当前位置:文档之家› 第三章电子讲义:随机信号分析

第三章电子讲义:随机信号分析

第三章电子讲义:随机信号分析
第三章电子讲义:随机信号分析

第三章随机信号分析

知识结构-随机过程的基本概念和统计特征

-平稳随机过程与各态历经性

-平稳随机过程的自相关函数和功率谱密度-高斯过程及其应用

-随机过程通过线形系统

教学目的-了解随机信号的概念和基本分析方法;

-掌握随机过程数字特征、平稳随机过程的相关函数与功

率谱密度的关系及其计算

-掌握平稳随机过程通过线性系统的性质和相应计算。

教学重点-随机过程的基本概念和数字特征

-自相关函数与功率谱密度的关系(即维纳-辛钦定理)

-平稳随机过程通过线形系统

教学难点-各态历经性的理解

-随机过程的自相关函数的性质

-维纳-辛钦定理

教学方法及课时-多媒体授课(4学时)(2个单元)

备注(在上课之前最好让学生复习一下“概率论”)

单元四(2学时)

§3.1 引言(随机信号的范畴和基本分析方法)

本节知识要点:研究随机信号的意义和基本方法

随机过程是信号和噪声通过通信系统的过程,因此,分析与研究通信系统,总离不开对信号和噪声的分析。通信系统中遇到的信号,通常总带有某种随机性,即它们的某个或几个参数不能预知或不可能完全预知(如能预知,通信就失去意义)。我们把这种具有随机性的信号称为随机信号。通信系统中还必然遇到噪

声,例如自然界中的各种电磁波噪声和设备本身产生的热噪声、散粒噪声等,它们更不能预知。凡是不能预知的噪声就统称为随机噪声,或简称为噪声。

从统计数学的观点看,随机信号和噪声统称为随机过程。因而,统计数学中有关随机过程的理论可以运用到随机信号和噪声分析中来。其基本分析方法主要是通过分析其基本的数字特征,如均值、方差、相关函数等来实现的。

§3.2 随机过程的基本概念

本节知识要点:随机过程概念及其基本数字特征

1、随机过程的一般概念

通信过程中的随机信号和噪声均可归纳为依赖于时间参数t的随机过程。这种过程的基本特征是,它是时间t的函数,但在任一时刻观察到的值却是不确定的,是一个随机变量。或者,它可看成是一个由全部可能实现构成的总体,每个实现都是一个确定的时间函数,而随机性就体现在出现那一个实现是不确定的。

例如,设有n台性能相同的通信机,它们的工作条件也相同。现用n部记录仪同时记录各部通信机的输出噪声波形。测试结果将会表明,得到的n张记录图形并不因为有相同的条件而输出相同的波形。恰恰相反,即使n足够的大,也找不到两个完全相同的波形。

图3-1 观察3次的噪声波形

这就是说,通信机输出的噪声电压随时间的变化是不可预知的,因而它是一个随机过程。这样的一次记录就是一个实现,无数个记录构成的总体就是一个随机过程。

2、随机过程的定义

定义:随机过程是依赖于时间参量t变化的随机变量的总体或集合;也可以叫做样本函数的总体或集合。习惯用ξ(t)表示。

3 、随机过程的统计特性的描述

随机过程的统计特征是通过它的概率分布或数字特征加以表述的。

设ξ(t)表示一个随机过程,则在任意一个时刻t1上,ξ(t1)是一个随机变量。显然,这个随机变量的统计特性,可以用分布函数或概率密度函数去描述。

定义:

(1)随机过程ξ(t)的一维概率分布函数

(式3-1)

(2)随机过程ξ(t)的一维概率密度函数

如果存在

(式3-2)

则称f1(x1,t1)为ξ(t)的一维概率密度函数。

(3)随机过程ξ(t)的n维概率分布函数

无疑,在一般情况下用一维分布函数去描述随机过程的完整统计特性是极不充分的,通常需要在足够多的时间上考虑随机过程的多维分布函数。ξ(t)的n 维分布函数被定义为

(式3-3)

(4)随机过程ξ(t)的n维概率密度函数

如果存在

(式3-4)

则称其为ξ(t)的n维概率密度函数。

显然,n越大,用n维分布函数或n维概率密度函数去描述ξ(t)的统计特性就越充分。

4、随机过程的数字特征

在许多场合,除关心随机过程的n维分布外,还需要关心随机过程的数字特性,比如,随机过程的数学期望、方差及相关函数等。

1)数学期望

随机过程ξ(t)的数学期望被定义为

(式3-5)

并记为E[ξ(t)]=a(t)。这里,它本该在某一时刻t1上求得,因此数学期望与t1有关。然而,t1是任意取得,故可把t1直接写成t。所以,随机过程的数学期望被认为是时间t的函数。

数学期望的物理意义:信号或噪声的直流功率。

2)方差

随机过程的方差定义为

(式3-6)

方差的物理意义:信号或噪声交流功率。

3)自协方差与自相关函数

衡量随机过程任意两个时刻上获得得随机变量得统计相关特性时,常用协方差函数和相关函数来表示。

(1)自协方差函数

定义

(式3-7)

式中t1与t2是任意的两个时刻;a(t1)与a(t2)为在t1及t2得到的数学期望;

用途:用协方差来判断同一随机过程的两个变量是否相关。

(2)自相关函数

定义

(式3-8)

用途:a 用来判断广义平稳;

b用来求解随机过程的功率谱密度及平均功率。

(3)自协方差与自相关函数之间的关系

显然,由式(3-7)及(3-8)可得到二者之间的关系式,

(式3-9)

§3.3 平稳随机过程

本节知识要点:平稳随机过程各态历经性

1、平稳随机过程

狭义平稳概念:所谓平稳随机过程,是指它的任何n维分布函数或概率密度函数与时间起点无关。也就是说,如果对于任意的n和τ,随机过程ξ(t)的n维概率密度函数满足

(式3-10)

则称ξ(t)是平稳随机过程。该平稳称为严格平稳,狭义平稳或严平稳。

2、广义平稳过程

广义平稳概念:若一个随机过程的数学期望及方差与时间无关,而其相关函数仅与τ有关,则称这个随机过程为广义平稳随机过程。

通信系统中的信号及噪声,大多数可视为平稳的随机过程。因此,研究平稳随机过程有很大的实际意义。

3、各态历经的平稳随机过程

1)、问题的提出

按照我们所学过的求解平稳随机过程的统计特性(即数学期望,自相关函数等),需要预先确定ξ(t)的一族样本函数和一维、二维概率密度函数,这实际上是不易办到的。

我们自然希望通过对一个样本函数长时间的观测,以得到这个过程的数字特征,那么这种方式是否可行呢?事实已经证明:如果一个平稳随机过程,只要满足一些较宽的条件,其集平均(统计平均值和自相关函数等)实际上可以用一个样本函数在整个时间轴上的平均值来代替,这就是各态历经性。

2)、各态历经性

概念:对于一个平稳的随机过程,如果统计平均=时间平均,这个随机过程就叫做各态历经的平稳随机过程。

设x1(t)是ξ(t)的一个样本,若下列式子成立,

(式3-11)

就称之为具有"各态历经性"的平稳随机过程。

一般来说,在一个随机过程中,不同样本函数的时间平均值是不一定相同的,而集平均则是一定的。因此,一般的随机过程的时间平均≠集平均,只有平稳随机过程才有可能是各态历经的。

即各态历经的随机过程一定是平稳的,而平稳的随机过程则需要满足一定的条件才是各态历经的。

例:随机相位正弦波ξ(t)=sin(ωot+θ)的功率谱密度,其中θ是在(0~2π)内均匀分布的随机变量。

求:(1)ξ(t)是否广义平稳?

(2)ξ(t)是否各态历经?

解:

(1)由判定广义平稳条件可知,如果a(t),为常数, 而R(t,t+τ)仅与τ有关,则ξ(t)广义平稳。

可见,满足广义条件,所以广义平稳。

(2)若集平均=统计平均,则ξ(t)是各态历经的随机过程。

所以,随机相位的正弦波是一个各态历经的随机过程。

单元五(2学时)

§3.4 平稳随机过程的自相关函数和功率谱密度

本节知识要点:随机信号的自相关函数概念、功率谱密度概念及其计算维纳-辛钦定理

确知信号的相关是衡量两个信号之间的关联程度,随机过程的相关是衡量随机过程中两个随机变量之间的关联程度,但讨论随机过程自相关函数的主要目的除了判定广义平稳之外,它还能够把时域和频域巧妙的结合起来,使我们更加方便和全面的了解随机过程。

1、自相关函数

我们已经知道,平稳随机过程的自相关函数和时间t无关,而只与时间间隔τ有关,即

R(τ)=E{ξ(t)ξ(t+τ)} (式3-12)

2、自相关函数的性质

1)、

(式3-13)

R(0)为ξ(t)的均方值(平均功率)。

自相关函数在τ=0处的数值等于该过程的平均功率( 包括直流功率和交流功率)。

2)、对偶性R(τ)=R(-τ)

即自相关函数是τ的偶函数。

证明:

3)、当τ=0时,自相关函数取最大值,即R(0)≥ R(τ)

证明:

4)、

(式3-14)

在时间间隔很大的时候,可将二者看成是相互独立的。

由该性质可知:利用R(τ)的图形就可以求出该过程的各种成份的功率(直流功率,交流功率,总功率)

有该性质可推出性质5

5)、

(式3-15)

3、功率谱密度

付氏变换沟通了确定信号时域和频域的关系,那么为什么随机过程在频率域中要讨论功率谱密度,而不讨论付氏变换呢?主要原因有二。

1)、对于随机过程来说,它由许许多多个样本函数来构成, 所以我们无法求其付氏变换,可以说,随机过程不存在付氏变换。

2)、随机过程属于功率信号而不属于能量信号,所以我们讨论功率谱密度。

对于任意的功率信号f(t)的功率谱为

(式3-16)

而对于一个随机过程来说,ξ(t)有许许多多次实现(即许许多多个样本函数,其中某一次实现也是功率信号,其功率谱密度可以用上式表示。但它不能作为随机过程的功率谱密度。随机过程的功率谱密度可以看作是每一个样本函数的功率谱密度的统计平均(即数学期望)。

设ξ(t)一次实现的截断函数为ξT(t),ξT(t)的付氏变换为FT(ω),则该样本函数的功率谱为

(式3-17)

这样,整个随机过程的平均功率谱为

(式3-18)

该随机过程的平均功率为

(式3-19)

4、维纳-辛钦定理

维纳—辛钦定理:平稳随机过程的自相关函数与功率谱密度互为傅里叶变换,即:

(式3-20)

令,先对积分(令为常数),则,

所以有当,二重积分变为

交换积分次序(先,后),分两部分(1)(2),则有

(1)

(2)

因为当时,;当时,,因此(1)+(2)等于

由此有:

即:是的傅氏变换,反变换是:

证毕。

这就是著名的维纳-辛钦定理。

§3.5 高斯随机过程

知识要点:高斯随机过程定义高斯白噪声

1、定义(选讲)

随机过程,任意维(n = 1,2,...) 概率密度为:

式中:

;

-归一化协方差矩阵的行列式,即:

-和的归一化协方差函数

-的因素的代数余子式(也是一行列式)

由此式可看出:高斯过程的维概率密度完全决定于其的数学期望,方差和与两两之间的归一化协方差。

2、性质(选讲)

(1)如果高斯过程是宽平稳过程,则,与时刻无

关,是一常数;而仅与有关,因此其维概率密度满足严平稳条件,所以宽平稳的高斯过程是严平稳的高斯过程。也就是说,对于高斯过程来说,宽平稳和严平稳是一致的。

:对于其他随机过程此结论不一定成立。

(2)如果和两两不相关,即:

则有:和

这时有:

令:

则有:

即:两两相互独立。

这说明,对于正态随机过程的任何两个时刻的随机变量,不相关也就是统计独立。

:对于其他随机过程此结论不一定成立。

3、高斯白噪声的概念

实际通信系统中噪声都可以看作是一种高斯白噪声。其含义是:在任何一个时刻,噪声的分布都是符合正态分布的;而从功率谱上看,是一条平行于横轴的直线,即各频率分量的功率是相等的。

4、几个有用的公式

误差函数、互补误差函数及φ函数

正态分布函数还经常表示成与误差函数相联系的形式。所谓误差函数,它的定义式为

并称为互补误差函数,用表示,即

(式3-21)

因为

如果,则

如果,则

(式3-22)

(式3-23)

令,代入式(3-22),(3-23),则有

因为,所以当时,有

(式3-24)

而当时,则有

(式3-25)

:在以后讨论通信系统抗噪声性能时,公式(3-21)及(3-24)、(3-25)是常用的。

§3.6 平稳随机过程通过线形系统

知识要点:平稳随机过程通过线形系统的3个重要性质

性质1:输出过程的数学期望等于输入过程的数学期望与相乘,并且

与无关。

:

线性系统的响应等于输入信号与系统的单位冲激响应的卷积。对随机过程而言,便有:

设:,且系统稳定,则的均值为:

根据平稳性的特点,,上式变为

因为

所以

(式3-26)

由上式可知:输出过程的数学期望等于输入过程的数学期望与相乘,并且与无关。

性质2:线性系统的输出的自相关函数与时间无关,所以输出过程

为平稳随机过程。

:

线性系统的响应等于输入信号与系统的单位冲激响应的卷积。对随机过程而言,便有:

随机过程的自相关函数为:

:的自相关函数与无关,所以为平稳随机过程。

性质3:系统输出功率谱密度是输入功率谱密度和的乘积。

即:

(式3-27)

:

线性系统的响应等于输入信号与系统的单位冲激响应的卷积。对随机过程而言,便有:

根据维纳-辛钦定理,的功率谱密度

令:,

若,则。

不难证明:

[教学总结]:

一、容易混淆的概念:

1、“随机变量”和“随机过程”

前者是1个变量;后者是一系列变量。可以具抛一次硬币和抛3次硬币的例子来说明。

2、很多同学把h(t)和H(w)混淆了,这属于信号与系统的知识,必要时帮助同学们复习一下。

二、随机过程的数字特征不再是随机过程(如均值,是一个关于时间的确知函数)。这一点很多同学不好理解,最好的方法是举一些简单的随机过程的例子去分析一下。

三、计算自相关函数和功率谱密度是很多同学容易出错的地方,放映了一些同学的信号与系统的基本功不过硬,需要多做例题和练习。

电子科大随机信号分析随机期末试题答案

电子科技大学2014-2015学年第 2 学期期 末 考试 A 卷 一、设有正弦随机信号()cos X t V t ω=, 其中0t ≤<∞,ω为常数,V 是[0,1)均匀 分布的随机变量。( 共10分) 1.画出该过程两条样本函数。(2分) 2.确定02t πω=,134t πω=时随机信号()X t 的 一维概率密度函数,并画出其图形。(5 分) 3.随机信号()X t 是否广义平稳和严格平 稳?(3分) 解:1.随机信号()X t 的任意两条样本函 数如题解图(a)所示: 2.当02t πω=时,()02X πω=,()012P X πω??==????, 此时概率密度函数为:(;)()2X f x x πδω =

当34t πω=时, 3()42X πω=-,随机过程的一维 概率密度函数为: 3. ()[]1cos cos 2E X t E V t t ωω==???? 均值不平稳, 所以()X t 非广义平稳,非严格平稳。 二、设随机信号()()sin 2X n n πφ=+与 ()()cos 2Y n n πφ=+,其中φ为0~π上均 匀分布随机变量。( 共10分) 1.求两个随机信号的互相关函数 12(,)XY R n n 。(2分) 2.讨论两个随机信号的正交性、互不 相关性与统计独立性。(4分) 3.两个随机信号联合平稳吗?(4分) 解:1.两个随机信号的互相关函数 其中()12sin 2220E n n ππφ++=???? 2. 对任意的n 1、n 2 ,都有12(,)0XY R n n =, 故两个随机信号正交。

又 故两个随机信号互不相关, 又因为 故两个随机信号不独立。 3. 两个随机信号的均值都平稳、相关函数都与时刻组的起点无关,故两个信号分别平稳,又其互相关函数也与时刻组的起点无关,因而二者联合平稳。 三、()W t 为独立二进制传输信号,时隙长度T 。在时隙内的任一点 ()30.3P W t =+=????和 ()30.7P W t =-=????,试求( 共10分) 1.()W t 的一维概率密度函数。(3分) 2.()W t 的二维概率密度函数。(4分) 3.()W t 是否严格平稳?(3分)

北京理工大学2011级随机信号分析期末试题B卷

北京理工大学2011级随机信号分析期末试题B卷 1(15分)、考虑随机过程X t=2Nt2,其中N为标准正态随机变量。计算X(t)在t为0秒,1秒,2秒时的一维概率密度函数fx x;0,fx x;1,fx x;2 2(15分)、考虑随机过程X t=a2cos2(ω0t+?),其中a,ω0为常数,?为在[0,2π) 上均匀分布的随机变量。 (1)、X(t)是否为宽平稳随机过程?为什么? (2)、X(t)是否为宽遍历随机过程?为什么? (3)、求X(t)的功率谱密度及平均功率。 3(15分)、考虑下述随机过程 Y(t)=X k dk t t?2T 式中,X(t)为宽平稳随机过程。 (1)、试找出一线性时不变系统,使得系统输入为X(t)时其输出为Y(t),写出该系统的单位冲激响应; (2)、假定X(t)的自相关函数为R XX(τ),计算Y(t)的自相关函数; (3)、假定X(t)的功率谱密度为S XX(ω),计算Y(t)的功率谱密度。 4(15分)、已知某宽平稳高斯随机过程的功率谱密度如下 S XXω=10 22 将其通过一微分网络,输出为Y(t)。 (1)、求Y(t)的功率谱密度S Yω; (2)、求Y(t)的平均功率; (2)、求Y2(t)的平均功率。 5(40分)、已知X t=A t cos(ω t?θ)?A t sin?(ω0t?θ) 其中A(t)为宽平稳实随机过程,功率谱密度如图1所示,且ω0?W,θ服从(0,2π)上均匀分布的随机变量。 分别定义X(t) 和同相分量和正交分量为: X I t=X t cosω0t+X t sinω0t X Q t=X t cosω0t?X t sinω0t 式中,X t表示X(t)的希尔伯特变换。 (1)、计算X(t)及X t的平均功率,分别画出X(t),X(t)的复解析过程,X(t)的复包络,以及X(t)的正交分量和同相分量的功率谱密度; (2)、若A(t)为零均值的随机过程,X(t)通过如图2的系统,求Y(t)的均值和方

随机信号分析期末总复习提纲重点知识点归

第 一 章 1.1不考 条件部分不考 △雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义 相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况) △随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58) △ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61 ( )()() () ( ) ()()2 2 1 () 2112 2 22 11 ,,exp 2 2exp ,,exp 22T T x m X X X X X n n X T T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E e jM U σπσμ---?? --??= = -????? ? ?? ?? ?? ??=-==- ?? ??? ????? ?? C C C u u r u u r u u r u u r u u r u u r L u r u r u u r u r L 另外一些性质: []()20XY XY X Y X C R m m D X E X m ??=-=-≥??

第二章 随机过程的时域分析 1、随机过程的定义 从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ?→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系? 3、随机过程的概率密度P7 4、特征函数P81。(连续、离散) 一维概率密度、一维特征函数 二元函数 4、随机过程的期望、方差、自相关函数。(连续、离散) 5、严平稳、宽平稳的定义 P83 6、平稳随机过程自相关函数的性质: 0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88 2 2 2() ()()()()(0)()X X X X X X X X X X C R m R R R R τττρτσ σ--∞= = -∞= 非周期 相关时间用此定义(00()d τρττ∞ =?) 8、两个随机过程之间的“正交”、“不相关”、“独立”。 (P92 同一时刻、不同时刻) 9、两个随机过程联合平稳的要求、性质。P92

随机信号分析基础学习知识课后学习材料

第一章 1、有朋自远方来,她乘火车、轮船、汽车或飞机的概率分别是0.3,0.2,0.1和0.4。如果她乘火车、轮船或者汽车来,迟到的概率分别是0.25,0.4和0.1,但她乘飞机来则不会迟到。如果她迟到了,问她最可能搭乘的是哪种交通工具? 解:()0.3P A = ()0.2P B = ()0.1P C = ()0.4 P D = E -迟到,由已知可得 (|)0.25(|)0.4 (|)0.1(|)0 P E A P E B P E C P E D ==== 全概率公式: ()()()()()P E P EA P EB P EC P ED =+++ 贝叶斯公式: ()(|)()0.075 (|)0.455()()0.165(|)()0.08 (|)0.485 ()0.165 (|)()0.01 (|)0.06 ()0.165(|)() (|)0 ()P EA P E A P A P A E P E P E P E B P B P B E P E P E C P C P C E P E P E D P D P D E P E ?= ===?===?===?== 综上:坐轮船 3、设随机变量X 服从瑞利分布,其概率密度函数为2 2 22,0 ()0,0X x x X x e x f x x σσ-??>=?? ,求期望()E X 和方差()D X 。 考察: 已知()x f x ,如何求()E X 和()D X ? 2 22 2 2 2()()()[()]()()()()()()()x x E X x f x dx D X E X m X m f x dx D X E X E X E X x f x dx ∞ -∞ ∞ -∞ ∞-∞ =?=-= -=-?=??? ? 6、已知随机变量X 与Y ,有1,3,()4,()16,0.5XY EX EY D X D Y ρ=====,令 3,2,U X Y V X Y =+=-试求EU 、EV 、()D U 、()D V 和(,)Cov U V 。 考察随机变量函数的数字特征

随机信号分析(常建平-李海林版)课后习题答案.docx

由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。给大家造成的不便,敬请谅解 随机信号分析 第三章习题答案 、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。求 (1)证明X(t)是平稳过程。 (2)X(t)是各态历经过程吗?给出理由。 (3)画出该随机过程的一个样本函数。 (1) (2) 3-1 已知平稳过程()X t 的功率谱密度为232 ()(16) X G ωω=+,求:①该过程的平均功率? ②ω取值在(4,4)-范围内的平均功率? 解 [][]()[]2 ()cos 2 11 ,cos 5cos 22 X E X t E A E t B A B R t t EA τττ =++=????+=+=+与相互独立 ()()()2 1521()lim 2T T T E X t X t X t X t dt A T -→∞??=<∞ ???==?是平稳过程

()()[]()()41122 11222222 2 4 2' 4(1)24()()444(0)4 1132 (1)2244144 14(2)121tan 132 24X X X E X t G d R F G F e R G d d d arc x x τ τωωωωω ππωωπωωπ ω π ωω∞ ----∞∞ -∞-∞∞--∞∞ ?????==?=???+?? ====+==??+ ?==??= ++?? = ? ????P P P P 方法一() 方:时域法取值范围为法二-4,4内(频域的平均率法功) 2 d ω =

电子科大随机信号分析随机期末试题答案

电子科技大学2014- 2015学年第2学期期末考试 A 卷 一、设有正弦随机信号X t Vcos t , 其中0 t,为常数,V是[0,1)均匀分布的随机变 量。(共10分) 1.画出该过程两条样本函数。(2分) 3 2.确定t。— , t1—时随机信号x(t)的一维概率密度函数,并画出其图形。(5 分) 3.随机信号x(t)是否广义平稳和严格平 稳?(3分) 解: 1.随机信号x t的任意两条样本函数如题解图(a)所示: 2.当t0 厂时,x(—)0, P x(—)0 1, 此时概率密

度函数为:f x(X;厂)(X)

当t时,X(右)乎V,随机过程的一维概率密度函数为: 1 3. E X t EV cos t 2cos t 均值不平稳,所以X(t)非广义平稳,非严格平稳。 二、设随机信号X n sin 2 n 与 Y n cos 2 n ,其中为0~上均 匀分布随机变量。(共10分) 1.求两个随机信号的互相关函数 (n!, n2)o (2 分) R KY 2.讨论两个随机信号的正交性、互不 相关性与统计独立性。(4分) 3 .两个随机信号联合平稳吗?(4分)解: 1.两个随机信号的互相关函数 其中E sin 2 口2迈2 0 2.对任意的厲、n2,都有R XY^M) 0, 故两个

随机信号正交。 又 故两个随机信号互不相关, 又因为 故两个随机信号不独立。 3. 两个随机信号的均值都平稳、相关函数都与时刻组的起点无关,故两个信号分别平稳,又其互相关函数也与时刻组的起点无关,因而二者联合平稳。 三、W t为独立二进制传输信号,时隙长度T。在时隙内的任一点 P W t 3 0.3和P W t 3 0.7 ,试求 (共10 分) 1.W t的一维概率密度函数。(3 分)

电子科技大学随机信号分析期末考试题

………密………封………线………以………内………答………题………无………效…… 电子科技大学20 -20 学年第 学期期 考试 卷 课程名称:_________ 考试形式: 考试日期: 20 年 月 日 考试时长:____分钟 课程成绩构成:平时 10 %, 期中 10 %, 实验 %, 期末 80 % 本试卷试题由___2__部分构成,共_____页。 一、填空题(共20分,共 10题,每题2 分) 1. 设随机过程0()cos(),X t A t t ω=+Φ-∞<<∞,其中0ω为常数,A Φ和是相互独立的随机变量, []01A ∈,且均匀分布,Φ在[]02π,上均匀分布,则()X t 的数学期望为: 0 2. 已知平稳随机信号()X t 的自相关函数为2()2X R e ττ-=,请写出()X t 和(2)X t +的协方差12-e 3. 若随机过程()X t 的相关时间为1τ,()Y t 的相关时间为2τ,12ττ>,则()X t 比()Y t 的相关性要__大___,()X t 的起伏特性比()Y t 的要__小___。 4. 高斯随机过程的严平稳与___宽平稳_____等价。 5. 窄带高斯过程的包络服从___瑞利___分布,相位服从___均匀___分布,且在同一时刻其包络和相位是___互相独立___的随机变量。 6. 实平稳随机过程的自相关函数是___偶____(奇、偶、非奇非偶)函数。 7. 设)(t Y 是一均值为零的窄带平稳随机过程,其单边功率谱密度为)(ωY F ,且0()Y F ωω-为一偶函数,则低频过程)()(t A t A s c 和是___正交___。

电子科大随机信号分析随机信号分析试题A卷答案

电子科技大学20 -20 学年第 学期期 考试 卷 课程名称:_________ 考试形式: 考试日期: 20 年 月 日 考试时长:____ 分钟 课程成绩构成:平时 %, 期中 %, 实验 %, 期末 % 本试卷试题由_____部分构成,共_____页。 计算、简答、论述、证明、写作等试题模板如下 一、若信号00()cos()X t X t ω=++Θ输入到如下图所示的RC 电路网络上, 其中0X 为[0,1]上均匀分布的随机变量,Θ为[0,2]π上均匀分布的随机变量,并且0X 与 Θ彼此独立,Y (t )为网络的输出。( 共10分) (1)求Y (t )的均值函数。(3分) (2)求Y (t )的功率谱密度和自相关函数。(4分) (3)求Y (t )的平均功率。(3分) 图 RC 电路网路 (1)RC 电路的传输函数为()1(1)H j j RC ωω=+ ()X t 的均值函数为 ∴ Y (t )的均值函数为 (2) ∴()X t 是广义平稳的。 ∴()X t 的功率谱为: 功率谱传递函数:22 1 |()|H j RC ωω= 1+() 根据系统输入与输出信号功率谱的关系可得: 求()Y S ω的傅立叶反变换,可得:

(3)2222 011 (0)328Y Y P R f R C ==++π 二、若自相关函数为()5()X R τδτ=的平稳白噪声X (t )作用于冲激响应为 ()e ()bt h t u t -=的系统,得到输出信号Y (t )。( 共10分) (1)求X (t )和Y (t )的互功率谱()YX S ω和()XY S ω。(5分) (2)求Y (t )的矩形等效带宽。(5分) (1)1 ()() ()bt h t e u t H j b j ωω -=?= + (2) 2 2222 552() ()()2Y X b S S H j b b b ωωωωω=?= =?++,25(0)Y S b = 求()Y S ω的傅里叶反变换,得到()Y t 的自相关函数为: 5()2b Y R e b τ τ-= ,5(0)2Y R b = ∴ ()()()()20015/2202025/4 Y eq Y Y Y R b b B S d S S b ωωπ∞= ===?? 三、设有正弦随机信号()cos X t V t ω=,其中0t ≤<∞,ω为常数,V 是[0,1)均匀分布 的随机变量。(共10分) (1)确定4t π ω= 时随机变量()X t 的概率密度函数,并画出其图形;(4分) (2)当2t π ω =时,求()X t 的概率密度函数。(3分) (3)该信号是否严格平稳?(3分) 解:(1)随机信号()X t 的任意两条样本函数如题解图(a)所示: 随机过程在不同时刻是不同的随机变量,一般具有不同的概率密度函数: 当4t πω= 时,()4X πω= ,0(;)240,X x f x others πω<< =?? (2分) 在,4i t ππωω =各时刻,随机变量()i X t 的概率密度函数图形如题解图(b) 所示: 1 10 3π π0 - 1 (2分)

电子科技大学随机信号分析期末考试题1

电子科技大学20 -20 学年第 学期期 考试 卷 课程名称:_________ 考试形式: 考试日期: 20 年 月 日 考试时长:____分钟 课程成绩构成:平时 10 %, 期中 10 %, 实验 %, 期末 80 % 本试卷试题由___2__部分构成,共_____页。 一、填空题(共20分,共 10题,每题2 分) 0()cos(),X t A t t ω=+Φ-∞<<∞,其中0ω为常数,A Φ和是相互独立的随机变量, []01A ∈,且均匀分布,Φ在[]02π,上均匀分布,则()X t 的数学期望为: 0 2. 已知平稳随机信号()X t 的自相关函数为2()2X R e ττ-=,请写出()X t 和(2)X t +的协方差12-e 3. 若随机过程()X t 的相关时间为1τ,()Y t 的相关时间为2τ,12ττ>,则()X t 比()Y t 的 相关性要__大___,()X t 的起伏特性比()Y t 的要__小___。 4. 高斯随机过程的严平稳与___宽平稳_____等价。 5. 窄带高斯过程的包络服从___瑞利___分布,相位服从___均匀___分布,且在同一时刻其包络 和相位是___互相独立___的随机变量。 6. 实平稳随机过程的自相关函数是___偶____(奇、偶、非奇非偶)函数。 7. 设)(t Y 是一均值为零的窄带平稳随机过程,其单边功率谱密度为)(ωY F ,且0()Y F ωω-为一 偶函数,则低频过程)()(t A t A s c 和是___正交___。 二、计算题(共80分) 两随机变量X 和Y 的联合概率密度函数为(,)=XY f x y axy ,a 是常数,其中0,1x y ≤≤。求: 1)a ; 2)X 特征函数; 3)试讨论随机变量X 和Y 是否统计独立。 解:因为联合概率密度函数需要满足归一性,即 (2分)

2010电子科技大学随机信号分析期末考试A

一、已知随机变量X 服从11,22??-???? 区间的均匀分布,Y 是取值为(-1,1)的二值随机变量,且满足1[1][1]2P Y P Y =-=== 。 若X 和Y 彼此统计独立,求随机变量Z X Y =+的: 1、概率密度函数 ()Z f z 。 2、特征函数()Z v Φ。 解: 1、随机变量X 均服从11,22?? -????区间的均匀分布, 111,()()22 0,X x f x rect x otherwise ? -≤≤ ?==??? 11 ()(1)(1) 22 Y f y x x δδ=++- 由于X 和Y 彼此统计独立,所以 11 ()()()(1)(1) 22 Z X Y f z f z f z rect z rect z =*=++- 131/2, 220,z otherwise ? ≤≤?=??? 2、

()2rect z Sa ω?? ? ? ?? 且 ()()FT z z f z v Φ- 所以()1()cos 222j j z v Sa e e Sa ωωωωω-????Φ=+= ? ????? 二、取值()0,1,等概分布的独立半随机二进制传输信号()X t ,时隙长度为0T ,问: 1、信号的均值函数()E X t ??? ?。 2、信号的自相关函数(),X R t t τ+。 3、()X t 的一维概率分布函数 ();X F x t 和二维概率分布函数()1212,;,X F x x t t 。 解:1、()00.510.50.5X t E =?+?=???? 2、当,t t τ+在同一个时隙时: [] 2 2 2 (,)()()[()]00.510.50.5X R t t E X t X t E X t ττ+=+==?+?= 当,t t τ+不在同一个时隙时:

电子科技大学随机信号分析期末测验A

电子科技大学随机信号分析期末测验A

————————————————————————————————作者:————————————————————————————————日期:

一、已知随机变量X 服从11,22??-???? 区间的均匀分布,Y 是取值为(-1,1)的二值随机变量,且满足1[1][1]2P Y P Y =-=== 。 若X 和Y 彼此统计独立,求随机变量Z X Y =+的: 1、概率密度函数 ()Z f z 。 2、特征函数()Z v Φ。 解: 1、随机变量X 均服从11,22?? -????区间的均匀分布, 111,()()22 0,X x f x rect x otherwise ? -≤≤ ?==??? 11 ()(1)(1) 22 Y f y x x δδ=++- 由于X 和Y 彼此统计独立,所以 11 ()()()(1)(1) 22 Z X Y f z f z f z rect z rect z =*=++- 131/2, 220,z otherwise ? ≤≤?=??? 2、

()2rect z Sa ω?? ? ? ?? 且 ()()FT z z f z v Φ- 所以()1()cos 222j j z v Sa e e Sa ωωωωω-????Φ=+= ? ????? 二、取值()0,1,等概分布的独立半随机二进制传输信号()X t , 时隙长度为0T ,问: 1、信号的均值函数()E X t ??? ?。 2、信号的自相关函数(),X R t t τ+。 3、()X t 的一维概率分布函数 ();X F x t 和二维概率分布函数()1212,;,X F x x t t 。 解:1、()00.510.50.5X t E =?+?=???? 2、当,t t τ+在同一个时隙时: [] 2 2 2 (,)()()[()]00.510.50.5X R t t E X t X t E X t ττ+=+==?+?= 当,t t τ+不在同一个时隙时:

随机信号分析(常建平,李林海)课后习题答案第三章 习题讲解

、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。求 (1)证明X(t)是平稳过程。 (2)X(t)是各态历经过程吗?给出理由。 (3)画出该随机过程的一个样本函数。 (1) (2) 3-1 已知平稳过程()X t 的功率谱密度为 2 32 ()(16) X G ωω= +,求:①该过程的平均功率? ②ω取值在(4,4)-范围内的平均功率? 解 [][]()[]2 ()cos 2 11 ,cos 5cos 22 X E X t E A E t B A B R t t EA τττ =++=????+=+=+与相互独立 ()()()2 1521()lim 2T T T E X t X t X t X t dt A T -→∞??=<∞ ???==?是平稳过程

()()[]() ()41122 11222222 2 4 2' 4(1)24()()444(0)4 1132 (1 )2244144 14(2)121tan 132 24X X X E X t G d R F G F e R G d d d arc x x τ τωωωωω ππωωπωωπ ω π ωω∞ ----∞∞ -∞-∞∞--∞∞ ?????==?=???+?? ====+==??+ ?== ??= ++?? =? ????P P P P 方法一() 方:时域法取值范围为法二-4,4内(频域的平均率法功) 2 d ω =

3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=- [][]: ()[()()] {()()}{()(}2()()() ()()()() ()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-??=+=--+-+-=--=+=-??∴=-+-=已知平稳过程的表达式 利用定义求利用傅解系统输入输出立叶平变稳 换的延时特性 2()2()22()(1cos ) j T j T X X X e e G G G T ωωωωωω-?? +-????=-

随机信号李晓峰版第一章习题答案

随机信号分析 第一章 1. 2. 3. 4. 5. 6. 7. 8. 设随机试验X 的分布律为 求X 的概率密度和分布函数,并给出图形。 解:()()()())0.210.520.33i i i f x p x x x x x δ δδδ=-=-+-+-∑( ()()()())0.210.520.33i i i F x p u x x u x u x u x =-=-+-+-∑( 9.

10. 设随机变量X 的概率密度函数为()x f x ae -=, 求:(1)系数a ;(2)其分布函数。 解:(1)由 ()1f x dx ∞ -∞ =? () ()2x x x f x dx ae dx a e dx e dx a ∞ ∞ ∞ ---∞ -∞ -∞ ==+=? ?? ? 所以12a = (2)()1()2 x x t F x f t dt e dt --∞ -∞= =? ? 所以X 的分布函数为 ()1,02 11,02 x x e x F x e x -?

求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。 解:(1) ()() ()()()()()() ,,0.07,10.18,0.15,10.081,10.321,0.201,1ij i j i j F x y p u x x y y u x y u x y u x y u x y u x y u x y =--=+++-+-++-+--∑∑ ()() ()()()()()(),,0.07,10.18,0.15,10.081,10.321,0.201,1ij i j i j f x y p x x y y x y x y x y x y x y x y δδδδδδδ=--=+++-+-++-+--∑∑ (2)X 的分布律为(i ij j P P ?=∑) ()()00.070.180.150.4010.080.320.200.60P X P X ==++===++= Y 的分布律为 ()()()10.070.080.1500.180.320.5010.150.200.35 P Y P Y P Y =-=+===+===+= (3)Z XY =的分布律为

随机信号分析 第三版 第一章 习题答案

1. 2. 3. 4. 5. 6. 有四批零件,第一批有2000个零件,其中5%是次品。第二批有500个零件,其中40%是次品。第三批和第四批各有1000个零件,次品约占10%。我们随机地选择一个批次,并随机地取出一个零件。 (1) 问所选零件为次品的概率是多少? (2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。 ()()()()1 2 3 4 1 4 P B P B P B P B ==== ()()()()1234100 200 0.050.42000500100 100 0.1 0.1 10001000P D B P D B P D B P D B === ===== ()1111 0.050.40.10.10.1625 4444 P D =?+?+?+?= (2)发现次品后,它来自第二批的概 率为,

()()()2220.250.4 0.615 0.1625 P B P D B P B D P D ?= = = 7. 8. 9. 设随机试验X 的分布律为 求X 的概率密度和分布函数,并给出图形。 解:()()()()0.210.520.33f x x x x δδδ=-+-+- ()()()()0.210.520.33F x u x u x u x =-+-+- 10. 11. 设随机变量X 的概率密度函数为()x f x ae -=,求:(1)系数a ;(2)其分布函数。 解:(1)由()1f x dx ∞-∞ =? ()0 ()2x x x f x dx ae dx a e dx e dx a ∞ ∞ ∞ ---∞ -∞ -∞ ==+=???? 所以12 a = (2)()1()2 x x t F x f t dt e dt --∞ -∞==? ? 所以X 的分布函数为

电子科技大学随机信号分析期末测验题

电子科技大学随机信号分析期末测验题

————————————————————————————————作者:————————————————————————————————日期:

电子科技大学20 -20 学年第 学期期 考试 卷 课程名称:_________ 考试形式: 考试日期: 20 年 月 日 考试时长:____分钟 课程成绩构成:平时 10 %, 期中 10 %, 实验 %, 期末 80 % 本试卷试题由___2__部分构成,共_____页。 题号 一 二 三 四 五 六 七 八 九 十 合计 得分 一、填空题(共20分,共 10题,每题2 分) 1. 设随机过程0()cos(),X t A t t ω=+Φ-∞<<∞,其中0ω为常数,A Φ和是相互独立的随机变量, []01A ∈,且均匀分布,Φ在[]02π,上均匀分布,则()X t 的数学期望为: 0 2. 已知平稳随机信号()X t 的自相关函数为2()2X R e ττ-=,请写出()X t 和(2)X t +的协方差12-e 3. 若随机过程()X t 的相关时间为1τ,()Y t 的相关时间为2τ,12ττ>,则()X t 比()Y t 的相关性 要__大___,()X t 的起伏特性比()Y t 的要__小___。 4. 高斯随机过程的严平稳与___宽平稳_____等价。 5. 窄带高斯过程的包络服从___瑞利___分布,相位服从___均匀___分布,且在同一时刻其包络和相 位是___互相独立___的随机变量。 6. 实平稳随机过程的自相关函数是___偶____(奇、偶、非奇非偶)函数。 7. 设)(t Y 是一均值为零的窄带平稳随机过程,其单边功率谱密度为)(ωY F ,且0()Y F ωω-为一偶函数, 则低频过程)()(t A t A s c 和是___正交___。 得 得

第三章 随机信号分析 总结

第三章 总结 对随机的东西只能作统计描述。 1).统计特性( 概率密度与概率分布); 2).数字特征( 均值、方差、相关函数等)。 节1 随机过程概念 一、随机过程定义 二、随机过程统计特性的描述 1.随机过程的概率分布函数 2.随机过程的概率密度函数 三、随机过程数字特征的描述 1、数学期望: 性质:① E[k] = k ② E[ξ(t) + k] = E[ξ(t)] + k ③ E[ kξ(t)] = k E[ξ(t)] ④ E[ξ 1(t) + …+ξ n (t)] = E[ξ 1 (t)] + …+E[ ξ n (t)] ⑤ ξ 1(t)与ξ 2 (t)统计独立时,E[ξ 1 (t)ξ 2 (t)] = E[ξ 1 (t)] E[ξ 2 (t)] 2、方差: 性质:① D[k] = 0 ② D[ξ(t) + k] = D[ξ(t)] ③ D[kξ(t)] = K2 D[ξ(t)] ④ξ 1(t)ξ 2 (t)统计独立时, D[ξ 1 (t)+ξ 2 (t)] = D[ξ 1 (t)] + D[ξ 2 (t)] 3、相关函数和协方差函数 节2 平稳随机过程概念 一、定义:狭义平稳、广义平稳 广义平稳条件:

① 数学期望与方差是与时间无关的常数; ② 相关函数仅与时间间隔有关。 二、性能讨论 1、各态历经性(遍历性):其价值在于可从一次试验所获得的样本函数 x(t) 取时间平均来得到它的数字特征(统计特性) 2、相关函数R(τ)性质 ① 对偶性(偶函数) R(τ)=E[ξ(t)ξ(t+τ)]=E[ξ(t 1-τ)ξ(t 1 )]= R(-τ) ② 递减性 E{[ξ(t) ±ξ(t+τ)]2} = E[ξ2(t)±2 ξ(t) ξ(t+τ) + ξ2(t+τ) ] = R(0)±2R(τ) + R(0) ≥ 0 ∴R(0)≥±R(τ) R(0)≥|R(τ)| 即τ=0 处相关性最大 ③ R(0)为 ξ ( t ) 的总平均功率。 ④ R(∞)=E2{ξ(t)}为直流功率。 ⑤ R(0) - R(∞)= E[ξ 2(t)]- E2[ξ(t)]=σ2为交流功率 3、功率谱密度Pξ(ω) 节3 几种常用的随机过程 一、高斯过程 定义: 任意n维分布服从正态分布的随机过程ξ(t)称为高斯过程(或正态随机过程)。 ① 高斯过程统计特性是由一、二维数字特征[a k, δ k 2, b jk ]决定的 ②若高斯过程满足广义平稳条件,也将满足狭义平稳条件。 ③若随机变量两两间互不相关,则各随机变量统计独立。二、零均值窄带高斯过程 定义、零均值平稳高斯窄带过程 同相随机分量 ξ c (t), 正交随机分量 ξ s (t) 结论:零均值窄带高斯平稳过程 ξ( t ) ,其同相分量 ξ c ( t ) 和正交分量 ξ s ( t )

电子科技大学随机信号分析期末考试题

电子科技大学随机信号分析期末考试题 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

电子科技大学20-20学年第学期期考试卷 课程名称:_________考试形式:考试日期:20年月日考试时长:____分钟 课程成绩构成:平时10%,期中10%,实验%,期末80% 本试卷试题由___2__部分构成,共_____页。 一、填空题(共20分,共10题,每题2分) 1. 设随机过程0()cos(),X t A t t ω=+Φ-∞<<∞,其中0ω为常数,A Φ和是相互独立的 随机变量,[]01A ∈, 且均匀分布,Φ在[]02π,上均匀分布,则()X t 的数学期望为:0 2. 已知平稳随机信号()X t 的自相关函数为2()2X R e ττ-=,请写出()X t 和(2)X t +的 协方差12-e 3. 若随机过程()X t 的相关时间为1τ,()Y t 的相关时间为2τ,12ττ>,则() X t 比()Y t 的相关性要__大___,()X t 的起伏特性比()Y t 的要__小___。 4. 高斯随机过程的严平稳与___宽平稳_____等价。 5. 窄带高斯过程的包络服从___瑞利___分布,相位服从___均匀___分布,且在 同一时刻其包络和相位是___互相独立___的随机变量。 6. 实平稳随机过程的自相关函数是___偶____(奇、偶、非奇非偶)函数。 7. 设)(t Y 是一均值为零的窄带平稳随机过程,其单边功率谱密度为)(ωY F ,且 0()Y F ωω-为一偶函数,则低频过程)()(t A t A s c 和是___正交___。

电子科技大学随机信号分析2010期末考试题

电子科技大学二零 一零 至二零 一一学年第 一 学期期 末 考试 随机信号分析 课程考试题 A 卷 ( 120 分钟) 考试形式: 闭 考试日期 2011年 1 月 9日 课程成绩构成:平时 10 分, 期中 5 分, 实验 0 分, 期末 85 分 一.判断正误。并说明原因(20分,每题2分,判断1分,理由1分) 1) 若随机过程()X t 和()Y t 统计独立,则()()()()E X t Y t E X t E Y t =???????????? 正确 2) 若()X t 是严平稳,则()X t 和()X t c +具有相同的统计特性,其中c 为常数。 正确 3) 广义各态历经的随机信号不一定广义平稳,广义平稳的随机信号也未必广义各态历经。 错 : 广义各态历经的随机信号一定广义平稳 4) 希尔伯特变换将改变随机信号统计平均功率。 错:希尔伯特变换不会改变随机信号统计平均功率。只改变信号的相位。 5) 系统等效噪声带宽由系统的冲击响应和输入信号功率的共同决定。 错! 系统等效噪声带宽只由系统的冲击响应决定。 6) 高斯随机过程的严格平稳与广义平稳等价。 对! 7) 随机过程既可以看成一组确知的时间函数的集合,同时也可以看成一组随机变量的集合。 对! 8) 随机信号的功率谱密度为可正可负的随机函数。 错!随机信号的功率谱密度为非负的实函数。 9) 函数()1R e τ τ-=-可以作为广义实平稳随机信号的自相关函数。 错! ()10 R ∞=-< 或不满足 ()() 0R R τ> 10) 函数()3R e τ τ-=可以作为窄带高斯随机信号同相分量和正交分量的互相关函数。 错! 窄带高斯随机信号同相分量和正交分量的互相关函数应为奇函数

09电子科技大学随机信号分析期末考试A

学院 姓名 学号 任课老师 选课号 ……………密……………封……………线……………以……………内……………答……………题……………无……………效………… 1. (10分)随机变量12,X X 彼此独立,且特征函数分别为12(),()v v φφ, 求下列随机变量的特征函数: (1) 122X X X =+ (2)12536X X X =++ 解:(1)()121222()jv X X jvX jv X jvX X v E e E e E e e φ+??????===??????? 12 21212()(2)jvX jv X X X E e E e v v φφ????=????和独立 (2)()1212536536 ()jv X X jv X jv X jv X v E e E e e e φ++????==?????? 12536 12jv X jv X jv X X E e E e E e ?????? ??????和独立 612(5)(3)jv e v v φφ= 2. (10分)取值()1,1-+,概率[0.4,0.6]的独立()半随机二进制传输信号()X t ,时隙长度为T ,问: (1) 信号的均值函数()E X t ????; (2) 信号的自相关函数(),X R t t τ+; (3) 信号的一维概率密度函数();X f x t 。 解:(1)()10.410.60.2X t E =-?+?=???? (2) 当,t t τ+在同一个时隙时: []222(,)()()[()]10.6(1)0.41X R t t E X t X t E X t ττ+=+==?+-?= 当,t t τ+不在同一个时隙时: [][][](,)()()()()0.20.20.04 X R t t E X t X t E X t E X t τττ+=+=+=?= (3)()()();0.610.41X f x t x x δδ=-++ 3. (10分)随机信号0()sin()X t t ω=+Θ,()()0cos Y t t ω=+Θ,其中0ω为常数,Θ为在[]-,ππ上均匀分布的随机变量。 (1) 试判断()X t 和()Y t 在同一时刻和不同时刻的独立性、相关性及正交性; (2) 试判断()X t 和()Y t 是否联合广义平稳。 解: (1) 由于X (t )和Y(t )包含同一随机变量θ,因此非独立。 根据题意有1 2f ()θπ = 。

随机信号分析与应用第一章答案

随即信号分析与应用习题答案 马文平 李冰冰 田红心 朱晓明 第一章 1.1 (1)答: (2)答:T 连续而E 离散,从而此过程为离散型随即过程。 (3)答:由于样本函数未来得值不能由过去的情况准确的预测,从而此过程为不确定随机过程。 1.2 答:已知A~N(0,1),B~N(0,1)且A 、B 相互独立。 故 22221212 12121(,)()*())exp()2222 AB A B x x x x f x x f x f x π+==--=- 11 12 ()Bt ()Bt X t A X t A =+?? =+? ? [X(1t ),X(2t )]是(A ,B )的线性变换 ∴[X(1t ),X(2t )]服从二维正太分布 1 1 X 2 1(X)exp()22T X K X f K π-= -,其中K = 11 122122K K K K ?? ??? 而 222(){[()()]}1x t E X t E x t δ=-=+ 12111212(,){[()()][()()]}1X x x K t t E X t m t X t m t t t =--=+

∴2 111 2 222 1t 1t K K ?=+??=+??且1221121K K t t ==+ 最后将k 代入1 1 2 1()exp()22T x X K X f x K π-= -即可得到答案。 1.4 (1)答:该过程式确定性随机过程 (2)答:X(t)的分布函数为0 x<1 0.6 1 x<2F ()0.9 2 x<31 3 x X t ??≤? =?≤??≤? ∴X(t)的一维概率密度函数为X ()0.6(1)0.3f t t δδ δ=-+(x-2)+0.1(x-3) 1.6 答: 222 12122211222222221212121222E[X(t)] = E[A +B ]()()47R (,)[()()] [(A +B )(A +B )] [],16.1B B B X t t tE A t E B t t t t E X t X t E t t t t E A t t ABt t ABt t B t t A B A =+=+===+++= 2 互不相关 E()=D(A)+[E(A)]E()=D()+[E()2222X 1212121212121122121222 12122 4 ()51 .1282851(,)[(()())()()] (,)()() 0.12(,)0.12X x x X x x X t X R t t t t t t t t t t K t t E X t m t X t m t R t t m t m t t t t t K t t t t δ=∴+++=--=-=+==+2](,)=16 1.7

相关主题
文本预览
相关文档 最新文档