当前位置:文档之家› 树脂基复合材料

树脂基复合材料

树脂基复合材料
树脂基复合材料

树脂基复合材料的研究进展

摘要:

树脂基复合材料具有良好的成型工艺性、高的比强度、高的比模量、低的密度、抗疲劳性、减震性、耐腐蚀性、良好的介电性能、较低的热导率等特点,广泛应用于各种武器装备,在军事工业中,对促进武器装备的轻量化、小型化和高性能化起到了至关重要的作用。由于与许多材料相比具有独特的性能,树脂基复合材料在航空航天、汽车、电子、电器、医药、建材等行业得到广泛的应用。目前,随着复合材料工业的迅速发展,树脂基复合材料正凭借它本身固有的轻质高强、成型方便、不易腐蚀、质感美观等优点,越来越受到人们的青睐。关键字:树脂基复合材料,材料性能,应用领域

一、前言

复合材料在国民经济发展中占有极其重要的地位,以至于人们把一个国家和地区的复合材料工业水平看成衡量其科技与经济实力的标志之一[1]。树脂基复合材料是以纤维为增强剂、以树脂为基体的复合材料,所用的纤维有碳纤维、芳纶纤维、超高模量聚乙烯纤维等,所采用的基体主要有环氧树脂、酚醛树脂、乙烯基酯树脂等有机材料。其中热固性树脂是以不饱和聚脂、环氧树脂、酚醛树脂等为主;热塑性树脂是指具有线型或分枝型结构的有机高分子化合物。

树脂基复合材料的特点:各向异性(短切纤维复合材料等显各向同性);不均质或结构组织质地的不连续性;呈粘弹性;纤维体积含量不同,材料的物理性能差异;影响质量因素多,材料性能多呈分散性。树脂基复合材料的优点如下:(1)密度小,约为钢的1/5,铝合金的1/2,且比强度和比模量高。这类材料既可制作结构件,又可用于功能件及结构功能件。(2)抗疲劳性好:一般情况下,金属材料的疲劳极限是其拉伸强度的20~50%,CF增强树脂基复合材料的疲劳极限是其拉伸强度的70~80%;(3)减震性好;(4)过载安全性好;(5)具有多种功能,如:耐烧蚀性好、有良好的耐摩擦性能、高度的电绝缘性能、优良的耐腐蚀性能、有特殊的光学、电学、磁学性能等;(6)成型工艺简单;(7)材料结构、性能具有可设计性。

以树脂基复合材料为代表的现代复合材料随着国民经济的发展,已广泛应用于各个领域。众所周知,树脂基复合材料首先应用于航空航天等国防工业领域[2-3],而后向民用飞机发展。随着社会的发展,树脂基复合材料在人类物质生活中的需求量越来越大,并逐渐成为主要应用领域,且研究投入越来越大。树脂基复合材料除在航空航天、国防科技领域应用外,其他行业领域的应用也十分广泛。

二、综述树脂基复合材料的应用

目前常用的树脂基复合材料有:热固性树脂、热塑性树脂,以及各种各样改性或共混基体。热塑性树脂可以溶解在溶剂中,也可以在加热时软化和熔融变成粘性液体,冷却后又变硬。热固性树脂只能一次加热和成型,在加工过程中发生固化,形成不熔和不溶解的网状交联型高分子化合物,因此不能再生。随着复合材料工业的迅速发展,树脂基复合材料以其优越的性能和特点将应用于各个领域。以下将简介树脂基复合材料的应用。

2.1热固性树脂基复合材料的应用

复合材料的树脂基体,目前以热固性树脂为主。早在40年代,在战斗机、轰炸机上就开始采用玻璃纤维增强塑料作雷达罩。60年代美国在F-4、F-11等军用飞机上采用了硼纤维增强环氧树脂作方向舵、水平安定面、机翼后缘、舵门等。在导弹制造方面,50年代后期美国中程潜地导弹“北极星A-2”第二级固体火箭发动机壳体上就采用了玻璃纤维增强环氧树脂的缠绕制件,较钢质壳体轻27%;后来采用高性能的玻璃纤维代替普通玻璃纤维造“北极星A-3”,使壳体重量较钢制壳体轻50%,从而使“北极星A-3”导弹的射程由2700千米

增加到4500千米。70年代后采用芳香聚酰胺纤维代替玻璃纤维增强环氧树脂,强度又大幅度提高,而重量减轻[4-6]。碳纤维增强环氧树脂复合材料在飞机、导弹、卫星等结构上得到越来越广泛的应用。

例如树脂基复合材料在弹体上的应用[7]。弹体是用于构成导弹外形连接和安装弹上各部分系统且能承受各种载荷的整体结构。采用树脂基复合材料做弹体的主要目的是为了最大限度的减轻导弹的结构质量、简化生产工艺、降低成本。进一步提高导弹战术性能更重要的是,采用树脂基复合材料技术有利于整体成形有复杂形状、光滑表面和气动外形流畅的弹体,可以形成金属壳体难飞航导弹,以达到的隐身性能。目前,国外巡航导弹在设计研制时,都特别重视大量采用树脂基复合材料结构。

2.2热塑性树脂基复合材料的应用

近年来,由于热塑性树脂基复合材料具有韧性好,疲劳强度高,耐湿热性好,预浸料可以长期存放,可以重复成形,环境污染少等优点,使其在航空航天、汽车、电器、电子、建材、医药等行业得到广泛的应用。随着PPO、PEEK、PPS、PSF等高性能热塑性树脂的开发得到快速发展,使得热塑性复合材料的应用更加广泛,其中在汽车行业中的应用最为突出[8]。当前,世界汽车材料技术发展的主要方向是轻量化和环保化。减轻汽车自重是降低汽车排放,提高燃烧效率的最有效措施之一,汽车的自重每减少10%,燃油消耗可降低6%~8%。为此,增加热塑性复合材料在汽车中的使用量,便成为降低整车成本及其自重,增加汽车有效载荷的关键。

由于热塑性树脂基复合材料具有比强度和比刚度高,断裂韧性、疲劳强度、耐热、耐腐蚀等性能好,以及可重复成型等优点,在飞机上也得到一定应用[9-10]。在航空工业中,树脂基复合材料用于制造飞机机翼、机身、鸭翼、平尾和发动机外涵道;在航天领域,树脂基复合材料不仅是方向舵、雷达、进气道的重要材料,而且可以制造固体火箭发动机燃烧室的绝热壳体,也可用作发动机喷管的烧蚀防热材料。近年来研制的新型氰酸树脂复合材料具有耐湿性强、微波介电性能佳、尺寸稳定性好等优点,广泛用于制作宇航结构件、飞机的主次承力结构件和雷达天线罩。美国F-22飞机热塑性复合材料使用量大于1%,其它民用飞机上热塑性复合材料的使用量则更多。

由于热塑性复合材料具有独特的优点,使其在军事领域中也得到广泛应用。主要有枪用材料、弹用材料、以及地面车辆、火炮、舰船等部分零部件用材料。另外,热塑性复合材料在其它领域的应用也十分广泛。在建筑行业,产品有管件阀门、管道、百叶窗等部件;在机械工业方面,产品有水泵叶轮、轴承、滚轮、电机风扇、发动机冷却风扇空气滤清器、音响零件等;在油田领域,近年来,热塑性复合材料在油田中应用也越来越广泛,其中用于扶正器的玻纤增强PA材料年消耗量近万吨[11-13]。另外,树脂基复合材料在电子、能源、生物医学、体育运动器材、船舶制造等领域也有广泛的应用。

三、展望

树脂基复合材料良好的发展和应用前景决定了人们将继续重视发展树脂基复合材料的研究与开发。树脂基体的发展趋势是继续提高耐热和耐湿热性,以满足战机导弹超声速巡航及未来用材需求,目标是在可成型大型复杂构件的前提下,基体的湿态耐热进一步提高。在开发高性能增强纤维,如纳米材料的同时,主要通过基体增韧,继续提高复合材料的抗冲击韧性。

树脂基复合材料的应用向着高性能化方向发展,旨在追求高的减重效率。重视制造技术研究、生产改造和综合配套。开发材料设计及制备过程的计算机模拟软件,对产品设计和成型工艺进行优化,提高产品的先进性、可靠性,并最大限度的降低成本[14]。制约复合材料扩大应用,特别是在民用领域应用的主要障碍仍是成本太高,因此降低成本是当务之急。复合材料的发展应以市场为导向,加大创新力度,加强基础性研究和应用性研究,努力降低

原材料成本,开拓新的应用领域;要通过产学研结合,立足自主开发,同时积极引进技术和资金,在科技攻关、项目建设、装置规模上要力求与国际接轨,以推动我国复合材料工业全面、快速、健康地发展。

随着飞行器向高空高速无人化智能化低成本化方向发展树脂基复合材料的地位会越来越重要。国外预计在下一代飞机上复合材料将扮演主角[15]。树脂基复合材料对于导弹、战机屏蔽或衰减雷达波或红外特征,提高自身生存和空防能力,具有至关重要的作用; 在实现战机、导弹轻量化、快速反应能力、精确打击等方面起着巨大作用,其用量已成为战机导弹先进性的一个重要标志。树脂基复合材料技术不断发展更新其应用领域不断扩展并在能源电子汽车建筑桥梁环境和船舶等领域扮演着越发重要的角色。高性能树脂基体及其改性是我门树脂行业的责任和义务,应该努力做好这方面的研发和产业化。

随着树脂基复合材料的性能进一步提高,使用经验进一步积累,低成本技术的发展,高效新结构的发展以及应用效能的提高,未来树脂基复合材料的应用领域将变得更加广泛。

四、参考文献

1苏航,郑水蓉,孙曼灵,陈晓明等. 纤维增强环氧树脂基复合材料的研究进展[J]. 热固性树脂,2011,04:54-57.

2吴良义,罗兰,温晓蒙等.热固性树脂基体复合材料的应用及其工业进展[J].热固性树脂,2008,23(z1):22-31.

3沈军,谢怀勤.先进复合材料在航空航天领域的研发与应用[J].材料科学与工艺,2008,16(5):737-740.

4肖德凯,张晓云,孙安垣. 热塑性复合材料研究进展[J]. 山东化工,2007,02:15-21

5陶永亮,徐翔青. 树脂基复合材料在汽车上的应用分析[J]. 化学推进剂与高分子材料,2012,04:36-40.

6陈平,于祺,孙明,陆春. 高性能热塑性树脂基复合材料的研究进展[J]. 纤维复合材料,2005,02:52-57.

7黄晓艳,刘波. 先进树脂基复合材料在巡航导弹与战机上的应用[J]. 飞航导弹,2011,08:87-92.

8马翠英,黄晖,王福生. 树脂基复合材料及其在汽车工业中的应用[J]. 汽车工艺与材料,2005,11:40-42.

9陈祥宝,张宝艳,邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展,2009,06:2-12.

10陈祥宝. 先进树脂基复合材料的发展和应用[J]. 航空材料学报,2003,S1:198-204.

11张文毓. 先进树脂基复合材料研究进展[J]. 新材料产业,2010,01:50-53.

12陈祥宝,张宝艳,邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展,2009,06:2-12.

13 Brouwer W D,van Herpt ECFC,Labordus A.Vacuum injection moulding for large structural ap-plications.Composites Part A- Ap-plied Science and Manufacturing,2003,34( 6) : 551- 558 14李明明,王晓洁,刘新东. 树脂基复合材料耐海水性能研究进展[J]. 玻璃钢/复合材料,2011,02:60-64.

15吴良义. 先进复合材料的应用扩展:航空、航天和民用航空先进复合材料应用技术和市场预测[J]. 化工新型材料,2012,01:4-9+91.

16王兴刚,于洋,李树茂,王明寅. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料,2011,02:44-47.

17寇哲君龙国荣万建平姚学锋方岱宁.热固性树脂基复合材料固化变形研究进展[J].宇航材料工艺,2006(z1):7-11.

树脂基复合材料在各领域的应用

树脂基复合材料在建筑工业中的应用 建筑工业在国民经济中占有很重要的地位,不论是哪一个国家,建筑工业望远是国民经济的支柱产业之一。随着社会的进步,人们对居住面积、房屋质量和娱乐设施等提出越来越高的要求,这就是推动建筑工业改革发展的动力。 建筑工业现代化的发展方向是:改善施工条件,加快建设进度,降低成本,提高质量,节约能源,减少运输,保护耕地,保护环境和提高技术经济效益等。为了达到此目的,必须从改善现有的建筑材料和发展新型建筑材料方向着手。 在建筑工业中发展和使用树脂基复合材料对减轻建筑物自重,提高建筑物的使用功能,改革建筑设计,加速施工进度,降低工程造价,提高经济效益等都十分有利,是实现建筑工业现代化的必要条件。 1、树脂基复合材料的建筑性能 (1)材料性能的可设计性树脂基复合材料的性能可根据使用要求进行设计,如要求耐水、防腐、高强,可选用树脂基复合材料。由于树脂基复合材料的重量轻,制造方便,对于大型结构和形状复杂的建筑制品,能够一次成型制造,提高建筑结构的整体性。 (2)力学性能好树脂基复合材料的力学性能可在很大范围内进行设计,由于选

用的材料不同,增强材料的铺设方向和方向差异,可以获得性能判别很大的复合材料,如单向玻纤增强环氧复合材料的拉伸强度可达1000MPa以上,比钢(建筑钢)的拉伸强度还高,选用碳纤维作增强材料,制得的树脂基复合材料弹性模量可以达到建筑钢材水平,而其密度却比钢材小4~5倍。更为突出的是树脂基复合材料在制造过程中,可以根据构件受力状况局部加强,这样既可提高结构的承载能力,又能节约材料的减轻自重。 (3)装饰性好树脂基复合材料的表面光洁,可以配制成各种鲜艳的色彩,也可以制造出不同的花纹和图案,适宜制造各种装饰板、大型浮雕及工艺美术雕塑等。 (4)透光性透明玻璃钢的透光率达85%以上(与玻璃相似),其最大特点是不易破碎,能承受荷载。用于建筑工程时可以将结构、围护及采光三者综合设计,能够达到简化采光设计,降低工程造价之目的。 (5)隔热性建筑物的作用是能够防止由热传导、热对流引起的温度变化,给人们以良好的工作和休息环境。一般建筑材料的隔热性能较差,例如普通混凝土的导热系数为1.5~2.1W(m?K),红砖的导热系数为0.81 W(m?K),树脂基复合材料的夹层结构的导热系数为0.05~0.08 W(m?K),比普通红砖小10倍,比混凝土小20多倍。 (6)隔音性隔音效果好坏是评价建筑物质量的标准之一。但传统材料中,隔音效果好的建筑材料往往密度较大,隔热性差,运输和安装困难。树脂基复合材料

热塑性树脂和热固性树脂的概念和区别

热塑性树脂和热固性树脂的概念和区别 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

热塑性树脂和热固性树脂的概念和区别 热固性树脂简介 树脂加热后产生,逐渐硬化成型,再受热也不软化,也不能溶解。热固性树脂其分子结构为体型,它包括大部分的缩合树脂,热固性树脂的优点是耐热性高,受压不易变形。其缺点是较差。热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。 指在加热、加压下或在固化剂、紫外光作用下,进行化学反应,交联固化成为不溶不熔物质的一大类。这种树脂在固化前一般为分子量不高的固体或粘稠液体;在成型过程中能软化或流动,具有可塑性,可制成一定形状,同时又发生化学反应而交联固化;有时放出一些副产物,如水等。此反应是不可逆的,一经固化,再加压加热也不可能再度软化或流动;温度过高,则分解或碳化。这也就是与热塑性树脂的基本区别。 在塑料工业发展初期,热固性树脂所占比例很大,一般在50%以上。随着石油化工的发展,热塑性树脂产量剧增,到80年代,热固性树脂在世界合成树脂总产量中仅占10%~20%。 热固性树脂在固化后,由于分子间交联,形成网状结构,因此刚性大、硬度高、耐、不易燃、制品尺寸稳定性好,但性脆。因而绝大多数热固性树脂在成型为制品前,都加入各种,如木粉、矿物粉、或纺织品等使其增强,制成增强塑料。在热固性树脂中,加入增强材料和其他添加剂,如固化剂、着色剂、润滑剂等,即能制成热固性塑料,有的呈粉状、粒状,有的作成团状、片状,统称模塑料。热固性塑料常用的加工方法有模压、层压、传递模塑、浇铸等,某些品种还可用于。 热固性树脂多用缩聚(见聚合)法生产。常用热固性树脂有酚醛树脂、脲醛树脂、三聚氰胺-甲醛树脂、环氧树脂、不饱和树脂、聚氨酯、聚酰亚胺等。热固性树脂主要用于

树脂基复合材料低成本技术

树脂基复合材料低成本技术 摘要:树脂基复合材料因其比强度高、比模量大而广泛的应用于航空航天等领域。然而其高昂的价格仍然是限制树脂基复合材料广泛应用的一大障碍。目前,已经有多国学者针对树脂基复合材料低成本化进行了研究,并取得了部分积极成果。本文主要介绍了几种低成本制造技术,如自动铺放技术、低温成型预浸料技术、电子束固化技术、液体成型技术以及树脂模渗透成型(RFI)技术。 关键词:树脂基复合材料低成本技术 前言 与传统金属材料相比,复合材料具有密度低、比强度和比模量高、可设计性强、抗疲劳性能好、耐腐蚀性能好和结构尺寸稳定性好等优点,在航空航天领域获得了广泛的应用。从20世纪70 年代开始,复合材料就首先在军用飞机上少量使用,到了80 年代已在民用飞机上进行了试用。应用基本是从非承力结构到次承力结构最后到主承力结构,从部位来说是从尾翼到机翼最后到机身。随着技术的不断成熟,复合材料在飞机上的用量越来越多,减重效果也越来越明显[1]。 长期以来,限制复合材料在飞机上扩大应用的原因主要有2个:一是技术成熟度没有金属高;二是复合材料成本太高,复合材料构件的成本远远高于铝合金构件。要想扩大复合材料在航空上的应用,就必须降低复合材料的成本。本文旨在介绍几种复合材料低成本制造技术的发展现状,如自动铺放技术、低温成型预浸料技术、电子束固化技术、液体成型技术以及树脂模渗透成型(RFI)技术。 一、自动铺放技术 用于航空航天器的先进复合材料构件主要采用热压罐成型技术制造。自动铺放是替代预浸料人工铺叠,提高质量和生产效率的重要手段。根据预浸料形态,自动铺放可分为自动铺带[2-3]与自动铺丝[4-5]两类:自动铺带(Tape laying)采用有隔离衬纸单向预浸带(25-300 mm),多轴机械臂(龙门或卧式)完成铺放位置定位,铺带头自动完成预浸带输送剪裁、加热铺叠与辊压,整个过程采用数控技术自动完成(图1a所示);自动铺丝(Fiber placement)采用多束(最多可达32根)预浸纱/分切的预浸窄带(3-25 mm),分别独立输送、切断,由铺丝头将数根预浸纱在压辊下集束成为一条宽度可变的预浸带(宽度通过控制预浸纱根数调整)后铺放

环氧树脂复合材料

环氧树脂复合材料 复合材料是由基体材料和增强材料复合而成的多相体系固体材料。它充分发挥了各组分材料的特点和潜在能力,通过各组分的合理匹配和协同作用,呈现出原来单一材料(均质材料、单相材料)所不具有的优异的新性能,从而达到对材料某些性能的综合要求。复合材料的出现在材料发展史上具有划时代的意义。受到国内外的极大重视。其发展之迅猛在历史上是空前的。已在工业、农业、交通、军事、科学技术和人民生活等各个领域广为应用。尤其是在航空、航天等尖端技领域中已成为不可缺少的重要的结构材料。无怪乎有人认为21世纪将进入“复合材料时代”。 热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷

先进纤维增强树脂基复合材料在航空航天工业中的应用

军民两用技术与产品2010·1 先进纤维增强树脂基复合材料 在航空航天工业中的应用 航天材料及工艺研究所 赵云峰 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" !!!!!!!!!!!!" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" !!!!!!!!!!!!" 一、引 言 随着航空航天工业的发展,先进飞机、运载火箭和导弹、卫星等的高性能、高可靠性和低成本,很大程度上是由于新材料和新工艺的广泛应用。先进复合材料是航空航天高技术产品的重要组成部分,它能有效降低飞机、运载火箭、导弹和卫星的结构重量,增加有效载荷和射程,降低成本。国外各类航空航天器结构已经广泛采用了先进的纤维增强树脂基复合材料,其中应用最多的是碳纤维增强环氧树脂复合材料。目前,先进复合材料已经取代了铝合金,成为现代大型飞机的首要结构材料。 二、先进纤维增强树脂 基复合材料的特点 先进纤维增强树脂基复合材料由高性能增强纤维和基体树脂按一定的工艺方法复合而成。与其它材料相比,具备如下特点: (1)与金属材料相比,复合材料具有高的比强度和比模量,可以大幅减轻结构重量; (2)各向异性,具有良好的可设计性,可以充分发挥增强纤维的性能; (3)具有优异的耐疲劳、耐腐蚀和抗振动等特性; (4)成型工艺性好,易于制造一次整体成型复杂零件。 表1列出了几类典型的树脂基复合材料和金属材料的性能。 三、先进纤维增强树脂基复合材料在航天产品上的典型应用 欧洲的“阿里安4”运载火箭采用了大量的碳纤维增强环氧树脂复合材料。卫星发射支架,仪器舱,大型整流罩,第一、二级之间的分离壳,助推器前锥和第二、三级级间段均采用碳纤维增强环氧树脂复合材料制造而成。 “阿里安4”运载火箭卫星整流罩最大外径4米、长约12米。由端头、前锥段、圆柱段和倒锥几部分组成。端头为铝合金加强筋环结构。前锥段和圆柱段采用碳纤维面板/铝蜂窝夹层结构。“阿里安5”运载火箭大型卫星整流罩外径5.4米,同样采用碳纤维面板/铝蜂窝夹层结构。“阿里安4”运载火箭第二、三级碳/环氧级间段直径 2.6米、高度2.73米,采用8块曲型 壁板组成,两端框为铝合金材料,中间用5个铝合金环框加强。 先进复合材料结构件的使用,提高了卫星结构的效率,增加了卫星的有效载荷,加强了商业竞争能力。一些航天器结构所用的典型复合材料见表2。 四、高性能增强纤维 1 碳纤维 碳纤维是一种以聚丙烯腈(PAN )、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的高强度、高模量、耐高温特种纤维。PAN 基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小等优异性能,是国防军事工业不可缺少的工程材料。 研究制备碳纤维的新技术,特别是低成本碳纤维制备技术是国外碳纤维研究的重点。制备碳纤维的新技术可归纳为研究发展廉价原丝、新的预氧化技术和新的碳化和石墨化技术三个方面。为了降低碳纤维的价格,研制低成本碳纤维,美国推出了低成本碳纤维研制计划,并已取得了一定的成果,建成了采用微波碳化的试验线,取得了良好效果,使制备碳纤维

树脂基复合材料研究进展

先进树脂基复合材料研究进展 摘要:本文介绍了颗粒增强、无机盐晶须增强、光固化等类型的树脂基复合材料,亦指出热固性、环氧树脂基复合材料,并简述了制备方法和新技术的应用。 关键词:树脂基复合材料,颗粒增强,无机盐晶须增强,光固化,制备方法,新技术ADVANCE THE RESEARCH OF POLYMER MATRIX COMPOSITES ABSTRACT: The particulate reinforced、inorganic salt whisker, light-cured of resin matrix composites were introduced in this paper,the thermosetting and thermoplastic resin matrix composites was also show in the paper.This paper also discussed the application of new preparation method and technology. Keywords: resin matrix composites,particulate reinforced,inorganic salt whisker, light-cured,preparation method,new technology 先进树脂基复合材料是以有机高分子材料为基体、高性能连续纤维为增强材料、通过复合工艺制备而成,并具有明显优于原组分性能的一类新型材料。目前航空航天领域广泛应用的先进树脂基复合材料主要包括高性能连续纤维增强环氧、双马和聚酞亚胺基复合材料[1]。树脂基复合材料具有比强度高、比模量高、力学性能可设计性强等一系列优点,是轻质高效结构设计最理想的材料[2]。用复合材料设计的航空结构可实现20%一30%的结构减重;复合材料优异的抗疲劳和耐腐蚀性,能提高飞机结构的使用寿命,降低飞机结构的全寿命成本;复合材料结构有利于整体设计和制造,可在提高飞机结构效率和可靠性的同时,采用低成本整体制造工艺降低制造成本。可见复合材料的应用和发展是大幅提高飞机安全性、经济性等市场竞争指标的重要保证,复合材料的用量已成为衡量飞机先进性和市场竞争力的重要标志。 纤维增强树脂基复合材料是在树脂基体中嵌人高性能纤维,比如碳纤维、超高分子量聚乙烯纤维和芳纶纤维等所制得的材料[3]。树脂基体可以分为热塑性树脂和热固性树脂两种,常用的热塑性树脂有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等;常用的热固性树脂有酚醛树脂、环氧树脂和聚醋树脂等。由于纤维增强复合材料具有高强度、高模量、低密度等一系列优良特性,其在航空航天、汽车、建筑、防护、运动器材和包装等领域已有广泛的应用。然而新材料新技术的发展使人们对纤维增强复合材料的性能有了更高的期望,所以高性能纤维增强树脂基复合材料依然是近年来的研究热点。 1 先进树脂基复合材料体系 1.1 纤维增强 纤维增强树脂基复合材料由纤维和树脂基体两部分组成,纤维起承担载荷的作用,树脂均匀传递应力,界面在应力传递的过程中起到关键的作用,是纤维与树脂问应力传递的纽带.随着对复合材料界面性能研究的不断的深入,人们发现纤维的浸润性能、纤维与树脂间的键台及纤维与树脂间的机械嵌合作用等因素对复合材料的性能影响显著,并以此设计出一系列提高界面粘接强度的方法,有效地提高了纤维复合材料的界面性能[4]. 1.1.1碳纤维(CF)增强树脂基复合材料 碳纤维以热碳化方式由聚丙烯睛、沥青或粘胶加工而成,具有高强度、高模量、优异的耐酸碱性和抗蠕变性[4J。对碳纤维增强树脂基复合材料的研究主要集中在对纤维进行改性、对树脂基体进行改性和改善纤维和树脂基体的粘接性能这几个方面。 1.1.2超高强度聚乙烯纤维(uHMPE), 超高分子量聚乙烯纤维(UHMWPE)是1975年由荷兰DSM公司采用凝胶纺丝一超拉伸技术研制成功并实现工业化生产的高强高模纤维。UHMWPE纤维中大分子具有很高的取向度和结晶程度,纤维大分子几乎处于完全伸直的状态,赋予最终纤维高强度、高模量、低密度、耐酸碱

热固性复合材料与热塑性复合材料

热固性复合材料与热塑性复合材料 1热固性树脂基复合材料 热固性树脂基复合材料是应用十分广泛的复合型材料,这种材料是经过复合而成,在多高科技产品中都得到了广泛的应用与研究,例如在大型客运机的应用中,其不仅减轻了重量,并且还优化了飞机的性能,减轻了飞机在飞行过程中的阻碍,热固性树脂具有非常优异的开发潜能,其应用领域也会在其改性后得到更大的发展。 典型的热固性树脂复合材料分为以下几种: (1)酚醛树脂复合材料:随着对阻燃材料的强烈需求,美国西化学公司,道化学公司等一系列大型化学公司都先后研制成功了新一代的酚醛树脂复合材料。其具有优异的阻燃、低发烟、低毒雾性能和更加优异的热机械物理性能。在制备这种具有阻燃效果的材料上,研究人员重新设计思路,在加入不饱和键等其他基团条件下,提高了反应速度,减少了挥发组分。使酚醛树脂复合材料在其应用领域得到大力发展。 (2)环氧树脂复合材料:由于环氧树脂本身的弱点,研究人员对其进行了两面的改性研究,一面是改善湿热性能提高其使用温度;另一面则是提高韧性,进而提高复合材料的损伤容限。含有环氧树脂所制备的复

合材料己经大力应用到机翼、机身等大型主承力构件上。 (3)双马来酞亚胺树脂复合材料:在双马来酞亚胺树脂复合材料中,由于双马来酞亚胺树脂具有流动性和可模塑性,良好的耐高温、耐辐射、耐湿热、吸湿率低和热膨胀系数小等优异性能,所以这种树脂则会广泛运用在绝缘材料、航空航天结构材料、耐磨材料等各个领域中。(4)聚酰亚胺复合材料:聚酰亚胺复合材料具有高比强度,比模量以及优异的热氧化稳定性。其在航空发动机上得到了广泛应用,主要可明显减轻发动机重量,提高发动机推重比。所以在航天航空领域得到了大力的发展和运用。 2热塑性树脂基复合材料 热塑性树脂基复合材料:其自身中的基体是热塑性树脂,该类复合材料是由热塑性树脂基体、增强相以及一些助剂组成。在热塑性复合材料中最典型和最常见的热塑性树脂有聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚酯树脂、聚碳酸树脂、聚甲醛树脂、聚醚酮类、热塑性聚酰亚胺、聚苯硫醚、聚飒等。 而热塑性树脂复合材料具有很多的特点,以下概述了一些热塑性树脂复合材料的特点。

航空航天先进复合材料

航空航天先进复合材料现状 2014-08-10 Lb23742 摘要:回顾了树脂基复合材料的发展史;综述了先进复合材料工业上通常使用环氧树脂的品种、性能和特性;复合材料使用的增强纤维;国防、军工及航空航天用树脂基复合材料;用于固体发动机壳体的树脂基体;用于固体发动机喷管的耐热树脂基体;火箭发动机壳体用韧性环氧树脂基体;树脂基结构复合材料;防弹结构复合材料;先进战斗机用复合材料;树脂基体;航天器用外热防护涂层材料;飞机结构受力构件用的高性能环氧树脂复合材料;碳纤维增强树脂基复合材料在航空航天中的其它应用;民用大飞机复合材料;国产大飞机的软肋还是技术问题;复合材料之惑。 关键词:树脂基体;复合材料;国防;军工;航空航天;结构复合材料 0 前言 复合材料与金属、高聚物、陶瓷并称为四大材料。今天,一个国家或地区的复合材料工业水平,已成为衡量其科技与经济实力的标志之一。先进复合材料是国家安全和国民经济具有竞争优势的源泉。到2020年,只有复合材料才有潜力获得20-25%的性能提升。 环氧树脂是优良的反应固化型性树脂。在纤维增强复合材料领域中,环氧树脂大显身手。它与高性能纤维:PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题 1 树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、

热塑性树脂和热固性树脂的概念和区别

热塑性树脂和热固性树脂的概念和区别 热固性树脂简介 树脂加热后产生化学变化,逐渐硬化成型,再受热也不软化,也不能溶解。热固性树脂其分子结构为体型,它包括大部分的缩合树脂,热固性树脂的优点是耐热性高,受压不易变形。其缺点是机械性能较差。热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。 指在加热、加压下或在固化剂、紫外光作用下,进行化学反应,交联固化成为不溶不熔物质的一大类合成树脂。这种树脂在固化前一般为分子量不高的固体或粘稠液体;在成型过程中能软化或流动,具有可塑性,可制成一定形状,同时又发生化学反应而交联固化;有时放出一些副产物,如水等。此反应是不可逆的,一经固化,再加压加热也不可能再度软化或流动;温度过高,则分解或碳化。这也就是与热塑性树脂的基本区别。 在塑料工业发展初期,热固性树脂所占比例很大,一般在50%以上。随着石油化工的发展,热塑性树脂产量剧增,到80年代,热固性树脂在世界合成树脂总产量中仅占10%~20%。 热固性树脂在固化后,由于分子间交联,形成网状结构,因此刚性大、硬度高、耐温高、不易燃、制品尺寸稳定性好,但性脆。因而绝大多数热固性树脂在成型为制品前,都加入各种增强材料,如木粉、矿物粉、纤维或纺织品等使其增强,制成增强塑料。在热固性树脂中,加入增强材料和其他添加剂,如固化剂、着色剂、润滑剂等,即能制成热固性塑料,有的呈粉状、粒状,有的作成团状、片

状,统称模塑料。热固性塑料常用的加工方法有模压、层压、传递模塑、浇铸等,某些品种还可用于注射成型。 热固性树脂多用缩聚(见聚合)法生产。常用热固性树脂有酚醛树脂、脲醛树脂、三聚氰胺-甲醛树脂、环氧树脂、不饱和树脂、聚氨酯、聚酰亚胺等。热固性树脂主要用于制造增强塑料、泡沫塑料、各种电工用模塑料、浇铸制品等,还有相当数量用于胶粘剂和涂料。 从发展看,热固性树脂还在进一步改进质量,研制新品种,以满足新加工工艺开发的要求。用弹性体和热塑性树脂进行改性、开发注塑级热固性模塑料以及反应注射成型用专用树脂及配方,近年来已受到很大重视。采用互穿聚合物网络技术将为热固性树脂的合成开辟新途径。 热固性树脂的分类 除不饱和聚酯树脂、环氧树脂、酚醛树脂外,热固性树脂主要有以下品种。 一、三聚氰胺甲醛树脂 三聚氰胺甲醛树脂是由三聚氰胺和甲醛缩聚而成的热固性树脂。用玻璃纤维增强的三聚氰胺甲醛层压板具有高的力学性能、优良的耐热性和电绝缘性及自熄性。 二、呋喃树脂 由糠醛或糠醇本身进行均聚或与其它单体进行共缩聚而得到的缩聚产物,习惯上称为呋喃树脂。这类树脂的品种很多,其中以糠醛苯酚树脂、糠醛丙酮树脂及糠醇树脂较为重要。

树脂基复合材料的发展史

树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是目前技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国俗称玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。从此纤维增强复合材料开始受到军界和工程界的注意。 第二次世界大战以后这种材料迅速扩展到民用,风靡一时,发展很快。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。 1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。 60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。 1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、船的壳体以及卫生洁具等大型制件,从而更扩大了树脂基复合材料的应用领域。 1963年前后在美、法、日等国先后开发了高产量、大幅宽、连续生产的玻璃纤维复合材料板材生产线,使复合材料制品形成了规模化生产。拉挤成型工艺的研究始于50年代,60年代中期实现了连续化生产,在70年代拉挤技术又有了重大的突破,近年来发展更快。除圆棒状制品外,还能生产管、箱形、槽形、工字形等复杂截面的型材,并还有环向缠绕纤维以增加型材的侧向强度。目前拉挤工艺生产的制品断面可达76cm×20cm。 在70年代树脂反应注射成型(Reaction Injection Molding, 简称RIM)和增强树脂反应注射成型(Reinforced Reaction Injection Molding, 简称RRIM)两种

树脂基复合材料复习要点

1.功能复合材料主要由功能体和基体组成,或由两种(或两种以上)的功能体组成。 2.材料在复合后所得的复合材料,依据其产生复合效应的特征,可分为线性效应和非线性效应。 3.燃烧过程,大致分为五个不同的阶段:(1)加热阶段;(2)降解阶段;(3)分解阶段;(4)点燃阶段;(5)燃烧阶段。 4.氧指数(OI)愈高,表示燃烧愈难。当OI<22时,为易燃性塑料;当OI在22—27之间时,为自熄性塑料;当OI > 27时,为难燃塑料 5.在美国UL-94防火标准中,塑料阻燃等级由HB,V-2,V-1向V-O逐级递增。 6.阻燃机理有多种:保护膜机理、不燃性气体机理、冷却机理、终止链锁反应机理、协同作用体系。 7.非金属材料的腐蚀类型按腐蚀机理分类①物理腐蚀②化学腐蚀③大气老化④环境应力开裂 8.为了弄清材料的腐蚀机理,进一步对其寿命进行预测,对其进行的实验以试验场所划分,可分为现场试验及实验里试验。 9.摩阻复合材料一般由增强体、摩擦功能调节体与基体等构成,各组分在摩擦材料中的作用是不同的。 10.列举三种常见的水溶性高分子聚合物:聚乙二醇、聚乙吡咯烷酮、聚乙烯。 11.防辐射服是利用服饰内金属纤维构成的环路产生感生电流,有感生电流产生反向电磁场进行屏蔽。 12.吸波材料之所以能够吸收进入材料内部的电磁波主要是由于电磁波在材料内部产生电损耗或磁损耗而使电磁波的电磁性能转化为其他形式的能量散失掉,从而达到减少反射的目的。 13.电损耗介质的吸波机理主要是松弛极化、磁性介质在交变磁场的作用下产生能量损耗的机制有:①磁滞损耗②涡流损耗③剩磁效应④磁共振。 14.密封材料的耐磨性通常以磨损率的倒数来表示。 15.影响玻璃钢透光率的主要因素:玻璃纤维和粘结剂的折射指数;玻璃纤维和粘结剂的光吸收系数;玻璃纤维的直径及其在玻璃钢中的体积含量。 16.阻尼特性可以通过对数衰减率δ与阻尼因子η两种方式来描述。 17.复合材料用于装甲防护主要有两种形式,即单纯的纤维织物和复合材料层合板。 18.防弹复合材料所用的纤维通常为玻璃纤维、尼龙纤维、芳纶和超高分子量聚乙烯纤维,最近开发出具有目前最高强度的聚苯并噁唑(PBO)纤维。 19.理想的树脂基体应具有耐高温、高韧性、高强度、低模量等性能,以及低成本。常用的树脂基体有:( )、( )、低密度聚乙烯、交联聚异戊二烯、聚丙烯等。 20.抗辐射聚合物基体一般在分子主链上具有多重环,如环氧树脂、聚酰亚胺树脂、聚醚砜、聚醚醚酮树脂等均具有良好的耐辐射性。 21.功能复合材料:除力以外而提供其它物理性能的复合材料即具有各种电学性能、磁学性能、光学性能、热学性能、声学性能以及摩擦、阻尼等性能。 22.高分子纳米复合材料:是由各种纳米单元和高分子复合而成的一种新型复合材料,其中纳米单元按化学成分分为金属陶瓷高分子和无机非金属。 23.燃烧氧指数:指试样像蜡烛状持续燃烧时,在氮-氧混合气流中所必须的最低氧含量。

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

环氧树脂基复合材料

环氧树脂基复合材料 1.前言 环氧树脂是聚合物基复合材料中应用最广泛的热固性树脂之一,对环氧树脂的改性及应用技术研究也一直没有停止过。环氧树脂是先进复合材料应用最广泛的树脂体系。它可以适用于多种成型工艺,可配制成不同配方。可调节粘度范围大以便适用于不同的生产工艺。它的存储寿命长,固化不释放出挥发物,固化收缩率低,固化后的制品具有极佳的尺寸稳定性、良好的耐热、耐湿性能和高的绝缘性,因此,目前环氧树脂统治着高性能复合材料的发展。 2.环氧树脂简介 2.1环氧树脂的性质 环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。环氧树脂具有以下的性质: (1) 力学性能高。环氧树脂具有很强的内聚力,分子结构致密,所以它的力学性能高于酚醛树脂和不饱和聚酯等通用型热固性树脂。 (2) 附着力强。环氧树脂固化体系中含有活性极大的环氧基、羟基以及醚键、胺键、酯键等极性基团,赋予环氧固化物对金属、陶瓷、玻璃、混凝士、木材等极性基材以优良的附着力。 (3) 固化收缩率小。一般为1%~2%。是热固性树脂中固化收缩率最小的品种之一(酚醛树脂为8%~10%;不饱和聚酯树脂为4%~6%;有机硅树脂为4%~8%)。线胀系数也很小,一般为6×10-5/℃。所以固化后体积变化不大。 (4) 工艺性好。环氧树脂固化时基本上不产生低分子挥发物,所以可低压成型或接触压成型。能与各种固化剂配合制造无溶剂、高固体、粉末涂料及水性涂料等环保型涂料。(5) 优良的电绝缘性。环氧树脂是热固性树脂中介电性能最好的品种之一。 (6) 稳定性好,抗化学药品性优良。不含碱、盐等杂质的环氧树脂不易变质。

热塑性树脂和热固性树脂的概念和区别完整版

热塑性树脂和热固性树脂的概念和区别 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

热塑性树脂和热固性树脂的概念和区别 热固性树脂简介 树脂加热后产生,逐渐硬化成型,再受热也不软化,也不能溶解。热固性树脂其分子结构为体型,它包括大部分的缩合树脂,热固性树脂的优点是耐热性高,受压不易变形。其缺点是较差。热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。 指在加热、加压下或在固化剂、紫外光作用下,进行化学反应,交联固化成为不溶不熔物质的一大类。这种树脂在固化前一般为分子量不高的固体或粘稠液体;在成型过程中能软化或流动,具有可塑性,可制成一定形状,同时又发生化学反应而交联固化;有时放出一些副产物,如水等。此反应是不可逆的,一经固化,再加压加热也不可能再度软化或流动;温度过高,则分解或碳化。这也就是与热塑性树脂的基本区别。 在塑料工业发展初期,热固性树脂所占比例很大,一般在50%以上。随着石油化工的发展,热塑性树脂产量剧增,到80年代,热固性树脂在世界合成树脂总产量中仅占10%~20%。 热固性树脂在固化后,由于分子间交联,形成网状结构,因此刚性大、硬度高、耐、不易燃、制品尺寸稳定性好,但性脆。因而绝大多数热固性树脂在成型为制品前,都加入各种,如木粉、矿物粉、或纺织品等使其增强,制成增强塑料。在热固性树脂中,加入增强材料和其他添加剂,如固化剂、着色剂、润滑剂等,即能制成热固性塑料,有的呈粉状、粒状,有的作成团状、片状,统称模塑料。热固性塑料常用的加工方法有模压、层压、传递模塑、浇铸等,某些品种还可用于。 热固性树脂多用缩聚(见聚合)法生产。常用热固性树脂有酚醛树脂、脲醛树脂、三聚氰胺-甲醛树脂、环氧树脂、不饱和树脂、聚氨酯、聚酰亚胺等。热固性树脂主要用于制造增强塑料、泡沫塑料、各种电工用模塑料、浇铸制品等,还有相当数量用于胶粘剂和涂料。 从发展看,热固性树脂还在进一步改进质量,研制新品种,以满足新加工工艺开发的要求。用弹性体和热塑性树脂进行改性、开发注塑级热固性模塑料以及用专用树脂及配方,近年来已受到很大重视。采用互穿网络技术将为热固性树脂的合成开辟新途径。 热固性树脂的分类 除不饱和聚酯树脂、环氧树脂、酚醛树脂外,热固性树脂主要有以下品种。 一、三聚氰胺甲醛树脂 三聚氰胺甲醛树脂是由三聚氰胺和甲醛缩聚而成的热固性树脂。用玻璃纤维增强的三聚氰胺甲醛层压板具有高的力学性能、优良的耐热性和电绝缘性及自熄性。 二、呋喃树脂 由糠醛或糠醇本身进行均聚或与其它单体进行共缩聚而得到的缩聚产物,习惯上称为呋喃树脂。这类树脂的品种很多,其中以糠醛苯酚树脂、糠醛丙酮树脂及糠醇树脂较为重要。 (1)糠醛苯酚树脂。糠醛可与苯酚缩聚生成二阶热固生树脂,缩聚反应一般用碱性催化剂。常用的碱性催化剂有氢氧化钠、碳酸钾或基它碱土金属的氢氧化物。糠醛苯酚树脂的主要特点是在给定的固化速度时有较长的流动时间,这一工艺性能使它适宜用作模塑料。用糠醛苯酚树脂制备的压塑粉特别适于压制形状比较复杂或较大的制品。模压制品的耐热性比酚醛树脂好,使用温度可以提高10~20℃,尺寸稳定性、电性能也较好。 (2)糠醛丙酮树脂。糠醛与丙酮在碱性条件下进行缩合反应形成糠酮单体缤纷可与甲醛在酸性条件下进一步缩聚,使糠酮单体分子间以次甲基键连接起来,形成糠醛丙酮树脂。

树脂基复合材料

树脂基复合材料的研究进展 摘要: 树脂基复合材料具有良好的成型工艺性、高的比强度、高的比模量、低的密度、抗疲劳性、减震性、耐腐蚀性、良好的介电性能、较低的热导率等特点,广泛应用于各种武器装备,在军事工业中,对促进武器装备的轻量化、小型化和高性能化起到了至关重要的作用。由于与许多材料相比具有独特的性能,树脂基复合材料在航空航天、汽车、电子、电器、医药、建材等行业得到广泛的应用。目前,随着复合材料工业的迅速发展,树脂基复合材料正凭借它本身固有的轻质高强、成型方便、不易腐蚀、质感美观等优点,越来越受到人们的青睐。 关键字:树脂基复合材料,材料性能,应用领域 一、前言 复合材料在国民经济发展中占有极其重要的地位,以至于人们把一个国家和地区的复合材料工业水平看成衡量其科技与经济实力的标志之一[1]。树脂基复合材料是以纤维为增强剂、以树脂为基体的复合材料,所用的纤维有碳纤维、芳纶纤维、超高模量聚乙烯纤维等,所采用的基体主要有环氧树脂、酚醛树脂、乙烯基酯树脂等有机材料。其中热固性树脂是以不饱

和聚脂、环氧树脂、酚醛树脂等为主;热塑性树脂是指具有线型或分枝型结构的有机高分子化合物。 树脂基复合材料的特点:各向异性(短切纤维复合材料等显各向同性);不均质或结构组织质地的不连续性;呈粘弹性;纤维体积含量不同,材料的物理性能差异;影响质量因素多,材料性能多呈分散性。树脂基复合材料的优点如下:(1)密度小,约为钢的1/5,铝合金的1/2,且比强度和比模量高。这类材料既可制作结构件,又可用于功能件及结构功能件。 (2)抗疲劳性好:一般情况下,金属材料的疲劳极限是其拉伸强度的20~50%,CF增强树脂基复合材料的疲劳极限是其拉伸强度的70~80%;(3)减震性好;(4)过载安全性好;(5)具有多种功能,如:耐烧蚀性好、有良好的耐摩擦性能、高度的电绝缘性能、优良的耐腐蚀性能、有特殊的光学、电学、磁学性能等;(6)成型工艺简单;(7)材料结构、性能具有可设计性。 以树脂基复合材料为代表的现代复合材料随着国民经济的发展,已广泛应用于各个领域。众所周知,树脂基复合材料首先应用于航空航天等国防工业领域[2-3],而后向民用飞机发展。随着社会的发展,树脂基复合材料在人类物质生活中的需求量越来越大,并

环氧树脂复合材料

环氧树脂复合材料 热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造

材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5玻璃纤维外,还可采用介电性能更好的石英纤维。 (3)环氧树脂基体与增强材料的界面层在环氧树脂与增强材料复合的过程中,在它们之间形成了界面层。界面层的结构及性能与环氧树脂基体及增强材料都不相同。高质量的界面层性能保证了基体和纤维潜在能力的高度发挥和复合效应的充分实现。 3、环氧树脂复合材料的特性 (1)密度小,比强度和比模量高。高模量碳纤维环氧复合材料的比强度为钢的5倍、铝合金的4倍,钻合金的3.2倍。其比模量是钢、铝合金、钦合金的5.5—6倍。因此,在强度和刚度相同的情况下碳纤维环氧复合材料构件的重量可以大大减轻。这在节省能源、提高构件的使用性能方面,是现有任何金属材料所不能相比的。 (2)疲劳强度高,破损安全特性好。环氧复合材料在静载荷或疲劳载荷作用下,首先在最薄弱处出现损伤,如横向裂纹、界面脱胶、分层、纤维断裂等。然而众多的纤维和界面会阻止或延缓

树脂基复合材料的应用与发展

树脂基复合材料的应用与发展 姓名 (材料与冶金学院,金属材料工程10-1班,1012345678) 摘要:树脂基复合材料是以树脂为基体,纤维或其织物为增强体的复合材料。 是航空航天研究中一种不可缺少的复合材料。本文通过对树脂基复合材料的各方面的介绍,浅谈自己对树脂基复合材料的些许了解以及本人的一些看法和建议,旨在呼吁大家了解树脂基复合材料,以便有益于其在未来的研究和发展。 关键字:树脂基复合材料、应用、发展。 正文: 1 树脂基复合材料的基本概念 复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。是具有所含材料的优点和特点的一种混合物,应用广泛,功能强大。树脂基复合材料是复合材料中的一种基体材料,其所涉及范围之广大,功能作用之强大,世人有目共睹。由于树脂基复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展 2 树脂基复合材料的成型方法 树脂基复合材料的成型方法较多,有手糊成型、喷射成型、纤维缠绕成型、模压成型、拉挤成型、RTM成型、热压罐成型、隔膜成型、迁移成型、反应注射成型、软膜膨胀成型、冲压成型等。现且以手糊成型、RTM成型、喷射成型为例作简单介绍。 2.1 手糊成型 目前我国还是以手糊成型为主,手糊成型在树脂基复合材料成型中约占80%。其工艺过程是依次在模具表面上施加脱模剂、胶衣、一层粘度为0.3-0.4PaS 的中等活性液体热固性树脂(须待胶衣凝结后)、一层纤维增强材料,纤维增强材料有表面毡、无捻粗纱布(方格布)等几种。以手持辊子或刷子使树脂浸渍纤维增强材料,并驱除气泡,压实基层。铺层操作反复多次,直到达到制品的设计厚度。树脂因聚合反应,常温固化,可加热加速固化。 2.1.1 手糊成型工艺的优点 a)不受尺寸,形状的限制; b)设备简单,投资少; c)工艺简单;

相关主题
文本预览
相关文档 最新文档