当前位置:文档之家› (整理)多元函数积分.

(整理)多元函数积分.

(整理)多元函数积分.
(整理)多元函数积分.

多元函数积分

1. 利用积分区域的对称性化简多元函数的积分

1.1 利用积分区域的对称性化简多元函数的重积分

题型一 计算积分区域具有对称性,被积函数具有奇偶性的重积分

类型(一) 计算积分区域具有对称性、被积函数具有奇偶性的二重积分

常用下述命题简化计算二重积分.

命题1 若f(x,y)在积分区域D 上连续,且D 关于y 轴(或x 轴)对称,则

(1)f(x,y)是D 上关于x (或y )的奇函数时,有??=D

dxdy y x f 0),(;

(2)f(x,y)是D 上关于x (或y )的偶函数时,有????=D D dxdy y x f dxdy y x f 1

),(2),(;其

中D 1是D 落在y 轴(或x 轴)一侧的那一部分区域.

命题2 若D 关于x 轴、y 轴对称,D 1为D 中对应于x ≥0,y ≥0(或x ≤0,y ≤0)的部分,则

??????

???-=--=-=-=D D y x f y x f y x f y x f y x f y x f dxdy y x f dxdy y x f ).,(),(),(,0),,(),(),(,),(4),(1或 命题3 设积分区域D 对称于原点,对称于原点的两部分记为D 1和D 2.

(1);),(2),(),,(),(1

????==--D D d y x f d y x f y x f y x f σσ则若

(2).0),(),,(),(??=-=--D

d y x f y x f y x f σ则若

命题4 积分区域D 关于y x ,具有轮换对称性,则

??????+==D

D D d x y f y x f d x y f d y x f σσσ)],(),([21),(),( 记D 位于直线y=x 上半部分区域为D 1,则

?????????-===D D y x f x y f y x f x y f dxdy y x f dxdy y x f ),,(),(

,0),,(),( ,),(2),(1

类型(二) 计算积分区域具有对称性,被积函数具有奇偶性的三重积分.

常用下述命题简化具有上述性质的三重积分的计算.

命题1若Ω关于xOy 平面对称,而Ω1是Ω对应于z ≥0的部分,则

?????Ω∈?=-Ω∈?--=-=??????ΩΩ;),,(),,,(),,(,),,(2,),,(),,,(),,(,0),,(1

z y x z y x f z y x f d z y x f z y x z y x f z y x f d z y x f υυ 若Ω关于yOz 平面(或zOx 平面)对称,f 关于x (或y )为奇函数或偶函数有类似结论.

命题2 若Ω关于xOy 平面和xOz 平面均对称(即关于x 轴对称),而Ω1为Ω对应于z ≥0,y ≥0的部分,则

??

???=??????ΩΩ为奇函数;或关于,当为偶函数,关于当z y f z y f d z y x f d z y x f 0,,),,(4),,(1υυ 若Ω关于xOz 平面和yOz 平面均对称(即关于z 轴对称),或者关于xOy 平面和yOz 平面均对称,那么也有类似结论.

命题3 如果积分区域Ω关于三个坐标平面对称,而Ω1是Ω位于第一象限的部分,则

??

???=??????ΩΩ为奇函数;或或关于,当均为偶函数,关于当z y x f z y x f d z y x f d z y x f 0,,,),,(8),,(1υυ 命题4 若积分区域Ω关于原点对称,且被积函数关于x,y,z 为奇函数,即

.0),,(),,,(),,(=----=???Ω

υd z y x f z y x f z y x f 则

题型三 计算积分区域具有轮换对称性的三重积分

命题5 如果积分区域关于变量x,y,z 具有轮换对称性(即x 换成y,y 换成z,z 换成x ,其表达式不变),则

????????????Ω

ΩΩΩ

++===υυ

υυd y x z f x z y f z y x f d y x z f d x z y f d z y x f )],,(),,(),,([31),,(),,(),,(.

1.2 利用积分区域的对称性化简第一类曲线积分、曲面积分

题型一 计算积分曲线(面)具有对称性的第一类曲线(面)积分

类型(一) 计算积分曲线具有对称性的第一类曲线积分

命题1.2.1 设曲线L 关于y 轴对称,则

?????=??,

0,),(2),(1L L ds y x f s d y x f 是奇函数,关于是偶函数,关于x y x f x y x f ),(),( 其中L 1是L 在x ≥0的那段曲线,即L 1是L 在y 轴右侧的部分;若曲线L 关于x 轴对称,则有上述类似结论.

命题1.2.2 设f(x,y)在分段光滑曲线L 上连续,若L 关于原点对称,则

?????=??,L

L ds y x f s d y x f ),(2,0),( 为偶函数,关于若为奇函数,关于若),(),(),(),(y x y x f y x y x f 其中L 1为L 的右半平面或上半平面部分.

类型(二) 计算积分曲面具有对称性的第一类曲面积分

第一类曲面积分的奇偶对称性与三重积分类似,可利用下述命题简化计算.

命题1.2.3 设积分曲面Σ关于yOz 对称,则

?????=????∑∑1

),,(2,0),,(dS z y x f dS z y x f 为偶函数,关于当为奇函数,关于当x z y x f x z y x f ),,(),,( 其中Σ1是Σ在yOz 面的前侧部分.若Σ关于另外两坐标面有对称性,则有类似结论.

注意 不能把Σ向xOy 面上投影,因第一类曲面积分的Σ投影域面积不能为0.

题型二 计算平面积分曲线关于y=x 对称的第一类曲线积分

命题1.2.4 若L 关于直线y=x 对称,则??=L L

ds x y f ds y x f ),(),(. 题型三 计算空间积分曲线具有轮换对称性的第一类曲线积分

命题1.2.5 若曲线Γ方程中的三变量x,y,z 具有轮换对称性,则

??????ΓΓΓ

ΓΓΓ====ds z ds y ds x zds yds xds 222,. 1.3 利用积分区域的对称性化简第二类曲线积分、曲面积分

题型一 计算积分曲线具有对称性的第二类曲线积分

第二类曲线积分的奇偶对称性与第一类曲线积分相反,有下述结论.

命题1.3.1 设L 为平面上分段光滑的定向曲线,P(x,y),Q(x,y)连续,

(1)L 关于y 轴对称,L 1是L 在y 轴右侧部分,则

?????=??,),(2,0),(1

L L dx y x P dx y x P 为偶函数;关于若为奇函数,关于若x y x P x y x P ),(),( ?????=??,),(2,0),(Q 1

L L dy y x Q dy y x .),(),(为奇函数关于若为偶函数,关于若x y x Q x y x Q (2)L 关于x 轴对称,L 1为L 在x 轴上侧部分,则

?????=??,),(2,0),(1

L L dx y x P dx y x P 为奇函数;关于若为偶函数,关于若y y x P y y x P ),(),( ?????=??,),(2,0),(1

L L dy y x Q dy y x Q .),(),(为偶函数关于若为奇函数,关于若y y x Q y y x Q (3)L 关于原点对称,L 1是L 在y 轴右侧或x 轴上侧部分,则

?????+=+???,2,0),(),(1

L L L Qdy Pdx dy y x Q dx y x P .),(),(),,(),(),(),,(为奇函数关于若为偶函数,关于若y x y x Q y x P y x y x Q y x P (4)L 关于y=x 对称,则

.),(),(),(),(),(),(???+-=+=+-L

L L dx x y Q dy x y P dx x y Q dy x y P dy y x Q dx y x P 即若L 关于y=x 对称,将x 与y 对调,则L 关于直线y=x 翻转,即L 化为L —.因而第二类曲线积分没有轮换对称性.

题型二 计算积分曲面具有对称性的第二类曲面积分

命题1.3.2 设Σ关于yOz 面对称,则

?????=????∑∑,

0,),,(2),,(1dydz z y x P dydz z y x P .),,(),,(为偶函数关于当为奇函数,关于当x z y x P x z y x P 其中Σ1是Σ在yOz 面的前侧部分.这里对坐标y 和z 的第二类曲面积分只能考虑Σ关于yOz 面的对称性,而不能考虑其他面,这一点也与第一类曲面积分不同.

2. 交换积分次序及转换二次积分

题型一 交换二次积分的积分次序

※直接例题,无讲解.

题型二 转换二次积分

转换二次积分是指将极坐标系(或直角坐标系)下的二次积分转换成直角坐标系(或极坐标系)下的二次积分.

由极坐标系(或直角坐标系)下的二次积分的内外层积分限写出相应的二重积分区域D 的极坐标(或直角坐标)表示,再确定该区域D 在直角坐标系(或极坐标系)中的图形,然后配置积分限.

3. 计算二重积分

题型一 计算被积函数分区域给出的二重积分

含绝对值符号、最值符号max 或min 及含符号函数、取整函数的被积函数,实际上都是分区域给出的函数,计算其二重积分都需分块计算.

题型二 计算圆域或部分圆域上的二重积分

当积分区域的边界由圆弧、过原点的射线(段)组成,而且被积函数为)(22y x f y x m n +或)/(x y f y x m n 的形状时,常作坐标变换θθsin ,cos r y r x ==,利用极坐标系计算比较简单.为此,引进新变量r,θ,得到用极坐标(r ,θ)计算二重积分的公式:

????='

)sin ,cos (),(D D rdrd r r f dxdy y x f θθθ (其中rd θdr 是极坐标系下的面积元素). 用极坐标系计算的二重积分,就积分区域来说,常是圆域(或其一部分)、圆环域、扇形域等,可按其圆心所在位置分为下述六个类型(其中a,b,c 均为常数).

类型(一) 计算圆域x 2+y 2

≤a 上的二重积分. 类型(二) 计算圆域x 2+y 2≤2ax 上的二重积分.

类型(三) 计算圆域x 2+y 2≤-2ax 上的二重积分.

类型(四) 计算圆域x 2+y 2≤2ay 上的二重积分.

类型(五) 计算圆域x 2+y 2≤-2ay 上的二重积分.

类型(六) 计算圆域x 2+y 2≤2ax+2by+c 上的二重积分.

4. 计算三重积分

题型一 计算积分区域的边界方程均为一次的三重积分

当积分区域Ω主要由平面围成时,宜用直角坐标系计算,如果积分区域Ω的边界方程中含某个坐标变量的方程只有两个,则可先对该坐标变量积分。

题型二 计算积分区域为旋转体的三重积分

可选用柱面坐标计算。特别当被积函数是两个变量的二次齐式时,常用柱面坐标计算。 题型三 计算积分区域由球面或球面与锥面所围成的三重积分

积分区域为球面或球面与锥面所围成的三重积分,采用球面坐标系计算可以减少计算工作量,特别当被积函数为形如)(222z y x f z y x l n m ++的形式时,常用球面坐标系计算三重积分。

用球面坐标计算三重积分时,首先,应明确球面坐标变换θ?ρcos sin =x ,θ?sin sin r y =,?cos r z =及其参数ρ,θ,φ几何意义;其次,要记住球面坐标变换后的体积元素为?θρ?ρd d d dV sin 2=;最后,根据 积分区域的几何形状及ρ,θ,φ的几何意义正确定出三重积分的积分限。

本题型还可以选用柱面坐标及先二后一的方法进行计算。

题型四 计算被积函数至少缺两个变量的三重积分

法一 用先二后一法(截面法)计算

当被积函数至少缺两个变量且平行于所缺两变量的坐标面的截面面积又易求时,可用下述公式将三重积分化为定积分求之。为方便计,设被积函数为f(x),则

????????==Ω2

121)())(()()()(z z z D z z dz z f z D dxdz dz z f dv z f 的面积, 其中z 1,z 2是Ω向z 轴投影而得到的投影区间[z 1,z 2]的端点,而D(z)是用垂直于z 轴(平行于xOy 平面)的平面截Ω所得的截面,如D(z)的面积易求出,则上述积分即可求出。

易知当积分区域Ω由椭球面、球面、柱面、圆锥面或旋转面等曲面或其一部分所围成时,相应截面D(x)或D(y)或D(z)为圆域,其面积S(x)或S(y)或S(z)易求出。如果被积函数又至少缺两个变量,可先对所缺的两个变量积分,用先二后一法计算其三重积分。

法二 用重心计算公式求之

当被积函数只有一个变量,而Ω的体积又易求出,则可利用重心计算公式求其三重积分。 题型五 计算易求出其截面区域上的二重积分的三重积分

可用先二后一法计算。虽然这时界面区域上的二重积分不等于其面积,但由于易求出其

值,再计算一个单积分,该三重积分也就求出。这时对被积函数不可作要求。

当截面为圆域或其一部分,被积函数又为)(22y x f +型,常选用上法计算其三重积分,且常用极坐标计算其截面区域上的二重积分。因而当Ω为旋转体时,其上的三重积分也可用上法求之。

5. 计算曲线积分

题型一 计算第一类平面曲线积分

计算这类曲线积分的主要方法是根据积分曲线方程的类型(直角坐标、极坐标、参数方程),正确写出弧长元素ds 的表达式,将第一类曲线积分转化为定积分(其下限必不超过上限)的计算。

计算中要始终注意利用曲线方程化简被积函数(因为在积分过程中动点始终沿着曲线移动,从而其坐标满足曲线方程),这是计算曲线(面)积分特有的方法,因而可用曲线方程化简被积函数。代换后归结为计算L k kdS L

?=?,而L 的弧长是已知的或易求的。 此外,还应注意曲线的对称性及被积函数的奇偶性和周期性和物质曲线的重心简化计算。 注意 若曲线有对称性,虽然整个被积函数不一定关于x (或y )为奇、偶函数,但可进一步考察其某一部分是否具有奇偶性,尽量利用对称性简化计算。

题型二 求解平面上与路径无关的第二类曲线积分有关问题

类型(一) 判断(证明)平面曲线积分与路径无关,并求该积分

定理5.1 满足下列四条件之一,则积分?+L

Qdy Pdx 在L 所围的区域D 内与路径无关: (1)存在u(x,y)使得)),((D y x Qdy Pdx du ∈?+=;

(2)若D 为单连通区域,且)),((D y x y

P x Q ∈???=??;(但若D 不是单连通区域,y P x Q ??=??在D 内成立,不能证明?+L

Qdy Pdx 在D 内与路径无关) (3)0=+?L

Qdy Pdx ,l 为D 内任一分段光滑闭曲线; (4)若D 为有唯一奇点M 0的复连通域,存在一条环绕M 0的路径C ,使0=+?+C Qdy P dx 。

对于单连通区域D ,为证Pdx+Qdy 存在原函数u(x,y),使du=Pdx+Qdy 常验证x Q y P ??=??

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

多元函数积分-12页精选文档

多元函数积分 1. 利用积分区域的对称性化简多元函数的积分 1.1 利用积分区域的对称性化简多元函数的重积分 题型一 计算积分区域具有对称性,被积函数具有奇偶性的重积分 类型(一) 计算积分区域具有对称性、被积函数具有奇偶性的二重积分 常用下述命题简化计算二重积分. 命题1 若f(x,y)在积分区域D 上连续,且D 关于y 轴(或x 轴)对称,则 (1)f(x,y)是D 上关于x (或y )的奇函数时,有??=D dxdy y x f 0),(; (2)f(x,y)是D 上关于x (或y )的偶函数时,有????=D D dxdy y x f dxdy y x f 1 ),(2),(;其 中D 1是D 落在y 轴(或x 轴)一侧的那一部分区域. 命题2 若D 关于x 轴、y 轴对称,D 1为D 中对应于x ≥0,y ≥0(或x ≤0,y ≤0)的部分,则 ?????? ???-=--=-=-=D D y x f y x f y x f y x f y x f y x f dxdy y x f dxdy y x f ).,(),(),(,0),,(),(),(,),(4),(1或 命题3 设积分区域D 对称于原点,对称于原点的两部分记为D 1和D 2. (1);),(2),(),,(),(1 ????==--D D d y x f d y x f y x f y x f σσ则若 (2).0),(),,(),(??=-=--D d y x f y x f y x f σ则若 命题4 积分区域D 关于y x ,具有轮换对称性,则 ??????+==D D D d x y f y x f d x y f d y x f σσσ)],(),([21),(),( 记D 位于直线y=x 上半部分区域为D 1,则 ?????????-===D D y x f x y f y x f x y f dxdy y x f dxdy y x f ),,(),( ,0),,(),( ,),(2),(1 类型(二) 计算积分区域具有对称性,被积函数具有奇偶性的三重积分. 常用下述命题简化具有上述性质的三重积分的计算. 命题1若Ω关于xOy 平面对称,而Ω1是Ω对应于z ≥0的部分,则

一元函数微分学教案

第二章 一元函数微分学 一、 导数 (一)、导数概念 1、导数的定义: 设函数)(x f y =在点0x 的某个邻域内有定义,当自变量在点0x 处取得改变量x ?时,函数)(x f 取得相应的改变量,)()(00x f x x f y -?+=?,如果当0→?x 时,x y ??的极限存在,即x y x ??→?0lim x x f x x f x ?-?+=→?)()(lim 000存在,则此极限值为函数)(x f 在点0x 的导数,可记作)(0x f '或|0x x y ='或|0x x dx dy =或|0 )(x x dx x df = 2、根据定义求导数的步骤(即三步曲) ①求改变量)()(x f x x f y -?+=? ②算比值 x y ??x x f x x f ?-?+=)()( ③取极限x y x f y x ??='='→?0lim )(x x f x x f x ?-?+=→?)()(lim 0 例1:根据定义求2 x y =在点3=x 处的导数。 解:223)3(-?+=?x y 2)(6x x ?+?= x x y ?+=??6 6)6(lim lim 0 0=?+=??→?→?x x y x x 3、导数定义的几种不同表达形式 ①x x x x x f x x f x f x ?+=??-?+='→?00000) ()(lim )(令 ②000)()(lim )(0x x x f x f x f x x --='→ 时 =当0)()(lim )(0000x x x f x f x f x ??-='→? ③x f x f f x )0()(lim )0(0-='→ 4、左右导数的定义: 如果当)0(0-+→?→?x x 时,x y ??的极限存在,则称此极限为)(x f 在点0x 为右导数(左

用MATLAB算多元函数积分

用MATLAB 计算多元函数的积分 三重积分的计算最终是化成累次积分来完成的,因此只要能正确的得出各累次积分的积分限,便可在MA TLAB 中通过多次使用int 命令来求得计算结果。但三重积分的积分域Ω是一个三维空间区域,当其形状较复杂时,要确定各累次积分的积分限会遇到一定困难,此时,可以借助MATLAB 的三维绘图命令,先在屏幕上绘出Ω的三维立体图,然后执行命令 rotate3d on ↙ 便可拖动鼠标使Ω的图形在屏幕上作任意的三维旋转,并且可用下述命令将Ω的图形向三个坐标平面进行投影: view(0,0),向XOZ 平面投影; view(90,0),向YOZ 平面投影; view(0,90),向XOY 平面投影. 综合运用上述方法,一般应能正确得出各累次积分的积分限。 例11.6.1计算zdv Ω ???,其中Ω是由圆锥曲面222z x y =+与平面z=1围成的闭区域 解 首先用MA TLAB 来绘制Ω的三维图形,画圆锥曲面的命令可以是: syms x y z ↙ z=sqrt(x^2+y^2); ↙ ezsurf(z,[-1.5,1.5]) ↙ 画第二个曲面之前,为保持先画的图形不会被清除,需要执行命令 hold on ↙ 然后用下述命令就可以将平面z=1与圆锥面的图形画在一个图形窗口内: [x1,y1]=meshgrid(-1.5:1/4:1.5); ↙ z1=ones(size(x1)); ↙ surf(x1,y1,z1) ↙ 于是得到Ω的三维图形如图:

由该图很容易将原三重积分化成累次积分: 111zdv dy -Ω=???? 于是可用下述命令求解此三重积分: clear all ↙ syms x y z ↙ f=z; ↙ f1=int(f,z.,sqrt(x^2+ y^2),1); ↙ f2=int(f1,x,-sqrt(1- y^2), sqrt(1- y^2)); ↙ int(f2,y,-1,1) ↙ ans= 1/4*pi 计算结果为4 π 对于第一类曲线积分和第一类曲面积分,其计算都归结为求解特定形式的定积分和二重积分,因此可完全类似的使用int 命令进行计算,并可用diff 命令求解中间所需的各偏导数。 例11.6.2用MATLAB 求解教材例11.3.1 解 求解过程如下 syms a b t ↙ x=a*cos(t); ↙ y=a*sin(t); ↙ z=b*t; ↙ f=x^2 +y^2+z^2; ↙ xt=diff(x,t); ↙ yt=diff(y,t); ↙ zt=diff(z,t); ↙ int(f*sqrt(xt^2 +yt^2+zt^2),t,0,2*pi) ↙ ans= 2/3*( a^2 +b^2)^1/2*a^2*pi+8/3*( a^2 +b^2)^1/2*b^2*pi^3 对此结果可用factor 命令进行合并化简: factor (ans ) ans= 2/3*( a^2 +b^2)^1/2*pi*(3* a^2 +4*b^2*pi^2) 例11.6.3用MATLAB 求解教材例11.4.1 解 求解过程如下 syms x y z1 z2↙ f= x^2 +y^2; ↙ z1=sqrt(x^2 +y^2); ↙ z2=1; ↙ z1x=diff(z1,x); ↙ z1y=diff(z1,y); ↙ z2x=diff(z2,x); ↙ z2y=diff(z2,y); ↙

多元函数积分的计算方法技巧

第10章 多元函数积分的计算方法与技巧 一、二重积分的计算法 1、利用直角坐标计算二重积分 假定积分区域可用不等式 表示, 其中, 在上连续. 这个先对, 后对的二次积分也常记作 如果积分区域可以用下述不等式 表示,且函数,在上连续,在上连续,则 (2) D a x b x y x ≤≤≤≤??12()()?1()x ?2()x [,]a b y x f x y d dx f x y dy D a b x x (,)(,)() ()σ??????=12D c y d y x y ≤≤≤≤,()()φφ12φ1()y φ2()y [,]c d f x y (,)D f x y d f x y dx dy dy f x y dx D y y c d c d y y (,)(,)(,)()()()()σφφφφ??????=????? ? ??=1212

显然,(2)式是先对,后对的二次积分. 积分限的确定 几何法.画出积分区域的图形(假设的图形如下 ) 在上任取一点,过作平行于轴的直线,该直线穿过区域,与区域的边界有两个交点与, 这里的、 就是将,看作常数而对积分时的下限和上限;又因是在区间上任意取的,所以再将看作变量而对积分时,积分的下限为、上限为. 例1计算, 其中是由抛物线及直线所围成的区域. x y D ],[b a x x y D D ))(,(1x x ?))(,(2x x ?)(1x ?)(2x ?x y x [,]a b x x a b xyd D ??σD y x 2=y x =- 2

2.利用极坐标计算二重积分 1、就是极坐标中的面积元素. 2、极坐标系中的二重积分, 可以化归为二次积分来计算. 其中函数, 在上连续. 则 注:本题不能利用直角坐标下二重积分计算法来求其精确值. D y y x y :,-≤≤≤≤+1222xyd dy xydx x y dy D y y y y σ?????==???? ??-+-+12 2 212 2 2 212[] =+-=-?12 245 8 2512y y y dy ()rdrd θr →cos θ r →sin θrdrd →θ f x y dxdy D (,)??f r r rdrd D (cos ,sin )θθθ??αθβ?θ?θ≤≤≤≤12()()r ?θ1()?θ2()[,]αβf r r rdrd d f r r rdr D (cos ,sin )(cos ,sin )() () θθθθθθα β ?θ?θ????=12

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

多元函数微分学及应用(隐函数反函数)

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法 (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??= 叫做微分形式不变性。 例1 设??? ??=x y xy f x z , 3 ,求y z x z ????,。

(整理)多元函数积分学37931.

第八章.多元函数积分学 在不同的问题当中,可以对多元函数的积分进行不同的定义,因此,我们需要在不同的问题背景当中来定义不同的积分概念。 二重积分。 二重积分实际上就是对二元函数求定积分,在实际问题当中,需要对二元函数进行求和计算,或者直观地说,涉及到体积的计算与具有在二维区域上的分布的物理量的计算,就需要运用二重积分的概念来进行。 因此我们对二重积分的定义,与对单变量函数的定积分的定义是完全类似的,只是这里的积分区域不是一维的,而是二维平面上的区域。这样通过把积分区域任意划分成只有公共边界的子区域,然后在每一个子区域当中任意取一点,取这点的函数值与该子区域的面积之积,再把所有的这样的乘积加起来,得到一个和式,接下来,就是我们已经很熟悉的极限过程,即使得所有子区域当中面积最大者的面积趋向于0,也就是使得子区域的数目趋向于无穷大,看和式是否存在极限,以及可能的话,这个极限是多少。这就是关于二重积分的可积性问题与二重积分的计算问题。 关于可积性的问题有下面一个简单的定理: 如果函数在一个有界闭区域上有定义并且连续,则这个函数必定在这个区域上可积。 从上面的二重积分概念的说明,可以得到与单变量函数的定积分相类似的几何说明,即被积函数所描述的曲面与其在自变量平面上的积分区域上的投影之间所夹的空间的体积。基于这样的理解,可以很容易得到如下的二重积分的性质。 (1)??+??=??+D D D gdx j fdx i dx jg if )(, 其中i ,j 为任意常数。这是二重积分的线性性质; (2),??+??=??D D fdx fdx fdx D 21 其中D D D =?21。 (3)如果在区域D 上有 ),(),(y x g y x f ≤, 则有 ??≤??D D gdx fdx ; 而对于D 上的可积函数f ,存在任意上界M 和任意下界m ,则有 MD fdx mD D ≤??≤ 其中D 为区域D 的面积。 (4)设函数f 为有界连通闭区域D 上的连续函数,则一定在这个区域上存在一点(a ,b ),使得 D b a f fdx D ),(=??; 这个性质还可以推广到比较一般的形式: 设函数g 为D 上的非负值连续函数,f 在D 上可积,则存在一个介于f 在D 上的上界

一元函数微积分学内容提要

第四部分 一元函数微积分 第11章 函数极限与连续[内容提要] 一、函数:(138-141页) 1、函数的定义:对应法则、定义域的确定、函数值计算、简单函数图形描绘。 2、函数分类:基本初等函数(幂函数、指数函数、对数函数、三角函数、反 三角函数的统称);复合函数([()]y f x ?=);初等函数(由常数和基本初等函数构成的,且只能用一个式子表达的函数);分段函数;隐函数;幂指函数(()()g x y f x =);反函数。 3、函数的特性:奇偶性;单调性;周期性;有界性. 二、极限: 1、极限的概念:(141-142页) 定义1:(数列极限)给定数列{}n x ,如果当n 无限增大时,其通项n x 无限趋向 于某一个常数a ,即a x n -无限趋近于零,则称数列{}n x 以a 的极限,或称数列{}n x 收敛于a ,记为a x n n =∞ →lim ,若{}n x 没有极限,则称数列{} n x 发散。 定义2:(0x x →时函数)(x f 的极限)设函数)(x f 在点0x 的某一去心邻域0(,) U x δo 内有定义,当x 无限趋向于0x (0x x ≠)时,函数)(x f 的值无限趋向于 A ,则称0x x →时, )(x f 以A 为极限,记作A x f x x =→)(lim 0 。 左极限:设函数)(x f 在点0x 的左邻域00(,)x x δ-内有定义,当0x x <且无限趋向 于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的左极限为A ,记作0 0(0)lim ()x x f x f x A -→-==。 右极限:设函数)(x f 在点0x 的右邻域00(,)x x δ+内有定义,当0x x >且无限趋向 于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的右极限为A ,记作0 0(0)lim ()x x f x f x A +→+==。 定义3:(x 趋于无穷大时函数)(x f 的极限)设)(x f 在区间)0(>>a a x 时有定义, 若x 无限增大时,函数)(x f 的值无限趋向于常数A ,则称当∞→x 时,

2多元函数积分学.docx

2.多元函数积分学 K考试内容》(数学一) 二重积分、三重积分的概念及性质二重积分与三重积分的计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件己知全微分求原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用 K考试要求》(数学一) 1 ?理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。 2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。 3?理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 4.掌握计算两类曲线积分的方法。 5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。 6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法。会用高斯公式、斯托克斯公式计算曲面、曲线积分。 7.了解散度与旋度的概念,并会计算。 8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。 K考试要求』(数学二) 1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。 K考试要求》(数学三) 1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。 2.了解无界区域上较简单的广义二重积分及其计算。 K考试要求》(数学四) 同数学三

2.多元函数积分学 K知识点概述H 2. 1二重积分 基本概念:定义、基本性质 计算方法:直角坐标法(x型简单区域;y型简单区域)极坐标法(r型简单区 域;&型简单区域)一般变换法 几何应用:面积、曲顶柱体体积物理应用:质量、质心、转动惯量 2. 2三重积分 基本概念:定义、基本性质 计算方法:直角坐标法:x型简单区域;y型简单区域;z型简单区域 投影法(先定积分后二重积分) 截面法(先二重积分后定积分)柱坐标法;球坐标法;一般变换法 儿何应用:体积物理应用:质量、质心、转动惯量、引力 2. 3曲线积分 第一类曲线积分 基本概念:定义、基本性质 计算方法:参数化法 儿何应用:弧长 物理应用:质量、质心、转动惯量、引力 第二类曲线积分 基本概念:定义、基本性质计算方法:参数化法 曲线积分基本定理(曲线积分与路径无关的条件(平面情形,空间情形); 全微分的原函数;场论基本概念与计算格林公式(平面曲线积分);斯托克 斯公式(空间曲线积分)物理应用:功,环流量,通量第一类曲线积分与第二类曲线积分的联系

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

一元函数微分学练习题(答案)

一元函数微分学练习题答案 一、计算下列极限: 1.93 25 235lim 222-=-+=-+→x x x 2.01)3(3)3(13lim 2 2223=+-=+-→x x x 3.x x x 11lim --→) 11(lim )11()11)(11(lim 00+--=+-+---=→→x x x x x x x x x 21 1 011 1 11lim -=+--= +--=→x x 4.0111 111lim )1)(1()1(lim 112lim 1212 21=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21 )23()124(lim 2324lim 202230=++-=++-→→x x x x x x x x x x x x 6.x t x t x t x x t x t x t x t t t 2)2(lim ) )((lim )(lim 00220-=--=--+-=--→→→ 7.0001001311 1lim 13lim 4 2322 42=+-+=+-+ =+-+∞ →∞→x x x x x x x x x x 8.943)3(2) 13()31()12(lim )13()31()12(lim 10 82108 210 108822=-?=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 22 11)211(1lim )21...41211(lim =-=-- =++++∞→∞→∞→n n n n n n 10.21 2lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+ →→→→x x x x x x x x x x x x x x 11.01 sin lim 20=→x x x (无穷小的性质)

一元函数微积分基本练习题及答案

一、极限题 1、求.)(cos lim 2 1 0x x x → 2、6 sin )1(lim 2 2 x dt e x t x ?-→求极限。 3、、)(arctan sin arctan lim 20x x x x x -→ 4、2 1 0sin lim x x x x ?? ? ??→ 5、? ?+∞ →x t x t x dt e dt e 0 20 2 2 2)(lim 6、 ) 1ln(1 lim -→+x e x x 7、x x x e x cos 11 20 ) 1(lim -→+ 8、 x x x x x x ln 1lim 1+--→ 9、) 1ln()2(sin ) 1)((tan lim 2 30 2 x x e x x x +-→ 10、1 0lim( )3 x x x x x a b c →++ , (,,0,1)a b c >≠ 11、)1)(12(lim 1--+∞ →x x e x 12、 )cot 1(lim 2 20x x x -→ 13、[] )1(3sin 1 lim 11x e x x ---→ 14、() ?? ???=≠+=0 021)(3 x A x x x f x 在0=x 点连续,则A =___________ 二、导数题 1、.sin 2 y x x y ''=,求设 2、.),(0y x y y e e xy y x '==+-求确定了隐函数已知方程 3、.)5()(2 3 的单调区间与极值求函数-=x x x f 4、要造一圆柱形油罐,体积为V ,问底半径r 和高h 等于多少时,才能使表面积最小, 这时底直径与高的比是多少?

(整理)多元函数积分学39918.

第十章 重 积 分 第一节 二重积分的概念与性质 习题A 一.填空与选择 1.比较()2 1D I x y d σ=+??,()3 2D I x y d σ=+??大小 (1)若D 由x 轴,y 轴与直线1=+y x 围成,则在D 上 (2) 若D 由22 (2)(1)2x y -+-=围成,则在D 上 2.设??=I D d y x f ,),(σ若(),1f x y x y =++,区域D 为01x ≤≤,02y ≤≤,则在D 上该积分的估计值为 . 3.设平面区域D 由直线0=x ,0=y ,2 1 = +y x ,1=+y x 围成,若 ()7 1ln D I x y dxdy =+??????,()7 2D I x y dxdy =+??,()7 3sin D I x y dxdy =+? ????? 则1I ,2I ,3I 之间的关系是___________ . (A )321I I I <<; (B )123I I I <<; (C )231I I I <<; (D )213I I I <<. 二. 设),(y x f 在闭区域2 2 22:1x y D a b +≤上连续,求证:00 (,)lim (0,0)D a b f x y d f ab σ π++ →→=?? 习题B 判断 ??≤+≤+1 22 )ln(y x r dxdy y x 的符号. 第二节 二重积分的计算法 (一)利用直角坐标计算二重积分 习题A 一.填空与选择 1.交换积分次序._____________________),(10 =?? y y dx y x f dy 2 .交换积分次序222220 2 (,)(,)x I dx f x y dy dx f x y dy =+=?? ? ? 若(),f x y xy =,则I = . 3._______________2 2 2 =??-x y dy e dx ,1 0sin y x dy dx x ?___________=. 4.交换二次积分??10 x x 2dx f(x,y)dy 的积分次序,它等于( ). (A) ?? 10 y y 2 dy f(x,y)dx (B) ?? 1 y y 2dy f(x,y)dx (C) ??10 x x 2dy f(x,y)dx (D) ??1 y y 2 dx f(x,y)dy

多元函数积分的计算方法与技巧

.多元函数积分 二重积分的计算方法与应用。 (一)在作二次积分时,首先是把一个自变量看成是一个参数,而不是看成变量,这样第一步是作单变量函数的定积分,然后得到一个包含第二个变量的表达式,再对第二个变量求定积分,这样就得到了二重积分的值。这里对于选择进行积分运算的自变量的顺序是完全任意的,也就是说,假设函数的积分区间,是由曲线 和,x=a ,x=b 所围成的区域,那么f 在这个区域上的二重积分为 (二)另外一种常常更为简单的计算二重积分的方法,是在极坐标下,通过把二重积分转变为二次积分来得到结果。 一般公式就是 三重积分及其应用与计算。 在这两种坐标里计算多重积分,首先是给出分别在这些坐标系里的体积微元的表达式: 在圆柱坐标系里是; 在球面坐标系里是。 因此可以分别得到在这两个坐标系里的三重积分的计算公式: 在圆柱坐标系里是; 在 球 面坐标系 里是 )(1x y y =) (2x y y ==??=??)()(21),(),(x x b a D y y dy y x f dx dxdy y x f ??)()(21),(x x b a y y dx y x f dy ??=??) ()(21 )sin ,cos (),(θθβ αθθθσr r rdr r r f d d y x f D dz rdrd dv θ=αθαd drd r dv sin 2 =???=???Ω Ω dz rdrd z r r f dv z y x f θθθ),sin ,cos (),,(???=???Ω Ω α θααθαθαd drd r rcoa r r f dv z y x f sin ),sin sin ,cos sin (),,(2

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞ ∞或00型,)()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

第八讲 多元函数积分学知识点

第八讲 多元函数积分学知识点 一、二重积分的概念、性质 1、 ∑??=→?=n i i i i d D f dxdy y x f 1 0),(lim ),(δηξ ,几何意义:代表由),(y x f ,D 围成的曲顶柱体体积。 2、性质: (1)=??D dxdy y x kf ),(??D dxdy y x f k ),( (2)[]??+D dxdy y x g y x f ),(),(= ??D dxdy y x f ),(+??D dxdy y x g ),( (3)、D d x d y D =?? (4)21D D D +=,??D dxdy y x f ),(=??1),(D dxdy y x f +??2 ),(D dxdy y x f (5)若),(),(y x g y x f ≤,则≤??D dxdy y x f ),(??D dxdy y x g ),( (6)若,),(M y x f m ≤≤则MD dxdy y x f mD D ≤≤??),( (7)设),(y x f 在区域D 上连续,则至少存在一点D ∈),(ηξ,使=??D dxdy y x f ),(D f ),(ηξ 二、计算 (1) D:)()(,21x y x b x a ??≤≤≤≤ ????=) ()(21),(),(x x b a D dy y x f dx dxdy y x f ?? (2) D :)()(,21y x y d y c ??≤≤≤≤, ????=) ()(21),(),(x x d c D dy y x f dy dxdy y x f ?? 技巧:“谁”的范围最容易确定就先确定“谁”的范围,然后通过划水平线和 垂直线的方法确定另一个变量的范围 (3)极坐标下:θθθrdrd dxdy r y r x ===,sin ,cos ????=) (0)sin ,cos ( ),(θβαθθθr D rdr r r f d dxdy y x f 三、曲线积分 1、第一型曲线积分的计算 (1)若积分路径为L :b x a x y ≤≤=),(φ,则

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

第十章 多元函数积分学中的基本公式及其应用.

第十章 多元函数积分学中的基本公式及其应用 10.1平面上的单连通区域与区域的正向边界 10.1.1单连通区域的定义 设D 为平面区域,如果D 内任意闭曲线所围部分都属于D ,则称D 为平面单连通区域,否则称为平面复连通区域. 注:①平面区域是道路联通的(平面区域上的任意两点,存在曲线连接两点,且曲线上任意一点都属于平面区域),但不一定是封闭的. 例:如图10.1为平面单连通区域,如图10.2为平面复连通区域. 图10.1 图10.2 图10.3 10.1.2平面区域的正向边界的定义 如图10.3,设D 平面区域,L 是D 的边界,L 的正向定义如下:当观察者沿着这个方向行进时,D 内在它附近的那一部分总在他的左边. 10.2多元函数积分学中的基本公式 格林公式、高斯公式和斯托克斯公式是多元函数积分学中的三个基本公式,它们分别建立了对坐标的曲线积分与二重积分、对坐标的曲面积分与三重积分和对坐标的曲面积分与对坐标的曲线积分之间的联系.其中格林公式是斯托克斯公式的特殊情形. 10.2.1格林公式 (1)格林公式的定义 设平面Oxy 上的有界闭区域D 是由分段光滑曲线L 围成,函数()y x P P ,=, ()y x Q Q ,=在D 内有连续的一阶偏导数,则:???++=???? ????-??L D Pdx Qdy d y P x Q σ, 其中+L 是有界闭区域D 的正向边界曲线.

(2)格林公式的证明 首先分析任何一条平行于x 轴或y 轴的直线最多与边界分段光滑曲线有两个交点的特殊闭区域D . 显然这种类型的闭区域D 有两种表现形式: 如图10.4,()()(){ }x y y x y b x a y x D 21,,≤≤≤≤=; 如图10.5,()()(){ }d y c y x x y x y x D ≤≤≤≤=,,21. 图10.4 图10.5 图10.6 由()()(){ }x y y x y b x a y x D 21,,≤≤≤≤=, ()()()()() ()()()(), 则: --- ,,,1 2 212112??????????+ ==-==??=??L L L b a b a b a x y x y x y x y b a D Pdx Pdx Pdx dx x y x P dx x y x P dx y x P dy y P dx d y P σ 同理???+ =??L D Qdy d x Q σ, 那么,在这种特殊区域D 下???+ +=???? ????-??L D Pdx Qdy d y P x Q σ得证. 如图10.6,若区域D 不满足以上特殊区域条件,即穿过区域内部且平行于坐标轴的直线与边界曲线的交点超过两点时,可在区域内引进一条或几条辅助曲线把它分划成几个部分区域,使得每个部分区域适合特殊区域条件,仍可证明格林公式成立. 【例10.1】求()[] d y x a x y ax dx x a y I L 222 2 2ln 2++-++=? ,其中L 是为由点 ()R A ,0到点()R B -,0以原点为圆心的左半圆周.

相关主题
文本预览
相关文档 最新文档