当前位置:文档之家› 多元函数积分的计算方法技巧

多元函数积分的计算方法技巧

多元函数积分的计算方法技巧
多元函数积分的计算方法技巧

第10章多元函数积分的计算方法与技巧

一、二重积分的计算法

1、利用直角坐标计算二重积分

假定积分区域D可用不等式a x b x y x

≤≤≤≤

??

12

()()表示,

其中?

1

()x, ?

2

()x在[,]

a b上连续.

这个先对y, 后对x的二次积分也常记作

f x y d dx f x y dy

D a

b

x

x

(,)(,)

()

()

σ

?

?

????

=

1

2

如果积分区域D可以用下述不等式

c y

d y x y

≤≤≤≤

,()()

φφ

12

表示,且函数φ1()y,φ2()y在[,]

c d上连续,f x y

(,)在D上连续,则

f x y d f x y dx dy dy f x y dx

D y

y

c

d

c

d

y

y

(,)(,)(,)

()

()

()

()

σ

φ

φ

φ

φ

???

???

=

?

?

?

?

?

?

?

?

=

1

2

1

2

(2)

显然,(2)式是先对x ,后对y 的二次积分.

积分限的确定

几何法.画出积分区域D 的图形(假设的图形如下 )

在],[b a 上任取一点x ,过x 作平行于y 轴的直线,该直线穿过区域D ,与区域D 的边界有两个交点))(,(1x x ?与))(,(2x x ?,这里的)(1x ?、)(2x ?就是将x ,看作常数而对y 积分时的下限和上限;又因x 是在区间[,]a b 上任意取的,所以再将x 看作变量而对x 积分时,积分的下限为a 、上限为b . 例1计算xyd D

??

σ

, 其中D 是由抛物线y x 2=及直线y x =-2

所围成的区域.

D y y x y :,-≤≤≤≤+1222

xyd dy xydx x y dy D y y y y σ?????==????

??-+-+12

2

212

2

2

212

[]

=+-=-?122458

25

12y y y dy () 2.利用极坐标计算二重积分 1、rdrd θ就是极坐标中的面积元素.

x r →cos θ

y r →sin θdxdy rdrd →θ

f x y dxdy

D

(,)??f r r rdrd D

(cos ,sin )θθθ??2、极坐标系中的二重积分, 可以化归为二次积分来计算.

αθβ?θ?θ≤≤≤≤12()()r

其中函数?θ1(), ?θ2()在[,]αβ上连续.

f r r rdrd d f r r rdr

D

(cos ,sin )(cos ,sin )()

()

θθθθθθα

β

?θ?θ????=12

注:本题不能利用直角坐标下二重积分计算法来求其精确值. 3、使用极坐标变换计算二重积分的原则

(1)、积分区域的边界曲线易于用极坐标方程表示( 含圆弧,直线段 ); (2)、被积函数表示式用极坐标变量表示较简单( 含()x y 22+α, α为实数 ). 例6计算I dx

dy

x y a x y a a

x

a a x =+?-+>??

--+-02

2

2

2

2

4022

()

()

解此积分区域为

D x a x y a a x :,022≤≤-≤≤-+-

该区域在极坐标下的表示形式为

D r a :,sin -

≤≤≤≤-π

θθ4

002

I rdrd r a r

d dr

a r r a d D

a a =-=-=?

???????

??

?----

θθ

θ

πθθ

π4422

2

4

0220

2024

sin sin arcsin

=-=-=

--?()θθθππ

πd 4

024

2

1232

二、三重积分的计算 1、积分区域Ω可表示成

a x

b y x y y x z x y z z x y ≤≤≤≤≤≤,()(),(,)(,)1212

则f x y z dv dx dy

f x y z dz a

b

y x y x z x y z x y (,,)(,,)()()

(,)

(,)Ω

??????=1212

这就是三重积分的计算公式, 它将三重积分化成先对积

分变量z , 次对y ,最后对x 的三次积分. 例1计算xyzdxdydz

Ω

???

, 其中Ω为球面x y z 2221++=及三坐

标面所围成的位于第一卦限的立体.

解Ω在xoy 面上的投影区域为D x y x y xy :,,22

100+≤≥≥

确定另一积分变量的变化范围

0122≤≤--z x y

选择一种次序,化三重积分为三次积分

????????----Ω--==2

2

22

10

221

010

10

1

0)1(21

x y x x dy

y x xy dx xyzdz

dy dx

xdydz

xyzd

dx

x x x x x x dx

xy y x xy dy

xy y x xy dx x x

??????????-----=???

???--=--=--1

0222

32101

0423210

3

310)1(81)1(41)1(4

181414

1)212121(2

2

48

12462481246224124241cos sin 8

1cos sin 41cos sin 41cos cos sin 81cos sin 41cos sin 4

12

05203

332

02

04232=????

-????-??=--=???

???--=????π

ππ

π

tdt

t tdt t dt t tdt

t t t t t t 2、利用柱面坐标计算三重积分 点

M 的直角坐标与柱面坐标之间有关系式x r y r z z

===????

???cos sin θθ

体积为dv rdrd dz =θ

这便是柱面坐标系下的体积元素, 并注意到(1)式有

f x y z dv f r r z rdrd dz (,,)(cos ,sin ,)Ω

Ω

??????=θθθ

3、利用球坐标计算三重积分

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

用MATLAB算多元函数积分

用MATLAB 计算多元函数的积分 三重积分的计算最终是化成累次积分来完成的,因此只要能正确的得出各累次积分的积分限,便可在MA TLAB 中通过多次使用int 命令来求得计算结果。但三重积分的积分域Ω是一个三维空间区域,当其形状较复杂时,要确定各累次积分的积分限会遇到一定困难,此时,可以借助MATLAB 的三维绘图命令,先在屏幕上绘出Ω的三维立体图,然后执行命令 rotate3d on ↙ 便可拖动鼠标使Ω的图形在屏幕上作任意的三维旋转,并且可用下述命令将Ω的图形向三个坐标平面进行投影: view(0,0),向XOZ 平面投影; view(90,0),向YOZ 平面投影; view(0,90),向XOY 平面投影. 综合运用上述方法,一般应能正确得出各累次积分的积分限。 例11.6.1计算zdv Ω ???,其中Ω是由圆锥曲面222z x y =+与平面z=1围成的闭区域 解 首先用MA TLAB 来绘制Ω的三维图形,画圆锥曲面的命令可以是: syms x y z ↙ z=sqrt(x^2+y^2); ↙ ezsurf(z,[-1.5,1.5]) ↙ 画第二个曲面之前,为保持先画的图形不会被清除,需要执行命令 hold on ↙ 然后用下述命令就可以将平面z=1与圆锥面的图形画在一个图形窗口内: [x1,y1]=meshgrid(-1.5:1/4:1.5); ↙ z1=ones(size(x1)); ↙ surf(x1,y1,z1) ↙ 于是得到Ω的三维图形如图:

由该图很容易将原三重积分化成累次积分: 111zdv dy -Ω=???? 于是可用下述命令求解此三重积分: clear all ↙ syms x y z ↙ f=z; ↙ f1=int(f,z.,sqrt(x^2+ y^2),1); ↙ f2=int(f1,x,-sqrt(1- y^2), sqrt(1- y^2)); ↙ int(f2,y,-1,1) ↙ ans= 1/4*pi 计算结果为4 π 对于第一类曲线积分和第一类曲面积分,其计算都归结为求解特定形式的定积分和二重积分,因此可完全类似的使用int 命令进行计算,并可用diff 命令求解中间所需的各偏导数。 例11.6.2用MATLAB 求解教材例11.3.1 解 求解过程如下 syms a b t ↙ x=a*cos(t); ↙ y=a*sin(t); ↙ z=b*t; ↙ f=x^2 +y^2+z^2; ↙ xt=diff(x,t); ↙ yt=diff(y,t); ↙ zt=diff(z,t); ↙ int(f*sqrt(xt^2 +yt^2+zt^2),t,0,2*pi) ↙ ans= 2/3*( a^2 +b^2)^1/2*a^2*pi+8/3*( a^2 +b^2)^1/2*b^2*pi^3 对此结果可用factor 命令进行合并化简: factor (ans ) ans= 2/3*( a^2 +b^2)^1/2*pi*(3* a^2 +4*b^2*pi^2) 例11.6.3用MATLAB 求解教材例11.4.1 解 求解过程如下 syms x y z1 z2↙ f= x^2 +y^2; ↙ z1=sqrt(x^2 +y^2); ↙ z2=1; ↙ z1x=diff(z1,x); ↙ z1y=diff(z1,y); ↙ z2x=diff(z2,x); ↙ z2y=diff(z2,y); ↙

多元函数微分学及其应用归纳总结

第八章 多元函数微分法及其应用 一、多元函数的基本概念 1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念 2、多元函数的极限 ? 00(,)(,) lim (,)x y x y f x y A →=(或0 lim (,)P P f x y A →=)的εδ-定义 ? 掌握判定多元函数极限不存在的方法: (1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言 函数极限不存在; (2)找两种不同趋近方式,若 00(,)(,) lim (,)x y x y f x y →存在,但两者不相等, 此时也可断言极限不存在。 ? 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商, 等价无穷小替换,夹逼法则等)与一元类似: 例1.用εδ-定义证明 2222 (,)(0,0) 1 lim ()sin 0x y x y x y →+=+ 例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数22 2 222 ()+++-x y x y x y 的极限是否存在?证明你的结论。 例3 设22 2222,0 (,)0,0xy x y x y f x y x y ?+≠?+=??+=? ,讨论(,)(0,0) lim (,)x y f x y →是否存在? 例4(07年期末考试 一、2,3分)设222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y ,讨论 (,)(0,0) lim (,)→x y f x y 是否存在?

例5.求222 (,)(0,0)sin() lim x y x y x y →+ 3、多元函数的连续性0000(,)(,) lim (,)(,)x y x y f x y f x y →? = ? 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含 在定义域内的区域或闭区域。 ? 在定义区域内的连续点求极限可用“代入法” 例1. 讨论函数3322 22 22,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=? 在(0,0)处的连续性。 例2. (06年期末考试 十一,4分)试证222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y 在 点(0,0)不连续,但存在一阶偏导数。 例3.求 (,)(1,2)lim x y x y xy →+ 例4 .(,)(0,0)lim x y → 4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理 二、多元函数的偏导数 1、 二元函数(,)z f x y =关于,x y 的一阶偏导数的定义(二元以上类似定义) 如果极限00000 (,)(,) lim x f x x y f x y x ?→+?-?存在,则有 00 000 0000000 (,)(,) (,)lim x x x x x y y x x x x y y y y f x x y f x y z f z f x y x x x =?→=====+?-??= ===??? (相当于把y 看成常数!所以求偏导数本质是求一元函数的导数。)

多元函数积分的计算方法技巧

第10章 多元函数积分的计算方法与技巧 一、二重积分的计算法 1、利用直角坐标计算二重积分 假定积分区域可用不等式 表示, 其中, 在上连续. 这个先对, 后对的二次积分也常记作 如果积分区域可以用下述不等式 表示,且函数,在上连续,在上连续,则 (2) D a x b x y x ≤≤≤≤??12()()?1()x ?2()x [,]a b y x f x y d dx f x y dy D a b x x (,)(,)() ()σ??????=12D c y d y x y ≤≤≤≤,()()φφ12φ1()y φ2()y [,]c d f x y (,)D f x y d f x y dx dy dy f x y dx D y y c d c d y y (,)(,)(,)()()()()σφφφφ??????=????? ? ??=1212

显然,(2)式是先对,后对的二次积分. 积分限的确定 几何法.画出积分区域的图形(假设的图形如下 ) 在上任取一点,过作平行于轴的直线,该直线穿过区域,与区域的边界有两个交点与, 这里的、 就是将,看作常数而对积分时的下限和上限;又因是在区间上任意取的,所以再将看作变量而对积分时,积分的下限为、上限为. 例1计算, 其中是由抛物线及直线所围成的区域. x y D ],[b a x x y D D ))(,(1x x ?))(,(2x x ?)(1x ?)(2x ?x y x [,]a b x x a b xyd D ??σD y x 2=y x =- 2

2.利用极坐标计算二重积分 1、就是极坐标中的面积元素. 2、极坐标系中的二重积分, 可以化归为二次积分来计算. 其中函数, 在上连续. 则 注:本题不能利用直角坐标下二重积分计算法来求其精确值. D y y x y :,-≤≤≤≤+1222xyd dy xydx x y dy D y y y y σ?????==???? ??-+-+12 2 212 2 2 212[] =+-=-?12 245 8 2512y y y dy ()rdrd θr →cos θ r →sin θrdrd →θ f x y dxdy D (,)??f r r rdrd D (cos ,sin )θθθ??αθβ?θ?θ≤≤≤≤12()()r ?θ1()?θ2()[,]αβf r r rdrd d f r r rdr D (cos ,sin )(cos ,sin )() () θθθθθθα β ?θ?θ????=12

多元函数微分学总结

`第八章 多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理 解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必 要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1. 二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念 ①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈o I 时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这一点 致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时, ()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元函数的

(整理)多元函数积分学37931.

第八章.多元函数积分学 在不同的问题当中,可以对多元函数的积分进行不同的定义,因此,我们需要在不同的问题背景当中来定义不同的积分概念。 二重积分。 二重积分实际上就是对二元函数求定积分,在实际问题当中,需要对二元函数进行求和计算,或者直观地说,涉及到体积的计算与具有在二维区域上的分布的物理量的计算,就需要运用二重积分的概念来进行。 因此我们对二重积分的定义,与对单变量函数的定积分的定义是完全类似的,只是这里的积分区域不是一维的,而是二维平面上的区域。这样通过把积分区域任意划分成只有公共边界的子区域,然后在每一个子区域当中任意取一点,取这点的函数值与该子区域的面积之积,再把所有的这样的乘积加起来,得到一个和式,接下来,就是我们已经很熟悉的极限过程,即使得所有子区域当中面积最大者的面积趋向于0,也就是使得子区域的数目趋向于无穷大,看和式是否存在极限,以及可能的话,这个极限是多少。这就是关于二重积分的可积性问题与二重积分的计算问题。 关于可积性的问题有下面一个简单的定理: 如果函数在一个有界闭区域上有定义并且连续,则这个函数必定在这个区域上可积。 从上面的二重积分概念的说明,可以得到与单变量函数的定积分相类似的几何说明,即被积函数所描述的曲面与其在自变量平面上的积分区域上的投影之间所夹的空间的体积。基于这样的理解,可以很容易得到如下的二重积分的性质。 (1)??+??=??+D D D gdx j fdx i dx jg if )(, 其中i ,j 为任意常数。这是二重积分的线性性质; (2),??+??=??D D fdx fdx fdx D 21 其中D D D =?21。 (3)如果在区域D 上有 ),(),(y x g y x f ≤, 则有 ??≤??D D gdx fdx ; 而对于D 上的可积函数f ,存在任意上界M 和任意下界m ,则有 MD fdx mD D ≤??≤ 其中D 为区域D 的面积。 (4)设函数f 为有界连通闭区域D 上的连续函数,则一定在这个区域上存在一点(a ,b ),使得 D b a f fdx D ),(=??; 这个性质还可以推广到比较一般的形式: 设函数g 为D 上的非负值连续函数,f 在D 上可积,则存在一个介于f 在D 上的上界

高等数学(复旦大学版)第十章_多元函数积分学(一)

第十章 多元函数积分学(Ⅰ) 一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节 二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学容: 一、二重积分的概念 1. 曲顶柱体的体积 设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域?σ 1, ?σ 2, ? ? ? , ?σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个?σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为高而底为?σ i 的平顶柱体的体积为 f (ξ i , η i ) ?σi (i =1, 2, ? ? ? , n ). 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 . 可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i n i f V σηξλ?==→∑),(lim 1 0. 其中λ是个小区域的直径中的最大值.

2多元函数积分学.docx

2.多元函数积分学 K考试内容》(数学一) 二重积分、三重积分的概念及性质二重积分与三重积分的计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件己知全微分求原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用 K考试要求》(数学一) 1 ?理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。 2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。 3?理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 4.掌握计算两类曲线积分的方法。 5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。 6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法。会用高斯公式、斯托克斯公式计算曲面、曲线积分。 7.了解散度与旋度的概念,并会计算。 8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。 K考试要求』(数学二) 1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。 K考试要求》(数学三) 1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。 2.了解无界区域上较简单的广义二重积分及其计算。 K考试要求》(数学四) 同数学三

2.多元函数积分学 K知识点概述H 2. 1二重积分 基本概念:定义、基本性质 计算方法:直角坐标法(x型简单区域;y型简单区域)极坐标法(r型简单区 域;&型简单区域)一般变换法 几何应用:面积、曲顶柱体体积物理应用:质量、质心、转动惯量 2. 2三重积分 基本概念:定义、基本性质 计算方法:直角坐标法:x型简单区域;y型简单区域;z型简单区域 投影法(先定积分后二重积分) 截面法(先二重积分后定积分)柱坐标法;球坐标法;一般变换法 儿何应用:体积物理应用:质量、质心、转动惯量、引力 2. 3曲线积分 第一类曲线积分 基本概念:定义、基本性质 计算方法:参数化法 儿何应用:弧长 物理应用:质量、质心、转动惯量、引力 第二类曲线积分 基本概念:定义、基本性质计算方法:参数化法 曲线积分基本定理(曲线积分与路径无关的条件(平面情形,空间情形); 全微分的原函数;场论基本概念与计算格林公式(平面曲线积分);斯托克 斯公式(空间曲线积分)物理应用:功,环流量,通量第一类曲线积分与第二类曲线积分的联系

(整理)多元函数积分.

多元函数积分 1. 利用积分区域的对称性化简多元函数的积分 1.1 利用积分区域的对称性化简多元函数的重积分 题型一 计算积分区域具有对称性,被积函数具有奇偶性的重积分 类型(一) 计算积分区域具有对称性、被积函数具有奇偶性的二重积分 常用下述命题简化计算二重积分. 命题1 若f(x,y)在积分区域D 上连续,且D 关于y 轴(或x 轴)对称,则 (1)f(x,y)是D 上关于x (或y )的奇函数时,有??=D dxdy y x f 0),(; (2)f(x,y)是D 上关于x (或y )的偶函数时,有????=D D dxdy y x f dxdy y x f 1 ),(2),(;其 中D 1是D 落在y 轴(或x 轴)一侧的那一部分区域. 命题2 若D 关于x 轴、y 轴对称,D 1为D 中对应于x ≥0,y ≥0(或x ≤0,y ≤0)的部分,则 ?????? ???-=--=-=-=D D y x f y x f y x f y x f y x f y x f dxdy y x f dxdy y x f ).,(),(),(,0),,(),(),(,),(4),(1或 命题3 设积分区域D 对称于原点,对称于原点的两部分记为D 1和D 2. (1);),(2),(),,(),(1 ????==--D D d y x f d y x f y x f y x f σσ则若 (2).0),(),,(),(??=-=--D d y x f y x f y x f σ则若 命题4 积分区域D 关于y x ,具有轮换对称性,则 ??????+==D D D d x y f y x f d x y f d y x f σσσ)],(),([21),(),( 记D 位于直线y=x 上半部分区域为D 1,则 ?????????-===D D y x f x y f y x f x y f dxdy y x f dxdy y x f ),,(),( ,0),,(),( ,),(2),(1

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

多元函数微分学总结

多元函数微分学总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

`第八章多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念

①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记 作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且 0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这 一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元 函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24(,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++, k ∴不同,极限值就不同,故 (,)(0,0) lim (,)x y f x y →不存在。

多元函数积分的计算方法与技巧

.多元函数积分 二重积分的计算方法与应用。 (一)在作二次积分时,首先是把一个自变量看成是一个参数,而不是看成变量,这样第一步是作单变量函数的定积分,然后得到一个包含第二个变量的表达式,再对第二个变量求定积分,这样就得到了二重积分的值。这里对于选择进行积分运算的自变量的顺序是完全任意的,也就是说,假设函数的积分区间,是由曲线 和,x=a ,x=b 所围成的区域,那么f 在这个区域上的二重积分为 (二)另外一种常常更为简单的计算二重积分的方法,是在极坐标下,通过把二重积分转变为二次积分来得到结果。 一般公式就是 三重积分及其应用与计算。 在这两种坐标里计算多重积分,首先是给出分别在这些坐标系里的体积微元的表达式: 在圆柱坐标系里是; 在球面坐标系里是。 因此可以分别得到在这两个坐标系里的三重积分的计算公式: 在圆柱坐标系里是; 在 球 面坐标系 里是 )(1x y y =) (2x y y ==??=??)()(21),(),(x x b a D y y dy y x f dx dxdy y x f ??)()(21),(x x b a y y dx y x f dy ??=??) ()(21 )sin ,cos (),(θθβ αθθθσr r rdr r r f d d y x f D dz rdrd dv θ=αθαd drd r dv sin 2 =???=???Ω Ω dz rdrd z r r f dv z y x f θθθ),sin ,cos (),,(???=???Ω Ω α θααθαθαd drd r rcoa r r f dv z y x f sin ),sin sin ,cos sin (),,(2

(整理)多元函数积分学39918.

第十章 重 积 分 第一节 二重积分的概念与性质 习题A 一.填空与选择 1.比较()2 1D I x y d σ=+??,()3 2D I x y d σ=+??大小 (1)若D 由x 轴,y 轴与直线1=+y x 围成,则在D 上 (2) 若D 由22 (2)(1)2x y -+-=围成,则在D 上 2.设??=I D d y x f ,),(σ若(),1f x y x y =++,区域D 为01x ≤≤,02y ≤≤,则在D 上该积分的估计值为 . 3.设平面区域D 由直线0=x ,0=y ,2 1 = +y x ,1=+y x 围成,若 ()7 1ln D I x y dxdy =+??????,()7 2D I x y dxdy =+??,()7 3sin D I x y dxdy =+? ????? 则1I ,2I ,3I 之间的关系是___________ . (A )321I I I <<; (B )123I I I <<; (C )231I I I <<; (D )213I I I <<. 二. 设),(y x f 在闭区域2 2 22:1x y D a b +≤上连续,求证:00 (,)lim (0,0)D a b f x y d f ab σ π++ →→=?? 习题B 判断 ??≤+≤+1 22 )ln(y x r dxdy y x 的符号. 第二节 二重积分的计算法 (一)利用直角坐标计算二重积分 习题A 一.填空与选择 1.交换积分次序._____________________),(10 =?? y y dx y x f dy 2 .交换积分次序222220 2 (,)(,)x I dx f x y dy dx f x y dy =+=?? ? ? 若(),f x y xy =,则I = . 3._______________2 2 2 =??-x y dy e dx ,1 0sin y x dy dx x ?___________=. 4.交换二次积分??10 x x 2dx f(x,y)dy 的积分次序,它等于( ). (A) ?? 10 y y 2 dy f(x,y)dx (B) ?? 1 y y 2dy f(x,y)dx (C) ??10 x x 2dy f(x,y)dx (D) ??1 y y 2 dx f(x,y)dy

第八讲 多元函数积分学知识点

第八讲 多元函数积分学知识点 一、二重积分的概念、性质 1、 ∑??=→?=n i i i i d D f dxdy y x f 1 0),(lim ),(δηξ ,几何意义:代表由),(y x f ,D 围成的曲顶柱体体积。 2、性质: (1)=??D dxdy y x kf ),(??D dxdy y x f k ),( (2)[]??+D dxdy y x g y x f ),(),(= ??D dxdy y x f ),(+??D dxdy y x g ),( (3)、D d x d y D =?? (4)21D D D +=,??D dxdy y x f ),(=??1),(D dxdy y x f +??2 ),(D dxdy y x f (5)若),(),(y x g y x f ≤,则≤??D dxdy y x f ),(??D dxdy y x g ),( (6)若,),(M y x f m ≤≤则MD dxdy y x f mD D ≤≤??),( (7)设),(y x f 在区域D 上连续,则至少存在一点D ∈),(ηξ,使=??D dxdy y x f ),(D f ),(ηξ 二、计算 (1) D:)()(,21x y x b x a ??≤≤≤≤ ????=) ()(21),(),(x x b a D dy y x f dx dxdy y x f ?? (2) D :)()(,21y x y d y c ??≤≤≤≤, ????=) ()(21),(),(x x d c D dy y x f dy dxdy y x f ?? 技巧:“谁”的范围最容易确定就先确定“谁”的范围,然后通过划水平线和 垂直线的方法确定另一个变量的范围 (3)极坐标下:θθθrdrd dxdy r y r x ===,sin ,cos ????=) (0)sin ,cos ( ),(θβαθθθr D rdr r r f d dxdy y x f 三、曲线积分 1、第一型曲线积分的计算 (1)若积分路径为L :b x a x y ≤≤=),(φ,则

第十章 多元函数积分学中的基本公式及其应用.

第十章 多元函数积分学中的基本公式及其应用 10.1平面上的单连通区域与区域的正向边界 10.1.1单连通区域的定义 设D 为平面区域,如果D 内任意闭曲线所围部分都属于D ,则称D 为平面单连通区域,否则称为平面复连通区域. 注:①平面区域是道路联通的(平面区域上的任意两点,存在曲线连接两点,且曲线上任意一点都属于平面区域),但不一定是封闭的. 例:如图10.1为平面单连通区域,如图10.2为平面复连通区域. 图10.1 图10.2 图10.3 10.1.2平面区域的正向边界的定义 如图10.3,设D 平面区域,L 是D 的边界,L 的正向定义如下:当观察者沿着这个方向行进时,D 内在它附近的那一部分总在他的左边. 10.2多元函数积分学中的基本公式 格林公式、高斯公式和斯托克斯公式是多元函数积分学中的三个基本公式,它们分别建立了对坐标的曲线积分与二重积分、对坐标的曲面积分与三重积分和对坐标的曲面积分与对坐标的曲线积分之间的联系.其中格林公式是斯托克斯公式的特殊情形. 10.2.1格林公式 (1)格林公式的定义 设平面Oxy 上的有界闭区域D 是由分段光滑曲线L 围成,函数()y x P P ,=, ()y x Q Q ,=在D 内有连续的一阶偏导数,则:???++=???? ????-??L D Pdx Qdy d y P x Q σ, 其中+L 是有界闭区域D 的正向边界曲线.

(2)格林公式的证明 首先分析任何一条平行于x 轴或y 轴的直线最多与边界分段光滑曲线有两个交点的特殊闭区域D . 显然这种类型的闭区域D 有两种表现形式: 如图10.4,()()(){ }x y y x y b x a y x D 21,,≤≤≤≤=; 如图10.5,()()(){ }d y c y x x y x y x D ≤≤≤≤=,,21. 图10.4 图10.5 图10.6 由()()(){ }x y y x y b x a y x D 21,,≤≤≤≤=, ()()()()() ()()()(), 则: --- ,,,1 2 212112??????????+ ==-==??=??L L L b a b a b a x y x y x y x y b a D Pdx Pdx Pdx dx x y x P dx x y x P dx y x P dy y P dx d y P σ 同理???+ =??L D Qdy d x Q σ, 那么,在这种特殊区域D 下???+ +=???? ????-??L D Pdx Qdy d y P x Q σ得证. 如图10.6,若区域D 不满足以上特殊区域条件,即穿过区域内部且平行于坐标轴的直线与边界曲线的交点超过两点时,可在区域内引进一条或几条辅助曲线把它分划成几个部分区域,使得每个部分区域适合特殊区域条件,仍可证明格林公式成立. 【例10.1】求()[] d y x a x y ax dx x a y I L 222 2 2ln 2++-++=? ,其中L 是为由点 ()R A ,0到点()R B -,0以原点为圆心的左半圆周.

多元函数积分学共9页

定积分 曲面积分 开曲面 闭合曲面Ⅰ型曲面积分Ⅱ型曲面积分曲线积分 开曲线 闭合曲线Ⅰ型曲线积分Ⅱ型曲线积分 第 1 页

重积分 三重积分 二重积分 累次积分 三次积分 二次积分 多元函数积分学计算方法总结 第 2 页

第 3 页 多元函数积分学计算方法总结 .................................. 错误!未定义书签。 累次积分 (4) ★A1[积分限是常数的二次积分??d c b a y y x f x d ),(d ] (4) ★A2 [积分限含函数的二次积分? ?) () (d ),(d x D x C b a y y x f x ] (4) 重积分: (5) ★B1 [积分区域为矩形的二重积分??Λ y x y x f d d ),(] .......................... 5 ★B2 [积分区域为平面区域的二重积分(,)d d f x y x y Λ ??] ..................... 5 ★B3 [积分区域为无孔洞的立体区域的三重积分 ???Ω z y x z y x f d d d ),,(] ..................................................... 6 ★B4 [收敛的广义重积分] .............................................. 6 曲线积分: (6) ★C1 [I 型曲线积分?L s z y x f d ),,(] (6) ★C2 [II 型曲线积分?++L z R y Q x P d d d ] (7) ★C3 [全微分式II 型曲线积分?d d d AB P x Q y R z ++?] (7) ★C4 [平面闭曲线的II 型曲线积分d d L P x Q y +?] (7) ★C5 [平面非闭合曲线的II 型曲线积分d d L P x Q y +?] .............曲面积分: ......................................................★D1 [I 型曲面积分(,,)d S f x y z S ??] .............................★D2 [直角坐标系的II 型曲面积分d d d d d d S P y z Q z x R x y ++??] ......★D3 [向量式的II 型曲面积分d S ??F S ] ..........................★D4 [闭曲面情形的曲面积分] ................................. ★D5 [开曲面情形的曲面积分] .................................★D6 [循环常数] .............................................

多元函数积分学

多元函数积分学总结 多元函数积分学是一元函数积分学的拓展与延伸,包括二重积分、三重积分、曲线积分、曲面积分。 几何意义:曲顶柱体的体积 性质:线性性质、可加性、单调性、估值性质、中值定理 计算方式:x 型、y 型、极坐标(2 2 y x +) 常见计算类型: ① 选择积分顺序:能积分、少分块 ② 交换积分顺序:确定积分区域→交换积分顺序→开始积分 ③ 利用对称性简化计算:要兼备被积函数和积分区域两个方面,不可误用。 ④ 极坐标系下的二重积分的定限:极点在积分区域内(特殊:与x 轴相切、与y 轴相切)、极点不在积分区域内 ⑤ 其他:利用几何意义、含绝对值时先去绝对值、分段函数、概率积分 了解“积不出来函数”:dx x ?)cos(2、dx e x ? -2 、dx x ? ln 1、dx x x ?sin 概率积分例题展示 证明 2 2 π = ? ∞ +-dx e x 证:令=)(x f 2 x e - ① 易证)()(x f x f -=?)(x f 为偶函数? 2 12 = ? +∞ -dx e x dx e x 2 ? +∞ ∞ -- (奇偶对称性、轮换对称性、周期性→简化计算) ② 已知dx e x ? -2 为“积不出来函数”,所以改变我们所求目标函数dx e x 2 ?+∞ ∞ --的形式 令= w dx e x 2 ? +∞ - 4 1 2 =w ? dx e x 2 ? +∞ ∞ -- 4 1= dxdx e x x ? ?+∞ ∞ -+-+∞ ∞ -) (22 (了解“积不出来函数”,增强目标意识,适当转化目标函数形式)

③ 令其中一个x 变成y ,构造2 2 y x + 2 w 4 1 = dxdy e y x ? ?+∞ ∞ -+-+∞∞ -) (22 ④ 将θcos r x =,θsin r y =带入上一步的2 w 易得),0(+∞∈r ,)2,0(π∈θ 2 w =θdrd e r r ? ?-+∞ ?π 20 2 41 = ?? +∞ -?π20 2 θd dr e r r 20 2 12 1 2dr e r ?=? +∞ -π 2021212 lim dr e b r b ?=?-+∞ →π )1(2121 2lim --=-+∞ →b b e π π4 1==?w 2π 即220π=?∞+-dx e x 成立 (极坐标系?直角坐标系,选择合适的积分次序将二重积分?二次积分,了解广义定积分) (此类积分为概率积分 b dt e b dx e t bx π 2110 2 2 ? ? ∞ +-∞ +-= = )

相关主题
文本预览
相关文档 最新文档