西学院可以用不同方式在不同媒体上发表、传播学位论文的全部或部分内容。 (保密的学位论文在解密后应遵守此协议) 学生签名:日期:年月日 导师签名:日期:年月

目录 摘要 .......................................................... 错误!未定义书签。Abstract ...................................................... 错误!未定义书签。第1章绪论 .................................................. 错误!未定义书签。 1.1 课题研究背景及目的................................... 错误!未定义书签。 1.2 研究现状 (1) 1.3研究方法 (2) 1.4研究内容 (2) 第2章几类特殊矩阵的概念及主要性质............................ 错误!未定义书签。 2.1 正交矩阵............................................. 错误!未定义书签。 2.2 幂零矩阵 (2) 2.3 对称矩阵 (3) 2.4 三对角矩阵 (4) 第3章矩阵特征值的求法与应用 (4) 3.1 一般矩阵的求法与应用 (4) 3.2 特殊矩阵的求法与应用 (7) 结语 (20) 致谢 (20) 参考文献 (21)

第五章矩阵的特征值和特征向量 来源:线性代数精品课程组作者:线性代数精品课程组 1.教学目的和要求: (1) 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. (2) 了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对 角矩阵. (3) 了解实对称矩阵的特征值和特征向量的性质. 2.教学重点: (1) 会求矩阵的特征值与特征向量. (2) 会将矩阵化为相似对角矩阵. 3.教学难点:将矩阵化为相似对角矩阵. 4.教学内容: 本章将介绍矩阵的特征值、特征向量及相似矩阵等概念,在此基础上讨论矩阵的对角化问题. §1矩阵的特征值和特征向量 定义1设是一个阶方阵,是一个数,如果方程 (1) 存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特 征向量. (1)式也可写成, (2) 这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 , (3) 即 上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的 次多项式,记作,称为方阵的特征多项式.

== = 显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值. 设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明 (ⅰ) (ⅱ) 若为的一个特征值,则一定是方程的根, 因此又称特征根,若为 方程的重根,则称为的重特征根.方程的每一个非 零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下: 第一步:计算的特征多项式; 第二步:求出特征方程的全部根,即为的全部特征值; 第三步:对于的每一个特征值,求出齐次线性方程组: 的一个基础解系,则的属于特征值的全部特征向量是 (其中是不全为零的任意实数). 例1 求的特征值和特征向量. 解的特征多项式为 =

1.////////////////////////////////////////////////////////////////////// 2.// 求实对称矩阵特征值与特征向量的雅可比法 3.// 4.// 参数: 5.// 1. double dblEigenValue[] - 一维数组,长度为矩阵的阶数,返回时存放特征值 6.// 2. CMatrix& mtxEigenVector - 返回时存放特征向量矩阵,其中第i列为与 7.// 数组dblEigenValue中第j个特征值对应的特征向量 8.// 3. int nMaxIt - 迭代次数,默认值为60 9.// 4. double eps - 计算精度,默认值为0.000001 10.// 11.// 返回值:BOOL型,求解是否成功 12.////////////////////////////////////////////////////////////////////// 13.BOOL CMatrix::JacobiEigenv(double dblEigenValue[], CMatrix& mtxEigenVector, int nMaxIt /*= 60*/, double eps /*= 0.000001*/) 14.{ 15.int i,j,p,q,u,w,t,s,l; 16.double fm,cn,sn,omega,x,y,d; 17. 18.if (! mtxEigenVector.Init(m_nNumColumns, m_nNumColumns)) 19.return FALSE; 20. 21.l=1; 22.for (i=0; i<=m_nNumColumns-1; i++) 23.{ 24.mtxEigenVector.m_pData[i*m_nNumColumns+i]=1.0; 25.for (j=0; j<=m_nNumColumns-1; j++) 26.if (i!=j) 27.mtxEigenVector.m_pData[i*m_nNumColumns+j]=0.0;//单位矩阵 28.} 29. 30.while (TRUE) 31.{ 32.fm=0.0; 33.for (i=1; i<=m_nNumColumns-1; i++) 34.{ 35.for (j=0; j<=i-1; j++) 36.{ 37.d=fabs(m_pData[i*m_nNumColumns+j]); 38.if ((i!=j)&&(d>fm)) 39.{ 40.fm=d; 41.p=i; 42.q=j; }//取绝对值最大的非对角线元素,并记住位置

幂法求矩阵最大特征值 摘要 在物理、力学和工程技术中的很多问题在数学上都归结为求矩阵特征值的问题,而在某些工程、物理问题中,通常只需要求出矩阵的最大的特征值(即主特征值)和相应的特征向量,对于解这种特征值问题,运用幂法则可以有效的解决这个问题。 幂法是一种计算实矩阵A的最大特征值的一种迭代法,它最大的优点是方法简单。对于稀疏矩阵较合适,但有时收敛速度很慢。 用java来编写算法。这个程序主要分成了三个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块。其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。 关键词:幂法;矩阵最大特征值;j ava;迭代

POWER METHOD TO CALCULATE THE MAXIMUM EIGENV ALUE MATRIX ABSTRACT In physics, mechanics and engineering technology of a lot of problems in math boil down to matrix eigenvalue problem, and in some engineering, physical problems, usually only the largest eigenvalue of the matrix (i.e., the main characteristics of the value) and the corresponding eigenvectors, the eigenvalue problem for solution, using the power law can effectively solve the problem. Power method is A kind of computing the largest eigenvalue of real matrix A of an iterative method, its biggest advantage is simple.For sparse matrix is right, but sometimes very slow convergence speed. Using Java to write algorithms.This program is mainly divided into three most: the first part for matrix can be converted to linear equations;The second part is the eigenvector of the maximum;The third part is the exponentiation method of function block.Its basic process as a power law function block by calling the method of matrix can be converted to linear equations, then after a series of validation and iteration to get the results. Key words: Power method; Matrix eigenvalue; Java; The iteration

一、计算 1.求齐次线性方程组 x x x x x x x x x x x x --+= ? ? --+= ? ?--+= ? 1234 1234 1234 42420 33320 75740 的一个基础解系 2.求齐次线性方程组 --+= ? ? --+= ? ?--+= ? 1234 1234 1234 44420 34320 78740 x x x x x x x x x x x x 的一个基础解系 3.求4元齐次线性方程组 1245 1245 1245 32420 3390 2570 x x x x x x x x x x x x +-+= ? ? --+= ? ?+--= ? 的一个基础解系 4.求4元齐次线性方程组 1245 1245 1245 42430 4330 42470 x x x x x x x x x x x x ---= ? ? +-+= ? ?+--= ? 的一个基础解系 5.解齐次线性方程组 12345 1345 12345 220 320 220 x x x x x x x x x x x x x x ++-+=? ? ++-=? ?--+++=? 6.解齐次线性方程组 12345 1345 12345 20 30 20 x x x x x x x x x x x x x x ++-+=? ? ++-=? ?--+-+=? 7.已知实对称矩阵 141 411 114 A ?? ? = ? ? ?? ,计算A的全部特征值,并求最大特征值相应 的一个特征向量。 8.已知实对称 453 543 332 A - ?? ? =- ? ? ?? ,计算A的全部特征值,并求最大特征值相应的 一个特征向量。 9.已知实对称 331 151 117 ?? ? = ? ? ?? A,计算A的特征值,并求最大特征值相应的全体特 征向量。

第五章 矩阵的特征值与特征向量 习题 1 试用施密特法把下列向量组正交化 (1)?? ? ? ? ??=931421111) , ,(321a a a (2)???? ?? ? ??---=011101110111) , ,(321a a a 2 设x 为n 维列向量 x T x 1 令H E 2xx T 证明H 是对称的正交 阵 3 求下列矩阵的特征值和特征向量: (1)??? ?? ??----20133 521 2; (2)??? ? ? ??633312321. 4 设A 为n 阶矩阵 证明A T 与A 的特征值相同 5 设 0是m 阶矩阵A m n B n m 的特征值 证明 也是n 阶矩阵BA 的特 征值. 6 已知3阶矩阵A 的特征值为1 2 3 求|A 35A 2 7A | 7 已知3阶矩阵A 的特征值为1 2 3 求|A * 3A 2E | 8 设矩阵??? ? ? ??=50413102x A 可相似对角化 求x

9 已知p (1 1 1)T 是矩阵???? ? ??---=2135212b a A 的一个特征向量 (1)求参数a b 及特征向量p 所对应的特征值 (2)问A 能不能相似对角化?并说明理由 10 试求一个正交的相似变换矩阵, 将对称阵??? ? ? ??----020212022化为对角 阵. 11 设矩阵????? ??------=12422421x A 与??? ? ? ? ?-=Λy 45 相似 求x y 并 求一个正交阵P 使P 1AP 12 设3阶方阵A 的特征值为1 2 2 2 3 1 对应的特征 向量依次为p 1 (0 1 1)T p 2(1 1 1)T p 3(1 1 0)T 求A . 13 设3阶对称矩阵A 的特征值 1 6 2 3 3 3 与特征值 1 6对应的特征向量为p 1 (1 1 1)T 求A . 14 设?? ? ? ? ??-=340430241A 求A 100

9 矩阵特征值计算 在实际的工程计算中,经常会遇到求n 阶方阵 A 的特征值(Eigenvalue)与特征向量(Eigenvector)的问题。对于一个方阵A,如果数值λ使方程组 Ax=λx 即(A-λI n )x=0 有非零解向量(Solution Vector)x,则称λ为方阵A的特征值,而非零向量x为特征值λ所对应的特征向量,其中I n 为n阶单位矩阵。 由于根据定义直接求矩阵特征值的过程比较复杂,因此在实际计算中,往往采取一些数值方法。本章主要介绍求一般方阵绝对值最大的特征值的乘幂(Power)法、求对称方阵特征值的雅可比法和单侧旋转(One-side Rotation)法以及求一般矩阵全部特征值的QR 方法及一些相关的并行算法。 1.1 求解矩阵最大特征值的乘幂法 1.1.1 乘幂法及其串行算法 在许多实际问题中,只需要计算绝对值最大的特征值,而并不需要求矩阵的全部特征值。乘幂法是一种求矩阵绝对值最大的特征值的方法。记实方阵A的n个特征值为λi i=(1,2, …,n),且满足: │λ1 │≥│λ2 │≥│λ3 │≥…≥│λn │ 特征值λi 对应的特征向量为x i 。乘幂法的做法是:①取n维非零向量v0 作为初始向量;②对于 k=1,2, …,做如下迭代: 直至u k+1 ∞ - u k u k =Av k-1 v k = u k /║u k ║∞ <ε为止,这时v k+1 就是A的绝对值最大的特征值λ1 所对应的特征向∞ 量x1 。若v k-1 与v k 的各个分量同号且成比例,则λ1 =║u k ║∞;若v k-1 与v k 的各个分量异号且成比例,则λ1 = -║u k ║∞。若各取一次乘法和加法运算时间、一次除法运算时间、一次比较运算时间为一个单位时间,则因为一轮计算要做一次矩阵向量相乘、一次求最大元操作和一次规格化操作,所以下述乘幂法串行算法21.1 的一轮计算时间为n2+2n=O(n2 )。 算法21.1 单处理器上乘幂法求解矩阵最大特征值的算法 输入:系数矩阵A n×n ,初始向量v n×1 ,ε 输出:最大的特征值m ax Begin while (│diff│>ε) do (1)for i=1 to n do (1.1)sum=0 (1.2)for j= 1 to n do sum=sum+a[i,j]*x[j] end for

特征值和特征向量的性质与求法 方磊 (陕理工理工学院(数学系)数学与应用数学专业071班级,陕西汉中 723000)” 指导老师:周亚兰 [摘要] :本文主要给出了矩阵特征值与特征向量的几个性质及特征值、特征向量的几种简单求法。 [关键词]:矩阵线性变换特征值特征向量

1 特征值与特征向量的定义及性质 定义1:(ⅰ)设A 是数域p 上的n 阶矩阵,则多项式|λE-A|称A 的特征多项式,则它在 c 上的根称为A 的特征值。 (ⅱ)若λ是A 的特征值,则齐次线性方程组(λE-A) X =0的非零解,称为A 的属于特征值λ的特征向量。 定义2:设α是数域P 上线性空间v 的一个线性变换,如果对于数域P 中的一数0λ存在一个非零向量ξ,使得a ξ=0λξ,那么0λ 成为α的一个特征值而ξ称为α的属于特征值0λ的一个特征向量。 性质1: 若λ为A 的特征值,且A 可逆,则0≠λ、则1-λ 为1-A 的特征知值。 证明: 设n λλλ 21为A 的特征值,则A =n λλλ 21ο≠ ∴λi≠0(i=1、2…n) 设A 的属于λ的特征向量为ξ 则ξλξi =?A 则λ1 -A ξ=ξ即有 1 -A ξ=1 -λ ξ ∴1 -λ 为1 -A 的特征值,由于A 最多只有n 个特征值 ∴1 -λ 为1 -A ξ的特征值 性质2:若λ为A 的特征值,则()f λ为()f A 的特征值 ()χf =n n a χ +1 0111 1x a x a x a n n +++-- 证明:设ξ为A 的属于λ的特征向量,则A ξ=λξ ∴ ()A f ξ=(n n A a +E a A a A a n n 011 1+++-- )ξ = n n A a ξ+ 1 1--n n A a ξ+… +E a 0 ξ =n n a λξ+1 1--n n a λ+…+E 0a ξ =()λf ξ 又ξ≠0 ∴ ()λf 是()A f 的特征值 性质3:n 阶矩阵A 的每一行元素之和为a ,则a 一定是A 的特征值

#include #include #define NUMBER 20 #define epsilon 0.001 main() { double A[NUMBER][NUMBER],X[NUMBER],G[NUMBER]; int n; int i,r,j,k; double XK[NUMBER],Y[NUMBER]; double m; double h; printf("\n gui fan hua cheng mi fa qiu ju zhen zhu te zheng zhi ji te zhen xiang liang:"); printf("\n shu ru ju zhen de wei shu n="); scanf("%d",&n); printf("\n xian zai shu ru ju zhen A:"); for(i=1;i<=n;i++) { printf("\n qing shu ru a%dl--a%d%d xi shu:",i,i,n); for(j=1;j<=n;j++) scanf("%lf",&A[i][j]); } for(i=1;i<=n;i++) X[i]=1; for(;;) { m=0; h=0; for(i=1;i<=n;i++) if(m

摘要:首先给出了求解矩阵特征值和特征向量的另外两种求法,然后运用特征值的性质讨论了矩阵合同、相似的充要条件,以及逆矩阵的求解等相关问题. 关键词:矩阵的特征多项式,特征值,特征向量,对角矩阵,逆矩阵

Abstract:Firstly,it is given matrix eigenvalues and eigenvectors of two other methods, then with the properties of eigenvalue the contract of matrix discussed,we deeply discuss the sufficient and necessary conditions for the similar matrix contract, and the inverse matrix of the related problem solving. Keywords:matrix characteristic polynomial, eigenvalue, eigenvector, diagonal matrices, inverse matrix

目录 1 前言 (4) 2 矩阵的特征值和特征向量的求法 (4) 2.1 矩阵的初等变换法 (4) 2.2 矩阵的行列互逆变换法 (6) 3 矩阵特征值的一些性质及应用 (7) 3.1 矩阵之间的关系 (7) 3.1.1 矩阵的相似 (7) 3.1.2 矩阵的合同 (7) 3.2 逆矩阵的求解 (8) 3.3 矩阵相似于对角矩阵的充要条件 (8) 3.4 矩阵的求解 (9) 3.5 矩阵特征值的简单应用 (10) 结论 (11) 参考文献 (12) 致谢 (13)

第八章 矩阵的特征值与特征向量的数值解法 某些工程计算涉及到矩阵的特征值与特征向量的求解。如果从原始矩阵出发,先求出特征多项式,再求特征多项式的根,在理论上是无可非议的。但一般不用这种方法,因为了这种算法往往不稳定.常用的方法是迭代法或变换法。本章介绍求解特征值与特征向量的一些方法。 §1 乘幂法 乘幂法是通过求矩阵的特征向量来求特征值的一种迭代法,它适用于求矩阵的按模最大的特征值及对应的特征向量。 定理8·1 设矩阵An ×n 有n 个线性无关的特征向量X i(i=1,2,…,n),其对应的特征值λi (i =1,2,…,n)满足 |λ1|>|λ2|≧…≧|λn | 则对任何n维非零初始向量Z 0,构造Zk = AZ k-1 11()lim ()k j k k j Z Z λ→∞ -= (8·1) 其中(Zk )j表示向量Z k 的第j个分量。 证明 : 只就λi是实数的情况证明如下。 因为A 有n 个线性无关的特征向量X i ,(i = 1,2,…,n)用X i(i = 1,2,…,n)线性表示,即Z 0=α1X 1 + α2X2 +用A 构造向量序列{Z k }其中 ? 21021010, ,k k k Z AZ Z AZ A Z Z AZ A Z -=====, (8.2) 由矩阵特征值定义知AXi =λi X i (i=1,2, …,n),故 ? 0112211122211121k k k k k n n k k k n n n k n k i i i i Z A Z A X A X A X X X X X X ααααλαλαλλλααλ===++ +=+++???? ??=+ ?????? ? ∑ (8.3) 同理有 1 1 11 1121k n k i k i i i Z X X λλααλ---=? ? ????=+ ????? ? ? ∑ (8.4) 将(8.3)与(8.4)所得Zk 及Z k-1的第j 个分量相除,设α1≠0,并且注意到 |λi |<|λ1|(i=1,2,…,n )得

矩阵特征值和特征向量解法的研究 周雪娇 (德州学院数学系,山东德州 253023) 摘 要:对矩阵特征值和特征向量的一些方法进行了系统的归纳和总结.在比较中能够 更容易发现最好的方法,并提高问题的解题效率. 关键词: 矩阵; 特征值; 特征向量; 解法 引言 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具.矩阵计算问题是很多科学问题的核心.在很多工程计算中,常常会遇到特征值和特征向量的计算问题,如:机械、结构或电磁振动中的固有值问题;物理学中的各种临界值等,这些特征值的计算往往意义重大.很多科学问题都要归结为矩阵计算的问题,在这里主要研究矩阵计算中三大问题之——特征值问题. 1 矩阵特征值与特征向量的概念及性质 1.1 矩阵特征值与特征向量的定义 设A 是n 阶方阵,如果存在数λ和n 维非零向量x ,使得x Ax λ=成立,则称 λ为A 的特征值,x 为A 的对应于特征值λ的特征向量. 1.2 矩阵特征值与特征向量的性质 矩阵特征值与特征向量的性质包括: (1)若i i r A 的是λ重特征值,则i i s A 有对应特征值λ个线性无关的特征向量,其中i i r s ≤. (2)若线性无关的向量21,x x 都是矩阵A 的对应于特征值0λ的特征向量,则当21,k k 不全为零时,2211x k x k +仍是A 的对应于特征值0λ的特征向量. (3)若A n 是矩阵λλλ,,,21 的互不相同的特征值,其对应的特征向量分别是 n x x x ,,,21 ,则这组特征向量线性无关.

(4)若矩阵()n n ij a A ?=的特征值分别为n λλλ,,,21 ,则 nn n a a a +++=+++ 221121λλλ,A n =λλλ 21. (5)实对称矩阵A 的特征值都是实数,且对应不同特征值的特征向量正交. (6)若i λ是实对称矩阵A 的i r 重特征值,则对应特征值i λ恰有i r 个线性无关的特征向量. (7)设λ为矩阵A 的特征值,()x P 为多项式函数,则()λP 为矩阵多项式()A P 的特征值.[]1 2 普通矩阵特征值与特征向量的求法 2.1 传统方法 确定矩阵A 的特征值和特征向量的传统方法可以分为以下几步: (1)求出矩阵A 特征多项式()A E f -=λλ的全部特征根; (2)把所求得的特征根()n i i ,,2,1 =λ逐个代入线性方程组()0=-X A E i λ, 对于每一个特征值,解方程组()0=-X A E i λ,求出一组基础解系,这样,我们也就求出了对应于每个特征值的全部线性无关的特征向量.[]2 例1 已知矩阵 ???? ? ?????-=11 111 110 A 求矩阵A 的特征值和特征向量. 解 A E -λ = 1 1 1 1 1 11 ------λλλ = ()21-λλ 所以,由()012=-λλ知A 的特征根1,0321===λλλ.

求矩阵特征向量的三种方法 文爱民 (湘南学院数学系2000级1班中国郴州 423000) 摘要:突破了只用行初等变换求矩阵特征向量的思维模式,本文引用了“特征根与特征向量的同步求解”的方法,并导出了“用列初等变换求矩阵的特征向量”的方法,理论上都给出了它们的证明.在求矩阵特征向量时,如果选择的方法 得当,将大大提高计算速度. 关键词:行初等变换列初等变换矩阵特征向量 Three methods of requesting matrix eigenvector Aimin-W en (Class 1,Grade 2000,Department of Mathematics XiangNan University ,Chenzhou 423000 ,China) Abstract: D ifferent from the thought of only considering to use row elementary Counterchange to request the eigenvector of matrix,this paper quotethe method of using “characteristic root and eigevector synchronously request solution”,and deduce the method ofusing “ier elementary counterchange to request the eigenvector”.They are deduced theoretically in the text.if the method of choice Properly when request the eigenvector of matrix will increases consumedly the calculation. Key words:row elementary counterchange;tier elementary counterchange; matrix;eigenvector. §1、定义 定义1 所谓数域P上矩阵的初等变换是指下列三种变换:1)以P中一个非零的数乘矩阵的某一行(列). 2)把矩阵的某一行(列)的c倍加到另一行(列)

求矩阵特征值算法及程序简介 1.幂法 1、幂法规范化算法 (1)输入矩阵A 、初始向量)0(μ ,误差eps ; (2)1?k ; (3)计算)1()(-?k k A V μ; (4))max (,) max ()1(1)(--??k k k k V m V m ; (5)k k k m V /)()(?μ; (6)如果eps m m k k <--1,则显示特征值1λ和对应的特征向量)1(x ),终止; (7)1+?k k ,转(3) 注:如上算法中的符号)max(V 表示取向量V 中绝对值最大的分量。本算法使用了数据规范化处理技术以防止计算过程中出现益出错误。 2、规范化幂法程序 Clear[a,u,x]; a=Input["系数矩阵A="]; u=Input["初始迭代向量u(0)="]; n=Length[u]; eps=Input["误差精度eps ="]; nmax=Input["迭代允许最大次数nmax="]; fmax[x_]:=Module[{m=0,m1,m2}, Do[m1=Abs[x[[k]]]; If[m1>m,m2=x[[k]];m=m1], {k,1,Length[x]}]; m2] v=a.u; m0=fmax[u]; m1=fmax[v]; t=Abs[m1-m0]//N; k=0; While[t>eps&&k

m0=m1; m1=fmax[v]; t=Abs[m1-m0]//N; Print["k=",k," 特征值=",N[m1,10]," 误差=",N[t,10]]; Print[" 特征向量=",N[u,10]]]; If[k ≥nmax,Print["迭代超限"]] 说明:本程序用于求矩阵A 按模最大的特征值及其相应特征向量。程序执行后,先通过键盘输入矩阵A 、迭代初值向量)0(μ、精度控制eps 和迭代允许最大次数max n ,程序即可给出每次迭代的次数和对应的迭代特征值、特征向量及误差序列,它们都按10位有效数输出。其中最后输出的结果即为所求的特征值和特征向量序列。如果迭代超出max n 次还没有求出满足精度的根则输出迭代超限提示,此时可以根据输出序列判别收敛情况。 程序中变量说明 a:存放矩阵A ; u:初始向量)0(μ和迭代过程中的向量)(k μ及所求特征向量; v:存放迭代过程中的向量)(k V ; m1:存放所求特征值和迭代过程中的近似特征值; nmax:存放迭代允许的最大次数; eps:存放误差精度; fmax[x]: 给出向量x 中绝对值最大的分量; k:记录迭代次数; t1:临时变量; 注:迭代最大次数可以修改为其他数字。 3、例题与实验 例1. 用幂法求矩阵???? ? ??---=9068846544 1356133A 的按模最大的特征值及其相应特征向量,要求误差410-

习题 1. (1) 若A 2 = E ,证明A 的特征值为1或-1; (2) 若A 2 = A ,证明A 的特征值为0或1. 证明(1)2 2A E A =±所以的特征值为1,故A 的特征值为1 (2) 2222 2 ,,()0,001 A A A X A X AX X X X λλλλλλλ===-=-==所以两边同乘的特征向量得即由于特征向量非零,故即或 2. 若正交矩阵有实特征值,证明它的实特征值为1或 -1. 证明 1,1 T T T A A A E A A A A A λλλλ -=∴==±设是正交阵,故有与有相同的特征值, 1 故设的特征值是,有=,即 3.求数量矩阵A=aE 的特征值与特征向量. 解 A 设是数量阵,则 000000000000a a A aE a a a E A a λλλλ?? ? ?== ? ??? ---= -L L L L L L L L L L L L 所以:特征值为a (n 重), A 属于a 的特征向量为 k 1(1,0,…,0)T + k 2(0,1,…,0)T + k n (0,0,…,1)T ,(k 1, k 2, …, k n 不全为0)

4.求下列矩阵的特征值与特征向量. (1)113012002-?? ? ? ??? (2)324202423?? ? ? ??? (3)??? ?? ??---122212 221 (4)212533102-?? ?- ? ?--?? ()1112221211(5) , , (0,0)0.T T n n n n a a b a a b A b b b a b a a b αβαβαβ?? ???? ? ? ? ? ? ?====≠≠= ? ? ? ? ? ? ? ? ??? ???? L M M M 其中,且 解(1) 11 3 0120,1,2,00 2A E AX λλλ λλλλ ---=-====-0,123求得特征值为:分别代入=求得 A 属于特征值1的全部特征向量为k(1,0,0)T ,(k ≠0) A 属于特征值2的全部特征向量为k(1,2,1)T ,(k ≠0) 解(2)

第3章 矩阵特征值与特征向量的计算 一些工程技术问题需要用数值方法求得矩阵的全部或部分特征值及相关的特征向量。 3.1 特征值的估计 较粗估计ρ(A )≤ ||A || 欲将复平面上的特征值一个个用圆盘围起来。 3.1.1盖氏图 定义3.1-1 设A = [a ij ]n ?n ,称由不等式∑≠=≤-n i j j ij ii a a z 1 所确定的复区域为A 的第i 个盖氏图, 记为G i ,i = 1,2,…,n 。 >≤-=<∑≠=}:{1n i j j ij ii i a a z z G 定理3.1-1 若λ为A 的特征值,则 n i i G 1 =∈ λ 证明:设Ax = λx (x ≠ 0),若k 使得∞ ≤≤==x x x i n i k 1max 因为 k n j j kj x x a λ=∑=1 ?∑≠= -n k j j kj k kk x a x a )(λ ?∑∑∑ ≠=≠=≠≤≤= -n k j j kj n k j j k j kj n k j k j kj kk a x x a x x a a 11λ ? n i i k G G 1 =? ∈λ 例1 估计方阵????? ?? ?????----=41.03.02.05.013.012.01.035.03.02.01.01A 特征值的X 围

解: G 1 = {z :|z – 1|≤ 0.6};G 2 = {z :|z – 3|≤ 0.8}; G 3 = {z :|z + 1|≤ 1.8};G 4 = {z :|z + 4|≤ 0.6}。 注:定理称A 的n 个特征值全落在n 个盖氏圆上,但未说明每个圆盘内都有一个特征值。 3.1.2盖氏圆的连通部分 称相交盖氏圆之并构成的连通部分为连通部分。 孤立的盖氏圆本身也为一个连通部分。 定理3.1-2若由A 的k 个盖氏圆组成的连通部分,含且仅含A 的k 个特征值。 证明: 令D = diag(a 11,a 12,…,a nn ),M = A –D ,记 )10(00 0)(212211122211≤≤?? ?? ? ? ? ??+??????? ??=+=εεεε n n n n nn a a a a a a a a a M D A 则显然有A (1) = A ,A (0) = D ,易知A (ε)的特征多项式的系数是ε的多项式,从而A (ε)的特征 值λ1(ε),λ2(ε),…,λn (ε)为ε的连续函数。 A (ε)的盖氏圆为:)10(,}||||:{)(11≤≤?=≤ -=∑∑≠=≠=εεεεi n i j j ij n i j j ij ii i G a a a z z G 因为A (0) = D 的n 个特征值a 11,a 12,…,a nn ,恰为A 的盖氏圆圆心,当ε由0增大到1时,λi (ε)画出一条以λi (0) = a ii 为始点,λi (1) = λi 为终点的连续曲线,且始终不会越过G i ; 不失一般性,设A 开头的k 个圆盘是连通的,其并集为S ,它与后n –k 个圆盘严格分离,显然,A (ε)的前k 个盖氏圆盘与后n –k 个圆盘严格分离。 当ε = 0时,A (0) = D 的前k 个特征值刚好落在前k 个圆盘G 1,…,G k 中,而另n –k 个特征值则在区域S 之外,ε从0变到1时, k i i G 1 )(=ε与 n k i i G 1 )(+=ε始终分离(严格) 。连续曲线始终在S 中,所以S 中有且仅有A 的k 个特征值。 注:1) 每个孤立圆中恰有一个特征值。 2) 例1中G 2,G 4为仅由一个盖氏圆构成的连通部分,故它们各有一个特征值,而G 1,G 3构

相关主题
文本预览
相关文档 最新文档