当前位置:文档之家› 材料力学金属扭转实验报告

材料力学金属扭转实验报告

材料力学金属扭转实验报告
材料力学金属扭转实验报告

材料力学金属扭转实验报

Last revision on 21 December 2020

材料力学实验报告标准规定答案解析

力学实验报告标准答案

长安大学力学实验教学中心 目录 、拉伸实验? 、压缩实验? 三、拉压弹性模量E测定实验? 四、低碳钢剪切弹性模量G测定实验? 五、扭转破坏实验-10

六、纯弯曲梁正应力实验? 12 七、弯扭组合变形时的主应力测定实验? 15 八、压杆稳定实验"8

、拉伸实验报告标准答案实验目的: 见教材 实验仪器 见教材实验结果及数据处理:例:(一)低碳钢试件

服应力 (T s = P s /A _273.8 _MP a 屈度极限 (T b = P b /A _411.3 MP a 强试验前 试验后 最小平均直径d= 10.16 mm 最小直径d= 10.15 mm 截面面积A= 81.03 mm 2 截面面积A1= 80.91 mm 2 计算长度L= 100 mm 计算长度L 忤 100 mm 试验前草图 试验后草图 1 ' 1 ''1 1 最大载荷P b =__14.4 KN P s =_22.1 KN P b =_33.2 ____ KN 塑性指标: 伸长率 厘100% L 68.40 % 33.24 % A A 1 面积收缩率 - 100% A 低碳钢拉伸图:

强度极限c b= P b / A = _ 177.7 — M P a 问题讨论: 1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件 延伸率是否相同? 答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性. 材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外). 2、分析比较两种材料在拉伸时的力学性能及断口特征. 答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有45 0的剪切唇, 断口组织为暗灰色纤维状组织。铸铁断口为横断面,为闪光的结晶状组织

低碳钢 铸铁的扭转破坏实验报告

低碳钢、铸铁的扭转破坏实验 一:实验目的和要求 1、掌握扭转试验机操作。 2、低碳钢的剪切屈服极限τs。 3、低碳钢和铸铁的剪切强度极限τb。 4、观察比较两种材料的扭转变形过程中的变形及其破坏形式,并对试件断口形貌进行分析。 二:实验设备和仪器 1、材料扭转试验机 2、游标卡尺 三、实验原理 1、低碳钢扭转实验 低碳钢材料扭转时载荷-变形曲线如图(a)所示。 T 图1. 低碳钢材料的扭转图 1. 低碳钢材料的扭转图 τs (a) (b) (c) 图2. 低碳钢圆轴试件扭转时的应力分布示意图 低碳钢试件在受扭的最初阶段,扭矩T与扭转角φ成正比关系(见图1),横截面上剪应力τ沿半径线性分布,如图2(a)所示。随着扭矩T的增大,横截面边缘处的剪应力首先达到剪切屈服极限τs且塑性区逐渐向圆心扩展,形成环形塑性区,但中心部分仍是弹性的,见图2(b)。试件继续变形,屈服从试件表层向心部扩展直到整个截面几

乎都是塑性区,如图2(c)所示。此时在T-φ曲线上出现屈服平台(见图1),试验机的扭矩读数基本不动,此时对应的扭矩即为屈服扭矩T s 。随后,材料进入强化阶段,变形增加,扭矩随之增加,直到试件破坏为止。因扭转无颈缩现象。所以,扭转曲线一直上升直到破坏,试件破坏时的扭矩即为最大扭矩T b 。由 t s d s A s s W d dA T τρπρρτρτ3 4 22 /0 ===? ?)( 可得低碳钢材料的扭转屈服极限t s s W T 43= τ;同理,可得低碳钢材料扭转时强度极限t b b W T 43=τ,其中316 d W t π =为抗扭截面模量。 2、铸铁扭转实验 铸铁试件受扭时,在很小的变形下就会发生破坏,其扭转图如图3所示。 图3. 铸铁材料的扭转图 从扭转开始直到破坏为止,扭矩T 与扭转角近似成正比关系,且变形很小,横截面上剪应力沿半径为线性分布。试件破坏时的扭矩即为最大扭矩T b ,铸铁材料的扭转强度极限为t b b W T = τ。 低碳钢试样和铸铁试样的扭转破坏断口形貌有很大的差别,图4(a )所示低碳钢试样的断面与横截面重合,断面是最大切应力作用面,断口较为平齐,可知为剪切破坏;图(b )所示铸铁试样的断面是与试样轴线成45度角的螺旋面,断面是最大拉应力作用面,断口较为粗糙,因而最大拉应力造成的拉伸断裂破坏。 图4. 低碳钢和铸铁的扭转端口形状 四、实验步骤 低碳钢实验步骤: 1. 测量试样尺寸 在试件两端及中部位置,沿两个相互垂直的方向,测量试样直径,以其平均值计算个横截面面积。

材料力学扭转实验

§1-2 扭转实验 一、实验目的 1、测定低碳钢的剪切屈服点τs,抗扭强度τb。 2、测定铜棒的抗扭强度τb。 3、比较低碳钢和铜棒在扭转时的变形和破坏特征。 二、设备及试样 1、伺服电机控制扭转试验机(自行改造)。 2、0.02mm游标卡尺。 3、低碳钢φ10圆试件一根,画有两圈圆周线和一根轴向线。 4、铜棒铁φ10圆试件一根。 三、实验原理及方法 塑性材料试样安装在伺服电机驱动的扭转试验机上,以6-10o/min的主动夹头旋转速度对试样施加扭力矩,在计算机的显示屏上即可得到扭转曲线(扭矩-夹头转角图线),如下图为低碳钢的部分扭转曲线。试样变形先是弹性性的,在弹性阶段,扭矩与扭转角成线性关系。 弹性变形到一定程度试样会出现屈服。扭转曲线 扭矩首次下降前的最大扭矩为上屈服扭矩T su; 屈服段中最小扭矩为下屈服扭矩T sl,通常把下 屈服扭矩对应的应力值作为材料的屈服极限τs, 即:τs=τsl= T sl/W。当试样扭断时,得到最大 扭矩T b,则其抗扭强度为τb= T b/W 式中W为抗扭截面模量,对实心圆截面有 W=πd03/16。 铸铁为脆性材料,无屈服现象,扭矩 -夹头转角图线如左图,故当其扭转试样 破断时,测得最大扭矩T b,则其抗扭强 度为:τb= T b/W 四、实验步骤 1、测量试样原始尺寸分别在标距两端 及中部三个位置上测量的直径,用最小直 径计算抗扭截面模量。 2、安装试样并保持试样轴线与扭转试验机转动中心一致。 3、低碳钢扭转破坏试验,观察线弹性阶段、屈服阶段的力学现象,记录上、下屈服点扭矩值,试样扭断后,记录最大扭矩值,观察断口特征。 4、铜棒扭转破坏试验,试样扭断后,记录最大扭矩值,观察断口特征。 五、实验数据处理 1、试样直径的测量与测量工具的精度一致。 2、抗扭截面模量取4位有效数字。 3、力学性能指标数值的修约要求同拉伸实验。 六、思考题 1、低碳钢扭转时圆周线和轴向线如何变化?与扭转平面假设是否相符?

扭转实验报告

浙江大学材料力学实验报告 (实验项目:扭转) 1. 验证扭转变形公式,测定低碳钢的切变模量G 。; 2. 测定低碳钢和铸铁的剪切强度极限b τ。 3. 比较低碳钢和铸铁试样受扭时的变形规律及其破坏特性。 二、设备及试样: 1. 扭转试验机,如不进行破坏性试验,验证变形公式合测定G 的实验也可在小型扭转试验 机装置上完成; 2. 扭角仪; 3. 游标卡尺; 4. 试样,扭装试样一般为圆截面。 三、实验原理和方法: 1、测定切变模量G A 、机测法:0p T l G I φ= ,其中b δ φ=,δ为百分表读数,p I 为圆截面的极惯性矩; 选取初扭矩To 和比例极限内最大试验扭矩Tn,从To 到Tn 分成n 级加载,每级扭矩增量为 T ?,每一个扭矩Ti 都可测出相应的扭角φi ,与扭矩增量T ?对应的扭角增量是 1i i i φφφ-?=-,则有0 i p i T l G I φ?= ?,i=1,2,3,…n,取Gi 的平均值作为材料的切变模量即: 1 i G G n = ∑,i=1,2,3,…n ; B 、电测法:t r t T T G W W γε= =,应变仪读数为r ε,t W 为抗扭截面系数; 选取初扭矩To 和比例极限内最大试验扭矩Tn,从To 到Tn 分成n 级加载,每级扭矩增量为T ?,每一个扭矩Ti 都可测出相应的读数εi ,与扭矩增量T ?对应的读数增量是1i i i εεε-?=-,则有i t i T G W ε?= ?,i=1,2,3,…n,取Gi 的平均值作为材料的切变模量即: 1 i G G n =∑, i=1,2,3,…n 2、测定低碳钢和铸铁的剪切强度极限b τ

材料力学实验报告册概要

实验日期_____________教师签字_____________ 同组者_____________审批日期_____________ 实验名称:拉伸和压缩试验 一、试验目的 1.测定低碳钢材料拉伸的屈服极限σs 、抗拉强度σb、断后延伸率δ及断 面收缩率ψ。 2.测定灰铸铁材料的抗拉强度σb、压缩的强度极限σb。 3.观察低碳钢和灰铸铁材料拉伸、压缩试验过程中的变形现象,并分析 比较其破坏断口特征。 二、试验仪器设备 1.微机控制电子万能材料试验机系统 2.微机屏显式液压万能材料试验机 3.游标卡尺 4.做标记用工具 三、试验原理(简述) 1

四、试验原始数据记录 1.拉伸试验 低碳钢材料屈服载荷 最大载荷 灰铸铁材料最大载荷 2.灰铸铁材料压缩试验 直径d0 最大载荷 教师签字:2

五、试验数据处理及结果 1.拉伸试验数据结果 低碳钢材料: 铸铁材料: 2.低碳钢材料的拉伸曲线 3.压缩试验数据结果 铸铁材料: 3

4.灰铸铁材料的拉伸及压缩曲线: 5.低碳钢及灰铸铁材料拉伸时的破坏情况,并分析破坏原因 ①试样的形状(可作图表示)及断口特征 ②分析两种材料的破坏原因 低碳钢材料: 灰铸铁材料: 4

6.灰铸铁压缩时的破坏情况,并分析破坏原因 六、思考讨论题 1.简述低碳钢和灰铸铁两种材料的拉伸力学性能,以及力-变形特性曲线 的特征。 2.试说明冷作硬化工艺的利与弊。 3.某塑性材料,按照国家标准加工成直径相同标距不同的拉伸试样,试 判断用这两种不同试样测得的断后延伸率是否相同,并对结论给予分析。 5

七、小结(结论、心得、建议等)6

低碳钢铸铁的扭转破坏实验报告

低碳钢铸铁的扭转破坏 实验报告 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

低碳钢、铸铁的扭转破坏实验一:实验目的和要求 1、掌握扭转试验机操作。 2、低碳钢的剪切屈服极限τs。 3、低碳钢和铸铁的剪切强度极限τb。 4、观察比较两种材料的扭转变形过程中的变形及其破坏形式,并对试件断口形貌进行分析。 二:实验设备和仪器 1、材料扭转试验机 2、游标卡尺 三、实验原理 1、低碳钢扭转实验 低碳钢材料扭转时载荷-变形曲线如图(a)所示。 T

T s 0 φ 图1. 低碳钢材料的扭转图 1. 低碳钢材料的扭转图 (a) (b) (c) 图2. 低碳钢圆轴试件扭转时的应力分布示意图 低碳钢试件在受扭的最初阶段,扭矩T 与扭转角φ成正比关系(见图1),横截面上剪应力τ沿半径线性分布,如图2(a)所示。随着扭矩T 的增大,横截面边缘处的剪应力首先达到剪切屈服极限τs 且塑性区逐渐向圆心扩展,形成环形塑性区,但中心部分仍是弹性的,见图2(b)。试件继续变形,屈服从试件表层向心部扩展直到整个截面几乎都是塑性区,如图2(c)所示。此时在T-φ曲线上出现屈服平台(见图1),试验机的扭矩读数基本不动,此时对应的扭矩即为屈服扭矩T s 。随后,材料进入强化阶段,变形增加,扭矩随之增加,直到试件破坏为止。因扭转无颈缩现象。所以,扭转曲线一直上升直到破坏,试件破坏时的扭矩即为最大扭矩T b 。由t s d s A s s W d dA T τρπρρτρτ3 4 22/0 ===? ?)( 可得低碳钢

材料的扭转屈服极限t s s W T 43= τ;同理,可得低碳钢材料扭转时强度极限t b b W T 43=τ,其中316 d W t π = 为抗扭截面模量。 2、铸铁扭转实验 铸铁试件受扭时,在很小的变形下就会发生破坏,其扭转图如图3所示。 图3. 铸铁材料的扭转图 从扭转开始直到破坏为止,扭矩T 与扭转角近似成正比关系,且变形很小,横截面上剪应力沿半径为线性分布。试件破坏时的扭矩即为最大扭矩T b ,铸铁材料的扭转强度极限为t b b W T = τ。 低碳钢试样和铸铁试样的扭转破坏断口形貌有很大的差别,图4(a )所示低碳钢试样的断面与横截面重合,断面是最大切应力作用面,断口较为平齐,可知为剪切破坏;图(b )所示铸铁试样的断面是与试样轴线成45度角的螺旋面,断面是最大拉应力作用面,断口较为粗糙,因而最大拉应力造成的拉伸断裂破坏。 图4. 低碳钢和铸铁的扭转端口形状

材料力学扭转实验实验报告

扭 转 实 验 一.实验目的: 1.学习了解微机控制扭转试验机的构造原理,并进行操作练习。 2.确定低碳钢试样的剪切屈服极限、剪切强度极限。 3.确定铸铁试样的剪切强度极限。 4.观察不同材料的试样在扭转过程中的变形和破坏现象。 二.实验设备及工具 扭转试验机,游标卡尺、扳手。 三.试验原理: 塑性材料和脆性材料扭转时的力学性能。(在实验过程及数据处理时所支撑的理论依据。参考材料力学、工程力学课本的介绍,以及相关的书籍介绍,自己编写。) 四.实验步骤 1.a 低碳钢实验(华龙试验机) (1)量直径: 用游标卡尺量取试样的直径。在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。。 (2)安装试样: 启动扭转试验机,手动控制器上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,沿箭头方向旋转手柄,夹紧试样。 (3)调整试验机并对试样施加载荷: 在电脑显示屏上调整扭矩、峰值、切应变1、切应变2、夹头间转角、时间的零点;根据你所安装试样的材料,在“实验方案读取”中选择“教学低碳钢试验”,并点击“加载”而确定;用键盘输入实验编号,回车确定(按Enter 键);鼠标点“开始测试”键,给试样施加扭矩;在加载过程中,注意观察屈服扭矩的变化,记录屈服扭矩的下限值,当扭矩达到最大值时,试样突然断裂,后按下“终止测试”键,使试验机停止转动。 (4)试样断裂后,从峰值中读取最大扭矩 。从夹头上取下试样。 (5)观察试样断裂后的形状。 1.b 低碳钢实验(青山试验机) (1)量直径: 用游标卡尺量取试样的直径。在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。 (2)安装试样: 启动扭转试验机,手动“试验机测控仪”上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,s τb τb τ 0d S M b M 0d

材料力学实验报告答案

篇一:材料力学实验报告答案 材料力学实验报告 评分标准拉伸实验报告 一、实验目的(1分) 1. 测定低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。 2. 测定铸铁的强度极限σb。 3. 观察拉伸实验过程中的各种现象,绘制拉伸曲线(p-δl曲线)。 4. 比较低碳钢与铸铁的力学特性。 二、实验设备(1分) 机器型号名称电子万能试验机 测量尺寸的量具名称游标卡尺精度 0.02 mm 三、实验数据(2分) 四、实验结果处理(4分) ?s??b? psa0pba0 =300mpa 左右=420mpa 左右 =20~30%左右=60~75%左右 ?? l1?l0 ?100% l0a0?a1 ?100% a0 ?= 五、回答下列问题(2分,每题0.5分) 1、画出(两种材料)试件破坏后的简图。略 2、画出拉伸曲线图。 3、试比较低碳钢和铸铁拉伸时的力学性质。 低碳钢在拉伸时有明显的弹性阶段、屈服阶段、强化阶段和局部变形阶段,而铸铁没有明显的这四个阶段。 4、材料和直径相同而长短不同的试件,其延伸率是否相同?为什么?相同 延伸率是衡量材料塑性的指标,与构件的尺寸无关。压缩实验报告 一、实验目的(1分) 1. 测定压缩时铸铁的强度极限σb。 2. 观察铸铁在压缩时的变形和破坏现象,并分析原因。 二、实验设备(1分) 机器型号名称电子万能试验机(0.5分) 测量尺寸的量具名称游标卡尺精度 0.02 mm (0.5分) 三、实验数据(1分)四、实验结果处理(2分) ?b? pb =740mpaa0 左右 五、回答下列思考题(3分) 1.画出(两种材料)实验前后的试件形状。略 2. 绘出两种材料的压缩曲线。略 3. 为什么在压缩实验时要加球形承垫?

青岛理工大学材料力学实验报告记录

青岛理工大学材料力学实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

材料力学实验报告 系别 班级 姓名 学号 青岛理工大学力学实验室

目录 实验一、拉伸实验报告 实验二、压缩实验报告 实验三、材料弹性模量E和泊松比μ的测定报告 实验四、扭转实验报告 实验五、剪切弹性模量实验报告 实验六、纯弯曲梁的正应力实验报告 实验七、等强度梁实验报告 实验八、薄壁圆筒在弯扭组合变形下主应力测定报告 实验九、压杆稳定实验报告 实验十、偏心拉伸实验报告 实验十一、静定桁架结构设计与应力分析实验报告 实验十二、超静定桁架结构设计与应力分析实验报告 实验十三、静定刚架与压杆组合结构设计与应力分析实验报告实验十四、双悬臂梁组合结构设计与应力分析实验 实验十五、岩土工程材料的多轴应力特性实验报告

实验一 拉伸实验报告 一、实验目的与要求: 二、实验仪器设备和工具: 三、实验记录: 1、试件尺寸 实验前: 实验后: 2、实验数据记录: 屈服极限载荷:P S = kN 强度极限载荷:P b = kN 材 料 标 距 L 0 (mm) 直径(mm ) 截面 面积 A 0 (mm 2) 截面(1) 截面(2) 截面(3) (1) (2) 平均 (1) (2) 平均 (1) (2) 平均 材 料 标 距 L (mm) 断裂处直径(mm ) 断裂处 截面面积 A(mm 2) (1) (2) 平均

四、计算 屈服极限: ==0 A P s s σ MPa 强度极限: == A P b b σ MPa 延伸率: =?-= %10000 L L L δ 断面收缩率: =?-= %1000 0A A A ψ 五、绘制P -ΔL 示意图:

材料力学实验

1,为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同? 答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性. 材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外). 2, 分析比较两种材料在拉伸时的力学性能及断口特征. 答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状, 且有450的剪切唇,断口组织为暗灰色纤维状组织。铸铁断口为横断面,为闪光的结晶状组织。. 3,分析铸铁试件压缩破坏的原因. 答:铸铁试件压缩破坏,其断口与轴线成45°~50°夹角,在断口位置剪应力已达到其抵抗的最大极限值,抗剪先于抗压达到极限,因而发生斜面剪切破坏. 4,低碳钢与铸铁在压缩时力学性质有何不同? 结构工程中怎样合理使用这两类不同性质的材料? 答:低碳钢为塑性材料,抗压屈服极限与抗拉屈服极限相近,此时试件不会发生断裂,随荷载增加发生塑性形变;铸铁为脆性材料,抗压强度远大于抗拉强度,无屈服现象。压缩试验时,铸铁因达到剪切极限而被剪切破坏。 通过试验可以发现低碳钢材料塑性好,其抗剪能力弱于抗拉;抗拉与抗压相近。铸铁材料塑性差,其抗拉远小于抗压强度,抗剪优于抗拉低于抗压。故在工程结构中塑性材料应用范围广,脆性材料最好处于受压状态,比如车床机座。 5,试件的尺寸和形状对测定弹性模量有无影响?为什么? 答: 弹性模量是材料的固有性质,与试件的尺寸和形状无关。 6, 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量是否相同?为什么必须用逐级加载的方法测弹性模量? 答: 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量不相同,采用逐级加载方法所求出的弹性模量可降低误差,同时可以验证材料此时是否处于弹性状态,以保证实验结果的可靠性。 7, 试验过程中,有时候在加砝码时,百分表指针不动,这是为什么?应采取什么措施? 答:检查百分表是否接触测臂或超出百分表测量上限,应调整百分表位置。 8,测G时为什么必须要限定外加扭矩大小? 答:所测材料的G必须是材料处于弹性状态下所测取得,故必须控制外加扭矩大小。 9, 碳钢与铸铁试件扭转破坏情况有什么不同?分析其原因.

扭转破坏实验实验报告

篇一:扭转实验报告 一、实验目的和要求 1、测定低碳钢的剪切屈服点?s、剪切强度?b,观察扭矩-转角曲线(t??曲线)。 2、观察低碳钢试样扭转破坏断口形貌。 3、测定低碳钢的剪切弹性模量g。 4、验证圆截面杆扭转变形的胡克定律(??tl/gip)。 5、依据低碳钢的弹性模量,大概计算出低碳钢材料的泊松比。 二、试验设备和仪器 1、微机控制扭转试验机。 2、游标卡尺。 3、装夹工具。 三、实验原理和方法 遵照国家标准(gb/t10128-1998)采用圆截面试样的扭转试验,可以测定各种工程材料在纯剪切情况下的力学性能。如材料的剪切屈服强度点?s和抗剪强度?b等。圆截面试样必须按上述国家标准制成(如图1-1所示)。试验两端的夹持段铣削为平面,这样可以有效地防止试验时试样在试验机卡头中打滑。 图 1-1 试验机软件的绘图系统可绘制扭矩-扭转角曲线,简称扭转曲线(图1-2中的曲线)。图3-2 从图1-2可以看到,低碳钢试样的扭转试验曲线由弹性阶段(oa段)、屈服阶段(ab段)和强化阶段(cd段)构成,但屈服阶段和强化阶段均不像拉伸试验曲线中那么明显。由于强化阶段的过程很长,图中只绘出其开始阶段和最后阶段,破坏时试验段的扭转角可达10?以上。从扭转试验机上可以读取试样的屈服扭矩破坏扭矩由算材料的剪切屈服强度抗剪强度式中:试样截面的抗扭截面系数。 ts和tb。和?s?3ts/4wt计?s和?b,wt??d0/16为 3?s?3ts/4wt计算材料的剪切屈服强度?s和抗剪强度?b,式中:wt??d0/16 3 为试样截面的抗扭截面系数。 当圆截面试样横截面的最外层切应力达到剪切屈服点?s时,占横截面绝大部分的内层切应力仍低于弹性极限,因而此时试样仍表现为弹性行为,没有明显的屈服现象。当扭矩继续增加使横截面大部分区域的切应力均达到剪切屈服点?s时,试样会表现出明显的屈服现象,此时的扭矩比真实的屈服扭矩ts要大一些,对于破坏扭矩也会有同样的情况。 图1-3所示为低碳钢试样的扭转破坏断口,破坏断面与横截面重合,断面是最大切应力作用面,断口较为平齐,可知为剪切破坏。 图 1-3材料的剪切弹性模量g遵照国家标准(gb/t10128-1988)可由圆截面试样的扭转试验测定。在弹性范围内进行圆截面试样扭转试验时,扭矩和扭转角之间的关系符合扭转变形的胡克定律 ??tlp 4 i??d0为截,式中:p 面的极惯性矩。当试样长度l和极惯性矩ip均为已知时,只要测取扭矩增量 ?t和相应的扭转角增量??,可由式 g? ?t?l ???ip 计算得到材料的剪切弹性模量。实验通常采用多级等增量加载法,这样不仅可以避免人为读取数据产生的误差,而且可以通过每次载荷增量和扭转角增量验证扭转变形的胡克定律。 四、实验步骤 1、测量低碳钢试样直径d1,长度l; 2、装夹试样;在试样上安装扭角测试装置,将一个定

材料力学实验

材料力学实验 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

实验一实验绪论 一、材料力学实验室实验仪器 1、大型仪器: 100kN(10T)微机控制电子万能试验机;200kN(20T)微机控制电子万能试验机;WEW-300C微机屏显式液压万能试验机;WAW-600C微机控制电液伺服万能试验机 2、小型仪器: 弯曲测试系统;静态数字应变仪 二、应变电桥的工作原理 三、材料力学实验与材料力学的关系 四、材料力学实验的要求 1、课前预习 2、独立完成 3、性能实验结果表达执行修约规定 4、曲线图一律用方格纸描述,并用平滑曲线连接 5、应力分析保留小数后一到二位

实验二轴向压缩实验 一、实验预习 1、实验目的 I、测定低碳钢压缩屈服点 II、测定灰铸铁抗压强度 2、实验原理及方法 金属的压缩试样一般制成很短的圆柱,以免被压弯。圆柱高度约为直径的倍~3倍。混凝土、石料等则制成立方形的试块。 低碳钢压缩时的曲线如图所示。实验表明:低碳钢压缩时的弹性模量E和屈服极限σε,都与拉伸时大致相同。进入屈服阶段以后,试样 越压越扁,横截面面积不断增大,试样抗压能力也继续增强,因而得不 到压缩时的强度极限。 3、实验步骤 I、放试样 II、计算机程序清零 III、开始加载 IV、取试样,记录数据 二、轴向压缩实验原始数据 指导老师签名:徐

三、轴向压缩数据处理 测试的压缩力学性能汇总 强度确定的计算过程: 实验三轴向拉伸实验 一、实验预习 1、实验目的 (1)、用引伸计测定低碳钢材料的弹性模量E; (2)、测定低碳钢的屈服强度,抗拉强度。断后伸长率δ和断面收缩率; (3)、测定铸铁的抗拉强度,比较两种材料的拉伸力学性能和断口特征。 2、实验原理及方法 I.弹性模量E及强度指标的测定。(见图) 低碳钢拉伸曲线铸铁拉伸曲线 (1)测弹性模量用等增量加载方法:F o =(10%~20%)F s , F n =(70%~80%)F s 加载方案为:F 0=5,F 1 =8,F 2 =11,F 3 =14,F 4 =17 ,F 5 =20 (单位:kN) 数据处理方法: 平均增量法 ) , ( ) ( 0取三位有效数 GPa l A l F E m om ? ? ? = δ(1) 线性拟合法 () GPa A l l F n l F F n F E om o i i i i i i? ? ∑ - ∑? ∑ ∑ - ∑ = 2 2 ) ( (2)

材料力学实验指导书

一 拉伸试验 一、目的 1、测定低碳钢的流动极限(屈服极限)s σ,强度极限b σ,延伸率δ和面积收缩率?。 2、测定铸铁的强度极限b σ。 3、观察拉伸过程中的各种现象,并绘制拉伸图(l P ?-曲线)。 4、比较低碳钢(塑性材料)与铸铁(脆性材料)机械性质的特点。 二、设备 1、液压式万能试验机。 2、游标卡尺。 三、试样 试件可制成圆形或矩形截面。常用试样为圆形截面的。如图1-7所示。试件中段用于测量拉伸变形,此段的长度o l 称为“标矩”,两端较粗部分是装入试验夹头中的,便于承受拉力,端部的形状视试验机夹头的要求而定,可制成圆柱形(1-7),螺纹形(图1-8)或阶梯形(图1-9)。 试验表明,试件的尺寸和形状对试验结果会有所影响,为了避免此各种影响,使各种材料的力学性质的数值能互相比较,所以对试件的尺寸和形状都有统一规定。目前我国规定的试样

有标准试件和比例试件两种,具体尺寸见表1-1, 0. A是圆形或矩形截面面积。 试件 标距 ) (mm l o 截面面积 ) (2 mm A 圆形试件 ) ( mm d 直径 延伸率表示 符号标准试件 长100 78.5 10 10 δ 短50 78.5 10 sδ比例试件 长 3. 11A任意任意 10 δ 短 65 .5A任意任意 s δ 四、原理 材料的力学性质 s σ、 b σ、δ和?是由拉伸破坏试验来确定的,试验时,利用试验机的自动绘图器绘出低碳钢拉伸图(图-10)和铸铁拉伸图(图1-11)。 对于低碳材料,图1-10上的B-C为流动阶段,B点所对应的应力值称为流动极限。确定 流动载荷 s p时,必须缓慢而均匀地使试件产生变形,同时还需要注意观察。测力盘主针回 转后所指示的最小载荷(第一次下降的最小载荷)即为流动载荷 s p,继续加载,测得最大

材料力学实验参考要点

实验一、测定金属材料拉伸时的力学性能 一、实验目的 1、测定低碳钢的屈服极限s σ,强度极限b σ,延伸率δ和面积收缩率ψ。 2、测定铸铁的强度极限b σ。 3、观察拉伸过程中的各种现象,并绘制拉伸图(l F ?-曲线)。 二、仪器设备 1、液压式万能试验机。 2、游标卡尺。 三、实验原理简要 材料的力学性质s σ、b σ、δ和ψ是由拉伸破坏试验来确定的。试验时,利用试验机自动绘出低碳钢拉伸图和铸铁拉伸图。对于低碳材料,确定屈服载荷s F 时,必须缓慢而均匀地使试件产生变形,同时还需要注意观察。测力回转后所指示的最小载荷即为屈服载荷s F ,继续加载,测得最大载荷b F 。试件在达到最大载荷前,伸长变形在标距范围内均匀分布。从最大载荷开始,产生局部伸长和颈缩。颈缩出现后,截面面积迅速减小,继续拉伸所需的载荷也变小了,直至断裂。 铸铁试件在极小变形时,就达到最大载荷,而突然发生断裂。没有流动和颈缩现象,其强度极限远低于碳钢的强度极限。 四、实验过程和步骤 1、用游标卡尺在试件的标距范围内测量三个截面的直径,取其平均值,填入记录表内。取三处中最小值作为计算试件横截面积的直径。 2、 按要求装夹试样(先选其中一根),并保持上下对中。 3、 按要求选择“试验方案”→“新建实验”→“金属圆棒拉伸实验”进行试验,详细操 作要求见万能试验机使用说明。 4、 试样拉断后拆下试样,根据试验机使用说明把试样的l F ?-曲线显示在微机显示屏 上。从低碳钢的l F ?-曲线上读取s F 、b F 值,从铸铁的l F ?-曲线上读取b F 值。 5、 测量低碳钢(铸铁)拉断后的断口最小直径及横截面面积。 6、 根据低碳钢(铸铁)断口的位置选择直接测量或移位方法测量标距段长度1l 。 7、 比较低碳钢和铸铁的断口特征。 8、 试验机复原。

材料力学实验报告答案

材料力学实验报告答案 Prepared on 22 November 2020

材料力学实验报告 评分标准 拉伸实验报告 一、实验目的(1分) 1. 测定低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。 2. 测定铸铁的强度极限σb。 3. 观察拉伸实验过程中的各种现象,绘制拉伸曲线(P-ΔL曲线)。 4. 比较低碳钢与铸铁的力学特性。 二、实验设备(1分) 机器型号名称电子万能试验机 测量尺寸的量具名称游标卡尺精度0.02 mm 三、实验数据(2分)

四、实验结果处理 (4分) 0A P s s = σ =300MPa 左右 0 A P b b = σ =420MPa 左右 %10000 1?-= L L L δ =20~30%左右 %= 1000 1 0?-A A A ψ =60~75%左右 五、回答下列问题(2分,每题分) 1、画出(两种材料)试件破坏后的简图。 略 2、画出拉伸曲线图。 3、试比较低碳钢和铸铁拉伸时的力学性质。 低碳钢在拉伸时有明显的弹性阶段、屈服阶段、强化阶段和局部变形阶段,而铸铁没有明显的这四个阶段。 4、材料和直径相同而长短不同的试件,其延伸率是否相同为什么 相同 延伸率是衡量材料塑性的指标,与构件的尺寸无关。 压缩实验报告 一、实验目的(1分)

1. 测定压缩时铸铁的强度极限σb 。 2. 观察铸铁在压缩时的变形和破坏现象,并分析原因。 二、实验设备 (1分) 机器型号名称电子万能试验机 (分) 测量尺寸的量具名称 游标卡尺 精度 0.02 mm (分) 三、实验数据(1分) 四、实验结果处理 (2分) A P b b = σ =740MPa 左右 五、回答下列思考题(3分) 1.画出(两种材料)实验前后的试件形状。 略 2. 绘出两种材料的压缩曲线。 略 3. 为什么在压缩实验时要加球形承垫

弯曲与扭转实验报告

《材料力学实验报告-弯曲扭转》

扭转实验 一、实验目的 1.学习扭转实验机的构造原理,并进行操作练习。 2.测定低碳钢的剪切屈服极限、剪切强度极限和铸铁的剪切强度极限。3.观察低碳钢和铸铁在扭转过程中的变形和破坏情况。 二、实验仪器 扭转实验机,游标卡尺。 三.实验原理 塑性材料和脆性材料在扭转时的力学性能。(参考材料力学课本及其它相关书籍) 四、实验步骤 1.低碳钢实验 (1)量取试件直径。在试件上选取3个位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均直径值中取最小值作为试件的直径。 (2)将扭转实验机刻度盘的从动针调至靠近主动针。主动针的调零方式为自动调整,如果主动针不在零位,应通知老师,由老师进行调整。绝对不能用调从动针的方法,将两针调至零位。 (3)把试件安装在扭转试验机的夹头内,并将螺丝拧紧(勿太用力)。安装时,一定要注意主动夹头的夹块要保持水平(固定夹头的夹块总是水平的),以避免引起初始扭矩。如果已经出现小量的初始扭矩,只要不超过5N*m,可以开始加载。另外,试件在水平面和垂直面上不能歪斜,否则加载后试件将发生扭曲。 (4)打开绘图记录器的开关;将调速旋钮置于低速位置。开始用档慢速加载,每增加 5N*m 的扭矩,记录下相应的扭转角度。实验过程中,注意观察试件的变形情况和图,当材料发生流动时,记录流动时的扭矩值和 相应的扭转角度。另外,注意记录扭矩刚开始下降时的扭矩值和相应的扭转角度。扭矩值估读到0.1N*m。

(5)流动以后,继续加载,试件进入强化阶段,关闭记录器后,将电机速度选择在 档,加快加载速度。这时由于变形速度较快,可每增加180 度取一次扭转角度。直至试件扭断为止,记下断裂时的扭矩值 ,注意观察断 口的形状。注意,试件扭断后应立即停止加载,以便记录断裂时的扭转角度。 2.铸铁实验 操作步骤与低碳钢相同。因铸铁在变形很小时就破坏,所以只能用 档慢速加载。每增加5N*m 的扭矩,记录下相应的扭转角度。注意观 察铸铁试件在扭转过程中的变形及破坏情况,并记录试件扭断时的极限扭矩值 和相应的扭转角度。注意,试件扭断后应立即停止加载,以便记录断裂时的扭转角度。 五、实验记录 42.5m N ? 98m N ? 67.5m N ? 注:低碳钢的剪切流动极限及强度极限的计算公式中应该乘一系数3/4。原因是这样:圆轴扭转在弹性变形范围内剪应力分布如参考图(a)所示,对于塑性材料,当扭矩增大到一定数值后,试件表面应力首先达到流动极限 ,并逐渐向内 扩展,形成环形塑性区,如参考图(b)所示。若扭矩逐渐增大,塑性区也不断扩大。当扭矩达到 时,横截面上的剪应力大小近似为 ,如参考图(c)所示,在 这种剪应力分布形式下,剪应力公式为。

材料力学实验报告标准答案

力学实验报告 标准答案 长安大学力学实验教学中心 目录 一、拉伸实验 (2) 二、压缩实验 (4)

三、拉压弹性模量E测定实验 (6) 四、低碳钢剪切弹性模量G测定实验 (8) 五、扭转破坏实验 (10) 六、纯弯曲梁正应力实验 (12) 七、弯扭组合变形时的主应力测定实验 (15) 八、压杆稳定实验 (18) 一、拉伸实验报告标准答案 问题讨论: 1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试 件延伸率是否相同? 答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性. 材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外). 2、分析比较两种材料在拉伸时的力学性能及断口特征. 答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有450的剪切唇,

断口组织为暗灰色纤维状组织。铸铁断口为横断面,为闪光的结晶状组织。. 二、压缩实验报告标准答案 问题讨论: 1、分析铸铁试件压缩破坏的原因. 答:铸铁试件压缩破坏,其断口与轴线成45°~50°夹角,在断口位置剪应力已达到其抵抗的最大极限值,抗剪先于抗压达到极限,因而发生斜面剪切破坏。 2、低碳钢与铸铁在压缩时力学性质有何不同? 结构工程中怎样合理使用这 两类不同性质的材料? 答:低碳钢为塑性材料,抗压屈服极限与抗拉屈服极限相近,此时试件不会发生断裂,随荷载增加发生塑性形变;铸铁为脆性材料,抗压强度远大于抗拉强度,无屈服现象。压缩试验时,铸铁因达到剪切极限而被剪切破坏。 通过试验可以发现低碳钢材料塑性好,其抗剪能力弱于抗拉;抗拉与抗压相近。铸铁材料塑性差,其抗拉远小于抗压强度,抗剪优于抗拉低于抗压。 故在工程结构中塑性材料应用范围广,脆性材料最好处于受压状态,比如车床机座。 三、拉压弹性模量E测定试验报告 问题讨论: 1、试件的尺寸和形状对测定弹性模量有无影响?为什么? 答: 弹性模量是材料的固有性质,与试件的尺寸和形状无关。 2、逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量是 否相同?为什么必须用逐级加载的方法测弹性模量? 答: 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量不相同,采用逐级加载方法所求出的弹性模量可降低误差,同时可以验证材料此时是否处于弹性状态,以保证实验结果的可靠性。 四、低碳钢剪切弹性模量G测定实验报告标准答案 问题讨论: 1、试验过程中,有时候在加砝码时,百分表指针不动,这是为什么?应采取什么 措施? 答:检查百分表是否接触测臂或超出百分表测量上限,应调整百分表位置。

扭转实验报告

浙江大学材料力学实验报告 (实验项目:扭转) 1. 验证扭转变形公式,测定低碳钢的切变模量G 。; 2. 测定低碳钢和铸铁的剪切强度极限b τ。 3. 比较低碳钢和铸铁试样受扭时的变形规律及其破坏特性。 二、设备及试样: 1. 扭转试验机,如不进行破坏性试验,验证变形公式合测定G的实验也可在小型扭转试验 机装置上完成; 2. 扭角仪; 3. 游标卡尺; 4. 试样,扭装试样一般为圆截面。 三、实验原理和方法: 1、测定切变模量G A、机测法:0p T l G I φ= ,其中b δ φ=,δ为百分表读数,p I 为圆截面的极惯性矩; 选取初扭矩T o和比例极限内最大试验扭矩Tn,从To 到Tn 分成n级加载,每级扭矩增量为T ?,每一个扭矩Ti 都可测出相应的扭角φi ,与扭矩增量T ?对应的扭角增量是1i i i φφφ-?=-,则有0 i p i T l G I φ?= ?,i =1,2,3,…n,取Gi 的平均值作为材料的切变模量即: 1 i G G n = ∑,i=1,2,3,…n ; B 、电测法:t r t T T G W W γε= =,应变仪读数为r ε,t W 为抗扭截面系数; 选取初扭矩To 和比例极限内最大试验扭矩T n,从To 到Tn 分成n 级加载,每级扭矩增量为T ?,每一个扭矩Ti 都可测出相应的读数εi ,与扭矩增量T ?对应的读数增量是1i i i εεε-?=-,则有i t i T G W ε?= ?,i=1,2,3,…n,取Gi 的平均值作为材料的切变模量即: 1 i G G n = ∑,i=1,2,3,…n 2、测定低碳钢和铸铁的剪切强度极限b τ

材料力学实验报告文档2篇

材料力学实验报告文档2篇 Material mechanics experiment report document 编订:JinTai College

材料力学实验报告文档2篇 小泰温馨提示:实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。本文档根据实验报告内容要求展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意修改调整及打印。 本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】 1、篇章1:材料力学实验报告格式文档 2、篇章2:材料力学实验报告范文 材料力学实验报告不会写的话,下面请看小泰给大家整理收集的材料力学实验报告相关内容,供大家阅读参考。 篇章1:材料力学实验报告格式文档 二、实验设备和仪器: 三、实验记录和处理结果: 四、实验原理和方法: 五、实验步骤及实验结果处理:

篇章2:材料力学实验报告范文【按住Ctrl键点此返回目录】该实验台配上引伸仪,作为材料力学实验教学中测定材料弹性模量E实验用。 1.试样:Q235钢,直径d =10mm,标距l=100mm。 2.载荷增量△F=1000N ①砝码四级加载,每个砝码重25N; ②初载砝码一个,重16N; ③采用1:40杠杆比放大。 3.精度:一般误差小于5%。 三、操作步骤及注意事项 1.调节吊杆螺母,使杠杆尾端上翘一些,使之与满载时关于水平位置大致对称。 注意:调节前,必须使两垫刀刃对正V型槽沟底,否则垫刀将由于受力不均而被压裂。 2.把引伸仪装夹到试样上,必须使引伸仪不打滑。 ①对于容易打滑的引伸仪,要在试样被夹处用粗纱布沿圆周方向打磨一下。

扭转实验报告

一、实验目的和要求 1、测定低碳钢的剪切屈服点s τ、剪切强度b τ,观察扭矩-转角曲线(φ-T 曲线)。 2、观察低碳钢试样扭转破坏断口形貌。 3、测定低碳钢的剪切弹性模量G 。 4、验证圆截面杆扭转变形的胡克定律(p GI Tl /=φ)。 5、依据低碳钢的弹性模量,大概计算出低碳钢材料的泊松比。 二、试验设备和仪器 1、微机控制扭转试验机。 2、游标卡尺。 3、装夹工具。 三、实验原理和方法 遵照国家标准(GB/T10128-1998)采用圆截面试样的扭转试验,可以测定各种工程材料在纯剪切情况下的力学性能。如材料的剪切屈服强度点s τ和抗剪强度b τ等。圆截面试样必须按上述国家标准制成(如图1-1所示)。 试验两端的夹持段铣削为平面,这样可以有效地防止试验时试样在试验机卡头中打滑。 图 1-1 试验机软件的绘图系统可绘制扭矩-扭转角曲线,简称扭转曲线(图1-2中的曲线)。

图3-2 从图1-2可以看到,低碳钢试样的扭转试验曲线由弹性阶段(oa 段)、屈服阶段(ab 段)和强化阶段(cd 段)构成,但屈服阶段和强化阶段均不像拉伸试验曲线中那么明显。由于强化阶段的过程很长,图中只绘出其开始阶段和最后阶段,破坏时试验段的扭转角可达π10以上。 从扭转试验机上可以读取试样的屈服扭矩s T 和破坏扭矩b T 。由和T s s W T 4/3=τ计算材料的剪切屈服强度s τ和抗剪强度b τ,式中:16/3 0d W T π=为 试样截面的抗扭截面系数。 T s s W T 4/3=τ计算材料的剪切屈服强度s τ和抗剪强度b τ,式中:16 /30d W T π=为试样截面的抗扭截面系数。 当圆截面试样横截面的最外层切应力达到剪切屈服点s τ时,占横截面绝大部分的内层切应力仍低于弹性极限,因而此时试样仍表现为弹性行为,没有明显的屈服现象。当扭矩继续增加使横截面大部分区域的切应力均达到剪切屈服点s τ时,试样会表现出明显的屈服现象,此时的扭矩比真实的屈服扭矩s T 要大一些,对于破坏扭矩也会有同样的情况。 图1-3所示为低碳钢试样的扭转破坏断口,破坏断面与横截面重合,断面是最大切应力作用面,断口较为平齐,可知为剪切破坏。 图 1-3

相关主题
文本预览
相关文档 最新文档