当前位置:文档之家› 逻辑代数基本定理的证明

逻辑代数基本定理的证明

逻辑代数基本定理的证明
逻辑代数基本定理的证明

代数基本定理

[科目] 数学 [关键词] 代数/基本定理/复数/根 [文件] sxbj110.doc [标题] 代数基本定理 [内容] 代数基本定理 代数基本定理﹝Fundamental Theorem of Algebra﹞是指:对于复数域,每个次数不少于1的复系数多项式在复数域中至少有一根。由此推出,一个n次复系数多项式在复数域内有且只有n个根,重根按重数计算。 这个定理的最原始思想是印度数学家婆什迦罗﹝1114-1185?﹞在1150年提出的。他提出了一元二次方程的求根公式,发现了负数作为方程根的可能性,并开始触及方程根的个数,即一元二次方程有两个根。婆什迦罗把此想法称为《丽罗娃提》﹝Lilavati﹞,这个词原意是“美丽”,也是他女儿的名字。 1629年荷兰数学家吉拉尔在《代数新发现》中提出他的猜测,并断言n次多项式方程有n个根,但是没有给出证明。 1637年笛卡儿﹝1596-1650﹞在他的《几何学》的第三卷中提出:一个多少次的方程便有多少个根,包括他不承认的虚根与负根。 欧拉在1742年12月15日在给朋友的一封信中明确地提出:任意次数的实系数多项式都能够分解成一次和二次因式的乘积。达朗贝尔、拉格朗日和欧拉都曾试过证明此定理,可惜证明并不完全。高斯在1799年给出了第一个实质证明,但仍欠严格。后来他又给出另外三个证明﹝1814-1815,1816,1848-1850﹞,而“代数基本定理”一名亦被认为是高斯提出的。 高斯研究代数基本定理的方法开创了探讨数学中存在性问题的新途径。20世纪以前,代数学所研究的对象都是建立在实数域或复数域之上,因此代数基本定理在当时曾起到核心的作用。

§8.5 逻辑代数公式化简习题2 - 2017-9-10

第8章 §8.5 逻辑代数公式化简习题2 1 第8章 §8.5 逻辑代数公式化简习题2 (一)考核内容 1、第8章掌握逻辑运算和逻辑门;掌握复合逻辑运算和复合逻辑门;掌握逻辑函数的表示方法;掌握逻辑代数的基本定理和常用公式;掌握逻辑函数的化简方法。 8.6 逻辑函数的化简 8.6. 1 化简的意义 1、所谓化简就是使逻辑函数中所包含的乘积项最少,而且每个乘积项所包含的变量因子最少,从而得到逻辑函数的最简与–或逻辑表达式。 逻辑函数化简通常有以下两种方法: (1)公式化简法 又称代数法,利用逻辑代数公式进行化简。它可以化简任意逻辑函数,但取决于经验、技巧、洞察力和对公式的熟练程度。 (2)卡诺图法 又称图解法。卡诺图化简比较直观、方便,但对于5变量以上的逻辑函数就失去直观性。 2、逻辑函数的最简形式 同一逻辑关系的逻辑函数不是唯一的,它可以有几种不同表达式,异或、与或、与或非—非、与非—与非、或与非、与或非、或非—或非。 一个逻辑函数的表达式可以有与或表达式、或与表达式、与非-与非表达式、或非-或非表达式、与或非表达式5种表示形式。 (1)与或表达式:AC B A Y += (2)或与表达式:Y ))((C A B A ++= (3)与非-与非表达式:Y AC B ?= (4)或非-或非表达式:Y C A B A +++= (5)与或非表达式:Y C A B A += 3、公式化简法 (1)、并项法:利用公式A B A AB =+,把两个乘积项合并起来,消去一个变量。 例题1: B B A A B =+= (2)、吸收法:利用公式 A A B A =+,吸收掉多余的乘积项。 例题2:E B D A AB Y ++= B A E B D A B A +=+++= (3)、消去法:利用公式B A B A A +=+,消去乘积项中多余的因子。 例题3:AC AB Y += C B A A C B A ++=++= (4)、配项消项法:利用公式C A AB BC C A AB +=++,在函数与或表达式中加上多余的项— —冗余项,以消去更多的乘积项,从而获得最简与或式。 例题4: B A C AB ABC Y ++=

线性代数基本定理-新版.pdf

线性代数基本定理一、矩阵的运算 1.不可逆矩阵的运算不满足消去律AB=O,A 也可以不等于 O 11-1-1?è???÷1-1-11?è???÷=0000?è?? ? ÷ 2.矩阵不可交换 (A+B)2=A 2+AB+BA+B 2 (AB)k =ABABABAB ...A B 3.常被忽略的矩阵运算规则 (A+B)T =A T +B T (l A)T =l A T

4.反称矩阵对角线元素全为0 4.矩阵逆运算的简便运算 (diag(a 1,a 2 ,...,a n ))-1=diag( 1 a 1 , 1 a 2 ,..., 1 a n ) (kA)-1=1 k A-1 方法 1.特殊矩阵的乘法 A.对角矩阵乘以对角矩阵,结果仍为对角矩阵。且: B.上三角矩阵乘以上三角矩阵,结果为上三角矩阵2.矩阵等价的判断 A@B?R(A)=R(B) 任何矩阵等价于其标准型

3.左乘初等矩阵为行变换,右乘初等矩阵为列变换如:m*n 的矩阵,左乘 m 阶为行变换,右乘 n 阶为列变换 4. 给矩阵多项式求矩阵的逆或证明某个矩阵可逆如:A 2 -A-2I =O ,证明(A+2I)可逆。把2I 项挪到等式右边,左边凑出含有 A+2I 的一个多项式, 在确保A 平方项与 A 项的系数分别为原式的系数情况下,看I 项多加或少加了几个。5.矩阵的分块进行计算加法:分块方法完全相同 矩阵乘法(以A*B 为例):A 的列的分法要与B 行的分法一 致,如: 如红线所示:左边矩阵列分块在第 2列与第3列之间,那么,右边矩阵分 块在第二行与第三行之间 1-1003-1000100002-1 é? êêêêù?úúúú1000-1000013-1021 4 é? ê êêêù? úúúú

第2章 逻辑代数基础 习题解答

第2章 逻辑代数基础 2.1 明下列异或运算公式。 (7)1A B A B A B ⊕= ⊕=⊕⊕ 2.2 用逻辑代数的基本公式和定律将下列逻辑函数式化简为最简与-或表达式。 (4) Y AB BD DCE AD =+++ =D(A+B)+AB+DCE =DAB+AB+DCE =D+AB+DCE =D+AB (6) ()()Y A B CD A CD AC A D =++++ ()CD A B A ACD CD ACD CD C D +++=+==+ = (9) ()()()Y A C BD A BD B C DE BC =+++++()()A BD AC B C C DE ABD B B =++++=+= (10) ()Y AC BC BD A B C ABCD ABDE =++++++ ()(1)A C B C BDE BC BD A C A BC BD ++++++++= = 2.3 证明下列恒等式(证明方法不限)。

()()()A B C A B C A B C A BC A B C A B C A BC A B C A BC A B C ⊕⊕=⊕⊕⊕+⊕+⊕+= (6)解:左式= = = = =右式 结果与等式右边相恒等,证毕。 (10)()()BC D D B C AD B B D ++++=+ ()()BC D D BC AD B BC D AD B B D =++?+=+++=+ 2.4 根据对偶规则求出下列逻辑函数的对偶式。 (2) ()()Y A B C AB C D ABC D =+++++ 解:'()[()]()Y A BC A B CD A B C D =+++++ (3) Y AB BC CA =++ 解:'()()()Y A B B C C A =+++ 2.5 根据反演规则,求出下列逻辑函数的反函数。 (2) [()]Y A BC CD E F =++ 解:[()()]Y A B C C D E F =++++ (3) Y A B CD C D AB =+++++ 解:()()Y AB C D CD A B =++ 2.6 将下列逻辑函数变换为最小项之和的表达式: (4) ()Y A B C A B C =+++++

代数基本定理的证明方法研究(论文)

前 言 代数学基本定理在代数学中占有十分重要的地位,而在整个数学界中也起着基础作用。代数学基本定理有两种等价的陈述方式。第一种陈述方式为:“任何一个一元n 次复系数多项式0111...)(a z a z a z a z p n n n n ++++=--(1≥n ,0≠n a )在复数域内至少有一根”,它的第二种陈述方式为:“任何一个一元n 次复系数多项式0111...)(a z a z a z a z p n n n n ++++=--(1≥n ,0≠n a )在复数域内有n 个根,重根按重数计算”。尽管这个定理被命名为代数基本定理,但,迄今为止,该定理尚无纯代数方法证明。数学家J.P 赛尔曾经指出:代数基本定理的所有证明本质上都是拓扑的。美国数学家John Willard Milnor 在数学名著《从微分观点看拓扑》中给了一个证明,是几何直观的,但其中用到了和临界点测度有关的萨尔德定理。在复变函数论中,对代数基本定理的证明是相当优美的,其中运用了很多经典的复变函数的理论成果。 代数基本定理的第一个证明是由法国数学家达朗贝尔给出的,但其证明是不完整的。紧接着,欧拉也给出了一个证明,但也有缺陷。严格来说,第一个完整的证明是数学家高斯给出的,他在分析了拉格朗日的证明方法以后于1799年给出的,他是运用的纯解析的方法证明。而后,到高斯71岁时,共给出了四种证明方法。十九世纪七十年代,数学家 H.W.Kuhn []18 对于该定理给出了引人注目的构造性证明,这种方法的数学形象极好,并已 实际用于复系数代数方程求根,堪称不动点算法的范例。如果将复数域理解为复平面,将 0111...)(a z a z a z a z p n n n n ++++=--(1≥n ,0≠n a )的根理解为它在复平面上的零点,那 么就可以借助复变函数的理论去证明代数学基本定理。这种证明方法比较简洁,方法也有 多种。近年来,诸多数学家又给出了其它的证明方法,例如2003年翁东东[]6 对代数基本 定理进行了多种方法的分析,并给予了形象的证明。他并没有采用常用的刘维尔定理和儒歇原理运用复变函数的方法进行证明,而是采用了初等方法证明了代数基本定理,说明可不用复变函数理论中的有关概念和定理进行证明该定理。 本论文结合有关知识点,主要目的是归纳总结代数基本定理几种代表性的证明方法。第一章运用复变函数理论中的柯西定理、刘维尔定理、儒歇定理、辐角原理、最大模原理、最小模原理、留数定理来证明代数学基本定理,并对这些证明方法进行说明、比较与总结。第二章主要介绍了翁东东的初等方法的证明。第三章介绍了Kuhn 的两个构造性的证明方法。第四章简单介绍了高斯的纯解析证明方法。

逻辑代数的基本公式和常用公式

逻辑代数的基本公式和常用公式 一.基本定义与运算 代数是以字母代替数,称因变量为自变量的函数,函数有定义域和值域。——这些都是大家耳熟能详的概念。如 或; 当自变量的取值(定义域)只有0和1(非0即1)函数的取值也只有0和1(非0即1)两个数——这种代数就是逻辑代数,这种变量就是逻辑变量,这种函数就是逻辑函数。 逻辑代数,亦称布尔代数,是英国数学家乔治布尔(George Boole)于1849年创立的。在当时,这种代数纯粹是一种数学游戏,自然没有物理意义,也没有现实意义。在其诞生100多年后才发现其应用和价值。其规定: 1.所有可能出现的数只有0和1两个。 2.基本运算只有“与”、“或”、“非”三种。 与运算(逻辑与、逻辑乘)定义为(为与运算符,后用代替) 00=0 01=0 10=0 11=1 或 00=0 01=0 10=0 11=1 或运算(逻辑或、逻辑加)定义为(为或运算符,后用+代替) 00=0 01=1 10=1 11=1 或 0+0=0 0+1=1 1+0=1 1+1=1 非运算(取反)定义为:

至此布尔代数宣告诞生。 二、基本公式 如果用字母来代替数(字母的取值非0即1),根据布尔定义的三种基本运算,我们马上可推出下列基本公式: A A=A A+A=A A0=0 A+0=A A1=A A+1=1 =+= 上述公式的证明可用穷举法。如果对字母变量所有可能的取值,等式两边始终相等,该公 式即告成立。现以=+为例进行证明。对A、B两个逻辑变量,其所有可能的取值为00、01、10、11四种(不可能有第五种情况)列表如下:

由此可知: =+ 成立。 用上述方法读者很容易证明: 三、常用公式 1. 左边==右边 2. 左边==右边 例题:将下列函数化为最简与或表达式。 (公式1:) = (公式2:) ()

代数与代数基本定理的历史

代数与代数基本定理的历史 1.关于代数的故事 在十九世纪以前,代数被理解为关于方程的科学。十九世纪,法国数学家伽罗华(Evaristr Galois)开创群论以后,代数不再以方程为中心,而是以各种代数结构为中心。作为中学数学课程的代数,其中心内容就是方程理论。代数的发展是和方程分不开的。代数对于算术来说,是一个巨大的进步,代数和算术的主要区别说在于前者引入了未知量,根据问题的条件列同方程,然后解方程求出未知量,我们举一个例子:一个乘以3,再除以5,等于60,求这个数。算术求法(公元1200年左右伊斯兰教的数学家们就是这样解的:既然这个数的3/5是60,那么它的1/5就是20一个数的1/5是20那么这个数是20的5倍,即100。代数解法:设某数为x ,则可见代数解法与算术思路不同。各有自己的一套规则,代数解法比较简单明了。古埃及人、巴比伦人在一些实际计算问题已使用过代数的方法。据说,1858年苏格兰有一位古董收藏家兰德在非洲的尼罗河边买了一卷公元前1600年左右遗留下来的古埃及的纸莎草卷,他惊奇地发现,这卷草卷中有一些含有未知数的数学问题(当然都是用象形文字表示的)。例如有一个问题翻译成数学语言是: “啊哈,它的全部,它的1/7,其和等于19。” 如果用x表示这个问题中的求知数,就得到方程,解这个方程,得到。令人惊奇的是,虽然古埃及人没有我们今天所使用的方程的表示和解法,却成功得到解决了这个答数。我国古代的代数研究在世界上一直处于领先地位,在经典数学著作《九章算术》中,除了方程外,还有开平方、开立方、正负数的不同表示法和正负数的加减法则等代数的最基本问题,到宋、元时代,我国对代数的研究达到了高峰。贾宪等的高次方程数值解方法,秦九韶的联立一次同余式解法,李治的列方程一般方法,朱世杰的多元高次方程组解法,及其有限级数求和的“招差法公式”,都早于欧洲几百年。“代数学”这个名称,在我国是1859年正式开始使用的,来自拉丁文(Algebra),它又是从阿拉伯文变来的,其中有一段曲折的历史。公元825年左右,花拉子模的数学家阿尔——花拉子模写了一本书《Kitabaljabr-W’al-mugabala》意思是“整理”和“对比”,这本书的阿拉伯文版已经失传,但12世纪的一册拉丁文译本却流传到今,在这个译本中,把“aljabr”译成拉丁语“Aljebra”,并作为一门学科,它的课题最首要的就是用字母表示的式子的变形和解方程的规则方程。我国清代数学李善兰,1859年编译西方代数时,把“Algebra”译成了“代数学”。从些,“代数”这个名词便一直在我国沿用下来。 2.代数基本定理 任何n(n>0)次多项式在复数域中至少有一个根。一元一次方程有且只有一个根,一元二次方程在复数域中有且只有两个根,因此,人们自然研究一元n次方程在复数域中有几个根。此外,当初的积分运算中采用部分分式法也引起了与此有关的问题:是不是任何一个实系数多项式都能分解成一次因式的积,或分解成实系数的一次因式和二次因式的积?这样的分解,关键证明代数基本定理。代数基本定理的第一个证明是法国数学家达朗贝尔给出的,但他的证明是首先默认了数学分析中一条明显的引理:定义在有限闭区间上的连续函数一定在某一点取得最小值,而这个引理在达朗贝尔的研究100年以后才得到证明。接着,欧拉也给出了一个证明,但有缺陷,拉格朗日于1772年又重新证明了代数基本定理,后经高斯分析,发现他的证法中把实数的尚未证明其真实性的各种性质应用了,所以该证明仍然是很不严格的。1799年,高斯在他的博士论文中第一个严格证明了代数基本定理,其基本思路如下:设f (z)为n次实系数多项式,记z = x + yi (x, y为实数),考察方程:f (x + yi) = u (x, y) + v (x, y)i = 0即u (x, y) = 0与v (x, y) = 0分别表示oxy坐标平面上的两条曲线,于是通过对曲线作定性的研究,他证明了这两条曲线必有一个交点,从而得出u (a, b) = v (a, b) = 0即f (a + bi) = 0,故此便是代数方程f (z)的一个根。这个论证具有

代数学基本定理

代数学基本定理:任何复系数一元n次多项式方程在复数域上至少有一根(n≥1),由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算).代数基本定理在代数乃至整个数学中起着基础作用。据说,关于代数学基本定理的证明,现有200多种证法。 代数学基本定理说明,任何复系数一元n次多项式方程在复数域上至少有一根。 由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。 有时这个定理表述为:任何一个非零的一元n次复系数多项式,都正好有n个复数根。这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n个根。 尽管这个定理被命名为“代数基本定理”,但它还没有纯粹的代数证明,许多数学家都相信这种证明不存在[1] 。另外,它也不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或复系数多项式方程,所以才被命名为代数基本定理。 2证明历史 代数基本定理在代数乃至整个数学中起着基础作用。据说,关于代数学基本定理的证明,现有200多种证法。迄今为止,该定理尚无纯代数方法的证明。大数学家J.P. 塞尔曾经指出:代数基本定理的所有证明本质上都是拓扑的。美国数学家John Willard Milnor在数学名著《从微分观点看拓扑》一书中给了一个几何直观的证明,但是其中用到了和临界点测度有关的sard定理。复变函数论中,对代数基本定理的证明是相当优美的,其中用到了很多经典的复变函数的理论结果。 该定理的第一个证明是法国数学家达朗贝尔给出的,但证明不完整。接着,欧拉也给出了一个证明,但也有缺陷,拉格朗日于1772年又重新证明了该定理,后经高斯分析,证明仍然很不严格的。 代数基本定理的第一个严格证明通常认为是高斯给出的(1799年在哥廷根大学的博士论文),基本思想如下: 设为n次实系数多项式,记,考虑方根: 即与 这里与分别表示oxy坐标平面上的两条曲线C1、C2,于是通过对曲线作定性的研究,他证明了这两条曲线必有一个交点,从而得出,即,因此z0便是方程的一个根,这个论证具有高度的创造性,但从现代的标准看依然是不严格的,因为他依靠了曲线的图形,证明它们必然相交,而这些图形是比较复杂,正中隐含了很多需要验证的拓扑结论等等。 高斯后来又给出了另外三个证法,其中第四个证法是他71岁公布的,并且在这个证明中他允许多项式的系数是复数。 3证明方法 所有的证明都包含了一些数学分析,至少是实数或复数函数的连续性概念。有些证明也用到了可微函数,甚至是解析函数。 定理的某些证明仅仅证明了任何实系数多项式都有复数根。这足以推出定理的一般形式,这是因为,给定复系数多项式p(z),以下的多项式 就是一个实系数多项式,如果z是q(z)的根,那么z或它的共轭复数就是p(z)的根。 许多非代数证明都用到了“增长引理”:当|z|足够大时,首系数为1的n次多项式函数p(z)的表现如同z。一个更确切的表述是:存在某个正实数R,使得当|z| > R时,就有: 复分析证明

代数基本定理的几种证明

2014-3050-021 本科毕业论文(设计) 代数基本定理的几种证明 学生姓名:黄容 学号:1050501021 系院:数学系 专业:数学与应用数学 指导教师:覃跃海讲师 提交日期:2014年4月27日

毕业论文基本要求 1.毕业论文的撰写应结合专业学习,选取具有创新价值和实践意义的论题. 2.论文篇幅一般为理科以3000至5000字为宜. 3.论文应观点明确,中心突出,论据充分,数据可靠,层次分明,逻辑清楚,文字流畅,结构严谨. 4.论文字体规范按《广东第二师范学院本科生毕业论文管理办法(试行)》和“论文样板”执行. 5.论文应书写工整,标点正确,用微机打印后,装订成册.

本科毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果.对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明.本人完全意识到本声明的法律结果由本人承担. 学生签名: 时间:年月日 关于论文(设计)使用授权的说明 本人完全了解广东第二师范学院关于收集、保存、使用学位论文的规定,即: 1.按照学校要求提交学位论文的印刷本和电子版本; 2.学校有权保存学位论文的印刷本和电子版,并提供目录检索与阅览服务,在校园网上提供服务; 3.学校可以采用影印、缩印、数字化或其它复制手段保存论文; 本人同意上述规定. 学生签名: 时间:年月

摘要 代数基本定理是代数学上一个重要的定理,甚至在整个数学上都起着基础作用.最早在1629年由荷兰数学家吉拉尔在他的论著《代数新发现》提出, 然而没有给出证明.1637年迪卡儿也都提出这个定理,但同样没有给出证明.一直到一百年多后, 于1746年达朗贝尔才给出第一个证明.到十八世纪后半叶,欧拉等人也给出一些证明,然而这些证明都不够严格,都先是假设了一些条件,然后才得出证明.直到1799年高斯才给出了第一个实质的证明.在二十世纪以前该定理对于代数学都是起着核心的作用,因为代数学所研究的对象都是建立在复数域上的, 因此也就之称为代数基本定理.然而直到现在该定理却还是没有纯代数证法,用纯代数证明该定理却是十分困难的,很多人相信根本不存在纯代数的证法.不过后来随着复变理论的发展,该定理已成为其他一些定理的推论了,用复函数理论可以很完美的证明了.现在据说也已经有了两百多种证法. 虽然前人已做了很多研究,但从多方面知识总结这些证明还是很有意义的.本论文基于多项式、柯西积分定理、儒歇定理、刘维尔定理、最大模定理和最小模定理这几个方面介绍了代数基本定理的几种证法. [关键词]:代数基本定理;多项式;柯西积分定理;儒歇定理;刘维尔定理

代数与代数基本定理的历史

代数与代数基本定理的历史 代数与代数基本定理的历史 1.关于代数的故事 在十九世纪以前,代数被理解为关于方程的科学。十九世纪,法国数学家伽罗华(Evaristr Galois)开创群论以后,代数不再以方程为中心,而是以各种代数结构为中心。作为中学数学课程的代数,其中心内容就是方程理论。代数的发展是和方程分不开的。代数对于算术来说,是一个巨大的进步,代数和算术的主要区别说在于前者引入了未知量,根据问题 ,然后解方程求出未知量,我们举一个例子:一个乘以3,再除以5,等于的条件列同方程 60,求这个数。算术求法(公元1200年左右伊斯兰教的数学家们就是这样解的:既然这个数的3/5是60,那么它的1/5就是20一个数的1/5是20那么这个数是20的5倍,即100。代数解法:设某数为x ,则可见代数解法与算术思路不同。各有自己的一套规则,代数解法比较简单明了。古埃及人、巴比伦人在一些实际计算问题已使用过代数的方法。据说,1858年苏格兰有一位古董收藏家兰德在非洲的 尼罗河边买了一卷公元前1600年左右遗留下来的古埃及的纸莎草卷,他惊奇地发现,这卷草卷中有一些含有未知数的数学问题(当然都是用象形文字表示的)。例如有一个问题翻译成数学语言是: “啊哈,它的全部,它的1/7,其和等于19。” 如果用x表示这个问题中的求知数,就得到方程,解这个方程,得到。令人惊奇的是,虽然古埃及人没有我们今天所使用的方程的表示和解法,却成功得到解决了这个答数。我国古代的代数研究在世界上一直处于领先地位,在经典数学著作《九章算术》中,除了方程外,还有开平方、开立方、正负数的不同表示法和正负

数的加减法则等代数的最基本问题,到宋、元时代,我国对代数的研究达到了高峰。贾宪等的高次方程数值解方法,秦九 及其韶的联立一次同余式解法,李治的列方程一般方法,朱世杰的多元高次方程组解法,有限级数求和的“招差法公式”,都早于欧洲几百年。“代数学”这个名称,在我国是1859年正式开始使用的,来自拉丁文(Algebra),它又是从阿拉伯文变来的,其中有一段曲折的历史。公元825年左右,花拉子模的数学家阿尔——花拉子模写了一本书《Kitabaljabr-W’al-mugabala》意思是“整理”和“对比”,这本书的阿拉伯文版已经失传,但12世纪的一册拉丁文译本却流传到今,在这个译本中,把“aljabr”译成拉丁语“Aljebra”,并作为一门学科,它的课题最首要的就是用字母表示的式子的变形和解方程的规则方程。我国清代数学李善兰,1859年编译西方代数时,把“Algebra”译成了“代数学”。从些,“代数”这个名词便一直在我国沿用下来。 2.代数基本定理 任何n(n>0)次多项式在复数域中至少有一个根。一元一次方程有且只有一个根,一元二次方程在复数域中有且只有两个根,因此,人们自然研究一元n次方程在复数域中有几个根。此外,当初的积分运算中采用部分分式法也引起了与此有关的问题:是不是任何一个实系数多项式都能分解成一次因式的积,或分解成实系数的一次因式和二次因式的积,这样的分解,关键证明代数基本定理。代数基本定理的第一个证明是法国数学家达朗贝尔给出的,但他的证明是首先默认了数学分析中一条明显的引理:定义在有限闭区间上的连续函数一定在某一点取得最小值,而这个引理在达朗贝尔的研究100年以后才得到证明。接着,欧拉也给出了一个证明,但有缺陷,拉格朗日于1772年又重新证明了代数基本定理,后经高斯分析,发现他的证法中把实数的尚未证明其真实性的各种性质应用了,所以该证明仍然是很不严格的。1799年,高斯在他的博士论文中第一个严格证明了代数基本定理,其基

代数基本定理的几种证明

本科毕业论文(设计) 代数基本定理的几种证明 学生姓名 : 黄容 学号 : 1050501021 系院 : 数学系 专 业 : 数学与应用数学 指导教师 : 覃跃海 讲师 提交日期 : 2014年4月27日 2014-3050-021

毕业论文基本要求 1.毕业论文的撰写应结合专业学习,选取具有创新价值和实践意义的论题. 2.论文篇幅一般为理科以3000至5000字为宜. 3.论文应观点明确,中心突出,论据充分,数据可靠,层次分明,逻辑清楚,文字流畅,结构严谨. 4.论文字体规范按《广东第二师范学院本科生毕业论文管理办法(试行)》和“论文样板”执行. 5.论文应书写工整,标点正确,用微机打印后,装订成册.

本科毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果.对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明.本人完全意识到本声明的法律结果由本人承担. 学生签名: 时间:年月日 关于论文(设计)使用授权的说明 本人完全了解广东第二师范学院关于收集、保存、使用学位论文的规定,即: 1.按照学校要求提交学位论文的印刷本和电子版本; 2.学校有权保存学位论文的印刷本和电子版,并提供目录检索与阅览服务,在校园网上提供服务; 3.学校可以采用影印、缩印、数字化或其它复制手段保存论文; 本人同意上述规定. 学生签名: 时间:年月

摘要 代数基本定理是代数学上一个重要的定理,甚至在整个数学上都起着基础作用.最早在1629年由荷兰数学家吉拉尔在他的论著《代数新发现》提出, 然而没有给出证明.1637年迪卡儿也都提出这个定理,但同样没有给出证明.一直到一百年多后, 于1746年达朗贝尔才给出第一个证明.到十八世纪后半叶,欧拉等人也给出一些证明,然而这些证明都不够严格,都先是假设了一些条件,然后才得出证明.直到1799年高斯才给出了第一个实质的证明.在二十世纪以前该定理对于代数学都是起着核心的作用,因为代数学所研究的对象都是建立在复数域上的, 因此也就之称为代数基本定理.然而直到现在该定理却还是没有纯代数证法,用纯代数证明该定理却是十分困难的,很多人相信根本不存在纯代数的证法.不过后来随着复变理论的发展,该定理已成为其他一些定理的推论了,用复函数理论可以很完美的证明了.现在据说也已经有了两百多种证法. 虽然前人已做了很多研究,但从多方面知识总结这些证明还是很有意义的.本论文基于多项式、柯西积分定理、儒歇定理、刘维尔定理、最大模定理和最小模定理这几个方面介绍了代数基本定理的几种证法. [关键词]:代数基本定理;多项式;柯西积分定理;儒歇定理;刘维尔定理

逻辑代数及逻辑函数化简.doc

第 2 章 逻辑代数和逻辑函数化简 基本概念:逻辑代数是有美国数学家 George Boole 在十九世纪提出 , 因此也称 布尔代数 , 是分析和设计数字逻辑电路的数学工具。 也叫开关代数, 是研究只用 0 和 1 构成的数字系统的数学。 基本逻辑运算和复合逻辑运算 基本逻辑运算:“与”、“或”、“非”。 复合逻辑运算:“与非”、“或非”、“与或非”、“异 或”、“同或”等。 A B 基本逻辑运算 ~ 220V F 1. “与”运算①逻辑含义:当决定事件成立的所有条件全部具 备时,事件才会发生。 ②运算电路:开关 A 、B 都闭合,灯 F 才亮。 ③表示逻辑功能的方法: 真值表 A B F 灯 F 的状态代表 开关 A 、B 的状态代 0 0 表输入: 0 1 0 输出: 1 0 0 “ 0”表示亮; “0”表示断开; 1 1 1 表达式: F A B = ? 逻辑符号: A & FA FA F B B B 国家标准 以前的符号 欧美符号 功能说明: 有 0 出 0,全 1 出 1。 在大规模集成电路可编程逻辑器件中的表示符号: A B A B A B & F F F

通过“ ?”接入到此线上的输入信号都是该与门的一个输入端。推广:当有 n 个变量时: F=A 1A 2 A 3 ? ? ? A n “与”运算的几个等式: 0?0=0,0?1=0, 1?1=1 A?0=0(0-1 律), A?1=A (自等律),A?A=A (同一律), A?A?A=A (同一律)。 2. “或”运算①逻辑含义:在决定事件成立的所有条件中,只 要具备一个,事件就会发生。 A ②运算电路: 开关 A 、B 只要闭合一个,灯 F 就亮。 B ~220V F ③表示逻辑功能的方法: 逻辑功能: 有 1 出 1,全 0 出 0。 真值表:(略) 表达式: F=A+B 逻辑符号: A ≥ 1 F A FA F B + B B 国家标准 以前的符号 欧美符号 推广:当有 n 个变量时: F=A 1+A 2+ A 3+? ? ? +A n “或”运算的几个等式: 0+0=0,0+1=1, 1+1=1 A+0=A (自等律) A+1=1( 0-1 律),A+A=A (同一律)。 上次课小结:与、或的功能、表达式等,几个等式。 3.“非”运算 ①逻辑含义:当决定事件的条件具备时, 事件不 发生;当条件不具备时,事件反而发生了。 R ②运算电路:开关 A 闭合,灯 F 不亮。 ~ 220V A F ③表示逻辑功能的方法: 逻辑功能: 入 0 出 1,入 1 出 0。 真值表:(略) 表达式: F= A

浅谈用复变函数理论证明代数学基本定理

摘要 伴随漫长的解方程历史探索中,数学家得出一元多次方程解与次数关系的代数学基本定理,一直以来,学者们给出了不同的方法来证明这个定理。代数学基本定理在代数学中占有非常重要的地位,这篇论文将叙述代数学基本定理的内容,并用复变函数理论中的刘维尔定理、儒歇定理、辐角原理、最大模原理、最小模原理、留数定理、柯西定理来证明代数学基本定理,并对这些证明方法进行说明、比较与总结。 关键词:代数学基本定理;辐角原理;最大模原理;最小模原理 Abstract With a long history of exploration in the solution of equations, mathematicians come to a dollar many times the relationship between the number of equations and the fundamental theorem of algebra, has been, have given different ways to prove the theorem. Fundamental theorem of algebra in the algebra plays a very important position, this paper will describe the contents of the fundamental theorem of algebra and complex function theory with the Liouville theorem, Confucianism break theorem, argument principle, maximum modulus principle, the minimum Modulus principle, residue theorem, Cauchy's Theorem to prove the fundamental theorem of algebra, and the proof are described, compared and summarized. Keywords:Fundamental theorem of algebra。Argument principle。maximum modulus principle。minimum modulus principle

逻辑代数基础习题

第二章逻辑代数基础 [题] 选择题 以下表达式中符合逻辑运算法则的是。 ·C=C2+1=10 C.0<1 +1=1 2. 逻辑变量的取值1和0可以表示:。 A.开关的闭合、断开 B.电位的高、低 C.真与假 D.电流的有、无 3. 当逻辑函数有n个变量时,共有个变量取值组合。 A. n B. 2n C. n2 D. 2n 4. 逻辑函数的表示方法中具有唯一性的是。 A .真值表 B.表达式 C.逻辑图 D.卡诺图 5.在输入情况下,“与非”运算的结果是逻辑0。 A.全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是1 6.在输入情况下,“或非”运算的结果是逻辑0。 A.全部输入是0 B.全部输入是1 C.任一输入为0,其他输入为1 D.任一输入为1 7.求一个逻辑函数F的对偶式,可将F中的。 A .“·”换成“+”,“+”换成“·” B.原变量换成反变量,反变量换成原变量 C.变量不变 D.常数中“0”换成“1”,“1”换成“0” E.常数不变 8. 在同一逻辑函数式中,下标号相同的最小项和最大项是 关系。 A.互补 B.相等 C.没有关系 9. F=A +BD+CDE+ D= 。 A. A B. A+D C. D D. A+BD 10.A+BC= 。 A .A+ B + C C.(A+B)(A+C) +C 11.逻辑函数F== 。 C. D. [题]判断题(正确打√,错误的打×) 1.逻辑变量的取值,1比0大。() 2.异或函数与同或函数在逻辑上互为反函数。()3.若两个函数具有相同的真值表,则两个逻辑函数必然相等。()

4.因为逻辑表达式A+B+AB=A+B成立,所以AB=0成立。()5.若两个函数具有不同的真值表,则两个逻辑函数必然不相等。()6.若两个函数具有不同的逻辑函数式,则两个逻辑函数必然不相等。()7.逻辑函数两次求反则还原,逻辑函数的对偶式再作对偶变换也还原为它本 身。 ( )8.逻辑函数Y=A + B+ C+C 已是最简与或表达式。()9.对逻辑函数Y=A + B+ C+B 利用代入规则,令A=BC代入,得Y= BC + B+ C+B = C+B 成立。() [题] 填空题 1. 逻辑代数又称为代数。最基本的逻辑关系有、、三种。常用的几种导出的逻辑运算为、、、、。 2. 逻辑函数的常用表示方法有、、。 3. 逻辑代数中与普通代数相似的定律有、、。摩根定律又称为。 4. 逻辑代数的三个重要规则是、、。 5.逻辑函数化简的方法主要有化简法和化简法两种。 6.利用卡诺图化简法化简逻辑函数时,两个相邻项合并,消去一个变量,四个相邻项合并,消去个变量等。一般来说,2n 个相邻一方格合并时,可消去个变量。 7. 和统称为无关项。 8.逻辑函数F= B+ D的反函数 = 。 9.逻辑函数F=A(B+C)·1的对偶函数是。 10.添加项公式AB+ C+BC=AB+ C的对偶式为。 11.逻辑函数F=+A+B+C+D= 。 12.逻辑函数F== 。 13.已知函数的对偶式为+,则它的原函数为。 [题] 将下列各函数式化成最小项表达式。 (1) (2) (3) [题] 利用公式法化简下列逻辑函数。 (1)

浅谈代数基本定理的证明

浅谈代数基本定理的证明 前言 代数史本身就是一串解方程式的历史,我们从最简单的开始看起。一元一次 方程式100a x a +=其中011,(0)a a a ≠为复数,则明显地有一个解01a x a =-。 而二次方程式22100a x a x a ++=,其中0122,,(0)a a a a ≠为复数的时候,我们知道 有两个解122 2 x x == 对任一个一般的三次方程式32321030,0a x a x a x a a +++=≠, 透过2 3 3a y x a =+ 的转换,可以让它变成30y py q ++=。于是,在下列方程式 () 3 333()()0u v uv u v u v +-+-+=中 只要33u v q +=-,3 p uv =- ,那么y u v =+就是答案了。经过计算, 3 322q q u v =-=- 0,1,2.u v i ω ω=== (31x =的三根为21,,ωω) 其中要取u 和v 使3 p uv =- 而这就是卡当诺(Cardano)公式 123y y y ωω===

其中231,4272q p D ω= +=-。 例:解31540x x --= 则()()23 23415121427427q p D --=+=+- 因 ()1553 -? == ==- 故三个解分别为 1234y y y ωω==== 我们会发现对1次的复系数多项式方程会有1个解,2次的复系数多项式方 程会有2个解,3次的复系数多项式方程会有3个解。那4次、5次以及更高的次数呢?在1545年的时候,费拉里(Ferrari)找到了4次的多项式方程的根式解,但5次的多项式方程一直没有办法找到,在那之后阿贝尔(Abel)和葛罗瓦(Galois),证明了5次以上的多项式没有一般的根式解。那么5次以上的n 次多项式是不是有n 个解呢?这就必须用到了代数基本定理。 代数基本定理 代数基本定理是代数上很重要的一个定理,它说明了任意一个复数多项式方程,都会有一个复数的解。完整的定理说明如下: 这个定理最早是被高斯(Gauss)在1799年在他的博士论文中提出来,直到现在,都一直不断有人再提出各种不同的证明,其中有利用复变函数、分析、代数拓朴等等方法。以下,我们利用复数的观念来证明代数基本定理。 现在想象z 是复数平面一点,而()P z 的值就是其距离复数平面的垂直高度。将所有的点连起来,就有点像山峰那样子高高低低的不间断的曲面(如下图)。

(精选)线性代数基本定理

线性代数基本定理 一、矩阵的运算 1.不可逆矩阵的运算不满足消去律 AB=O,A 也可以不等于O 11-1-1?è???÷1-1-11?è???÷=0000?è??? ÷ 2.矩阵不可交换 (A +B )2=A 2+AB +BA +B 2 (AB )k =ABABABAB ...AB 3.常被忽略的矩阵运算规则 (A +B )T =A T +B T (l A )T =l A T

4.反称矩阵对角线元素全为0 4.矩阵逆运算的简便运算 (diag(a 1,a 2 ,...,a n ))-1=diag( 1 a 1 , 1 a 2 ,..., 1 a n ) (kA)-1=1 k A-1 方法 1.特殊矩阵的乘法 A.对角矩阵乘以对角矩阵,结果仍为对角矩阵。且: B.上三角矩阵乘以上三角矩阵,结果为上三角矩阵 2.矩阵等价的判断 A@B?R(A)=R(B) 任何矩阵等价于其标准型

3.左乘初等矩阵为行变换,右乘初等矩阵为列变换 如:m*n的矩阵,左乘m阶为行变换,右乘n阶为列变换4. 给矩阵多项式求矩阵的逆或证明某个矩阵可逆 如:A2-A-2I=O,证明(A+2I)可逆。 把2I项挪到等式右边,左边凑出含有A+2I的一个多项式,在确保A平方项与A 项的系数分别为原式的系数情况下,看I项多加或少加了几个。 5.矩阵的分块进行计算 加法:分块方法完全相同 矩阵乘法(以A*B为例):A的列的分法要与B行的分法一致,如: 如红线所示: 左边矩阵列分块在第2列与第3列之间,那么,右边矩阵分块在第二行与第三行之间

至于蓝线,如何画,画不画,只画在哪个矩阵里都无所谓,分块数只决定了最后结果矩阵的行列,并不能决定矩阵是否能做乘法的原则性问题。 求逆: 如果A 1 ,A 2 ,...,A m均可逆, 若,则 反块对角阵也一样,把反对角线上的矩阵求逆。求转置: 块转置,每一块里面的也要转置 6.把普通线性组合式写成矩阵形式 二、行列式的计算 计算一般行列式时需注意: A.代数余子式的正负 B.初等变换用等号,行列式的值可能变化1.特殊形状行列式 上下三角行列式、反上下三角行列式

代数基本定理的初等证明

1 代数基本定理的初等证明 乔明云 (四川 成都师范高等专科学校数学系 611930) 摘要 本文给出了代数基本定理的初等证明 关键词 代数基本定理,初等证明,复数域,一元n 次多项式,根,闭曲线,映射,幅角增量。 1799年,年仅21岁的高斯在他的博士论文中首次证明了 定理 在复数域上,一元n 次多项式(1≥n ) n n n n a Z a Z a Z a Z f ++++=--1110)( (00≠a ) 至少有一个根。 由于这个定理是方程论的基础,方程论又是初等代数学的主要内容,因而称为代数基本定理。高斯的证明是数学史上的一个里程碑。二百多年来,数学家们找到了这个定理的许多不同证明,但无不用到较为高深的数学知识(至少用到复变函数论)及数学思想方法,因此,几乎所有的高等代数教科书都仅叙述定理的内容而未给出证明。本文给出一个初等浅显的简单证明,供教学参考。 首先证明两条引理: 引理1 设γ是复平面上的一条连续闭曲线,则γ在映射f 下的象)(γf 仍是一条连续闭曲线Γ。 证明:设γ的参数方程是 ? ? ?==)() (t y y t x x ),(βα∈t 则γ上的任意点Z 满足 )()()(t iy t x t Z Z +== ),(βα∈t 令 k k k i a βα+= k α,R k ∈β,n k ,,2,1,0 =,则 ) ,(),())(()(01110y x i y x iy x i a Z a Z a Z a Z f W k n n k k k n n n n ?φβα+=++=++++==-=--∑ 其中 ),(y x φ,),(y x ?是x ,y 的实多项式。 于是,当)(t Z Z =时,))(,)(())(,)(())(()(t y t x i t y t x t Z f t W W ?φ+===,从而γ在映射f 下的象)(γf 是以 ? ? ?====))(,)(()()) (,)(()(t y t x t t y t x t ?ηηφμμ ),(βα∈t 为参数方程的一条有向曲线Γ,其中ημi W +=。

相关主题
文本预览
相关文档 最新文档