当前位置:文档之家› AKTA pure纯化大肠杆菌表达微型重组蛛丝蛋白(英文)

AKTA pure纯化大肠杆菌表达微型重组蛛丝蛋白(英文)

AKTA pure纯化大肠杆菌表达微型重组蛛丝蛋白(英文)
AKTA pure纯化大肠杆菌表达微型重组蛛丝蛋白(英文)

蛋白质的纯化方法

蛋白质纯化的方法 蛋白质的分离纯化方法很多,主要有: (一)根据蛋白质溶解度不同的分离方法 1、蛋白质的盐析 中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。盐析时若溶液pH在蛋白质等电点则效果更好。由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。 影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。一般温度低蛋白质溶介度降低。但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%。 蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。 蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短。

1-大肠杆菌重组蛋白表达提取及纯化实验(最新整理)

第一天 1、配置LB培养基: 酵母粉15g、胰蛋白胨30g、氯化钠30g,定容至3000ml。调节PH至 7.4(2M NaOH),高压蒸汽灭菌20分钟,37℃保存。分装成15瓶(每瓶200ml)。 2、接种(超净台要提前杀菌通风) 取4瓶上述培养基,每瓶加200μlAMP(1:1000)、60μl菌液。37℃过夜。 第二天 1、扩大培养(超净台) 4瓶扩至16瓶,每瓶培养基加200μlAMP,摇床培养1小时左右。 2、诱导(超净台) 加40μlIPTG,加完后去除封口的除牛皮纸,扎口较松。25℃摇床培养4小时。 3、离心获取菌体 4℃,8000rpm离心25分钟。注意配平。 4、超声波破碎菌体 离心后去上清,向沉淀加入(600mlPB裂解液、300μl溶菌酶、3mlPMSF)。将菌液转入2个烧杯中,冰浴超声波破菌,400W,75次,每次6秒,间隔2秒。离心收集上清液。 600mlPB裂解液:20mM/L PB,10mM/L EDTA,5%甘油,1mM/L DTT,调节PH至7.4。 超声波破碎:首先用去离子水清洗探头,再将盛有菌液的小烧杯置于有冰 水混合物的大烧杯中,冰水界面略高于菌液面即可。探头浸没于菌液中,不可伸入过长。注意破菌过程中由于冰的融化导致的液面变化。 5、抽滤(双层滤纸) 洗胶(GST)。将上述上清液抽滤,滤液与GST胶混合,磁力搅拌过夜。 第三天

1、抽滤蛋白-胶混合液,滤液取样20μl,留电泳。 2、洗杂蛋白,用1×PBS+PMSF(1000:1)约400ml,洗脱若干次,用移液枪吸去上层泡沫(杂蛋白),至胶上无泡沫为止。 3、洗脱目的蛋白,洗脱液加50ml,分3次进行(15+15+15),每次加入后间歇搅拌,自然静置洗脱15分钟,抽滤,勿使胶干,合并洗脱液,取样20μl,留电泳。用洗脱液调零,测OD280。(OD值达到1.5为佳) 4、将洗脱液置于透析袋中(透析袋应提前煮好),将透析袋置于2L透析液1中,加入磁珠置于4℃冰箱内磁力搅拌器上,4小时后换为透析液2。胶的回收:用3M氯化钠溶液(用1×PBS溶液溶解)、1×PBS(无沉淀)洗涤,20%乙醇洗脱,装瓶。 洗脱液:50mM/LTRIS-HCL 、10mM/LGSH 透析液1:20mM/L TRIS-HCL、1mM/L EDTA 、0.15mM/L DTT 透析液2::0.5mM/L EDTA、1×PBS

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

大肠杆菌表达重组蛋白的超声破碎及纯化

大肠杆菌表达重组蛋白的超声破碎及纯化 一可溶性蛋白的纯化 (一)菌体的破碎 1. 仪器与材料:-80℃冰箱;超声波细胞破碎仪;50mM PBS或50mM Tris-HCl pH 7.5;50 ml 离心管;冷冻高速离心机 2.方法 2.1反复冻融 2.1.1收集菌液500ml,等分10份,4000 r/min 4℃离心15min,弃上清。 2.1.2 菌体沉淀中加入相同菌液体积的50mM PBS 或50mM Tris-HCl(选择使蛋白稳定的缓冲液和pH)重悬洗涤一次。 2.1.3 然后按原菌液体积的1/4加入缓冲液重悬菌体,并加入蛋白酶抑制剂PMSF和EDTA(带His标签不加),PMSF终浓度为100μg/ml, EDTA的终浓度为。取20μl重悬菌液进行电泳,检测蛋白表达的情况(是否表达,是可溶性表达还是包涵体表达)。 2.1.4 将菌液(经检测有表达)在-80度冰冻,室温融解,反复几次(反复冻融三次),由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。 2.2超声波处理 (对超声波及热敏感的蛋白慎用) 2.2.1 将反复冻融的菌液(必要时可加入1mg/ml 溶菌酶,缓冲液pH>8.0,加入后需静置20min),进行超声破碎,超声条件:400W,工作5秒,间隔5秒,重复一定次数,(根据我们的仪器找出一个比较好的工作条件)。直至菌体溶液变清澈为止,大约花费时间。 2.2.2 取少量经超声破碎后的菌液,10000rpm离心10分钟,分别对上清和沉淀进行检测,并用全菌作为阳性对照,检测菌体破碎程度及目标条带占总蛋白的含量。 注意事项: (1)超声破碎具体条件可根据实验情况而定,要掌握好功率和每次超声时间,降低蛋白被降解的可能。 (2)功率大时,每次超声时间可缩短,不能让温度升高,应保持在4度左右,超声时保持冰浴。 (3)菌体破碎后总蛋白浓度的测定可用Bradford法或者紫外吸收法。 (4)可通过SDS-PAGE 电泳观察菌体破碎程度及目标条带占总蛋白的含量。 二包涵体蛋白的纯化 1菌体的破碎(加溶菌酶处理包涵体效果可能不好,包涵体中总是有残留的溶菌酶,你看看有没有不加溶菌酶的,这个先保留好了) 1.1仪器与材料:超声波细胞破碎仪;20mM PBS或20mM Tris-HCl pH 7.5;裂解液buffer A;溶菌酶10mg/ml;50ml ,15ml离心管;冷冻离心机 1.2 方法 (1) 收集菌液500ml,等分10份,4000 r/min 4℃离心15min,弃上清。

(完整版)大肠杆菌感受态细胞的制备

大肠杆菌感受态细胞的制备 标签: tr..,Ca..,co.. 分类:细胞技术> 感受态细胞 来源: 实验管理实验概要 大肠杆菌感受态细胞的CaCl2法制备及质粒转化 实验原理 处于对数生长期的细菌经CaCl2 处理后接受外源DNA的能力显著增加。细菌处于容易吸收外源DNA的状态叫感受态。 在自然条件下,很多质粒都可通过细菌接合作用转移到新的宿主内,但在人工构建的质粒载体中,一般缺乏此种转移所必需的mob基因,因此不能自行完成从一个细胞到另一个细胞的接合转移。如需将质粒载体转移进受体细菌,需诱导受体细菌产生一种短暂的感受态,以摄取外源DNA。 转化(Transformation)是将外源DNA分子引入受体细胞,使之获得新的遗传性状的一种手段,它是微生物遗传、分子遗传、基因工程等研究领域的基本实验技术。转化过程所用的受体细胞一般是限制修饰系统缺陷的变异株,即不含限制性内切酶和甲基化酶的突变体 (R-,M-),它可以容忍外源DNA分子进入体内并稳定地遗传给后代。受体细胞经过一些特殊方法(如电击法,CaCl2 ,RbCl(KCl)等化学试剂法)的处理后,细胞膜的通透性发生了暂时性的改变,成为能允许外源DNA分子进入的感受态细胞(Compenent cells)。进入受体细胞的DNA分子通过复制、表达实现遗传信息的转移,使受体细胞出现新的遗传性状。将经过转化后的细胞在筛选培养基中培养,即可筛选出转化子(Transformant,即带有异源DNA 分子的受体细胞)。目前常用的感受态细胞制备方法有CaCl2和RbCl(KCl)法,RbCl(KCl)法制备的感受态细胞转化效率较高,但CaCl2法简便易行,且其转化效率完全可以满足一般实验的要求,制备出的感受态细胞暂时不用时,可加入占总体积15%的无菌甘油于-70℃保存(半年),因此CaCl2法使用更广泛。 主要试剂 (1)0.1mol/L CaCl2溶液 (2)LB液体培养基

生物化学实验报告记录:Westernblotting检测大肠杆菌重组蛋白

生物化学实验报告记录:Westernblotting检测大肠杆菌重组蛋白

————————————————————————————————作者:————————————————————————————————日期:

实验三 Western blotting检测大肠杆菌重组蛋白 一、实验目的 利用Western Blotting技术,定性(或定量)检测苦荞黄酮醇合酶基因(Flavon ol synthase gene, FtFLS)在大肠杆菌表达宿主菌Escherichia coli BL(DE3)中的诱导表达。 二、实验原理 黄酮醇合酶(FLS,EC 1.14.11.23)属于2-ODD家族,催化黄酮醇合成支路中最后一步氧化反应,也是直接合成黄酮醇的反应。FLS可以使二氢黄酮醇在C3链中C2和C3之间氧化形成双键,从而生成黄酮醇:a Dihydroflavonol + 2-oxoglutarate + O2 a Flavonol + succinate + CO2 + H2O。 本实验采用PCR的方法,在苦荞黄酮醇合酶基因(FtFLS)ORF起始密码子前引入Kpn?酶切位点,去掉终止密码并引入Bam H ?酶切位点。克隆引入酶切位点后的FtFLS到表达载体pET-30b(+)质粒中,其表达产物分别在N-末端和C-末端各含有6 ×His标签。重组质粒(pET-30b(+)-FtFLS)经鉴定后转化表达宿主菌E. coli BL21(DE3)并使用IPTG进行诱导表达。收集诱导0 h、2 h、4 h、6 h和8 h的产物,经SDS-PAGE后用于考马斯亮蓝R-250染色或Western blotting分析。 Western blotting的标准流程如下:蛋白质首先通过SDS-PAGE胺凝胶电泳分离,通过电泳转移到固相支持物上(硝酸纤维素膜、PVDF膜和尼龙膜);将膜上未反应的位点封闭起来,以抑制抗体的非特异性吸附,固定的蛋白质即可与特异性的多克隆或单克隆抗体相互作用并通过放射、生色或化学发光的方法进行定位。 本实验采用小鼠抗聚组氨酸单克隆抗体(Anti-His tag IgG,一抗)与重组FtF LS蛋白的N-末端和C-末端6 ×His发生抗原-抗体特异反应,再利用辣根过氧化物酶标记羊抗小鼠IgG(peroxidase-Goat Anti- Mouse IgG,二抗)与一抗发生特异结合,最后使用DAB进行显色。DAB即:二氨基联苯胺(3, 3'-diaminobenzidine),是过氧化物酶(Peroxidase)的生色底物。DAB在过氧化氢的存在下失去电子而呈现出颜色变化和积累,形成浅棕色不溶性产物。该方法常用于检测过氧化物酶的活性,它灵敏度高,特异性好,在免疫组化,原位杂交,Western blotting等膜显色中

重组蛋白IFNGA在大肠杆菌中的表达与纯化

高中组 11年级 生物化学 3人项目 重组蛋白IFNGA在大肠杆菌中的表达与纯化

重组蛋白IFNGA在大肠杆菌中的表达与纯化 摘要: 干扰素γ(Interferon gamma,IFN-γ)是体内重要的细胞因子,能够通过调控免疫相关基因的转录协调机体的免疫反应,具有抗病毒、抗肿瘤、增强免疫力能功能。目前对于IFN-α、IFN-β重组表达的较多,而关于IFN-γ 蛋白的纯化表达较少.因此,本研究使用PCR方法扩增IFN-γ基因,将IFN-γ基因分别插入原核表达载体pET-30构建重组表达质粒pET-30--IFN-γ,转化大肠杆菌BL21和Rosetta菌株,在IPTG诱导下表达IFN-γ,SDS-PAGE分析重组表达蛋白。结果表明:成功构建重组表达质粒pET-30-IFN-γ;表达产物主要以包涵体形式存在;经Ni2+-NTA亲和层析纯化,获得高纯度重组蛋白。本实验纯化的蛋白有望在今后用于医学和生物学研究中。 关键词:干扰素;IFN-γ 蛋白;大肠杆菌表达系统;重组表达;蛋白纯化; 一、研究背景 干扰素(IFN)是一种广谱抗病毒剂,并不直接杀伤或抑制病毒,而主要是通过细胞表面受体作用使细胞产生抗病毒蛋白,从而抑制病毒(比如:乙肝病毒)的复制。其类型分为三类,α-(白细胞)型、β-(成纤维细胞)型,γ-(淋巴细胞)型;同时还可增强自然杀伤细胞(NK细胞)、巨噬细胞和T淋巴细胞的活力,从而起到免疫调节作用,并增强抗病毒能力。干扰素是一组具有多种功能的活性蛋白质(主要是糖蛋白),是一种由单核细胞和淋巴细胞产生的细胞因子。它们在同种细胞上具有广谱的抗病毒、影响细胞生长,以及分化、调节免疫功能等多种生物活性。 其中,IFN-γ是体内重要的免疫调节因子,能通过与细胞表面受体结合,诱导病毒感染细胞产生多种抗病毒蛋白,使细胞内产生抗病毒状态而发挥抗病毒作用。在诱导效应因子表达的同时,由于IFN-γ能够提高细胞表面MHC分子的表达,增强免疫活性细胞对病原体的杀伤作用,从而协同促进了机体对病毒感染细胞的杀灭,而使机体处于抗病毒状态。虽然各种类型的干扰素均能介导细胞对病毒感染的反应,但IFN-γ 的免疫调节活性在协调免疫反应和确定机体长期的抗病毒状态中发挥更为重要的作用。其作用可大致总结为以下几点:①

大肠杆菌高效表达重组蛋白策略

大肠杆菌高效表达重组蛋白策略 前言 重组蛋白的制备在蛋白结构分析和医疗应用领域十分重要。药物蛋白的研究需要高纯度的重组蛋白来进行药物动力学和物理化学的研究[1]。重组蛋白在检测酶活、连接配体、蛋白相互作用等生物学领域广泛应用。已经表达出多种重组蛋白被证明有很大的应用潜力[2,3]。通过基因工程改造的方法已经获得了许多性状优良的宿主菌表达系统,尤其是通过大肠杆菌可以大量表达外源基因编码的重组蛋白[4]。但是仍然有两个问题制约着大肠杆菌表达系统对重组蛋白的表达:一个是表达量低,还有一个就是表达错误折叠的蛋白包涵体[5]。蛋白的表达和纯化工艺一直在发展进步,但是超过30%的重组蛋白为不具有生物活性的包涵体,严重影响了重组蛋白的生产应用[6,7]。 在理想条件下,重组蛋白由强启动子进行表达,产生大量的具有生物学活性的可溶性重组蛋白。但是,强启动子会导致重组蛋白的过表达,从而影响宿主菌体的生长并产生包涵体[8]。在某些条件下可以通过变性、复性的方法使包涵体恢复活性[9],但是复性后的蛋白是否能够完全恢复活性仍然未可知。一般来讲,可以通过表达条件的优化来促进蛋白的可溶性表达,比如:诱导温度、培养基组成、宿主菌的种类。还可以通过多种方案来解决蛋白不溶的问题:蛋白重新折叠[10],构建融合蛋白[11]。另外想要进一步增加蛋白可溶性可以与分子伴侣共表达[8]或者低温诱导[12]。本文对目前主要的促进蛋白可溶表达的方法进行了比较全面的总结。 1.大肠杆菌表达系统的构建 1.1选择表达宿主菌 对于大规模的表达重组蛋白,一般选择胞表达或者周质空间表达。与周质空间表达相比,胞表达的表达量更高,因此应用更为广泛。在实验研究和实际生产中,已经有很多大肠杆菌表达系统广泛应用于。在表达体系中较为常用的大肠杆菌为B菌株和K12菌株及它们的衍生菌株(表1[13])。美国国立研究院已经认证了K12菌株的标准性以及安全的使用方案,因此K12菌株在生产应用中具有极大的优势。但是由B菌株演变而来的BL系列菌株与K12相比,突变了lon 和ompT两个基因[14],因此具有许多表达优势:产物积累少,缺少蛋白酶,防止产物被降解。这些优势使得BL菌株也具有非常广泛的应用[15,16,17]。 通常来讲,针对不同的重组蛋白,宿主菌的选择也是不同的。如果重组蛋白含有大肠杆菌稀有密码子,就需要宿主能够表达针对这些密码子的tRNA,比如

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

蛋白质的分离纯化方法(参考资料)

蛋白质的分离纯化方法 2.1根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 2.2 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

第四章基因在大肠杆菌、酵母中的高效的表达

第四章基因在大肠杆菌、酵母中的高效的表达 前言 基因表达是指结构基因在生物体中的转录、翻译以及所有加工过程。 基因工程主要目标之一是生产常规方法难以生产的大量蛋白质产物—即实现基因的高效表达。 基因高效表达研究是指外源基因在某种细胞中的表达活动,即剪切下外源基因片段,拼接到另一个基因表达体系中,使其能获得原生物活性又可高产的表达产物。 第一节基因的表达系统与表达策略 一、最佳的基因表达体系: ⑴目的基因的表达产量高; ⑵表达产物稳定; ⑶生物活性高; ⑷表达产物容易分离纯化。 二、宿主细胞的选择 (一)适合目的基因表达的宿主细胞的要求: 1、容易获得较高浓度的细胞; 2、能利用易得廉价原料; 3、不致病、不产生内毒素; 4、发热量低、需氧低、适当的发酵温度和细胞形态; 5、容易进行代谢调控; 6、容易进行DNA重组技术操作; 7、产物的产量、产率高, 8、产物容易提取纯化。 (二)宿主细胞分为两大类: 1、原核细胞:常用有大肠杆菌、枯草芽胞杆菌、链霉菌等; 2、真核细胞:常用有酵母、丝状真菌、哺乳动物细胞等。 大肠杆菌目前仍是基因工程研究中采用最多的原核表达体系。 优越性: ①对大肠杆菌的基础生物学、分子遗传学等背景知识和基因表达的调控机理已有了深刻了解。 ②有各类菌株和载体系列。 ③目前以实现多种基因的高效表达。表达基因产物形式多样:细胞内不溶性表达(包含体)、细胞内可溶性表达、细胞周质表达等。 ④易培养,成本低。 缺点: ①大肠杆菌中的表达不存在信号肽,产品多为胞内产物,提取困难。 ②因分泌能力不足,真核蛋白质常形成不溶性的包含体,表达产物需经变性复性才恢复活性。

蛋白质纯化方法

含组氨酸标签的蛋白的诱导表达及纯化 一.用IPTG诱导启动子在大肠杆菌中表达克隆化基因 所需特殊试剂:1M IPTG 1.将目的基因与IPTG诱导表达载体连接,构成重组质粒并转化相应的 表达用的大肠杆菌。将转化体铺于含相应抗生素的LB平板,37℃培养 过夜。通过酶切序列分析等筛选带有插入片段的转化体。 2.分别挑取对照菌和重组菌1个菌落,接种于1ml含有相应抗生素的LB 培养液中,37℃通气培养过夜。 3.取100微升过夜培养物接种于5ml含有相应抗生素的LB培养液中(各 10份),适当的温度(20-37℃)震荡培养4小时,至对数中期(A550 =0.1-1.0)。 4.对照菌和重组菌各取1ml未经诱导的培养物于离心管中,剩余培养物 中加入IPTG至终浓度分别为0.5,1.0,1.5,2.5,3.0,3.5,4.0,4.5, 5.0mM相同的温度继续通气培养。 5.在诱导的1,2,3,4,5个小时取1ml样品于Ep管中。 细菌的生长速率严重影响外源蛋白的表达,因此必须对接种菌量,诱 导前细菌生长时间和诱导后细菌密度进行控制。生长过度或过速会加 重细菌合成系统的负担,导致包涵体的形成。生长温度可能是影响大 肠杆菌高度表达目的蛋白的最重要因素。低温培养能在一定程度上抑 制包涵体的形成。IPTG的浓度对表达水平的影响也非常大。所以通过 试验确定最佳的培养条件是很必要的。 6.将所有样本室温最高速度离心1分钟,弃上清,沉淀重悬于100微升 1×SDS蛋白上样缓冲液中,100℃加热5分钟,室温最高速度离心1 分钟,取15微升样品上样于SDS聚丙烯酰胺凝胶,用SDS-PAGE 观察表达产物条带,从而确定优化的培养条件。 二.大量表达靶蛋白 1.取保存的重组大肠杆菌菌液150微升接种于30毫升含相应抗生素的 LB培养液中,在100毫升锥形瓶中,300rpm,37℃通气过夜培养。

大肠杆菌表达系统与蛋白表达纯化

8.大肠杆菌表达系统与蛋白表达纯化 大肠杆菌表达系统遗传背景清楚,目的基因表达水平高,培养周期短,抗污染能力强等特点, 是分子生物学研究和生物技术产业化发展进程中的重要工具。因此熟练掌握并运用大肠杆菌表达系统的基本原理和常规操作是对每一个研究生来说是非常必要的。本章节介绍了实验室常用的大肠杆菌表达系统的构成特点,归纳了利用大肠杆菌表达系统纯化重组蛋白的基本流程和详细操作步骤,并且结合笔者的操作经验,总结了初学者在操作过程中可能遇到的问题和解决策略。 8.1大肠杆菌表达系统的选择与构建 8.1.1表达载体的选择 根据启动子的不同这些载体大致可以分为热诱导启动子,如λPL,cspA 等和另外一类就是广泛使用的IPTG诱导的启动子,如lac,trc,tac,T5/lac operator,T5/lac operator等。根据表达蛋白质的类型可分为单纯表达载体和融合表达载体。融合表达是在目标蛋白的N端或C端添加特殊的序列,以提高蛋白的可溶性,促进蛋白的正确折叠,实现目的蛋白的快速亲和纯化,或者实现目标蛋白的表达定位。常用的用于亲和纯化融合标签包括Poly-Arg,Poly-His, Strep-Tag Ⅱ,S-tag,MBP等。其中His-Tag 和GST-Tag 是目前使用最多的。His Tag 大多数是连续的六个His 融合于目标蛋白的N端或C端,通过His 与金属离子:Cu2+>Fe2+>Zn2+>Ni2+ 的螯合作用而实现亲和纯化,其中Ni2+是目前使用最广泛的。His 标签具有较小的分子量,融合于目标蛋白的N端和C端不影响目标蛋白的活性,因此纯化过程中大多不需要去除。目前常使用的表达载体主要是由Novagen 提供的pET 系列和Qiagen 公司提供的pQE 系列。 除了His 标签外,还原性谷胱甘肽S-转移酶是另一种实验室常用的融合标签。它可以通过还原性谷胱甘肽琼脂糖亲和层析而快速纯化。此外,与His 相比,GST 很多时候能够促进目标蛋白的正确折叠,提高目标蛋白表达的可溶性,因此,对于那些用his 标签表达易形成包涵体的蛋白,可以尝试用GST融合表达来改进。当然,GST 具有较大的分子量(26kDa),可能对目的蛋白的活性有影响,因此很多时候切除GST是必须的。目前,GST融合表达系统主要是由GE Healthcare (原Amersham)提供。

His蛋白纯化原理方法和问题分析

组氨酸(His)标签蛋白的纯化 His-Tag融合蛋白是目前最常见的表达方式,而且很成熟,它的优点是表达方便而且基本不影响蛋白的活性,无论是表达的蛋白是可溶性的或者包涵体都可以用固定金属离子亲和色谱(IMAC)纯化。 IMAC(Immobilized Metal-ion affinity chromatography)是Porath et 年用固定IDA作为配基的填料螯合过渡金属铜、镍、钴或锌离子,可以吸附纯化表面带组氨酸、色氨酸或半胱氨酸残基的蛋白,1987年Smith et al. 发现带有几个组氨酸或色氨酸小肽和螯合金属离子的IDA-sephadex G-25作用力更强,此前在1986年他和他的合作者用Ni2+-IDA-sephadex G-25亲和纯化在氨基端带组氨酸和色氨酸的胰岛素原。同年1987年Hochuli et al.发现带有相连组氨酸的多肽和Ni2+-NTA填料作用力更强于普通的肽,1988年他第一次用这样的方法纯化了带六个组氨酸标签的多肽,无论是在天然还是变性条件下一次亲和纯化都得到很好效果,此后表达带六个组氨酸标签的蛋白配合IMAC变得非常普遍,相对而言,不带标签的蛋白纯化就非常困难,所以表达带六个组氨酸标签的蛋白配合IMAC 纯化变成最常用而且最有效的研究蛋白结构和功能的有力手段。1986年Porath et al.还发现Fe3+-IDA-sephadex G-25可以用于磷酸化蛋白的纯化,而后发现Ga3+-IDA也有同样的效果,这样螯合这两种金属离子的填料就有效用于磷酸化多肽的富集和纯化,同时IMAC也可以用于纯化各种和金属离子结合的多肽,应用非常广泛。 Ni柱中的氯化镍可以与有HIs(组蛋白)标签的蛋白结合,也可以与咪唑结合。 步骤是:过柱子前可以选择Ni柱重生,也就是往柱子里倒氯化镍,一个柱长体积就行了,然后平衡柱子,拿你自己的buffer,给蛋白提供最适的环境,我一般平衡4个柱长,然后蛋白上样,你可以让他自己挂,这样挂柱子的效果好一些,如果流速太慢,可以加个恒流泵,但是一定不能太快,太快挂柱效果差,当然你也可以选择循环挂柱,就是恒流泵的一头接你装蛋白的烧杯,从柱子中留下来的液体还用同一个烧杯接回去。挂完之后,按理想来讲,你的蛋白在Ni柱中与Ni就结合了,杂蛋白多数在烧杯里,留下来了,当然肯定有少量杂蛋白也挂上了,这时候你要,拿咪唑和你的buffer配,一般从0 20mM 40mM。。。。100mM 这样洗脱(当你不知道你的蛋白大概在什么时候出来的时候)我指的是咪唑的终浓度。咪唑加入之后,会和蛋白争夺与Ni的结合位点,杂蛋白、你的目的蛋白,会在不同的浓度被洗脱下来,洗完之后,你可以用400mM咪唑洗柱子,清理一切蛋白,然后平衡几次,是否选择重生你自己定咯~然后放上20%乙醇保存柱子就可以咯~过的蛋白用不同的管子收下,然后SDS-page检测在哪个管子里。 市面常见的商品化IMAC用于带六个组氨酸标签蛋白的配基有以下几种: 一、组氨酸(His)标签蛋白的纯化步骤: 大肠杆菌的破碎方法: 1)收集培养发酵液,4度7000-8000g离心10分钟,收集沉淀的菌体(如果不是马上破碎可以放-70度冷冻,但是最好能保存成小块或者薄片,这样好用。) 2)取1-2克菌体加10ml破碎缓冲液(的50mM磷酸缓冲液含NaCl,ml溶菌酶,1mM PMSF,1mM MgCl2,ml Benzonase,其中的菌酶,1mM PMSF,ml Benzonase现加)在冰上混合45分钟,如果pH不在7-8,需要用NaOH一边搅拌一边滴加.如果溶菌酶10mg/ml混合时间可以缩短到10分钟.

生物化学实验报告:Western blotting检测大肠杆菌重组蛋白

实验三 Western blotting检测大肠杆菌重组蛋白 一、实验目的 利用Western Blotting技术,定性(或定量)检测苦荞黄酮醇合酶基因(Flavon ol synthase gene, FtFLS)在大肠杆菌表达宿主菌Escherichia coli BL(DE3)中的诱导表达。 二、实验原理 黄酮醇合酶(FLS,EC 1.14.11.23)属于2-ODD家族,催化黄酮醇合成支路中最后一步氧化反应,也是直接合成黄酮醇的反应。FLS可以使二氢黄酮醇在C3链中C2和C3之间氧化形成双键,从而生成黄酮醇:a Dihydroflavonol + 2-oxoglutarate + O2 a Flavonol + succinate + CO2 + H2O。 本实验采用PCR的方法,在苦荞黄酮醇合酶基因(FtFLS)ORF起始密码子前引入Kpn?酶切位点,去掉终止密码并引入Bam H ?酶切位点。克隆引入酶切位点后的FtFLS到表达载体pET-30b(+)质粒中,其表达产物分别在N-末端和C-末端各含有6 ×His标签。重组质粒(pET-30b(+)-FtFLS)经鉴定后转化表达宿主菌E. coli BL21(DE3)并使用IPTG进行诱导表达。收集诱导0 h、2 h、4 h、6 h和8 h的产物,经SDS-PAGE后用于考马斯亮蓝R-250染色或Western blotting分析。 Western blotting的标准流程如下:蛋白质首先通过SDS-PAGE胺凝胶电泳分离,通过电泳转移到固相支持物上(硝酸纤维素膜、PVDF膜和尼龙膜);将膜上未反应的位点封闭起来,以抑制抗体的非特异性吸附,固定的蛋白质即可与特异性的多克隆或单克隆抗体相互作用并通过放射、生色或化学发光的方法进行定位。 本实验采用小鼠抗聚组氨酸单克隆抗体(Anti-His tag IgG,一抗)与重组FtF LS蛋白的N-末端和C-末端6 ×His发生抗原-抗体特异反应,再利用辣根过氧化物酶标记羊抗小鼠IgG(peroxidase-Goat Anti- Mouse IgG,二抗)与一抗发生特异结合,最后使用DAB进行显色。DAB即:二氨基联苯胺(3, 3'-diaminobenzidine),是过氧化物酶(Peroxidase)的生色底物。DAB在过氧化氢的存在下失去电子而呈现出颜色变化和积累,形成浅棕色不溶性产物。该方法常用于检测过氧化物酶的活性,它灵敏度高,特异性好,在免疫组化,原位杂交,Western blotting等膜显色中

蛋白质纯化方法总结

分离纯化某一特定蛋白质的一般程序可以分为前处理、粗分级、细分级三步。 1.前处理:分离纯化某种蛋白质,首先要把蛋白质从原来的组织或细胞中以溶解的状态释放出来并保持原来的天然状态(如果做不到呢?比如蛋白以包涵体形式存在),不丢失生物活性。为此,动物材料应先提出结缔组织和脂肪组织,种子材料应先去壳甚至去种皮以免手单宁等物质的污染,油料种子最好先用低沸点(为什么呢)的有机溶剂如乙醚等脱脂。然后根据不同的情况,选择适当的方法,将组织和细胞破碎。动物组织和细胞可用电动捣碎机或匀浆机破碎或用超声波处理破碎。植物组织和细胞由于具有纤维素、半纤维素和果胶等物质组成的细胞壁,一般需要用石英砂或玻璃粉和适当的提取液一起研磨的方法或用纤维素酶处理也能达到目的。细菌细胞的破碎比较麻烦,因为整个细菌细胞壁的骨架实际上是一个借共价键连接而成的肽聚糖囊状大分子,非常坚韧。破碎细菌细胞壁的常用方法有超声波破碎,与砂研磨、高压挤压或溶菌酶处理等。组织和细胞破碎后,选择适当的缓冲液把所要的蛋白提取出来。细胞碎片等不溶物用离心或过滤的方法除去。 如果所要的蛋白主要集中在某一细胞组分,如细胞核、染色体、核糖体或可溶性细胞质等,则可利用差速离心的方法将它们分开,收集该细胞组分作为下步纯化的材料。如果碰上所要蛋白是与细胞膜或膜质细胞器结合的,则必须利用超声波或去污剂使膜结构解聚,然后用适当介质提取。 2. 粗分级分离:当蛋白质提取液(有时还杂有核酸、多糖之类)获得后,选用一套适当的方法,将所要的蛋白与其他杂蛋白分离开来。一般这一步的分离用盐析、等电点沉淀和有机溶剂分级分离等方法。这些方法的特点是简便、处理量大,既能除去大量杂质,又能浓缩蛋白溶液。有些蛋白提取液体积较大,又不适于用沉淀或盐析法浓缩,则可采用超过滤、凝胶过滤、冷冻真空干燥或其他方法进行浓缩。 3.细分级分离:样品经粗分级分离以后,一般体积较小,杂蛋白大部分已被除去。进一步纯化,一般使用层析法包括凝胶过滤、离子交换层析、吸附层析以及亲和层析等。必要时还可选择电泳法,包括区带电泳、等电点聚焦等作为最后的纯化步骤。用于细分级分离的方法一般规模较小,但分辨率很高。 结晶是蛋白质分离纯化的最后步骤。尽管结晶过程并不能保证蛋白一定是均一的,但是只有某种蛋白在溶液中数量上占有优势时才能形成结晶。结晶过程本身也伴随着一定程度的纯化,而重结晶又可除去少量夹杂的蛋白。由于结晶过程中从未发现过变性蛋白,因此蛋白的结晶不仅是纯度的一个标志,也是断定制品处于天然状态的有力指标。 蛋白质分离纯化的方法: 一、根据分子大小不同的纯化方法 1、透析和超过滤 2、密度梯度离心 3、凝胶过滤 二、利用溶解度差别的纯化方法 1、等电点沉淀和pH控制 2、蛋白质的盐析和盐溶 3、有机溶剂分级分离法 4、温度对蛋白质浓度的影响 三、根据电荷不同的纯化方法

相关主题
文本预览
相关文档 最新文档