当前位置:文档之家› 气体辅助注塑成型技术简介

气体辅助注塑成型技术简介

气体辅助注塑成型技术简介
气体辅助注塑成型技术简介

气体辅助注塑成型技术简介

1.气体辅助注塑成型技术简介

气体辅助注塑成型技术是一项新兴的塑料注射成型技术,其原理是利用高压气体在塑件内部

产生中空截面,利用气体保压代替塑料注射保压,消除制品缩痕,完成注射成

型过程。气体辅助注塑成型的工艺过程主要包括塑料熔体注射、气体注射、气

体保压三个阶段。根据熔体注射量的不同,又分为短射和满射两种方式,在短

射方式中,气体首先推动熔体充满型腔,然后保压;在满射方式中,气体只起

保压作用。气体辅助注塑技术的优点主要有:

1)解决制件表面缩痕问题,能够大大提高制件的表面质量。

2)局部加气道增厚可增加制件的强度和尺寸稳定性,并降低制品内应力,减少翘曲变形。

3)节约原材料,最大可达40%~50%。

4)简化制品和模具设计,降低模具加工难度。

5)降低模腔压力,减小锁模力,延长模具寿命。

6)冷却加快,生产周期缩短。

气体辅助注塑成型技术与普通注塑成型工艺相比,有着无可比拟的优势,被誉为

注塑成型工艺的一次革命,在家电、汽车、家具、日常用品等几乎所有塑料制件领

域得到广泛应用。在

家电领域,电视机壳特别是大屏幕彩电前壳是最早也是最广泛采用气辅注塑成

型技术的制品之一。

3.气辅制品和模具设计基本原则

(1)设计时先考虑哪些壁厚处需要掏空,哪些表面的缩痕需要消除,再考虑如何连接这些

部位成为气道。

(2)大的结构件:全面打薄,局部加厚为气道。

(3)气道应依循主要的料流方向均衡地配置到整个模腔上,同时应避免闭路式气道。(4)气道的截面形状应接近圆形以使气体流动顺畅;气道的截面大小要合适,气道太小可

能引起气体渗透,气道太大则会引起熔接痕或者气穴。

(5)气道应延伸到最后充填区域(一般在非外观面上),但不需延伸到型腔边缘。

(6)主气道应尽量简单,分支气道长度尽量相等,支气道末端可逐步缩小,以阻止气体加

速。

(7)气道能直则不弯(弯越少越好),气道转角处应采用较大的圆角半径。

(8)对于多腔模具,每个型腔都需由独立的气嘴供气。

(9)若有可能,不让气体的推进有第二种选择。

(10)气体应局限于气道内,并穿透到气道的末端。

(11)精确的型腔尺寸非常重要。

(12)制品各部分匀称的冷却非常重要。

(13)采用浇口进气时,流动的平衡性对均匀的气体穿透非常重要。

(14)准确的熔胶注射量非常重要,每次注射量误差不应超过0.5%。

(15)在最后充填处设置溢料井,可促进气体穿透,增加气道掏空率,消除

迟滞痕,稳定制品品质。而在型腔和溢料井之间加设阀浇口,可确保最后充填

发生在溢料井内。

(16)气嘴进气时,小浇口可防止气体倒流入浇道。

(17)进浇口可置于薄壁处,并且和进气口保持30mm以上的距离,以避免气体渗透和倒流。

(18)气嘴应置于厚壁处,并位于离最后充填处最远的地方。

(19)气嘴出气口方向应尽量和料流方向一致。

(20)保持熔胶流动前沿以均衡速度推进,同时避免形成v 字型熔胶流动前沿。(21)采用缺料注射时,进气前未充填的型腔体积以不超过气道总体积的一半为准。(22)采用满料注射时,应参照塑料的压力、比容和温度关系图,使气道总

体积的一半约等于型腔内塑料的体积收缩量。

4.气道截面形状及尺寸参数

气辅模具中气道截面形式主要有拐角处、筋根部和气道连接段三种,如表 1 所示。表1 气道截面形式及参数

说明气道截面形式尺寸参

数说明

l= (1~2) t2h= ( 1~2) t1r= ( 1~2)tr = ( 0.2~0.5 )tt = (t1+t2 )/2t1 、t2 ≤4

用于制件拐角处,根据制件结构具体选取截面形式,根据制件大小确定尺寸参数,

制件大者取上限,制件小者取下限。

b=(2~4) t1h= ( 0.5~0.7 )br= ( 0.5~0.7 ) br = ( 0.2~0.5 )t1h= (5~10)t1t2= (0.5~1 ) t1t1 ≤ 4 用于制件加强筋根部,根据制件结构具体选取截面形式,根据

制件大小确定尺寸参数,制件大者取上限,制件小者取下限。

b=(2~4)th= ( 0.5~0.7 )br=( 0.5~0.7 )br = (0.2~0.5 )t1t1 ≤ 4 用于制件中气

道的连接,截面形式和尺寸参数应与所连接的气道相一致。

5.进气方式的确定原则

气辅注塑成型的进气方式可分为喷嘴进气和模具进气两种,采用喷嘴进气需改造注塑机的喷

嘴,使其既有熔体通路也有气体通路,在熔体注射结束后切换到气体通路实现气体注射;采

用模具进气不需改造注塑机的喷嘴,但需在模具中开设气体通路并加设专门的进气元件(气

针),在气体压力控制下工作,引导气体进入模具型腔。

进气方式的选用要视制品的具体情况而定,采用喷嘴进气方式,塑料与气体通过同一流道并且流动填充方向一致,其原理与传统注塑几乎没有区别,而采用模具气针进气方式,会有气体的流动方向与塑料流动方向相反的情况,因此,在电视机前壳中使用喷嘴进气方式更为合

理。模具气针进气方式一般用于热流道模具或制件需要加强部位离浇口比较远的情况,如电视机后壳模具及一些流长较大的长条形制品。

6.模具进气元件的典型结构

模具进气元件一般为气针,由针体和针阀组成,其装配关系和推荐尺寸见下页

所示。由于气针在注射过程中容易被堵塞,为了便于拆卸清洗,气针一般都由

模具正面装入。

7.气辅成型常见问题及对策

常见的气体辅助注塑制品缺陷包括表面凹陷、流痕、银纹、亮痕、迟滞痕,气体进入薄壁(手指效应),制品爆裂,困气,气体填充不均,气体吹破流动前锋,因气体注入时引起熔体流

动前沿流动缓慢而造成制品表面不光滑、漏气、无法进气或无法排气等等。由于影响气体辅助注塑成型的因素比一般注塑成型显著增多,因此必须针对各种缺陷具体分析其产生原因并找出相应的解决方法,才能确保气辅注塑成型技术的成功应用。表 2 为气辅注塑制品常见缺陷及消除措施,表 3 为气辅注塑制品常见表面缺陷原因分析及消除措施,可以作为诊断气辅制品缺陷的参考。

表 2 气辅注塑制品常见缺陷及消除措施

制品缺陷消除措施注塑不充分气体贯穿无腔室或腔室太小缩凹制品肿胀制品成型不充分腔室错位腔室不对称脱模后产品爆裂切换痕迹表面缺陷光泽不同内部发泡制品翘曲脱模困难重量不稳定气体通道壁太薄手指效应气体进入螺杆筒预填充程度提高 o o o o

降低 o o o

注射速度加快 o o o o

减慢 o o o o o

熔体温度提高 o o o o o o

降低 o o o o o o o

熔体保压压力提高 o o

降低

熔体保压时间延长 o o

缩短

注嘴温度提高 o o o 降低 o

背压提高 o o o o

降低

气体压力提高 o o o o o o o o

降低 o o o o o o o o

气体延迟时间延长 o o o o o

缩短 o o o o o o

气体保压时间延长 o o o o o o

缩短 o o o o o

气体压力清除时间延长 o o o

缩短 o o o o o

气体压力曲线设定 o o o o o o o o o o

模具温度提高 o o o o

降低 o o o o

模具排气改进 o o o o

塑料流动性提高 o o o

降低 o o o o

塑料干燥烘干 ? o o

浇口直径加大 o o o o o o o o o

减小 o

浇口位置改进 o o o o o o o o o

浇道尺寸加大 o o o o o o o

减小

壁厚加大

减小 o o

气道尺寸加大 o o o o o o o o

减小 o

侧腔 ( 溢料井 ) 使用 o o o o

管路连接好 ? o o o

泄露 ? o o o

模具注嘴故障 / 阻塞 ? o o o o o

控制正确 ? o o o o o o o o

表 3 气辅注塑制品常见表面缺陷原因分析及消除措施

常见表面缺陷原因分析消除措施

修改浇口类型,或者增大浇制件表面银纹( streak )浇口处料流速度过快,剪切速

率过大

口尺寸,减小料流速度

波纹状流动痕迹( wave mark)原因是由于注塑保压阶段制件体积收缩,型腔内补充进来的

熔料与已经冷却的塑料温度有差异 可以通过提高保压压力、减少保压时间,或者适当提高

模温来解决

料流末端出现流痕 气辅成型过程中由于短射进气, 在延迟时间阶段熔料冷却 可以设置溢料

井,变短射进气为满射进气

熔料流动滞料,出现迟滞现象 (hesitation) 原因或者是一股或几股料流限制了另一股料流 的流动,或者是局部壁厚尺寸较小,熔料在此流动速度很慢 可以增加局部壁厚,改变塑件

的流动形态 制件表面亮痕 1. 引起制件表面亮痕的主要原因是成型用材料的差异。 结晶型材料(例如 pp ) 往往会产生亮痕,而非晶型材料(例如 abs,ps )则一般不会产生亮痕 2. 引起亮痕的另外一 个原因是气道与薄壁连接部分轻微缩凹 1. 用颜色比较深的材料成型,例如蓝色,红色,黑 色等 2. 在气道附近作皮纹,最大可能地掩饰亮纹带来的影响 3. 减小气体保压压力,若为短 射进气应稍微延长延迟时间,从而使气体穿透后气道形状接近圆形 气道与薄壁连接处缩凹 气道由于气体穿透, 导致气道与薄壁接触部分壁厚较大 1. 在气道与 薄壁接触位置增设防缩槽

2. 气道与薄壁连接处尽量不采用圆角过渡

3. 尽量增大气道表面积, 以利于迅速冷却 气体穿透不均 1. 熔体流动不平衡 2. 气道布局不合理 3. 模具精度差,导致塑件壁厚不均 1. 修改浇口布局 2. 修改气道布局 3. 提高模具制造精度 气体反灌入浇口 1. 气针距浇口太近 2. 浇口尺寸过大 3. 浇口处冷却不够

4. 气体注射压力过 大 1. 气针距浇口 30mm 以上 2. 减小浇口尺寸 3. 加强浇口处冷却 4. 减小气体注射压力 8. 气体辅助注塑成型过程中的压力变化

气体辅助注塑成型过程中的压力 - 时间曲线如图 1 所示,其中 p1 为注射压力, p2 和 p3 为气体压力。 0- t1 为熔体注射阶段,在 t1 时刻关闭喷嘴,熔体停止注射; t1- t2 为延迟时间,在 t2 时刻开始注气; t2- t3 为第一段气体保压时间, t3- t4 为压力转换时间, t4- t5 为第 二段气体保压时间, t5- t6 为气体压力撤除时间, 在 t6 时刻整个气体保压阶段结

束; t6- t7 为制件冷却时间。 p

0 t1 t2 t3 t4 t5 t6 t7 t

图 1 气体辅助注塑成型过程中的压力 - 时间曲线

9.气体辅助注塑成型工艺与c ae 分析

气体辅助注塑成型工艺过程涉及到高分子熔体和高压气体的气液两相流动及相

互作用问题,因此使得气体辅助注塑成型工艺实现过程的设计参数和控制参数

大大增加。其主要的难点

有:1、确定塑料熔体和气体的最佳注射量、注射压力和填充时间。2、确定注入熔体和氮气的切换时间。3、确定注入氮气的压力控制分布曲线。4、预测熔体在型腔内的流动及气体的穿透情况。5、防止困气、吹穿、气体进入薄壁。6、计算所需的锁模力和保压时间。这些都需要通过成熟的cae 气辅分析并在实际的注塑过程中经实验确定。

本公司采用美国 moldflow 公司料流分析软件 mpi3.0 进行气辅分析,改进气道的布局、尺寸和模具设计,并在计算机上完成改模、试模仿真过程,预测熔体及气体在型腔内的流动及穿

透情况,优化制品和模具设计,改进气道布局,优化成型工艺参数,可大大提

高气辅技术应用的可行性和可靠性。

电视机前壳模具的注射量一般在 90%-98%之间,一般以气道体积的一半作为熔体注射阶段缺料体积,气体压力一般控制在 20~ 30mpa,保压时间与制件大小、壁厚及冷却效果有关,一般在 10~30s 之间。

注塑成型工艺流程及工艺参数

注塑成型工艺 塑件的注塑成型工艺过程主要包括合模-——填充——保压——冷却——脱模等5个阶段。 工艺流程 这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。[1] 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。 低速填充。热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度; 反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成型,保压阶段要一直持续到浇口固化封口为止,此时保压阶段的模腔压力达到最高值。

薄壁注塑成型技术的研究进展

薄壁注塑成型技术的研究进展 摘要:由于3C产品向轻、薄、短、小方向发展得越来越快,所以薄壁注塑成型技术也受到人们的高度重视,而薄壁注塑成型数值模拟技术是薄壁注塑成型技术得以应用的重要保证。本文介绍了薄壁注塑成型技术产生的背景和科学意义,综述了薄壁注塑成型中的制品设计、模具设计、注塑机和材料选用以及薄壁注塑成型数值模拟技术的研究与应用概况,探讨了薄壁注塑成型数值模拟技术发展中所面临的一些关键问题,指出了薄壁注塑成型数值模拟技术的研究发展方向。关键词:薄壁注塑成型;模具设计;数值模拟;流长厚度比;冷凝层。近年来,笔记本电脑和移动电话等3C(Computer, Communication and Consumer)产品更新换代的速度非常快,这类产品的设计理念正朝着“轻、薄、短、小”方向发展,同时人们对这些产品的需求也在快速增长,于是在常规注塑成型(Conventional Injection Molding, CIM)技术的基础上,薄壁注塑成型(Thin-Wall Injection Molding , TWIM)技术迅速发展起来。薄壁化因具有减小产品重量及外形尺寸、便于集成设计及装配、缩短生产周期、节约材料和降低成本等优点成为塑料消费行业追求的目标,已成为塑料成型行业中新的研究热点。薄壁注塑成型技术是一种仅有十几年发展历史的新兴技术,其理论体系尚未形成,缺少系统性的研究,而薄壁注塑成型数值模拟研究也只是近几年才提出的,还有许多理论上和实践中的问题尚待解决。薄壁注塑成型技术的概念目前关于薄壁注塑成型还没有统一的定义,Mahishi 和Maloney把其定义为流长厚度比L/T(L:Length,流动长度;T:Thickness,塑件厚度;L/T也简称为流长比)在100或者150以上的注塑为薄壁注塑;而Whetten和Fasset是这样定义薄壁注塑成型的:所成型塑件的厚度小于1mm,同时塑件的投影面积在50cm2以上的注塑成型。由此可见要给出一个统一的定义还是比较困难的;同时随着技术的发展,薄壁注塑成型定义的临界值也将发生变化,它应该是一个相对的概念。常规注塑成型工艺已为人们所熟悉,但薄壁注塑成型则不然,因为随着壁厚的减薄,聚合物熔体在型腔中的冷却速度加剧,在很短的时间内就会固化,这使得成型过程变得复杂,成型难度加大,常规的注塑成型工艺条件已不能满足需要。常规注塑成型的一个不足就是填充过程和冷却过程往往是交织在一起的,但由于常规塑件的尺寸比较大,所以对成型过程影响不大,但在薄壁注塑成型中这个不足就成为致命的问题。所以,不能把常规注塑成型中的理论和操作简单地照搬到薄壁注塑成型中去。薄壁注塑成型中的制品设计、模具设计、注塑机及材料选用薄壁制品的设计思想和方法更为复杂,并进一步受到成型局限及材料选择的影响。薄壁制品要求应该具有高的冲击强度、良好的外观质量和尺寸稳定性,并能承受大的静态载荷,成型材料的流动性要好。设计过程中要重点考虑制品的刚性、抗冲击性和可制造性。成型薄壁制品时一般需要专门设计的薄壁制品专用模具。与常规制品的标准化模具相比,薄壁制品的模具从模具结构、浇注系统、冷却系统、排气系统和脱模系统等都发生了重大变化。主要表现在以下几个方面:(1)模具结构:为承受成型时的高压,薄壁成型模具的刚度要大、强度要高。因此模具的动、定模板及其支承板重量较大,厚度通常比传统模具的模板要厚。支撑柱要多,模具内可能要多设置内锁,以保证精确定位和良好的侧支撑,防止弯曲和偏移。另外,高速射出速度增加了模具的磨损,因此模具要采用较高硬度的工具钢,高磨损、高冲蚀区(如浇口处)硬度应大于HRC55。(2)浇注系统:成型薄壁制品,特别是制品厚度非常小时,要使用大浇口,而且浇口应该大于壁厚。如是直浇口应设置冷料井,以减少浇口应力,协助填充,减少制品去除浇口时的损坏。为保证有足够的压力充填薄的模腔,流道系统中应尽可能减少压力降。为此,流道设计要比传统的大一些,同时要限制熔体的驻留时间,以防止树脂降解劣化。当是一模多腔时,浇注系统的平衡性要求远高于常规模具的要求。值得注意的是薄壁制品模具的浇注系统中还引入了两项先进技术,即热流道技术和顺序阀式浇口(SVG)技术。(3)冷却系统:薄壁制品不像传统壁厚件那样可以承受较大的因传

气体辅助注塑成型的原理及优点

气体辅助注塑成型的原理及优点 气体辅助注塑成型具有注射压力低、制品翘曲变形小、表面质量好以及易于加工壁厚差异较大的制品等优点,近年来发展很快。它在发达国家用于商业化的塑料制品生产差不多已有20多年。气体辅助注塑成型包括塑料熔体注射和气体(一般采用氮气)注射成型两部分。与传统的注射成型工艺相比,气体辅助注塑成型有更多的工艺参数需要确定和控制,因而对于制品设计、模具设计和成型过程的控制都有特殊的要求。 气体辅助注射成型过程首先是向模腔内进行树脂的欠料注射,然后把经过高压压缩的氮气导入熔融物料当中,气体沿着阻力最小方向流向制品的低压和高温区域。当气体在制品中流动时,它通过置换熔融物料而掏空厚壁截面。这些置换出来的物料充填制品的其余部分。当填充过程完成以后,由气体继续提供保压压力,将射出品的收缩或翘曲问题降至最低。 气体辅助注塑成型的优点: 低的注射压力使残余应力降低,从而使翘曲变形降到最低; 低的注射压力使合模力要求降低,可以使用小吨位的机台; 低的残余应力同样提高了制品的尺寸公差和稳定性; 低的注射压力可以减少或消除制品飞边的出现; 成品肉厚部分是中空的,从而减少塑料,最多可达40%; 与实心制品相比成型周期缩短,还不到发泡成型的一半; 气体辅助注塑成型使结构完整性和设计自由度大幅提高; 对一些壁厚差异较大的制品通过气辅技术可以一次成型; 降低了模腔内的压力,使模具的损耗减少,提高其工作寿命; 减少射入点,气道可以取代热流道系统从而使模具成本降低; 沿筋板和凸起根部的气体通道增加了刚度,不必考虑缩痕问题; 极好的表面光洁度,不用担心会像发泡成型所带来的漩纹现象。 运用气体辅助注塑成型技术后允许设计人员将产品设计得更加复杂,而模具制造商则能够简化模具结构。制品功能不断增加和制品组件的减少使得生产周期缩短,无须进行装配和后期修整工作。在成型CD托盘和机动车电子中心压配层板的生产中表明气体辅助注塑成型能够应用于薄壁制品的生产制造。尺寸稳定性的提高,制品残余应力的减少以及翘曲量的降低是气体辅助注塑成型技术的一个主要优点。气体辅助注塑成型技术的应用将变得越来越复杂多样。现在,可用气体辅助注塑成型技术生产质量从30g~18kg的制品。

注塑成型新工艺

注塑转移成型 一种被称作注塑转移成型(ITM)的新工艺不仅可以使多腔成型的热塑性塑料小零件获得很好的一致性,还可以得到更好的成型质量。这种借鉴了热固性塑料转移成型工艺的新工艺是将“使用热流道注塑”和“压力成型”进行组合的工艺。 据塑料加工研究院的注塑成型和模具技术部门介绍,在传统的热流道注塑成型中,熔体进入多个腔室的温度和压力是不一样的,这意味着每个腔室具有不同的粘度、不同的填充量和不同的冷却状况,最终将导致零件的尺寸和性能也不相同。此外,传统注塑模具的另一个局限性是,通常对热流道的设计都是针对具体的模具或物料,对于完全不同的模具或物料而言,这个热流道就不一定适用了。 为此,塑料加工研究院研制了一种模具。在模具的固定侧采用了特殊的电加热,在热半模里有一个熔体转移室,用来储存来自螺杆的熔体,并借助于一个活塞/气缸系统把熔体转移到模腔里去;冷半模在移动压板一侧。利用固定在半模里的隔热板来减少冷、热半模之间的热传导。当模具的开模线合拢时,活塞/气缸系统对熔体转移室施压,通过短门,将物料直接推入模腔。在这个系统里,注塑和保压是由静止不动的模具而不是通过螺杆来实现的。在保压阶段之后,转移室开始充填下一个周期的物料。在这个过程中,主开模线(它的开与合都与转移室的动作互不相干)一直保持合拢,直到加工件充分冷却为止。 据说,这种工艺具有许多好处。模具的熔体转移部分与该部分的几何形状无关,因此无需为不同的模具而做相应的改变;由于注塑体积是由腔室的运动距离来决定的,所以可以降低多腔模具的造价,同时不需要再使用昂贵的热流道温度控制器;因为熔体的通道很短,而且熔体是直接从蓄集室的门进入模腔,所以所需要的压力比传统热流道可提供的压力更低,熔体完全能够均匀地充满所有模腔;作用在熔体上的剪切力和应力更小了,有利于长玻纤增强料或者瓷粉掺混料的成型,并使得加工件的收缩率和翘曲变形更小。 目前,塑料加工研究院已经使用了多达12个模腔的模具对长玻纤增强聚丙烯材料进行注塑成型试验,并取得了成功。据说,他们很快就会用超过100个模腔的模具来进一步测试这种工艺。

气体辅助注塑

1 气体辅助注塑成型是通过把高压气体引入到制件的厚壁部位,在注塑件内部产生中空截面,完全充填过程、实现气体保压、消除制品缩痕的一项新颖的塑料成型技术。传统注塑工艺不能将厚壁和薄壁结合在一起成型,而且制件残余应力大,易翘曲变形,表面时有缩痕。新发展的气辅技术通过把厚壁的内部掏空,成功地生产出厚壁、偏壁制品,而且制品外观表面性质优异,内应力低。轻质高强。现已开发成功气辅产品结构和模具设计包括浇注系统、进气方式和气道分布设计技术,气辅注塑工艺设计技术,气辅注塑工艺设计技术,气辅注塑过程计算机仿真技术,气辅注塑产品缺陷诊断与排除技术,气辅工艺专用料技术。 电视机、家电、汽车、家具、日常用品、办公用品、玩具等为塑料成型开辟了全新的应用领域,气辅注塑技术特别适用于管道状制品、厚壁、偏壁(不同厚度截面组成的制件)和大型扁平结构零件。 气体辅助装置:包括氮气发生和增压系统,压力控制单元和进气元件。投资约40--200万元(视规模和对设备要求的档次不同而不同)。气辅工艺能完全与传统注塑工艺(注塑成型机)衔接。 减轻制品重量(省料)可高40%,缩短成型周期(省时达30%,消除缩痕,提高成品率;降低注塑压力达60%,可用小吨位注塑机生产大制件,降低操作成本;模具寿命延长、制造成本降低,还可采用如粗根、厚筋、连接板等更稳固的结构,增加了模具设计自由度。通常6-18个月可收回增加的设备成本(具 体经济效益随制件而议)。 2 气体辅助注塑系统,这个先进的系统和技术,是把氮气经由分段压力控制系统直接注射入模腔内的塑化塑料裹,使塑件内部膨胀而造成中空,但仍然保持产品表面的外形完整无缺。 应用气体辅助注塑技术,有以下优点: 1)节省塑胶原料,节省率可高达50%。 2)缩短产品生产周期时间。 3)降低注塑机的锁模压力,可高达60%。 4)提高注塑机的工作寿命。 5)降低模腔内的压力,使模具的损耗减少和提高模具的工作寿命。 6)对某些塑胶产品,模具可采用铝质金属材料。 7)降低产品的内应力。 8)解决和消除产品表面缩痕问题。 9)简化产品繁琐的设计。 10)降低注塑机的耗电量。 11)降低注塑机和开发模具的投资成本。 12)降低生产成本。 气体辅助注塑技术,可应用于各种塑胶产品上,如电视机或音响外壳、汽车塑料产品、家私、浴室、橱具、 家庭电器和日常用品、各类型塑胶盒和玩具等等。 气体辅助注塑技术在注塑行业中必定被受广泛应用。

气辅注塑与水辅的技术比较

气辅注塑与水辅注塑基于相似的工艺技术,因此,其适用范围也类似。那么,这两种技术之间的差别在哪里?这两种技术各自的适用范围都在哪里? 气辅注塑成型作为一项非常成熟的技术已经在塑料加工业有了多年的应用历史,其中该技术一个最重要的应用领域就是厚壁塑件的生产,例如生产手柄及其类似产品等。板型件或其他具有局部加厚区的塑件也是气辅注塑重要的应用领域。 与之相对应的水辅注塑成型技术却是一项新技术,从德国塑料加工研究所(IKV)公布水辅注塑技术的初步成果到现在还只有六个年头,然而,这种技术一直快速发展着。水辅注塑技术发明不久,人们便利用该技术加工出一种超市手推车配件。之后,人们利用水辅注塑成型批量生产的手柄与截面积大的杆形塑件。从实际生产来看,具有功能空间或流道的塑件开始越来越多地应用水辅注塑成型技术。 巴顿菲尔以IKV完成的基础研究和其在气辅注塑技术领域的经验为基础,开发出了组合式水辅注塑成型生产系统。该生产系统由压力产生器、压力控制模块和控制装置组成。同时,适应特殊要求的专用注射器组件也被开发出来。巴顿菲尔拥有经销商标名为“Airmold”(气辅注塑)和“Aquamold”(水辅注塑)的两种产品。 水与氮气的比较优势 气辅注塑技术被用于生产杆型部件时能够减轻部件重量与周期时间。气辅注塑也有助于大幅降低或者完全消除平面塑件的壁厚区域、变形和皱缩痕迹,从而提高塑件质量。 水的导热率约为氮气的40倍,热容量是氮气的4倍。除了普通模具冷却以外,注水会引起塑件的“内部冷却”,与气体相比,冷却时间缩短达70%,塑件达到所需脱模温度要快很多。同时,水也是一种不可压缩和价廉的介质。 用水来代替氮气将使模腔内表面质量更好。除了可以加工更大的部件以外,水辅注塑形成更均匀的壁厚,降低了残余壁厚。 水辅注塑与气辅注塑可以被用于不同的工艺方法中。他们在机器的使用方面并无不同,但在模具设计与工艺控制上有所区别。水辅注塑是类似气辅注塑的两步过程:首先模腔部分完全地被熔体填充;在第二步中,注射水形成空腔。 水辅注塑设备的特点 水辅注塑设备的设计必须满足与气辅注塑相近的条件。这是因为多数工艺技术是以气辅注塑为基础。但是,水辅注塑也有其自身的特点。从塑件上看,除排水与排除氮气相比更为复杂,需要通过重力以及通入压缩气体完成塑件的“排水”。为了防止腐蚀,水一定不能与模具表面接触。 水辅注塑需要极高的注水能力确保壁厚分布均匀以及高的表面质量。为此,巴顿菲尔开发出了合适的压力控制模式。供水装置在极高的流速下运转,可以达到350bar的压力。为了把水注入到熔体中,必须利用截面积比气辅注塑大的注射组件,这对于水以足够速度渗透到熔体中是必不可少的。 巴顿菲尔的水辅注塑压力生成装置被设计成独立式装置,能同时向多台注塑机提供压力。通过Unilog B4移动控制装置对水压调控组件进行控制,一般来说,它们也可以被用在其他制造商出品的机器上。 气辅与水辅的经济性对比 为了对塑件的经济生产做出正确决策,巴顿菲尔与科隆理工大学合作,利用实验性模具比较了以下5种工艺: 传统注塑 短射出气辅注塑 全射出气辅注塑 短射出水辅注塑 全射出水辅注塑 为了获得有意义的结果,有必要利用在所有工艺中都采易于处理的材料。然而,原材料制造商刚刚开始优化水辅注塑用材料。当由水辅注塑进行塑料加工时,一些材料易于形成泡沫、缩孔或侧槽。另外,还有一些材料会因为水的原因引起开裂、起泡与不可复制的性能。在一些玻纤填充材料中,玻纤可能会被洗掉,导致粗糙的内表面。因此,本实验选择了以下三种材料: 拜耳的PA66 Durethan BKV 30GH 杜邦的PBT Crastin T803 帝斯曼的PP。 塑件是在巴顿菲尔TM 4500/2800 Unilog B4注塑机上进行加工的。该塑机锁模力为4500kN,装备有用于气辅与水辅注塑模式的界面。水辅注塑模具一般比气辅模具要贵,其原因是制造模具所用的钢材不同。水辅注塑模具所用的钢材质量更高(坚固的镀镍层或氮化钛涂层对于保护水辅注塑模具不受腐蚀是必不可少的)。

气体辅助注塑成型技术简介

气体辅助注塑成型技术简介 气体辅助注塑成型技术简介类型:气体辅助注塑成型是欧美近期发展出来的一种先进的注塑工艺,它的工作流程是首先向模腔内进行树脂的欠料注射,然后利用精确的自动化控制系统,把经过高压压缩的氮气导入熔融物料当中,使塑件内部膨胀而造成中空,气体沿着阻力{TodayHot}最小方向流向制品的低压和高温区域。当气体在制品中流动时,它通过置换熔融物料而掏空厚壁截面,这些置换出来的物料充填制品的其余部分。当填充过程完成以后,由气体继续提供保压压力,解决物料冷却过程中体积收缩的问题。 气体辅助注塑成型优点为什么人们对于气体辅助注射成型的兴趣如此之大呢?其主要的原因在于这种方法出现时所许诺的种种优点。成型者希望以低制造成本生产高质量的产品。在不降低质量的前提下用现代注塑机和成型技术可以缩短生产周期。通过使用气体辅助注射成型的方法,制品质量得到提高,而且降低了模具的成本。使用气体辅助注射成型技术时,它的优点和费用的节约是非常显着的。 1、减少产品变形:低的注射压力使内应力降低,使翘曲变形降到最低; 2、减少锁模压力:低的注射压力使合模力降低,可以

使用小吨位机台; 3、提高产品精度:低的残余应力同样提高了尺寸公差和产品的稳定性; 4、减少塑胶原料:成品的肉厚部分是中空的,减少塑料最多可达40%; 5、缩短成型周期:与实心制品相比成型周期缩短,不到发泡成型一半; 6、提高设计自由:气体辅助注射成型使结构完整性和设计自由度提高; 7、厚薄一次成型:对一些壁厚差异大的制品通过气辅技术可一次成型; 8、提高模具寿命:降低模腔内压力,使模具损耗减少,提高工作寿命; 9、降低模具成本:减少射入点,气道取代热流道从而使模具成本降低; 10、消除凹陷缩水:沿筋板和根部气道增加了刚度,不必考虑缩痕问题。第一阶段:按照一般的注塑成型工艺把一定量的熔融塑胶注射入模穴; 第二阶段:在熔融塑胶尚未充满模腔之前,将高压氮气射入模穴的中央; 第三阶段:高压气体推动制品中央尚未冷却的熔融塑胶,一直到模穴末端,最后{HotTag}填满模腔;

气辅成型技术

气辅成型技术在注塑业中又称气体辅助住宿和中空成型,在近10年来发展起来的革新成型技术,也可说是注塑技术的第二次革命。目前该技术主要用于汽车、大型家电等大件注塑行业。 其主要原理是:先注入一定量的熔融塑胶(通常为90%-98%,以产品的总胶量而言)可通过分析计算+经验。然后再在熔融塑胶内注入高压氮气,高压氮气在熔融的塑胶内沿预设的路径形成气道(最好是和流向一致当然有特殊具体情况你决定)。使不到100%的熔融塑胶充满整个模腔,此后进入保压阶段,同时冷却,最后排气、脱模。高压氮气进入塑料后自然会穿越粘度低(温度高)和低压的部位,并中在冷却过程中利用气体高压来保压而紧贴模具壁成型。 此项技术除需传统注塑设备外,还需所体辅助注塑控制系统(新科益有MDI控制器)。 与传统的注塑成型相比,气体辅助注塑成型有下列优点: 1.减少内部的残留应力,从而减弱甚至完全消除翘曲变形状况,同时增加其机械强度和刚性。 2.成品壁厚部分的中央是中空的,可以减少原料,特别是短射和中空型的模具,塑料最多可以节约达30%。 3.减少或消除加强筋造成的表现收缩凹陷现象。 4.降低制品的收缩不均,提高制品的精密度。 5.设备耗减,大量减少锁模力,可以用小吨位的注塑机替代大吨位的注塑机。 6.利用气道来形成加强结构,提高成品的强度。 7.减少射入点。 8.缩短成期。 9.厚薄比大的制品也能通过气辅一次成型。 10。改变传统成品设计观念,能使用一体化设计来减少附属的零组件。 缺点: 1.由于所体具有压缩特征因而不容易作精确控制,加上对周围操作环境敏感,因此工艺的重复性与稳定性比传统工艺差。 2.国内技术和经验问题导致资源较浪费(废品率高)。 目前用于的产品有:汽车门把手、座椅、保险杠、门板、电视机外客、空调、冰箱、马桶........你说呢 曾做过:汽车门把手、门板、雪上摩托前罩三类7款。 气体辅助注塑成型的预注塑部分与普通注塑成型一样,主要增加了一个氮气注射和回收系统。根据注气压力产生方式的不同,目前,常用的气体注射装置有以下两种: (1)不连续压力产生法即体积控制法,如Cinpres公司的设备,它首先往汽缸中注入一定体积的气体(通常是氮气),然后采用液压装置压缩,使气体压力达到设定值时才进行注射充填。大多数的气辅注塑成型机械都采用这种方法,但该法不能保持恒定的高压力。 (2)连续压力产生法即压力控制法,如Battenfeld公司的设备,它是利用一个专用的压缩装置来产生高压气体。该法能始终或分段保持压力恒定,而且其气体压力分布可通过调控装置来选择设定。 气辅技术为许多原来无法用传统工艺注射成型的制件采用注射成型提供了可能,在汽车、家电、家具、电子、日常用品、办公自动化设备、建筑材料等几乎所有塑料制件领域已经得到了广泛地应用,并且作为一项带有挑战性的新工艺为塑料成型开辟了全新的应用领域。当前,气辅技术尤其适用于以下几方面的注塑制品: 管状、棒状制品: 如手柄、挂钩、椅子扶手、淋浴喷头等,采用中空的结构,可在不影响制品功能和使用性能的前提下,大幅度节省原材料,缩短冷却时间和生产周期。 大型平板制件: 如汽车仪表板、内饰件格栅、商用机器的外罩及抛物线形卫生天线等。通过在制件内设置内置式气道,可以显著提高制品的刚度和表面质量,减少翘曲变形和表面凹陷,且大幅度地降低锁模力,实现在较小的机器上成型较大的制件。 厚、薄壁一体的复杂结构制品: 如电视机、计算机用打印机外壳及内部支撑和外部装饰件等。这类制品通

注塑成型工艺培训资料

注塑成型技术培训资料 一、如何解决注塑产品存在的品质缺陷 1、注塑产品存在的品质缺陷: 塑料制品的成型加工过程中,由于加工设备不一,成型性能各异,原料品种繁多,加之设备的运行状态,模具的型腔结构、物料的流变性筹多种因素错综变化的影响,使得塑料的内在及外观质量经常会出现各种各样的成型缺陷。常见的外观缺陷有:缩水、飞边、黑点、流纹、熔接线、亮纹、缺胶、气泡、料花等。 2、如何解决缩水 ●缩水产生的原因 制件在模具中冷却时,由于制件的胶厚不一致而导致塑胶收缩不均匀而引起的凹痕。解决缩水的原理是:在制件冷却过程中,熔胶不断补充制件收缩引起的空缺。因此在正常情况下要保证熔胶补充的通道不受阻和足够的补充压力。 ●在注塑工艺上的解决办法: (1)注塑条件问题: ①注射量不足; ②提高注射压力; ③增加注射时间; ④增加保压压力或时间; ⑤提高注射速度; ⑥增加注射周期; ⑦操作原因造成的注射周期反常。 (2)温度问题: ①物料太热造成过量收缩; ②物料太冷造成充料压实不足; ③模温太高造成模壁处物料不能很快固化; ④模温太低造成充模不足; ⑤模子有局部过热点; ⑥改变冷却方案。 (3)模具问题: ①增大浇口;

②增大分流道; ③增大主流道; ④增大喷嘴孔; ⑤改进模子排气; ⑥平衡充模速率; ⑦避免充模料流中断; ⑧浇口进料安排在制品厚壁部位; ⑨如果有可能,减少制品壁厚差异; ⑩模子造成的注射周期反常。 (4)设备问题: ①增大注压机的塑化容量; ②使注射周期正常; (5)冷却条件问题: ①部件在模内冷却过长,避免由外往里收缩,缩短模子冷却时间; ②将制件在热水中冷却。 3、如何解决飞边 ●产生飞边的原因: 产品溢边往往由于模子的缺陷造成,其他原因有:注射力大于锁模力、物料温度太高、排气不足、加料过量、模子上沾有异物等。 ●如何判断产生飞边的原因: 在一般情况下,采用短射的办法。即在注塑压力速度较低、不用保压的情况下注塑出制件90%的样板,检查样板是否出现飞边,如果出现,则是模具没有配好或注塑机的锁模压力不足,如果没有出现,则是由于注塑条件变化而引起的飞边,比如:保压太大、注射速度太快等。 ●常见的飞边产生的原因及解决飞边的办法 ⑴模具问题: ①型腔和型芯未闭紧; ②型腔和型芯偏移; ③模板不平行; ④模板变形;

气辅注塑工艺的应用和工艺过程

气辅注塑工艺的应用和工艺过程 一、气辅注塑的原理 利用高压惰性气体(氮气)注射到熔融的塑胶中形成真空截面并推动融料前进,实现注射、保压、冷却等过程。 由于气体具有高效的压力传递性,可使气道内部各处的压力保持一致,因而可消除内部应力,防止产品变形,同时大幅度降低模腔内压力,因此在成型过程中不需要很高的锁模力,还可以减轻产品重量、消除缩痕等。 二、气辅设备 气辅设备包括气辅控制单元和氮气发生装置。它是独立于注塑机外的另一套系统,其与注塑机的唯一接口是注射信号连接线。 注塑机将一个注射信号注射开始或螺杆位置传递给气辅控制控制单元之后,便开始一个注气过程,等下一个注射过程开始时给出另一个注射信号,开始另一个循环,如此反复进行。气辅注塑所使用的气体必须是惰性气体(通常为氮气),气体最高压为35MPa,特殊者可达70MPa,氮气纯度≥98%。 气辅控制单元是控制注气时间和注气压力的装置,它具有多组气路设计,可同时控制多台注塑机的气辅生产,气辅控制单元设有气体回收功能,尽可能降低气体耗用量。 三、气辅工艺控制 ?注气参数 气辅控制单元是控制各阶段气体压力大小的装置,气辅参数只有两个值:注气时间(秒)和注气压力(MPa) 气辅注塑过程是在模具内注入塑胶熔体的同时注入高压气体,熔体与气体之间存在着复杂的两相作用,因此工艺参数控制显得相当重要,各参数的控制方法如下: ?注射量 气辅注塑是采用所谓的“短射”方法,即先在模腔内注入一定量的料(通常为满射时的70-95%),然后再注入气体,实现全充满过程。 熔胶注射量与模具气道大小及模腔结构关系最大。气道截面越大,气体越易穿透,掏空率越高,适宜于采用较大的“短射率”。这时如果使用过多料量,则很容易发生熔料堆积,料多的地方会出现缩痕。 如果料太少,则会导致吹穿。如果气道与流料方向完全一致,那么最有利于气体的穿透,气道的掏空率最大。因此在模具设计时尽可能将气道与流料方向保持一致。 ?注射速度及保压

注塑生产新技术

注塑成型新技术 高分子材料的成型方法主要有挤出成型、注塑成型、吹塑成型、压延成型、压制成型等,其中,注塑成型因可以生产和制造形状较为复杂的制品、易于与计算机技术结合、易于实现自动化生产等优点,在高分子材料的成型加工中占有极其重要的位置。注塑成型技术广泛应用于汽车、家电、电子设备、办公自动化设备、建材等诸多领域。近年来,这些工业领域迅速发展,给注塑成型技术的发展提供了强大的推动力,使注塑成型技术在发展速度上、水平上都得到了迅猛的发展,特别是对于注塑成型新技术的发展更是起到了强大的推动作用。本文着眼于注塑成型新技术的最新发展动向,介绍了几种用途较为广泛的注塑成型新技术。近几年来,注塑成型新技术发展动向主要集中在:新型气辅注塑成型技术、多组分注塑成型新技术、微孔发泡注塑成型技术、微注塑成型技术等方面。 1 新型气辅注塑成型技术 气体辅助注塑成型技术(Gas-assisted InjectionMolding Technology) 是自往复式螺 杆注射机问世以来,注塑成型技术最重要的发展之一。它通过高压气体在注塑制件部产生中空截面,利用气体积压,减少制品残余应力,消除制品表面缩痕,减少用料,显示传统注塑成型无法比拟的优越性。一般气体辅助注塑成型的过程是:先向模具型腔中注入经过准确计量的塑料熔体,再直接注入压缩气体;气体在塑料熔体的包围下沿阻力最小的方向扩散前进,对塑料熔体进行穿透和排空,作为动力推动塑料熔体充满模具型腔并对塑料熔体进行保压,待制品冷却凝固后再开模顶出。近年来,气体辅助注塑成型技术发展迅速,出现了一些创新性技术,如水辅助注塑成型技术、冷却气体气辅技术、气辅共注成型技术、外部气辅注塑技术及振动气辅技术等。 1.1 水辅助注塑成型技术 水辅助注塑成型技术(Water-Assisted Injection Molding Technology) 是以德国Aachen 大学塑料加工研究所为代表的研究人员基于气辅成型原理开发出的新的注塑成型技术。由于气体的热容量比较小、导热性差,气体辅助注塑时,制件相当于单面冷却,因而其成型周期往往比普通注塑长。水辅助注塑成型技术的原理与气体辅助注塑成型技术基本相同,只是用水代替气体注入熔体中心。其工艺过程为:(1)将熔体注满型腔,进行短暂保压;(2)将水注入熔体中心,在水的压力下,制件中心的熔体倒流回注塑系统;(3)经过一段时间保压后,减压将水排出制件。排水所需的压力可以由水的蒸发产生,或者通过加入水中的CO2 的蒸发产生。在注塑直径为30mm的PP中空制件的比较实验中发现,水辅助注塑的冷却时间比气体辅助注塑减少了75%。按照成型工艺过程的不同,水辅助注塑成型有短射( 欠料注塑) 法、返流法、溢流法和流动法4种工艺方法[1]。 1.2 冷却气体气辅成型技术 在气辅成型过程中,尽管气体辅助成型降低了塑件的壁厚,但在工艺过程中,

[VIP专享]气辅成型模具

第三单元其他塑料模具简介随着塑料产品应用的广泛和塑料成型工艺的飞速发展,人们对塑料制品的要求也越来越高。近几年来,除了注塑模以外,在其他的塑料模具方面也有了很大的发展,如压制成型模具、真空成型模具、多色注塑模、气辅成型、高光注塑模等 课题七气体辅助注射成型及实例 学习目标 通过本课题的学习,你将了解气体辅助注射成型方面的基本知识,熟悉气体辅助注射成型的设计方法和制造特点等 学习内容 气辅成型原理、模具特点、辅助设备、成型工艺及特点等. 家用电器部件: 汽车塑料部件:

电子设备部件:

家具塑料部件: 气辅技术可在家电、汽车、家具、日常用品、办公用品等几乎所有塑料制件领域得到应用。采用气辅技术可以减少成型的锁模力,缩短成型周期,减少翘曲变形。同时,由于成型所需注射压力的降低,从而可以在较小的注塑机上成型较大的制品。从表面上看,气辅技术的优势源于利用高压气体把厚壁的内部掏空;从工程力学的原理上看,气辅技术的应用改变了材料在制品断面上的分布,使制件刚性和强度得以改善,承载力增加,这在汽车、飞机、船舶等交通工具的轻量化方面显示出了巨大且诱人的应用优势和前景。 气辅技术在美、日、欧等发达国家和地区正日益得到广泛应用,短短几年,该技术用于注塑制品成型的模具配套率已达10%。随着时

间的推移,在市场竞争极为激烈的情况下,更加完善的气辅技术一 定会为更多的塑料制件制造商所接受。气辅技术在国内的应用首先 体现在壳类制品和轿车内饰件等家电、汽车、仪器、仪表、家具等 行业。气辅技术的最大应用领域是家电产品,就日本电视机行业来说,64cm以上大屏幕彩电几乎90%以上采用气辅成型技术。目前,中国年产电视机2500万台,其中彩电1200万台。在彩色电视机份 额中,占20%左右的64cm以上大屏幕彩电有240万台,而且大屏 幕彩电的数量随市场的需求正逐年递增。在汽车注塑件方面,美国 福特汽车公司用气辅技术成型了汽车保险杠、汽车内饰件面板、仪 表板等,还有美国克莱斯勒复合概念车整个车身以气辅注射成型, 这些都为气辅技术在汽车注塑件上的应用开了先例。仿硬木家具在 外观上需要模拟木质材料较粗的圆柱或立方结构,而普通塑料加工 厂中必须采用的扁平板片结构具有冷却速度慢、材料收缩不易控制、制品翘曲变形严重等难以克服的障碍及料量大、成本高等缺点,传 统的注塑工艺很难解决这些问题,采用气辅注塑则可迎刃而解。 一.气辅技术的适用材料: 大部分热塑性塑料(增强或不增强的)可以使用气体辅助注射成型,在某种技术情况下也可用于热固性塑料如下:适用于气体辅助 注塑成型的材料 普通塑料PS ABS 非晶态 工程塑料PC PC/ABS PC/PBT PMMA PES PAR

MIM金属粉末注塑成型技术介绍

MIM(金属粉末注塑成型)技术介绍 ?????MIM是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。MIM的工艺步骤是:首先选取符合MIM要求的金属粉末与有机粘结剂在一定温度条件下采用适当的方法混合成均匀的喂料,然后经制粒后在加热塑化状态下用注射成形机注入模具型腔内获得成形坯,再经过化学或溶剂萃取的方法脱脂处理,最后经烧结致密化得到最终产品。? MIM产品的特点:? ????1、零部件几何形状的自由度高,能像生产塑料制品一样,一次成形生产形状复杂的金属零部件;? ????2、MIM产品密度均匀、光洁度好,表面粗糙度可达到Ra0.80~1.6μm,重量范围在0.1~200g。尺寸精度高(±0.1%~±0.3%),一般无需后续加工;?? ????3、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可实现连续大批量生产;? ????4、产品质量稳定、性能可靠,制品的相对密度可达95%~99%,可进行渗碳、淬火、回火等热处理。产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;? 国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。?

MIM与传统粉末冶金相对比? ?MIM可以制造复杂形状的产品,避免更多的二次机加工。? ?MIM产品密度高、耐蚀性好、强度高、延展性好。? ?MIM可以将2个或更多PM产品组合成一个MIM产品,节省材料和工序。? MIM与机械加工相对比? ??MIM设计可以节省材料、降低重量。 ???MIM可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。???MIM通过模具一次成形复杂产品,避免多道加工工序。 ???MIM可以制造难以机械加工材料的复杂形状零件。? MIM与精密铸造相对比? ?MIM可以制造薄壁产品,最薄可以做到0.2mm。? ?MIM产品表面粗糙度更好。? ?MIM更适宜制细盲孔和通孔。? ?MIM大大减少了二次机加工的工作量。? ?MIM可以快速的大批量、低成本制造小型零件。? MIM材料范围 常用MIM材料应用领域:?

气体辅助注塑成型技术简介

气体辅助注塑成型技术简介 1. 气体辅助注塑成型技术简介 气体辅助注塑成型技术是一项新兴的塑料注射成型技术,其原理是利用高压气体在塑件内部产生中空截面,利用气体保压代替塑料注射保压,消除制品缩痕,完成注射成型过程。气体辅助注塑成型的工艺过程主要包括塑料熔体注射、气体注射、气体保压三个阶段。根据熔体注射量的不同,又分为短射和满射两种方式,在短射方式中,气体首先推动熔体充满型腔,然后保压;在满射方式中,气体只起保压作用。 气体辅助注塑技术的优点主要有: 1)解决制件表面缩痕问题,能够大大提高制件的表面质量。 2)局部加气道增厚可增加制件的强度和尺寸稳定性,并降低制品内应力,减少翘曲变形。3)节约原材料,最大可达40%~50%。 4)简化制品和模具设计,降低模具加工难度。 5)降低模腔压力,减小锁模力,延长模具寿命。 6)冷却加快,生产周期缩短。 气体辅助注塑成型技术与普通注塑成型工艺相比,有着无可比拟的优势,被誉为注塑成型工艺的一次革命,在家电、汽车、家具、日常用品等几乎所有塑料制件领域得到广泛应用。在家电领域,电视机壳特别是大屏幕彩电前壳是最早也是最广泛采用气辅注塑成型技术的制品之一。 3.气辅制品和模具设计基本原则 (1)设计时先考虑哪些壁厚处需要掏空,哪些表面的缩痕需要消除,再考虑如何连接这些部位成为气道。 (2)大的结构件:全面打薄,局部加厚为气道。 (3)气道应依循主要的料流方向均衡地配置到整个模腔上,同时应避免闭路式气道。(4)气道的截面形状应接近圆形以使气体流动顺畅;气道的截面大小要合适,气道太小可能引起气体渗透,气道太大则会引起熔接痕或者气穴。 (5)气道应延伸到最后充填区域(一般在非外观面上),但不需延伸到型腔边缘。 (6)主气道应尽量简单,分支气道长度尽量相等,支气道末端可逐步缩小,以阻止气体加速。 (7)气道能直则不弯(弯越少越好),气道转角处应采用较大的圆角半径。 (8)对于多腔模具,每个型腔都需由独立的气嘴供气。

注塑成型技术员个人简历怎么写

注塑成型技术员个人简历怎么写 这一份注塑成型技术员个人简历模板是由简历模板网提供给需要写作与注塑成型技术员等相关职位的个人简历的求职者参考的,希望对你有所帮助。 姓名:李先生性别:男 婚姻状况:已婚民族:汉族 户籍:湖北-荆州年龄: 30 现所在地:广东-东莞身高: 170cm 意向地区:广东、江苏、湖北 意向职位:机械(电)/仪表类-机械设计/制造工程师 模具类-注塑成型工程师 机械(电)/仪表类-设备修理 寻求职位:注塑领班、注塑成型技术员、注塑成型车间现场管理 教育经历 1998-09 ~ 2001-07 石首市南岳高级中学高中高中 **公司 (2010-04 ~至今) 公司性质:外资企业行业类别:计算机硬件 担任职位:注塑成型技术员岗位类别:总工程师/副总工程师 工作描述:负责产品成型工艺的调较及改善产品质量和产量,对光宝科技,台达电子,鸿富锦,致通电脑和朝阳音响厂等公司所生产的产品较为熟悉。在晋原厂工作期间,主要负责苹果产品专用机台,因公司主要生产各种品牌笔记本电

脑的电源适配器及其配件,尤其是苹果的电源适配器,因产品内外全是高光面,色差和尺寸管控方面非常严格,加之塑胶原料价格非常昂贵,对降低产品不良及提高生产效率方面积累了丰富的经验,因其工厂三百六十五天天天都得上班,身体无法抵制这种超长时间上班,故离职另寻发展更为广阔的平台。 **公司 (2008-07 ~ 2009-12) 公司性质:民营企业行业类别:汽车、摩托车及零配件 担任职位:注塑车间领班岗位类别: 工作描述:管理车间20台注塑机的生产及品质的跟踪,对接外贸业务部所提供的订单根据单期进行生产,协调注塑部与各生产车间部门进行沟通,合理安排订单生产与新产品试模试产。 **公司 (2005-06 ~ 2008-07) 公司性质:合资企业行业类别:机械制造、机电设备、重工业 担任职位:注塑成型领班岗位类别: 工作描述:管理24台震雄注塑机,协助PMC排单及根据单期合理安排员工生产。全面管理车间生产之日常事务及品质问题,并对车间展开的5S工作进行全面的跟踪及指导。协同上级对各验证机构来验厂时注塑部常见问题进行排除和更正。 离职原因:公司倒闭 **公司 (2003-03 ~ 2005-06) 公司性质:外资企业行业类别:机械制造、机电设备、重工业 担任职位:成型技术员岗位类别:

气辅注射成型及设计要点

气辅注射成型及设计要点 晓黎吴崇峰屈春起(天津科技大学天津300222) 摘要:概述了气辅注射成型过程中材料的选择、气道及模具的设计 关键词:气辅注射气道模具设计 气辅注射成型GRIM( Gas-Assisted Injection Mold-ing)为一种新型的注射成型工艺,近几年已在国外得到广泛的应用,国内的使用也越来越多。其原理是利用压力相对低的惰性气体(氮气因为价廉安全又兼具冷却剂的作用而被常用,压力为0.5一300 MPa)代替传统模塑过程中型腔内的部分树脂来保压,以达到制品成型性能更加优良的目的。 1气辅注射成型的优点 气辅注射成型克服了传统注射成型和发泡成型的局限性,具有以下优点: 1.1制件性能良好 (1)消除气孔和凹陷在制件不同壁厚连接处所设的加强筋和凸台中合理开设气道,欠料注射后气体导入,补偿了因熔体在冷却过程中的收缩,避免气孔和凹陷的产生。 (2)减少内应力和翘曲变形在制件冷却过程中,从气体喷嘴到料流末端形成连续气体通道,无压力损失,各处气压一致,因而降低了残余应力,防止制件翘曲变形。 (3)增加制件的强度制件上中空的加强筋和凸台的设计,使强度重量比比同类实心制件高出大约5,制件的惯性矩工大幅度提高,从而提高制件使用强度。 (4)提高设计的灵活性气辅注射可用来成型壁厚不均的制品,使原来必须分为几个部分单独成型的制品实现一次成型,便于制件的装配。例如国外一家公司原来生产的以几十个金属零件为主体、形状复杂的汽车门板,通过GAI M技术并采用塑料合金材料实现了一次成型。 1.2 成本低 (1)节约原材料气辅注射成型在制品较厚部位形成空腔,可减少成品重量达10%一50% (2)降低设备费用气辅注射较普通注射成型需要较小的注射压力和锁模力(可节省25%一50%),同时节约能量达30% (3)相对缩短成型周期由于去除了较厚部位芯料,缩短冷却时间可达50%正是基于这些优点,气辅注射适用于成型大型平板状制品如桌面、门、板等;大型柜体如家用电器壳体、电视机壳、办公机械壳体等;结构部件如底座、汽车仪表板、保险杠、汽车大前灯罩等汽车内外饰件。 2 成型材料的选择 理论上讲,所有能用于常规注射成型方法的热塑性塑料均适用于气辅注射成型,包括一些填充树脂和增强塑料。一些流动性非常好,难以填充的塑料如热塑性聚氨酷成型时会有一定困难;粘度高的树脂所需气体压力高,技术上也有难度;玻璃纤维增强材料对设备有一定的磨损。 在气辅成型过程中,由于制件的成型壁厚和表面缺陷在很大程度上由原料性能决定,改变过程参数对其影响并不很大,因此成型原料的选择极为重要。表1是用于气辅注射成型的常用塑料。 PA(聚酰胺)和PBT(聚对苯二甲酸丁二酸酯)具有独特的结晶稳定性,尤其适合用于气辅注射成型;PA6,PA66和PP也经常被用于气辅成型;一些部分结晶型树脂,成型时内部靠近气道一侧由于冷却速率相对较慢,无明显无定型边界层产生,但外侧因为模壁的陕速冷却会产生无定型边界层,从而影响制品质量;对于玻璃纤维增强塑料,在模壁处会产生轻微的分子定向,且在模壁下一定距离处(约距制品外表面1mm处)沿料流方向达到最大成型高强度制件可选用具有较高弹性模量的树脂,实际生产过程中应根据制件使用要求和具体成型条件选择合适的树脂材料。

注塑成型技术员个人简历模板参考

注塑成型技术员个人简历模板参考 以下是关于注塑成型技术员个人简历模板参考,希望内容对您有帮助,感谢您得阅读。 工作描述:管理车间20台注塑机的生产及品质的跟踪,对接外贸业务部所提供的订单根据单期进行生产,协调注塑部与各生产车间部门进行沟通,合理安排订单生产与新产品试模试产。 **公司 (2005-06 ~ 2008-07) 公司性质:合资企业行业类别:机械制造、机电设备、重工业 担任职位:注塑成型领班岗位类别: 工作描述:管理24台震雄注塑机,协助PMC排单及根据单期合理安排员工生产。全面管理车间生产之日常事务及品质问题,并对车间展开的5S工作进行全面的跟踪及指导。协同上级对各验证机构来验厂时注塑部常见问题进行排除和更正注塑成型技术员个人简历模板注塑成型技术员个人简历模板。 离职原因:公司倒闭 **公司 (2003-03 ~ 2005-06) 公司性质:外资企业行业类别:机械制造、机电设备、重工业 ·

担任职位:成型技术员岗位类别: 工作描述:负责调较和维护注塑工艺参数,稳定机台生产效率、质量、产量; 协助领班对作业人员的进行技能培训和安全作业培训; 协助领班对本区域的7S和现场纪律进行管理 离职原因:提升自己,录求更大的发展的空间 **公司 (2002-05 ~ 2002-12) 公司性质:外资企业行业类别:家具、家电、工艺品、玩具 担任职位:上下模岗位类别: 工作描述:从事上下模工作,同时积累成型技术经验。 离职原因:录求发展 技能专长 专业职称: 计算机水平:初级 计算机详细技能: 技能专长:从事塑胶行业7年,对注塑成型加工及现场管理已有多年的工作经验,了解多种注塑机的调较和维修及熟悉常用塑胶原料的特性。本人接触的产品类型主要有玩具类如:遥控仿真汽车、遥控仿真轮船及儿童玩具家居用品、婴儿小推车、画架系列,计算机及其周边零配件,塑胶行李箱和品牌轿 ·

相关主题
文本预览
相关文档 最新文档