当前位置:文档之家› 工力实验实验报告

工力实验实验报告

工力实验实验报告
工力实验实验报告

实验一金属材料拉伸实验

拉伸实验是测定材料在常温静载下机械性能的最基本和重要的实验之一。这不仅因为拉伸实验简便易行,便于分析,且测试技术较为成熟。更重要的是,工程设计中所选用的材料的强度、塑形和弹性模量等机械指标,大多数是以拉伸实验为主要依据。

实验目的

1、验证胡可定律,测定低碳钢的E。

2、测定低碳钢拉伸时的强度性能指标:屈服应力Rel和抗拉强度Rm。

3、测定低碳钢拉伸时的塑性性能指标:伸长率A和断面收缩率Z

4、测定灰铸铁拉伸时的强度性能指标:抗拉强度Rm

5、绘制低碳钢和灰铸铁拉伸图,比较低碳钢与灰铸铁在拉伸树的力学性能和破坏形式。

实验设备和仪器

万能试验机、游标卡尺,引伸仪

实验试样

本试验采用经机加工的直径d =10 mm的圆形截面比例试样,其是根据国家试验规范的规定进行加工的。它有夹持、过渡和平行三部分组成(见图2-1),它的夹持部分稍大,其形状和尺寸应根据试样大小、材料特性、试验目的以及试验机夹具的形状和结构设计,但必须保证轴向的拉伸力。其夹持部分的长度至少应为楔形夹具长度的3/4(试验机配有各种夹头,对于圆形试样一般采用楔形夹板夹头,夹板表面制成凸纹,以便夹牢试样)。机加工带头试样的过渡部分是圆角,与平行部分光滑连接,以保证试样破坏时断口在平行部分。平行部分的长度Lc按现行国家标准中的规定取Lo+d ,Lo是试样中部测量变形的长度,称为原始标距。

实验原理

按我国目前执行的国家GB/T 228—2002标准——《金属材料室温拉伸试验方法》的规定,在室温10℃~35℃的范围内进行试验。

将试样安装在试验机的夹头中,固定引伸仪,然后开动试验机,使试样受到缓慢增加的

拉力(应

根据材料

性能和试

验目的确

定拉伸速

度),直到

图2-1 机加工的圆截面拉伸试样

拉断为止,并利用试验机的自动绘图装置绘出材料的拉伸图(图2-2所示)。

应当指出,试验机自动绘图装置绘出的拉伸变形ΔL 主要是整个试样(不只是标距部分)的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素。由于试样开始受力时,头部在夹头内的滑动较大,故绘出的拉伸图最初一段是曲线。

低碳钢(典型的塑性材料)

当拉力较小时,试样伸长量与力成正比增加,保持直线关系,拉力超过FP 后拉伸曲线将由直变曲。保持直线关系的最大拉力就是材料比例极限的力值FP 。

在FP 的上方附近有一点是Fc ,若拉力小于Fc 而卸载时,卸载后试样立刻恢复原状,若拉力大于Fc 后再卸载,则试件只能部分恢复,保留的残余变形即为塑性变形,因而Fc 是代表材料弹性极限的力值。

当拉力增加到一定程度时,试验机的示力指针(主动针)开始摆动或停止不动,拉伸图上出现锯齿状或平台,这说明此时试样所受的拉力几乎不变但变形却在继续,这种现象称为材料的屈服。低碳钢的屈服阶段常呈锯齿状,其上屈服点B ′受变形速度及试样形式等因素的影响较大,而下屈服点B 则比较稳定(因此工程上常以其下屈服点B 所对应的力值FeL 作为材料屈服时的力值)。确定屈服力值时,必须注意观察读数表盘上测力指针的转动情况,读取测力度盘指针首次回转前指示的最大力FeH (上屈服荷载)和不计初瞬时效应时屈服阶段中的最小力FeL (下屈服荷载)或首次停止转动指示的恒定力FeL (下屈服荷载),将其分别除以试样的原始横截面积(S0)便可得到上屈服强度ReH 和下屈服强度ReL 。即

ReH= FeH/S0 ReL = FeL/S0

屈服阶段过后,虽然变形仍继续增大,但力值也随之增加,拉伸曲线又继续上升,这说明材料又恢复了抵抗变形的能力,这种现象称为材料的强化。在强化阶段内,试样的变形主要是塑性变形,比弹性阶段内试样的变形大得多,在达到最大力Fm 之前,试样标距范围内的变形是均匀的,拉伸曲线是一段平缓上升的曲线,这时可明显地看到整个试样的横向尺寸在缩小。此最大力Fm 为材料的抗拉强度力值,由公式Rm=Fm/S0

即可得到

(a )低碳钢拉伸曲线图 (b )铸铁拉伸曲线图

图2-2 由试验机绘图装置绘出的拉伸曲线图

图2-3 低碳钢的冷作硬化

材料的抗拉强度Rm 。

如果在材料的强化阶段内卸载后再加载,直到试样拉断,则所得到的曲线如图2-3所示。卸载时曲线并不沿原拉伸曲线卸回,而是沿近乎平行于弹性阶段的直线卸回,这说明卸载前试样中除了有塑性变形外,还有一部分弹性变形;卸载后再继续加载,曲线几乎沿卸载路径变化,然后继续强化变形,就像没有卸载一样,这种现象称为材料的冷作硬化。显然,冷作硬化提高了材料的比例极限和屈服极限,但材料的塑性却相应降低。

当荷载达到最大力Fm 后,示力指针由最大力Fm 缓慢回转时,试样上某一部位开始产生局部伸长和颈缩,在颈缩发生部位,横截面面积急剧缩小,继续拉伸所需的力也迅速减小,拉伸曲线开始下降,直至试样断裂。此时通过测量试样断裂后的标距长度Lu 和断口处最小直径du ,计算断后最小截面积(Su ),由计算公式

%10000?-=

L L L A u 、 %10000?-=S S S Z u

即可得到试样的断后伸长率A 和断面收缩率Z 。

铸铁(典型的脆性材料)

脆性材料是指断后伸长率A <5% 的材料,其从开始承受拉力直至试样被拉断,变形都很小。而且,大多数脆性材料在拉伸时的应力-应变曲线上都没有明显的直线段,几乎没有塑性变形,也不会出现屈服和颈缩等现象(如图2-2b 所示),只有断裂时的应力值——强度极限。

铸铁试样在承受拉力、变形极小时,就达到最大力Fm 而突然发生断裂,其抗拉强度也远小于低碳钢的抗拉强度。同样,由公式Rm=Fm/S0 即可得到其抗拉强度Rm ,而由公式

%

1000

0?=

-L L L u A 则可求得其断后伸长率A 。

进行实验

低碳钢拉伸实验

本小组在万能试验机上进行了低碳钢的拉伸实验,得到了如下图所示的拉力图 由图中我们可以看出实验结果与实验原理吻合的相当好,有明显的弹性阶段、屈服阶段、强化阶段和颈缩阶段。其次,在强化过程中,有一条向下的竖线,那时我们在卸去载荷后所得到的曲线,验证了材料的冷作硬化。

图2-5是低碳钢拉断后的断口形状我们可以清楚的看到断口的形状呈现杯锥状

若是单纯的用最大拉应力强度理论来分析,则断口的形状应该比较平整:若是用最大剪应力来分析,则形状该是呈现45?斜面。这两种原理都不符合实验的结果。通过课后查阅资料得知,材料的破坏是多种因素共同作用的结果,可能是剪断也可能是拉断,这主要取决于破坏的方式和应力状态分布。一般认为,像我们实验用的材料和拉伸方式,最终试样的中心区域不是发生剪断而是脆性拉断,最外面的部分才沿具有最大剪应力的45?斜面上剪断,形成杯锥状的断口。 重要的实验结果:

Rel (N/mm^2) Rm(N/mm^2) E(N/mm^2)

率Z

率A Fm (kN )

256

430

21% 51%

在完成低碳钢的拉伸实验后我们又进行了灰铸铁的拉伸实验,绘制的拉力图: 同样的,这条实验曲线与理论曲线吻合的很好,证明这次试验很成功。

灰铸铁的断口形状比较平整,原因是灰铸铁是脆性材料,在应力不太大的情况下就被拉断。

小结与讨论

1、我们将低碳钢和灰铸铁拉断后的试样放在一起比较如图2-7所示,可以很清楚的

看到上述的结论——低碳钢的断口是杯锥状而灰铸铁的比较平整。同时我们也会发现灰铸铁的断口在过度部分和工作部分相交处,因为那里有截面的变化,应力集中,对于脆性材料来说,它对应力集中比较敏感。

2、低碳钢和灰铸铁在常温静载下力学性能的差异:低碳钢是典型的塑性材料,在断裂前变形较大,塑性指标较高,抵抗拉断的能力较好,其常用的强度指标是屈服极限,而且,一般来说,在拉伸和压缩时的屈服极限值相同。灰铸铁是脆性材料,在断裂前的变形较小,塑性指标较低,其强度指标是强度极限,而且其拉伸强度远低于压缩强度。但是材料是塑性的还是脆性的, 将随材料所处的温度,应变 率和应力状态等条件的变化而不同。

实验二 金属材料的压缩实验

实验目的

(1) 测定低碳钢压缩时的屈服应力Rec 。

灰铸

低碳

(2)测定灰铸铁压缩时的抗压强度Rbc。

(3)观察、比较低碳钢与灰铸铁在压缩时的变形特点和破坏形式。

实验设备和仪器

(1)万能实验机

(2)游标卡尺。

实验试样

按照国家标准GB7314-2002《金属压缩实验方法》,金属压缩试样的形状随着产品的品种、规格以及实验目的的不同而分为圆柱试样、正方形柱体试样和样板试样三种。

实验原理与方法

1)测定低碳钢在压缩过程中的强度性能指标

低碳钢在压缩过程中,当应力小于屈服应力时,其变形情况与拉伸时基本相同。当达到屈服应力后,试样产生塑性变形,随着压力的继续增加,试样的横截面积面积不断变大直至被压扁。故只能测其屈服载荷Fec,进而计算出屈服应力Rec。

2)测定灰铸铁压缩时的强度性能指标

灰铸铁在压缩过程中,当试样的变形很小时即发生破坏,故只能测其破坏时的最大载荷Fbc,即可得到抗压强度Rbc。

1.实验步骤

(1)检查试样两端面的光洁度和平行度,并涂上润滑油。用游标卡尺测量并记录试样的原始尺寸。

(2)检查上下承垫是否符合平整的要求。

(3)快速移动实验机横梁,将上下压头调整至合适位置。

(4)将试样放进万能试验机的上下承垫之间,并检查对中情况。

(5)设置实验数据。

(6)开始实验均匀缓慢加载,注意读取低碳钢的屈服载荷Fec和灰铸铁的最大载荷Fbc,并注意观察试样的变形现象。

2.实验结果

低碳钢:屈服载荷Fs =

屈服极限Rec = 289MPa

铸铁:极限载荷Fm =

强度极限Rbc = 719MPa

实验三金属材料的扭转实验

1.实验目的

(1)测定低碳钢扭转时的强度性能指标:剪切屈服极限和剪切强度极限。

(2)测定灰铸铁扭转时的强度性能指标:剪切强度极限。

(3)绘制低碳钢和灰铸铁的扭转图,比较低碳钢和灰铸铁的扭转破坏形式。

(4)了解电子式扭转试验机的构造、原理和操作方法。

2.实验设备和仪器

(1)扭转实验及

(2)游标卡尺

3.实验试样

按照国家标准GB10128-2007《金属室温扭转实验方法》,金属扭转试样的形状随着产品的品种、规格以及实验目的不同而分为圆形截面试样和管形截面试样两种。其中最常用的是圆形截面试样,本实验中就是圆形截面试样,试样形状建下图:

4.实验原理与方法

1)扭转力学性能实验

试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。随着外力偶矩的增加,力矩与扭转角成线性关系,直至力矩的示数值出现一个维持的平台,这时所指示的外力偶矩的数值即为屈服扭矩,按弹性扭转公式计算的剪切屈服应力为

()

式中:为试样在标距内的抗扭截面系数。

在测出屈服扭矩后,可加快试验机加载速度,直到试样被扭断为止。

试验机记录下最大扭矩,剪切强度极限为

()

如上所述,名义剪切应力等,是按弹性公式计算的,它是假设试样横截面上的剪应力为线性分布,外表最大,形心为零,这在线弹性阶段是对的。

2)测定灰铸铁扭转时的强度性能指标

对于灰铸铁试样,只需测出其承受的最大外力偶矩,抗扭强度为

()

低碳钢试样的端口与轴线垂直,表明破坏是由切应力引起的;而灰铸

铁试样的断口则沿螺旋线方向与轴线约成45,表明破坏是由拉应力引起的。

5.实验步骤

(1)测量试样的直径(方法与拉伸试验相同)。

(2)将试样安装到扭转试验机上,运行应用软件,预置实验条件、参数。

(3)开始“实验”按钮,匀速缓慢加载,跟踪观察试样的屈服现象和实时曲线,待屈服过程之后,提高实验机的加载速度,直至试样被扭

断为止。

(4)取下拉断后的试样,进行实验数据和曲线及实验报告处理。

(5)测定灰铸铁扭转时的强度性能指标步骤与低碳钢扭转基本一致,但只需测量扭转值。

6.进行实验

上图为试验时试样的扭转形变图。

7.实验数据的记录与计算

将实验数据与计算结果填入表中。

表测定低碳钢和灰铸铁的冲击性能指标实验的数据的记录与计算从数据中可以看出灰铸铁没有剪切强度极限,只有屈服极限,是脆性材料,低碳钢既有屈服极限,又有剪切强度极限,是塑性材料。

实验四纯弯梁的弯曲应力测定

弯曲是该工程中常见的一种基本变形。如火车轴、桥式起重机的大梁等都是弯曲变形的杆件。应变电测发是工程中用于测量构建在静、动态载荷下所产生应变量的一种重要测试方法。本实验用电测法测量纯弯曲梁上正应力的分布规律及大小。

实验目的

1、掌握电测法的测试原理,学习运用电阻应变仪测量应变的方法。

2、测定梁纯弯曲时的正应力分布,并与理论计算结果进行比较,以验证弯曲正应力公式。

设备及仪器

1、钢卷尺、游标卡尺一把

2、静态电阻应变仪

3、纯弯曲梁实验装置

(纯弯矩实验装置如右图所示)

实验原理

已知梁受纯弯曲时的正应力公式为 式中M 为纯弯曲梁横截面上的弯

矩,z I 为横截面对中性轴Z 的惯性矩,y

为横截面中性轴到欲测点的距离。

图纯弯矩实验装置

由上式可以计算出横截面上各点正应力的理论值。可以看到,沿横截面高度各点处的正应力是按直线规律变化的。

为了验证理论公示的正确性,在梁承受弯曲段的侧面上,沿不同高度粘贴上电阻片,如图3-1所示。用电阻应变仪测出各点的应变值实ε,根据胡克定律求出各点的应力实验值实σ,即

实σ= E ·实ε

图 纯弯曲梁贴片位置示意图

实验时,采用增量法,每增加等量的载荷P ? ,测定各点相应的应变增量,取应变

增量的平均值实ε? ,则各点的应力实验值为

用增量法计算相应的应力理论值为

式中 a P M ??=?2

1

将实验测得的应力值实

σ?与理论应力值理σ?加以比较,从而验证弯曲正应力公式的

正确性。

实验方法和步骤

1、使用设备:电阻应变仪型号YE2538A;电阻应变片电阻值R=120Ω;灵敏系数K=;弹性模量E=210GPa

2、试件尺寸及贴片位置

3、调整应变仪和桥路连接

4、调节应变仪的零点

5、缓慢加载,每次增加,测定相应点的应变值,

6、卸去载荷,应变仪、力传感器显示屏复位。实验结束 附表:

载荷增量 P ?= KN a 2

??=?P

M = KN ·m

(

/MPa

Δσ

)

误差﹪0

图计算结果绘图

结果分析:由上表可以看出存在比较大的误差,进过分析,可能的产生原因有: 1)实验仪器本身的精度不高;

2)由于实验器材比较陈旧,材料表面生锈也可能会有影响因素;

3)操作环境不稳定的问题,当桌子、线路的轻微抖动时仪器数据也会变化。

实验五弯扭组合变形应变测定

实验目的

1.用电测法测定平面应力状态下主应力的大小及方向;

2.测定薄壁圆管在弯扭组合变形作用下,分别由弯矩、剪力和扭矩所引起的应力。实验仪器和设备

1.弯扭组合实验装置;

2.YJ-4501A/SZ静态数字电阻应变仪。

实验原理

薄壁圆管受力简图如图1所示。薄壁圆管在P力作用下产生弯扭组合变形。

薄壁圆管材料为铝合金,其弹性模量a

72GP

E , 泊松比μ为。薄壁圆管截面尺寸、如图2所示。由材料力学分析可知,该截面上的内力有弯矩、剪

力和扭矩。Ⅰ-Ⅰ截面现有A、B、C、D四个测点,其应力状态如图3所示。每点

图弯扭组合实验装

图受力简图

实验内容及方法

1. 指定点的主应力大小和方向的测定

薄壁圆管A 、B 、C 、D 四个测点,其表面都处于平面应力状态,用应变花测出三个方向的线应变, 然后运用应变-应力换算关系求出主应力的大小和方向。若测得应变ε-45、ε0、ε45 ,则主应力大小的计算公式为 主应力方向计算公式为

2. 弯矩、剪力、扭矩所分别引起的应力的测定 a. 弯矩M 引起的正应力的测定

只需用B 、D 两测点00方向的应变片组成图5(a )所示半桥线路,就可测得弯矩M 引的正应变

2

Md M ε

ε=

然后由虎克定律可求得弯矩M 引起的正应力

2

Md

M M E E εεσ== b. 扭矩M n 引起的剪应力的测定 用A 、C 两被测点-450、450方向的应变片组成图5(b )

所示全桥线路,可测得扭矩M n 在450方向所引起的线应变 由广义虎克定律可求得剪力M n 引起的剪应力 ()2

14nd

nd n G E εμετ=

+= c. 剪力Q 引起的剪应力的测定

用A 、C 两被测点-450、450方向的应变片组成图5(c )所示全桥线路,可测得剪力Q

在450方向所引起的线应变 4

Qd

Q εε=

由广义虎克定律可求得剪力Q 引起的剪应力 ()

2

14Qd

Qd Q G E εμετ=+=

进行试验

1. 接通测力仪电源,将测力仪开关置开。

2. 将薄壁圆管上A 、B 、C 、D 各点的应变片按单臂(多点)半桥测量接线方法接至应变仪测量通道上。

3. 预加初始载荷,将应变仪各测量通道置零;分级加载,每级,加至,记录各级载荷作用下应变片的读数应变,然后卸去载荷。

4. 按图5各种组桥方式,从复实验步骤3,分别完成弯矩、扭矩、剪力所引起应变的测定。

通过上述实验步骤得到了一系列数据:

应变读数 载荷

A

B

-450

(R 1)

00

(R 2)

450

(R 3)

-450

(R 4)

00

(R 5)

450

(R 6)

图 组桥示意图

据此计算出各点主应力大小:

实验六:简支梁各阶固有频率的测定

实验目的:

了解激振器、加速度传感器、电荷放大器的工作原理,掌握上述设备的使用方法,掌握简谐振动振幅与频率最简单直观的测量方法,对机械振动有一定的感性认识,形成机械振动的工程概念。

实验装置与仪器:

机械振动综合实验装臵(安装双简支梁)、激振器及功率放大器、加速度传感器、电荷放大器、数据采集仪、信号分析软件

实验原理:

机械在运动时,由于旋转件的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。机械振动在大多数情况下是有害的,振动往往会降低机器性能,破坏其正常工作,缩短使用寿命,甚至导致事故。机械振动还伴随着同频率的噪声,恶化环境,危害健康。另一方面,振动也被利用来完成有益的工作,如运输、夯实、清洗、粉碎、脱水等。这时必须正确选择振动参数,充分发挥振动机械的性能。

振动的幅值、频率和相位是振动的三个基本参数,称为振动三要素。幅值是振动强度的标志,它可以用峰值、有效值、平均值等不同的方法表示。不同的频率成分反映系统内不同的振源,通过频谱分析可以确定主要频率成分及其幅值大小,从而寻找振源,采取相应的措施。振动信号的相位信息十分重要,如利用相位关系确定共振点、测量振型、旋转件动平衡、有源振动控制、降噪等。对于复杂振动的波形分析,各谐波的相位关系是不可缺少的。简谐振动是单一频率的振动形式,各种周期运动都可以用不同频率的简谐运动的组合来表示。简谐振动的运动规律可用位移函数y(t)描述,A为位移的幅值,φ为初始相位角,r;ω为振动角频率,ω=2π/T=2πf;其中T为振动周期,s;f为振动频率, Hz。

对应于该简谐振动的速度v和加速度a分别为:速度的最大值比位移的最大值超前90°,加速度的最大值要比位移最大值超前180°。在位移、速度和加速度三个参量中,测出其中之一即可利用积分或微分求出另两个参量。

在振动测量时,应合理选择测量参数,如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率

范围内是由速度决定的。速度又与能量和功率有关,并决定动量的大小。实验步骤为:

1.将激振器通过顶杆连接到简支梁上(注意确保顶杆与激振器的中心在一直线上),激振点位于双简支梁中心偏左50mm处(已有安装螺孔)将信号发生器输出端连接到功率放大器的输入端,并将功率放大器与激振器连接。

2.将加速器传感器粘贴在双简支梁上(中心偏右50mm)并与电荷放大器连接,将电荷放大器输出端分别与数据采集输出端连接。

3.将信号发生器和功率放大器的幅值旋钮调至最小,打开所有仪器电源。设臵信号发生器在某一频率(可以为20Hz),调节信号发生器的幅值旋钮使其输出电压为2V。调节功率放大器的幅值旋钮,逐渐增大使其输出功率直至从数据采集软件的显示窗口能观察到光滑的正弦波,若功率放大器输出功率已较大仍得不到光滑的正弦波,应改变信号发生器的频率。当数据采集软件的显示窗口能观察到光滑的正弦波后,功率放大器的值将保持不变。

4.用数据采集软件采集10个周期正弦波,计算出周期,从而得出固有频率。

实验数据记录及计算:

取三组数据的平均值得:f=(++)/3=

实验七动态应变测量

实验目的:

1.了解测量动应变的测量方法,测定振动梁的动应力

2.熟悉动态应变仪及记录系统的使用方法

实验设备及仪器:

DH—5935动态应变测试系统、悬臂振动梁装置

实验数据及计算:

光弹演示试验

实验目的

(1)了解光弹性法的基本原理与测试方法。

(2)观察光弹性试验的等差线图。

实验设备和模型

(1)光弹性仪

(2)光弹性模型:圆盘,梁和中间开有圆孔的拉伸板试样。

实验原理和方法

有些各向同性的透明非金属材料,在其自然状态下,不会产生双折射,但当其受到载荷作用而又应力时,产生双折射现象,当载荷卸去,双折射现象也即消失,这种现象称为暂时双折射,也称为光弹性效应。

实验步骤

(1)了解其各部件的名称与作用,掌握平面偏振光场的调整方法。

(2)调整光弹性仪各镜轴的位置,使其成平面偏振光暗场,用白光光源,将圆盘光弹模型置于加载架上,预加5N初载荷。圆盘模型中呈现水平和垂直的十字形等倾线,即零度等倾线,然后逐步加载,观察等差线与等倾线的变化。同步转动起偏振镜与检偏振镜,依次转5°、10°等倾线。

(3)调整光弹性仪为圆偏振光暗场,先用白光光源,模型加载,确定零级条纹,判断条纹增减方向,再用单色光源,观察等差线图案。

(4)载荷不变,将检偏镜转90°,形成平行圆偏振光场,观察半数级等差线条纹图。

试验图片

实验九材料冲击疲劳试验

实验目的

(1)了解测定材料疲劳极限、S-N曲线的方法。

(2)通过观察疲劳试样断口,分析疲劳的原因。

(3)了解所使用疲劳试验机的工作原理和操作过程。

实验设备

(1)疲劳试验机

(2)游标卡尺

实验原理及方法

金属材料的疲劳试验可采用升降法(GB3075-82)和单点法(HB5252-1980),本实验使用单点法。因为δ=M *dmin/(2* I)

M=1/2*P*a

I=π*dmin^4/64

所以求得最小直径截面上的最大弯曲正应力为δ=1/2*P*a*dmin/(2*π*dmin^4/6)=

P/(π*dmin/(16*a))

令 K=π*dmin^3/(16*a)

则上式可写为 P=K*δ

P’=P-G=K*δ-G

实验步骤

(1)测量试样最小直径dmin。

(2)计算或查出K值。

(3)根据确定的应力水平δ,由式P’=P-G=Kδ-G计算应加砝码的重量P’。(4)将试样安装于套筒上,拧紧两根连接螺杆,使与试样成为一个整体。(5)连接挠性连轴节。

(6)加上砝码。

(7)开机前托起法码,在运转平稳后,迅速无冲击地加上砝码,并将计数器调零。

(8)试样断裂,记下寿命N,取下试样。

(9)按照“单点法”测试原理,继续完成剩下5-7根试样的实验。绘制疲劳寿命曲线确定疲劳极限。

试验图片

综合性实验

——黄铜的弹性模量及泊松比的测定

一、实验目的

1、通过测量应力及相应应变计算出黄铜的弹性模量及泊松比。

2、学习应变片的粘贴、焊接、检验等操作方法以及相应仪器的使用。

二、实验原理

利用σ(正应力)=Eε(正应变)计算弹性模量,σ可以由压力(拉力)与横截面积相比得到,正应变ε由应变片读得。

测量完横向和纵向应变后通过公式u=ε(横)/ε(纵)计算泊松比。

三、实验设备与仪器

1、静态电阻应变仪。

2、标定器、计算器、数字式万用表、游标卡尺、电烙铁、剥线钳等。

3、弹性元件等传感器母体

4、电阻式应变片、接线端子、导线、502胶水、丙酮、焊锡、砂纸等。

四、实验步骤

1、将黄铜片打磨至两面光亮。

2、用酒精清洗黄铜片,并测量其尺寸。

3、将应变片剪好后贴到黄铜片上,两横两竖

4、将导线与应变片上的线依次焊接好,并固定牢固。测量每个应变片的

初始电阻是否为120欧姆。

五、实验结果与数据分析

黄铜片横截面积A=160mm^2

弹性

模量

E=

查得数据,黄铜的弹性模量为89~97,泊松比为~

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.doczj.com/doc/d016181109.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.doczj.com/doc/d016181109.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

控制系统仿真与设计实验报告

控制系统仿真与设计实验报告 姓名: 班级: 学号: 指导老师:刘峰 7.2.2控制系统的阶跃响应 一、实验目的 1.观察学习控制系统的单位阶跃响应; 2.记录单位阶跃响应曲线; 3.掌握时间相应的一般方法; 二、实验内容 1.二阶系统G(s)=10/(s2+2s+10)

键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。 (1)实验程序如下: num=[10]; den=[1 2 10]; step(num,den); 响应曲线如下图所示: (2)再键入: damp(den); step(num,den); [y x t]=step(num,den); [y,t’] 可得实验结果如下:

记录实际测取的峰值大小、峰值时间、过渡时间,并与理论计算值值比较 实际值理论值 峰值 1.3473 1.2975

峰值时间 1.0928 1.0649 过渡时间+%5 2.4836 2.6352 +%2 3.4771 3.5136 2. 二阶系统G(s)=10/(s2+2s+10) 试验程序如下: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[10]; den1=[1 6.32 10]; step(num1,den1); hold on; num2=[10]; den2=[1 12.64 10]; step(num2,den2); 响应曲线:

(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线试验程序: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[2.5]; den1=[1 1 2.5]; step(num1,den1); hold on; num2=[40]; den2=[1 4 40]; step(num2,den2); 响应曲线如下图所示:

实验报告封面

(此文档为word格式,下载后您可任意编辑修改!) 建筑材料试验报告 专业: 班级: 学号: 姓名: 成绩:

河南城建学院 土木工程与材料工程系建材实验 序言 实验报告是实验者最后交出的成果,是对实验资料的总结,因此应按照要求(具体见实验规则)及时认真地书写。 本报告册中带*的项目专科生不作要求。实验报告中的“问题分析”项目主要包括本实验误差产生的原因分析(误差过大时才书写)、在实验中所观察到的异常现象及其产生原因分析等内容。主义论据要清晰明了,没有问题则不要勉强。 附:实验报告评分标准

建材实验室 2010年11月 目录 1、材料密度试验…………………………………………… (1) 2、材料表观密度试验…………………………………… (4)

3、材料堆积密度试 验 (7) 4、水泥细度试验…………………………………………… (10) 5、砂的筛分析试验………………………………………… (13) 6、混凝土拌合物试验……………………………………… (17) 7、混凝土抗压强度试验…………………………………… (21) 8、混凝土抗折强度试验…………………………………… (24) 9、混凝土劈裂抗拉强度试验……………………………… (27) 10、水泥胶砂试件成型试验………………………………… (30) 11、水泥胶砂强度试验……………………………………… (32) 12、沥青试样制备试验………………………………………

(36) 13、沥青针入度试验………………………………………… (38) 14、沥青延度试验…………………………………………… (41) 15、沥青软化试验…………………………………………… (44) 16、钢筋试验………………………………………………… (47) 17、新拌筑砂浆试验………………………………………… (52) 18、砂浆抗压强度试验……………………………………… (55) 19、普通粘土砖试验………………………………………… (59) 20、水泥净浆的SEM实验(设计 性)…………………………… 21、水泥稠度凝结时间安定性(设计 性)…………………………

数据挖掘实验报告(一)

数据挖掘实验报告(一) 数据预处理 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1.学习均值平滑,中值平滑,边界值平滑的基本原理 2.掌握链表的使用方法 3.掌握文件读取的方法 二、实验设备 PC一台,dev-c++5.11 三、实验内容 数据平滑 假定用于分析的数据包含属性age。数据元组中age的值如下(按递增序):13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70。使用你所熟悉的程序设计语言进行编程,实现如下功能(要求程序具有通用性): (a) 使用按箱平均值平滑法对以上数据进行平滑,箱的深度为3。 (b) 使用按箱中值平滑法对以上数据进行平滑,箱的深度为3。 (c) 使用按箱边界值平滑法对以上数据进行平滑,箱的深度为3。 四、实验原理 使用c语言,对数据文件进行读取,存入带头节点的指针链表中,同时计数,均值求三个数的平均值,中值求中间的一个数的值,边界值将中间的数转换为离边界较近的边界值 五、实验步骤 代码 #include #include #include #define DEEP 3 #define DATAFILE "data.txt" #define VPT 10 //定义结构体 typedef struct chain{ int num; struct chain *next; }* data; //定义全局变量 data head,p,q; FILE *fp; int num,sum,count=0; int i,j; int *box; void mean(); void medain(); void boundary(); int main () { //定义头指针 head=(data)malloc(sizeof(struc t chain)); head->next=NULL; /*打开文件*/ fp=fopen(DATAFILE,"r"); if(!fp) exit(0); p=head; while(!feof(fp)){

哈工大_控制系统实践_磁悬浮实验报告

研究生自动控制专业实验 地点:A区主楼518房间 姓名:实验日期:年月日斑号:学号:机组编号: 同组人:成绩:教师签字:磁悬浮小球系统 实验报告 主编:钱玉恒,杨亚非 哈工大航天学院控制科学实验室

磁悬浮小球控制系统实验报告 一、实验内容 1、熟悉磁悬浮球控制系统的结构和原理; 2、了解磁悬浮物理模型建模与控制器设计; 3、掌握根轨迹控制实验设计与仿真; 4、掌握频率响应控制实验与仿真; 5、掌握PID控制器设计实验与仿真; 6、实验PID控制器的实物系统调试; 二、实验设备 1、磁悬浮球控制系统一套 磁悬浮球控制系统包括磁悬浮小球控制器、磁悬浮小球实验装置等组成。在控制器的前部设有操作面板,操作面板上有起动/停止开关,控制器的后部有电源开关。 磁悬浮球控制系统计算机部分 磁悬浮球控制系统计算机部分主要有计算机、1711控制卡等; 三、实验步骤 1、系统实验的线路连接 磁悬浮小球控制器与计算机、磁悬浮小球实验装置全部采用标准线连接,电源部分有标准电源线,考虑实验设备的使用便利,在试验前,实验装置的线路已经连接完毕。 2、启动实验装置 通电之前,请详细检察电源等连线是否正确,确认无误后,可接通控制器电源,随后起动计算机和控制器,在编程和仿真情况下,不要启动控制器。 系统实验的参数调试

根据仿真的数据及控制规则进行参数调试(根轨迹、频率、PID 等),直到获得较理想参数为止。 四、实验要求 1、学生上机前要求 学生在实际上机调试之前,必须用自己的计算机,对系统的仿真全部做完,并且经过老师的检查许可后,才能申请上机调试。 学生必须交实验报告后才能上机调试。 2、学生上机要求 上机的同学要按照要求进行实验,不得有违反操作规程的现象,严格遵守实验室的有关规定。 五、系统建模思考题 1、系统模型线性化处理是否合理,写出推理过程? 合理,推理过程: 由级数理论,将非线性函数展开为泰勒级数。由此证明,在平衡点)x ,(i 00对 系统进行线性化处理是可行的。 对式2x i K x i F )(),(=作泰勒级数展开,省略高阶项可得: )x -)(x x ,(i F )i -)(i x ,(i F )x ,F(i x)F(i,000x 000i 00++= )x -(x K )i -(i K )x ,F(i x)F(i,0x 0i 00++= 平衡点小球电磁力和重力平衡,有 (,)+=F i x mg 0 |,δδ===00 i 00 i i x x F(i,x) F(i ,x )i ;|,δδ===00x 00i i x x F(i,x)F (i ,x )x 对2 i F(i,x )K()x =求偏导数得:

数据挖掘实验报告资料

大数据理论与技术读书报告 -----K最近邻分类算法 指导老师: 陈莉 学生姓名: 李阳帆 学号: 201531467 专业: 计算机技术 日期 :2016年8月31日

摘要 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地提取出有价值的知识模式,以满足人们不同应用的需要。K 近邻算法(KNN)是基于统计的分类方法,是大数据理论与分析的分类算法中比较常用的一种方法。该算法具有直观、无需先验统计知识、无师学习等特点,目前已经成为数据挖掘技术的理论和应用研究方法之一。本文主要研究了K 近邻分类算法,首先简要地介绍了数据挖掘中的各种分类算法,详细地阐述了K 近邻算法的基本原理和应用领域,最后在matlab环境里仿真实现,并对实验结果进行分析,提出了改进的方法。 关键词:K 近邻,聚类算法,权重,复杂度,准确度

1.引言 (1) 2.研究目的与意义 (1) 3.算法思想 (2) 4.算法实现 (2) 4.1 参数设置 (2) 4.2数据集 (2) 4.3实验步骤 (3) 4.4实验结果与分析 (3) 5.总结与反思 (4) 附件1 (6)

1.引言 随着数据库技术的飞速发展,人工智能领域的一个分支—— 机器学习的研究自 20 世纪 50 年代开始以来也取得了很大进展。用数据库管理系统来存储数据,用机器学习的方法来分析数据,挖掘大量数据背后的知识,这两者的结合促成了数据库中的知识发现(Knowledge Discovery in Databases,简记 KDD)的产生,也称作数据挖掘(Data Ming,简记 DM)。 数据挖掘是信息技术自然演化的结果。信息技术的发展大致可以描述为如下的过程:初期的是简单的数据收集和数据库的构造;后来发展到对数据的管理,包括:数据存储、检索以及数据库事务处理;再后来发展到对数据的分析和理解, 这时候出现了数据仓库技术和数据挖掘技术。数据挖掘是涉及数据库和人工智能等学科的一门当前相当活跃的研究领域。 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地抽取出有价值的知识模式,以满足人们不同应用的需要[1]。目前,数据挖掘已经成为一个具有迫切实现需要的很有前途的热点研究课题。 2.研究目的与意义 近邻方法是在一组历史数据记录中寻找一个或者若干个与当前记录最相似的历史纪录的已知特征值来预测当前记录的未知或遗失特征值[14]。近邻方法是数据挖掘分类算法中比较常用的一种方法。K 近邻算法(简称 KNN)是基于统计的分类方法[15]。KNN 分类算法根据待识样本在特征空间中 K 个最近邻样本中的多数样本的类别来进行分类,因此具有直观、无需先验统计知识、无师学习等特点,从而成为非参数分类的一种重要方法。 大多数分类方法是基于向量空间模型的。当前在分类方法中,对任意两个向量: x= ) ,..., , ( 2 1x x x n和) ,..., , (' ' 2 ' 1 'x x x x n 存在 3 种最通用的距离度量:欧氏距离、余弦距 离[16]和内积[17]。有两种常用的分类策略:一种是计算待分类向量到所有训练集中的向量间的距离:如 K 近邻选择K个距离最小的向量然后进行综合,以决定其类别。另一种是用训练集中的向量构成类别向量,仅计算待分类向量到所有类别向量的距离,选择一个距离最小的类别向量决定类别的归属。很明显,距离计算在分类中起关键作用。由于以上 3 种距离度量不涉及向量的特征之间的关系,这使得距离的计算不精确,从而影响分类的效果。

过程控制系统实验报告

实验一过程控制系统的组成认识实验 过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接 一、过程控制实验装置简介 过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。本系统设计本着培养工程化、参数化、现代化、开放性、综合性人才为出发点。实验对象采用当今工业现场常用的对象,如水箱、锅炉等。仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS工控组态软件。对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开发,如PLC控制、DCS控制开发等。学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。同时该系统也为教师和研究生提供一个高水平的学习和研究开发的平台。 二、过程控制实验装置组成 本实验装置由过程控制实验对象、智能仪表控制台及上位机PC三部分组成。 1、被控对象 由上、下二个有机玻璃水箱和不锈钢储水箱串接,4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。 水箱:包括上、下水箱和储水箱。上、下水箱采用透明长方体有机玻璃,坚实耐用,透明度高,有利于学生直接观察液位的变化和记录结果。水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。 模拟锅炉:锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。做温度定值实验时,可用冷却循环水帮助散热。加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。 压力容器:采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。 管道:整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。 2、检测装置 (液位)差压变送器:检测上、下二个水箱的液位。其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5。输出信号:4~20mA DC。 涡轮流量传感器:测量电动调节阀支路的水流量。其型号:LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC 温度传感器:本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。经过温度传感器,可将温度信号转换为4~20mA DC电流信号。 (气体)扩散硅压力变送器:用来检测压力容器内气体的压力大小。其型号:DBYG-4000A/ST2X1,测量范围:0.6~3.5Mpa连续可调,精度:0.2,输出信号为4~20mA DC。 3、执行机构 电气转换器:型号为QZD-1000,输入信号为4~20mA DC,输出信号:20~100Ka气压信号,输出用来驱动气动调节阀。 气动薄膜小流量调节阀:用来控制压力回路流量的调节。型号为ZMAP-100,输入信号为4~20mA DC或0~5V DC,反馈信号为4~20mA DC。气源信号 压力:20~100Kpa,流通能力:0.0032。阀门控制精度:0.1%~0.3%,环境温度:-4~+200℃。 SCR移相调压模块:采用可控硅移相触发装置,输入控制信号0~5V DC或4~20mA DC 或10K电位器,输出电压变化范围:0~220V AC,用来控制电加热管加热。 水泵:型号为UPA90,流量为30升/分,扬程为8米,功率为180W。

地质雷达实验报告封面报告

地质雷达实验报告封面 报告 Document number:PBGCG-0857-BTDO-0089-PTT1998

地质雷达实验报告 成绩: 系别:资源勘查与土木工程系 专业班级: 姓名: 学号: 指导教师: 年月日

实验项目名称:地质雷达的操作及应用 同组学生姓名: 实验地点:结构检测实验室91110 实验日期:年月日 实验目的 (1)了解地质雷达基本构造、性能和工作原理。 (2)掌握地质雷达的操作步骤和使用方法。 实验原理及方法 通过发射天线向地下发射宽频带高频电磁波。在传播过程中,当遇到存在电性差异的地下介质或目标体时,雷达波会发生反射返回地面,并由接收天线接收,并以波或图像的形式,存储在电脑中。 仪器设备 OKO-2俄罗斯地质雷达。

实验步骤 (1)连好数据线; (2)打开主机和天线上的电源开关; (3)运行采集软件; (4)设置参数; (5)数据采集并保存数据; (6)关机、拆线。 数据处理 主要包括两个方面:即增益和滤波。增益的目的是放大深部信号的增幅,使较弱的信号能被识别,滤波的种类很多,一般包括中值滤波、平均值滤波、带通滤波和巴特沃斯带通滤波等等。 注意事项 在运用雷达过程中,须掌握雷达工作的三个重要参数:环境电导率、介电常数和探测频率。 环境电导率σ是表征介质导电能力的参数,它决定了电磁波在介质中的穿透深度,其穿透深度随电导率的增加而减小,当介质的电导率σ>10-2S/m时,电磁波衰减极大,难于传播,雷达方法不宜使用,如:湿粘土、湿页岩、海水、海水冰、湿沃土、金属物等。

介电常数是影响应用效果的另一个重要因素,它决定了高频电磁波在介质中的传播速度,并且反射信号的强弱也取决于介电常数的差异。电磁波在介质中的传播速度可采用下式近似考虑: r C V ε≈ 式中: C ─ 电磁波在真空中的传播速度,C =ns (光速), r ε─ 介质的相对介电常数。 介质的介电常数主要受介质的含水量以及孔隙率的影响,相对介电常数与水含量的关系曲线,相对介电常数的范围为:1(空气)~81(水),多数干燥的地下介质,其相对介电常数值均小于10。 探测频率不但是制约探测深度的一个关键因素,同时也决定了探测的分辨率;探测频率越高,探测深度越浅,探测的垂直分辨率和水平分辨率越高。高频 电磁波在传播过程中发生衰减,其衰减的程度随电磁波频率的增加而增加,这也是造成探测频率越高,探测深度越浅的原因。因此,在实际工作时,必须根据目标体的探测深度选用合理的探测频率。 附图(不少于6张图片)

实验报告册封面

河南省高等教育自学考试 实验报告册 机电一体化工程专业(本科) 《机电一体化系统设计》 助考院校:_______________ 考生姓名:_______________ 准考证号:_______________ 河南科技大学高等教育自学考试办公室 ______年_____月

注意事项 1、各助考单位可就近选择定点实验单位安排考生完成实验任务。定点实验单位必须根据自身实验条件,开出某一门课程的全部实验,并要求考生将这一门课程全部实验一次性全部完成。若定点实验单位不能开出课程全部实验,则考生必须另选其它定点单位完成这一门课程的实验。一门课程实验不允许考生跨单位分项完成,否则,实验成绩不予承认。 2、要求考生选择这一门课程至少3个实验,要求独立完成。 3、考生在实验前应认真预习实验指导书的有关内容,遵守实验操作规程,确保人身和设备安全,认真做好每一个实验,并独立完成实验报告,有问答题的实验,必须认真回答,不能空项。填写实验报告,必须使用黑或兰黑钢笔(插图可用铅笔),要求字迹整洁。 4、实验指导教师应按指导书要求,指导考生完成试验并认真批阅实验报告。确定初评成绩。填写您所负责的某一门课程的实验报告评分栏,加盖实验单位印章。 5、考生做实验时,应持本报告册。完成实验后由考绩所在助学单位统一送到主考学校。考核合格者的发给“实验环节考核合格证书”,作为考生取得毕业资格的依据之一。

目录 一、实验一:三相异步电动机正反转控制―――――――――1 二、实验二:PLC控制三相异步电动机变频调速――――――4 三、实验报告评分栏――――――――――――――――――7

数据挖掘实验报告-关联规则挖掘

数据挖掘实验报告(二)关联规则挖掘 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1. 1.掌握关联规则挖掘的Apriori算法; 2.将Apriori算法用具体的编程语言实现。 二、实验设备 PC一台,dev-c++5.11 三、实验内容 根据下列的Apriori算法进行编程:

四、实验步骤 1.编制程序。 2.调试程序。可采用下面的数据库D作为原始数据调试程序,得到的候选1项集、2项集、3项集分别为C1、C2、C3,得到的频繁1项集、2项集、3项集分别为L1、L2、L3。

代码 #include #include #define D 4 //事务的个数 #define MinSupCount 2 //最小事务支持度数 void main() { char a[4][5]={ {'A','C','D'}, {'B','C','E'}, {'A','B','C','E'}, {'B','E'} }; char b[20],d[100],t,b2[100][10],b21[100 ][10]; int i,j,k,x=0,flag=1,c[20]={0},x1=0,i1 =0,j1,counter=0,c1[100]={0},flag1= 1,j2,u=0,c2[100]={0},n[20],v=1; int count[100],temp; for(i=0;i=MinSupCount) { d[x1]=b[k]; count[x1]=c[k]; x1++; } } //对选出的项集中的元素进行排序 for(i=0;i

自动控制系统实验报告

自动控制系统实验报告 学号: 班级: 姓名: 老师:

一.运动控制系统实验 实验一.硬件电路的熟悉和控制原理复习巩固 实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。 实验内容:了解运动控制实验仪的几个基本电路: 单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路) ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理) 步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构 步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。) 微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。 实验结果: 步进电机驱动技术: 控制信号接口: (1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双 脉冲控制方式时为正转脉冲信号。 (2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式 时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。 (4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。 电流设定: (1)工作电流设定: (2)静止电流设定: 静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。 (3)细分设定: (4)步进电机的转速与脉冲频率的关系 电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m) 逐点比较法的直线插补和圆弧插补: 一.直线插补原理: 如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为: 00 00Y Ye X Xe Y Y X X --= -- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)

大数据挖掘weka大数据分类实验报告材料

一、实验目的 使用数据挖掘中的分类算法,对数据集进行分类训练并测试。应用不同的分类算法,比较他们之间的不同。与此同时了解Weka平台的基本功能与使用方法。 二、实验环境 实验采用Weka 平台,数据使用Weka安装目录下data文件夹下的默认数据集iris.arff。 Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java 写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、数据预处理 Weka平台支持ARFF格式和CSV格式的数据。由于本次使用平台自带的ARFF格式数据,所以不存在格式转换的过程。实验所用的ARFF格式数据集如图1所示 图1 ARFF格式数据集(iris.arff)

对于iris数据集,它包含了150个实例(每个分类包含50个实例),共有sepal length、sepal width、petal length、petal width和class五种属性。期中前四种属性为数值类型,class属性为分类属性,表示实例所对应的的类别。该数据集中的全部实例共可分为三类:Iris Setosa、Iris Versicolour和Iris Virginica。 实验数据集中所有的数据都是实验所需的,因此不存在属性筛选的问题。若所采用的数据集中存在大量的与实验无关的属性,则需要使用weka平台的Filter(过滤器)实现属性的筛选。 实验所需的训练集和测试集均为iris.arff。 四、实验过程及结果 应用iris数据集,分别采用LibSVM、C4.5决策树分类器和朴素贝叶斯分类器进行测试和评价,分别在训练数据上训练出分类模型,找出各个模型最优的参数值,并对三个模型进行全面评价比较,得到一个最好的分类模型以及该模型所有设置的最优参数。最后使用这些参数以及训练集和校验集数据一起构造出一个最优分类器,并利用该分类器对测试数据进行预测。 1、LibSVM分类 Weka 平台内部没有集成libSVM分类器,要使用该分类器,需要下载libsvm.jar并导入到Weka中。 用“Explorer”打开数据集“iris.arff”,并在Explorer中将功能面板切换到“Classify”。点“Choose”按钮选择“functions(weka.classifiers.functions.LibSVM)”,选择LibSVM分类算法。 在Test Options 面板中选择Cross-Validatioin folds=10,即十折交叉验证。然后点击“start”按钮:

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

中科大实验报告封面

中科大实验报告封面 篇一:中科大地图导航(实验报告) 中科大地图导航 一,科大西区地图的构建与表示: (1)、物理地图的抽象表达 地图选择:科大西区地图 节点数:12 边数:15 地点信息:地点名,时间,简介,街道名,街道长度(权值) 注释:该图为对科大地图抽象的结果。 1 / 11 各顶点信息(地点信息和边信息严格按原地图制作,故直接见地图): 1 :北门2:圆盘岔路口 3:东路岔路口 4:核科学院 5:生命科学院 6:西区学生活动中心 7:校车站 8:电三楼9:火灾重点实验室 10:南环路岔路口11:国家同步实验室。(计算机中表示顶点号要减去1) (2)、地图信息的计算机信息表达 图文件节点代码(采用邻接表方式存储): 图信息定义于“节点定义.h”中,用于底层数据类型支持,其中重载了图的输入输出运算符,图中的节点和边的比

较与赋值运算符等。 #define MAX_VERTEX_NUM 20 typedef struct InfoType //边信息 { int length; char* name; }InfoType; typedef struct VertexType//地点信息 { char* name; char* time; char* scribe; VertexType& operator =(VertexType& b); }VertexType; typedef struct ArcNode //边 { int adjvex; *nextarc; 2 / 11 ArcNode InfoType *info; ArcNode& operator =(ArcNode& b); }ArcNode; typedef struct VNode //图的邻接表 { VertexType* data; ArcNode *firstarc; VNode& operator=(VNode& a); }VNode,AdjList[MAX_VERTEX_NUM];

数据挖掘实验报告1

实验一 ID3算法实现 一、实验目的 通过编程实现决策树算法,信息增益的计算、数据子集划分、决策树的构建过程。加深对相关算法的理解过程。 实验类型:验证 计划课间:4学时 二、实验内容 1、分析决策树算法的实现流程; 2、分析信息增益的计算、数据子集划分、决策树的构建过程; 3、根据算法描述编程实现算法,调试运行; 4、对所给数据集进行验算,得到分析结果。 三、实验方法 算法描述: 以代表训练样本的单个结点开始建树; 若样本都在同一个类,则该结点成为树叶,并用该类标记; 否则,算法使用信息增益作为启发信息,选择能够最好地将样本分类的属性; 对测试属性的每个已知值,创建一个分支,并据此划分样本; 算法使用同样的过程,递归形成每个划分上的样本决策树 递归划分步骤,当下列条件之一成立时停止: 给定结点的所有样本属于同一类; 没有剩余属性可以进一步划分样本,在此情况下,采用多数表决进行 四、实验步骤 1、算法实现过程中需要使用的数据结构描述: Struct {int Attrib_Col; // 当前节点对应属性 int Value; // 对应边值 Tree_Node* Left_Node; // 子树 Tree_Node* Right_Node // 同层其他节点 Boolean IsLeaf; // 是否叶子节点 int ClassNo; // 对应分类标号 }Tree_Node; 2、整体算法流程

主程序: InputData(); T=Build_ID3(Data,Record_No, Num_Attrib); OutputRule(T); 释放内存; 3、相关子函数: 3.1、 InputData() { 输入属性集大小Num_Attrib; 输入样本数Num_Record; 分配内存Data[Num_Record][Num_Attrib]; 输入样本数据Data[Num_Record][Num_Attrib]; 获取类别数C(从最后一列中得到); } 3.2、Build_ID3(Data,Record_No, Num_Attrib) { Int Class_Distribute[C]; If (Record_No==0) { return Null } N=new tree_node(); 计算Data中各类的分布情况存入Class_Distribute Temp_Num_Attrib=0; For (i=0;i=0) Temp_Num_Attrib++; If Temp_Num_Attrib==0 { N->ClassNo=最多的类; N->IsLeaf=TRUE; N->Left_Node=NULL;N->Right_Node=NULL; Return N; } If Class_Distribute中仅一类的分布大于0 { N->ClassNo=该类; N->IsLeaf=TRUE; N->Left_Node=NULL;N->Right_Node=NULL; Return N; } InforGain=0;CurrentCol=-1; For i=0;i

实验一电力拖动自动控制系统实验报告

第五章仿真及实验 第一节晶闸管直流调速系统参数和环节特性的测定 一、实验目的 1 熟悉晶闸管直流调速系统的组成及其基本结构。 2掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验原理 晶闸管直流调速系统由整流变压器、晶闸管整流跳水装置、平波电抗器、电动机-发电机组等组成。 在本实验中,整流装置的主电路喂三相桥式电路,控制电路可直接由给定电压Ug作为触发器的移相控制电压Ua。改变Ug的大小即可改变控制角a,从而获得可调的直流电压,以满足实验要求。实验系统的组成原理如图5.1所示。 三.实验内容 1测定晶闸管直流调速系统主电路总电阻值R。 2测定晶闸管直流系统电路电感值L.. 3测定直流电机-直流发电机-测速发电机的飞轮惯量GD的平方。 4测定晶闸管直流调速系统主电路电磁时间常数Td。

5测定直流电动机电势常数Ce和转矩常数Cm。 6测定晶闸管直流调速系统机电时间常数Tm。 7测定晶闸管触发及整流装置特性Ud=f(Ue)。 8测定测速发电机特性Utg=f(n)。 四.实验仿真 晶闸管直流调速系统的原理如图5.1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图5.2势采用面向电气原理图方法构成的晶闸管直流系统的仿真模型。下面介绍各部分建模与参数设置过程。 1.系统的建模和模型参数设置 系统的建模包括主电路的建模和控制电路的建模俩部分。 1)主电路的建模和参数设置 由图5.2可见,开环直流调速系统的主电路由三相对称交流电压器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。由于同步脉冲与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体讨论,所以将触发器归到主电路进行建模。 2)三相整流桥时,桥臂数取3,A,B,C三相交流电源接到整流桥的输入端,

数据挖掘实验报告三

实验三 一、实验原理 K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。 在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。 算法原理: (1) 随机选取k个中心点; (2) 在第j次迭代中,对于每个样本点,选取最近的中心点,归为该类; (3) 更新中心点为每类的均值; (4) j<-j+1 ,重复(2)(3)迭代更新,直至误差小到某个值或者到达一定的迭代步 数,误差不变. 空间复杂度o(N) 时间复杂度o(I*K*N) 其中N为样本点个数,K为中心点个数,I为迭代次数 二、实验目的: 1、利用R实现数据标准化。 2、利用R实现K-Meams聚类过程。 3、了解K-Means聚类算法在客户价值分析实例中的应用。 三、实验内容 依据航空公司客户价值分析的LRFMC模型提取客户信息的LRFMC指标。对其进行标准差标准化并保存后,采用k-means算法完成客户的聚类,分析每类的客户特征,从而获得每类客户的价值。编写R程序,完成客户的k-means聚类,获得聚类中心与类标号,并统计每个类别的客户数

四、实验步骤 1、依据航空公司客户价值分析的LRFMC模型提取客户信息的LRFMC指标。

2、确定要探索分析的变量 3、利用R实现数据标准化。 4、采用k-means算法完成客户的聚类,分析每类的客户特征,从而获得每类客户的价值。

客户的k-means聚类,获得聚类中心与类标号,并统计每个类别的客户数 六、思考与分析 使用不同的预处理对数据进行变化,在使用k-means算法进行聚类,对比聚类的结果。 kmenas算法首先选择K个初始质心,其中K是用户指定的参数,即所期望的簇的个数。 这样做的前提是我们已经知道数据集中包含多少个簇. 1.与层次聚类结合 经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果

计算机控制系统实验报告

《计算机控制系统》实验报告 学校:上海海事大学 学院:物流工程学院 专业:电气工程及其自动化 姓名:*** 学号:************

一、实验课程教学目的与任务 通过实验设计或计算机仿真设计,使学生了解和掌握数字PID控制算法的特点、了解系统PID参数整定和数字控制系统的直接设计的基本方法,了解不同的控制算法对被控对象的控制特性,加深对计算机控制系统理论的认识,掌握计算机控制系统的整定技术,对系统整体设计有一个初步的了解。 根据各个实验项目,完成实验报告(用实验报告专用纸)。 二、实验要求 学生在熟悉PC机的基础上,熟悉MATLAB软件的操作,熟悉Simulink工具箱的软件编程。通过编程完成系统的设计与仿真实验,逐步学习控制系统的设计,学习控制系统方案的评估与系统指标评估的方法。 计算机控制系统主要技术指标和要求: 根据被控对象的特性,从自动控制系统的静态和动态质量指标要求出发对调节器进行系统设计,整体上要求系统必须有良好的稳定性、准确性和快速性。一般要求系统在振荡2~3次左右进入稳定;系统静差小于3%~5%的稳定值(或系统的静态误差足够小);系统超调量小于30%~50%的稳定值;动态过渡过程时间在3~5倍的被控对象时间常数值。 系统整定的一般原则: 将比例度置于较大值,使系统稳定运行。根据要求,逐渐减小比例度,使系统的衰减比趋向于4:1或10:1。若要改善系统的静态特性,要使系统的静差为零,加入积分环节,积分时间由大向小进行调节。若要改善系统的动态特性,增加系统的灵敏度,克服被控对象的惯性,可以加入微分环节,微分时间由小到大进行调节。PID控制的三个特性参数在调节时会产生相互的影响,整定时必需综合考虑。系统的整定过程是一个反复进行的过程,需反复进行。

相关主题
文本预览
相关文档 最新文档