当前位置:文档之家› 大肠杆菌高效表达重组蛋白策略

大肠杆菌高效表达重组蛋白策略

大肠杆菌高效表达重组蛋白策略
大肠杆菌高效表达重组蛋白策略

大肠杆菌高效表达重组蛋白策略

前言

重组蛋白的制备在蛋白结构分析和医疗应用领域十分重要。药物蛋白的研究需要高纯度的重组蛋白来进行药物动力学和物理化学的研究[1]。重组蛋白在检测酶活、连接配体、蛋白相互作用等生物学领域广泛应用。已经表达出多种重组蛋白被证明有很大的应用潜力[2,3]。通过基因工程改造的方法已经获得了许多性状优良的宿主菌表达系统,尤其是通过大肠杆菌可以大量表达外源基因编码的重组蛋白[4]。但是仍然有两个问题制约着大肠杆菌表达系统对重组蛋白的表达:一个是表达量低,还有一个就是表达错误折叠的蛋白包涵体[5]。蛋白的表达和纯化工艺一直在发展进步,但是超过30%的重组蛋白为不具有生物活性的包涵体,严重影响了重组蛋白的生产应用[6,7]。

在理想条件下,重组蛋白由强启动子进行表达,产生大量的具有生物学活性的可溶性重组蛋白。但是,强启动子会导致重组蛋白的过表达,从而影响宿主菌体的生长并产生包涵体[8]。在某些条件下可以通过变性、复性的方法使包涵体恢复活性[9],但是复性后的蛋白是否能够完全恢复活性仍然未可知。一般来讲,可以通过表达条件的优化来促进蛋白的可溶性表达,比如:诱导温度、培养基组成、宿主菌的种类。还可以通过多种方案来解决蛋白不溶的问题:蛋白重新折叠[10],构建融合蛋白[11]。另外想要进一步增加蛋白可溶性可以与分子伴侣共表达[8]或者低温诱导[12]。本文对目前主要的促进蛋白可溶表达的方法进行了比较全面的总结。

1.大肠杆菌表达系统的构建

1.1选择表达宿主菌

对于大规模的表达重组蛋白,一般选择胞表达或者周质空间表达。与周质空间表达相比,胞表达的表达量更高,因此应用更为广泛。在实验研究和实际生产中,已经有很多大肠杆菌表达系统广泛应用于。在表达体系中较为常用的大肠杆菌为B菌株和K12菌株及它们的衍生菌株(表1[13])。美国国立研究院已经认证了K12菌株的标准性以及安全的使用方案,因此K12菌株在生产应用中具有极大的优势。但是由B菌株演变而来的BL系列菌株与K12相比,突变了lon和ompT 两个基因[14],因此具有许多表达优势:产物积累少,缺少蛋白酶,防止产物被降解。这些优势使得BL菌株也具有非常广泛的应用[15,16,17]。

通常来讲,针对不同的重组蛋白,宿主菌的选择也是不同的。如果重组蛋白含有大肠杆菌稀有密码子,就需要宿主能够表达针对这些密码子的tRNA,比如BL21 (DE3) CodonPlus-RIL,Rosetta(DE3)等菌株。如果重组蛋白具有许多二硫键,则需要宿主表达环境为氧化条件的。AD494宿主菌是硫氧还蛋白突变型,可以促进二硫键的折叠。Origami菌株为硫氧还蛋白突变和谷胱甘肽还原酶突变,进一步加强了二硫键在细胞的形成[18]。另外一方面,如果表达的重组蛋白对于宿主菌是有毒性的,则需要表达为包涵体的形式。

表1:常用于重组蛋白表达的宿主菌及其特点

1.2 质粒的设计

理想的基因转录是质粒和启动子功能协同完成的。广泛使用的质粒都是由复制子、启动子、标记位点、多克隆位点、融合蛋白联合调控进行转录的(图1[20]。)重组蛋白的表达量与质粒的拷贝数、结构、分离稳定性有关。如果拷贝数低形成的mRNA数量少,蛋白的表达量就会降低。高拷贝数可以提高蛋白的表达量,但是这也会给宿主造成代上的负担。拷贝数很大程度上由起始子的复制情况决定的,也体现出质粒是严密调控还是松散调控。

图1. 质粒的基本构成

高拷贝数质粒在生产应用中并不令人满意。首先,宿主为了保存高拷贝数质粒,不得不在培养基中增加筛选抗生素。但是FDA限制临床应用产品中添加剂的含量。其次,高拷贝数质粒存在分离不稳定性,尤其是在低抗生素的条件下[23,24]。第三,高拷贝数质粒的表达和维持需要大量能量,不可避免的会影响宿主菌的生长和蛋白的合成。另外一个缺点就是,大量蛋白的过表达容易产生包涵体。

利于蛋白产品高表达的大肠杆菌表达系统应该是严密调控并且高转录效率的。但是如果目的蛋白有毒性,则会损伤宿主细菌。另外有些特殊的宿主只能与特定的质粒组合才能获得理想的重组蛋白。

表2. 大肠杆菌表达中经常使用的启动子

有多种启动子已经成功的用于表达各类重组蛋白(表2[25,26,27,17]),。其中,lac启动子及其衍生物,tac和trc,在研究和工业化中有着重要的应用[28,25]。tac和trc 启动子比lac启动子更强,这三个启动子都是由IPTG进行诱导的。IPTG可以抑制lac启动子的阻遏,因此重组表达的水平由培养基中IPTG的浓度进行调控。但是,IPTG价格比较昂贵,且对许多菌株有毒性作用。为了解决这些问题,通突变筛选的方法获得了可以通过温度的调节控制热敏启动子[29]。从T7噬菌体中得到的T7启动子也广泛的应用于蛋白重组表达。T7噬菌体RNA聚合酶可以识别T7启动子,DNA链的延长速率比大肠杆菌RNA聚合酶快5倍。宿主菌染色体中

含有前噬菌体(λDE3)可以编码T7噬菌体聚合酶,在T7启动子衍生物L8-UV5的调控下可以进行表达。这种新的lac启动子减少了对于AMP的依赖,也减少了对于葡萄糖抑制的敏感性。因此T7启动子系统被认为比lac启动子系统更为强大。通过T7启动子系统可以获得重组目的蛋白占总蛋白含量50%,但是大多以包涵体的形式存在[23,30]。

储热调控启动子系统比如λ噬菌体pL和pR启动子,也用于生产治疗性蛋白。质粒中含有热敏性的cI857阻遏组件,可以通过温度的变化控制pL和pR启动子。由于温控法容易操作,所以适合于大规模的产业化应用,同时也可以减少培养基的污染。但是温控诱导也有其局限性,由于热激会抑制菌体的生长,对重组蛋白的表达也会造成一定压力。但是对于蛋白产品的质量和产量,这些压力都是可以忽略的。λ噬菌体pL和pR启动子也可以在低温下进行调控,应用于表达可溶蛋白或者热敏感蛋白[31]。

应用营养调控启动子phoA和trp时,培养基的营养成分要确保菌体的正常生长并且能够利用磷酸盐进行诱导。这种诱导方法与其他的方法相比,诱导时间围非常广泛[32]。另外一种严谨型启动子lux,从费时弧菌中分离得到,具有群体感应元件,在基因表达中由luxI进行调控,通过添加自诱导AHL物进行转录的激活。AHL的浓度通常为IPTG浓度的1/1000,因此这种方法更加经济利于生产放大[33]。2.融合标签的选择

通过选择蛋白表达环境的方法不一定能够使蛋白可溶,因此进一步采用融合标签的方法加强可溶蛋白的表达。在重组蛋白中增加融合标签可以增加蛋白的可溶性,并且使亲和纯化的过程更为简便[34]。尽管这些标签最开始是用于促进目的蛋白的分选及纯化,近些年的研究表明,融合标签也可以促进蛋白的产量,加强

蛋白的溶解性,并且促进蛋白的正确折叠[35]。

许多大肠杆菌表达质粒都可以在不同的启动子调控下表达多种融合标签:多聚组氨酸、麦芽糖连接蛋白(MBP)、谷胱甘肽转移酶(GST)[36]。选择标签的主要依据是蛋白本身的特性以及蛋白处理的阶段,比如:是否为治疗蛋白,层析分离的成本以及过程可控性的影响[37]。

组氨酸标签时目前应用最为广泛的融合标签。通过金属离子螯合层析的方法可以对组氨酸标签标记的目的蛋白进行分离纯化。蛋白上的组氨酸标签与固载的金属离子奥何物相互作用[38]。另外通过MBP标记的蛋白可以通过形成交联直链淀粉进行一步纯化[39],之后用含有10 mM麦芽糖的非变性缓冲液洗脱连接上的蛋白。GST也是一个亲和力标签,通过固载谷胱甘肽可以对GST标记的可溶蛋白进行分离。洗脱缓冲液一般含有还原型谷胱甘肽。GST标记的重组蛋白也可以通过酶催化或者免疫测定的方法进行定量检测[34]。

想要系统的分析融合标签对于可溶蛋白的作用还是比较困难的,蛋白加入不同的融合标签后的反应也不相同[6,40]。标签的选择十分重要,标签可能会影响天然蛋白之间的相互作用、翻译后修饰、是否可溶、重组蛋白的表达胞定位等多个方面[41,42]。一些标签在很多条件下(含有盐离子、还原剂、表面活性剂)都可以实现功能,因此在之后的研究中可以弹性的选择不同的缓冲液组成,与标签的功能相适应[34]。

3.提高蛋白转录效率

蛋白在大肠杆菌中的转录过程可以被分为4个部分:起始、延伸、终止、核糖体循环。在大多数情况下,翻译的起始是蛋白合成决定速率的关键步骤。这个效率由每条mRNA5’末端的翻译起始区(TIR)的序列和结构决定[43]。翻译起始区

(TIR)由四部分组成:(1)核糖体结合位点(SD)序列,(2)起始密码子,(3)核糖体结合位点和起始密码子之间的区域,(4)在SD序列上游或是起始密码子下游的翻译增强子。调控TIR序列可以降低或者提高大肠杆菌中重组蛋白的表达[44,45]。已经证明了六个核苷酸的SD序列(AGGAGG)比其他更长或者更短的序列在表达绿色荧光蛋白(rGFP)方面效率更高[46]。在这个研究中,A/U合并的加强子使rGFP的表达增强了13倍。在对TIR区域进行修饰的时候要避免mRNA的二级结构覆盖SD 序列或者起始密码子。在SD区域中进行单点突变会使RNA噬菌体MS2外壳蛋白的表达降低500倍[47]。将起始密码子AUG从碱基配对的mRNA结构中暴露出来,可以有效提高大肠杆菌中IL-10的表达量,比野生型的表达量高10倍[48]。最近,科学家研究出了翻译起始的生物学模型,可以通过设计核糖体的结合位点来改变翻译起始速率。这个技术可以实现速率控制,并且细微精确的调整重组蛋白的表达[43]。表达量的精确程度对蛋白的分泌十分重要,如果表达速率太快会影响细菌的分泌过程,导致最终蛋白产量低。但是为了重组蛋白产量的最大化,翻译水平通常选择高分泌水平的表达方案[49,44]。

4.提高mRNA的稳定性

mRNA的稳定性(半衰期)也会影响大肠杆菌中的表达速率。mRNA在大肠杆菌中的降解主要是由于RNA酶的存在,包括切酶(RNase E, K and III和外切酶(RNase II 和多核酸磷酸化酶)。RNA酶和活性和菌体的生长环境有关[50]。对于高表达系统而言,提高mRNA的稳定性主要有两个策略:通过宿主的基因改造或者改变菌体生长条件,使mRNA的两端更具有防护性,避免被RNA酶水解[51]。实验证明,在序列5’端非编码区中添加ompA基因可以形成一个茎环结构,有效的延长外源mRNA的半衰期[52]。在人类IL-2的cDNA翻译终止子的位置添加来源于云金杆菌

的penP基因,可以加强mRNA的稳定性,提高IL-2在大肠杆菌中的表达量[52]。研究表明,在C末端添加的rne基因,可以编码RNA酶,导致mRNA的降解,因此对rne基因进行突变可以提高mRNA的稳定性,促进重组蛋白的表达量[53]。含有这种突变的菌株已经应用于商业生产领域。

5.密码子优化

除了TIR序列和mRNA的稳定性以外,大肠杆菌密码子的特异性也影响蛋白的翻译。表达含有稀有密码子的外源基因会导致菌体生长停滞,蛋白表达过程中过早结束翻译,基因产生移码,缺失等现象[54]。当稀有密码子聚集时,这种现象更明显[55]。解决这个问题的办法是根据大肠杆菌偏好性,综合的优化基因序列,已经有多种方法可以对大肠杆菌和其他宿主菌进行优化[56]。经过密码子优化后的抗体序列在周质空间的表达量为原始基因的100倍[57]。添加稀有密码子同源的tRNA也可以弥补密码子偏好的问题。大肠杆菌Rosetta (DE3)菌株具有pRARE质粒可以编码tRNA,识别只有真核细胞中才具有的稀有密码子。通过这种菌株生产人类重组蛋白时,68种蛋白中有35种的产量获得了明显的提高[58]。这种菌株可以表达在BL21 (DE3)中无法表达的蛋白。应用pRARE质粒提高大肠杆菌重组蛋白的表达量非常实用,其效果在多个试验中得到了验证[59,60]。

6.培养基环境对可溶表达的影响

在大肠杆菌中想要获得具有生物学活性的可溶蛋白需要平衡DNA转录、蛋白翻译、蛋白折叠三个过程。大肠杆菌中高效表达可以获得占总蛋白30%的重组蛋白,如果加入分子伴侣和调节因子可以获得更多。另外,许多蛋白的正确折叠需要二硫键的正确形成以及糖基化,而大肠杆菌胞表达环境不能满足这些调节。

所以许多人类重组蛋白在大肠杆菌中表达会出现大量的错误折叠,形成包涵体。培养条件对于外源基因的表达来说非常重要。一般来讲,可以通过控制合成速率的方法来避免包涵体的形成。主要的影响因素有:不同时间进行诱导,诱导后陪时间、诱导温度、诱导物浓度。

6.1不同时间进行诱导对表达的影响

通常在菌体生长的对数期早期进行诱导,但是也有报道显示可以在对数期末期[61]甚至平台期[62]进行诱导。因此,诱导前的菌体浓度对于重组蛋白的表达来讲是非常重要的影响因素。

6.2 诱导温度和诱导后的培养时间对表达的影响

两个影响蛋白可溶表达的重要影响因素是诱导温度和诱导后时间。通过降低诱导温度的方法可以降低蛋白合成的速率,减少包涵体的形成。通过这种方法已经成功表达了多种难以表达的蛋白[12]。高温可以促进菌体生长,但是易产生质粒丢失,不利于含有外源基因的质粒的表达[63]。在连续培养的过程中这种影响更为明显。总的来说,高温和温度依赖性的疏水作用易与导致聚集沉淀[64]。在菌体中,有一些蛋白适合缓慢、长时间的诱导,那就必然要选择低温条件下[65]。

6.3 诱导剂浓度对表达的影响

低诱导剂浓度可能会导致诱导效率降低,重组蛋白产量降低;诱导剂价格昂贵,如果过量加入不仅会增加成本,还会带来毒性抑制菌体的生长,影响重组蛋白的表达[66]。因此,诱导剂浓度应该严格控制,略高于临界浓度。IPTG浓度在0-1mM之间对菌体的生长速率和菌体浓度没有明显影响[66]。但是,IPTG的浓度需要与宿主菌、载体、重组蛋白相适应。

7.胞蛋白折叠调节因素

胞折叠调节因子包括:折叠伴侣(DnaK和GroEL),维持伴侣(e.g.,IbpA和B),降解伴侣(ClpB),这些蛋白都在保持蛋白正确折叠构象方面有着非常重要的作用。共表达这些分子伴侣可以增强许多种蛋白的溶解性[67]。共表达GroEL/ GroES 时,表达的B型钠尿肽抗体中有65%时可溶的,比非共表达提高了2.4倍[68]。但是,通过共表达的方法并不一定能够增强蛋白的可溶性,也可能会导致菌体代的负担,降低蛋白的表达水平。不同的宿主菌也可以促进蛋白的折叠可溶。破坏txrB 和gor基因,可以促进蛋白二硫键的形成和异构化。通过在胞过表达二硫键异构酶DsbC可以加强二硫键的形成[69]。

结语:

大肠杆菌表达系统是基因工程中最早的表达系统, 但还存在一些问题: 一是有些来自真核生物的蛋白并没有得到有效的表达; 二是选择一个合适的宿主和载体系统要经过多次尝试, 费时费力; 三是重组蛋白的分泌表达技术不如胞表达技术研究得透彻。要解决这些问题可以通过以下途径: (1)通过基因导入将修饰机制引入原核表达系统, 如糖基化、磷酸化、乙酰化和酰胺化等; ( 2)构建一套适应性和功能强大的表达载体系统, 避免大围尝试; (3)深入研究表达系统的分泌

机制,加强信号肽功能, 分子伴侣和转运通路机制的研究, 获得更多的胞外分泌。虽然现在已经出现大量真核表达系统, 但大肠杆菌仍然是基础研究和商业生产重组蛋白的强大工具, 随着各项研究的深入, 重组蛋白的高效表达技术将会越来越完善。

参考文献

[1].Casteleijn M G, Urtti A, Sarkhel S. Expression without boundaries: cell-free protein synthesis in pharmaceutical research[J]. International journal of pharmaceutics, 2013, 440(1): 39-47.

[2].Bondos S E, Bicknell A. Detection and prevention of protein aggregation before, during, and after purification[J]. Analytical biochemistry, 2003, 316(2): 223-231.

[3].Garc?a M, Monge M, León G, et al. Effect of preservatives on IgG aggregation, plement-activating effect and hypotensive activity of horse polyvalent antivenom used in snakebite envenomation[J]. Biologicals, 2002, 30(2): 143-151.snakebite envenomation, Biologicals 30 (2002) 143–151. [4].Kane J F, Hartley D L. Formation of rebinant protein inclusion bodies in Escherichia coli[J]. Trends in biotechnology, 1988, 6(5): 95-101.

[5]. Malhotra A. Tagging for protein expression[J]. Methods in enzymology, 2009, 463: 239-258.

[6].Esposito D, Chatterjee D K. Enhancement of soluble protein expression through the use of fusion tags[J]. Current opinion in biotechnology, 2006, 17(4): 353-358.

[7].Leibly D J, Nguyen T N, Kao L T, et al. Stabilizing additives added during cell lysis aid in the solubilization of rebinant proteins[J]. 2012.

[8].Ventura S, Villaverde A. Protein quality in bacterial inclusion bodies[J]. Trends in biotechnology, 2006, 24(4): 179-185.

[9].Armstrong N, De Lencastre A, Gouaux E. A new protein folding screen: application to the ligand binding domains of a glutamate and kainate receptor and to lysozyme and carbonic anhydrase[J]. Protein Science, 1999, 8(07): 1475-1483.

[10].Buchner J, Pastan I, Brinkmann U. A method for increasing the yield of properly folded rebinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies[J]. Analytical biochemistry, 1992, 205(2): 263-270.

[11].Hammarstr?m M, Hellgren N, van den Berg S, et al. Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli[J]. Protein Science, 2002, 11(2): 313-321.

[12].Vasina J A, Baneyx F. Expression of Aggregation-Prone Rebinant Proteins at Low Temperatures:

A parative Study of theEscherichia coli cspAandtacPromoterSystems[J]. Protein expression and purification, 1997, 9(2): 211-218.

[13].Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to mercial systems[J]. Applied microbiology and biotechnology, 2006, 72(2): 211-222.

[14].Phillips T A, VanBogelen R A, Neidhardt F C. lon gene product of Escherichia coli is a heat-shock protein[J]. Journal of Bacteriology, 1984, 159(1): 283-287.

[15]. Ray M V L, Van Duyne P, Bertelsent A H, et al. Production of rebinant salmon calcitonin by in vitro amidation of an Escherichia coli produced precursor peptide[J]. Nature Biotechnology, 1993, 11(1): 64-70.

[16]. Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to mercial systems[J]. Applied microbiology and biotechnology, 2006, 72(2): 211-222.

[17].van de Walle M, Shiloach J. Proposed mechanism of acetate accumulation in two rebinant Escherichia coli strains during high density fermentation[J]. Biotechnology and bioengineering, 1998, 57(1): 71-78.

[18].Lehmann K, Hoffmann S, Neudecker P, et al. High-yield expression in Escherichia coli, purification, and characterization of properly folded major peanut allergen Ara h 2[J]. Protein

expression and purification, 2003, 31(2): 250-259.

[19].Clark E D B. Protein refolding for industrial processes[J]. Current Opinion in Biotechnology, 2001, 12(2): 202-207.

[20]. Rosano G L, Ceccarelli E A. Rebinant protein expression in Escherichia coli: advances and challenges[J]. Frontiers in microbiology, 2014, 5.

[21]. Chen C, Snedecor B, Nishihara J C, et al. High‐level accumulation of a rebinant antibody fragment in the periplasm of Escherichia coli requires a triple‐mutant (degPprcspr) host strain[J]. Biotechnology and bioengineering, 2004, 85(5): 463-474.

[22]. Jana S, Deb J K. RETRACTED ARTICLE: Strategies for efficient production of heterologous proteins in Escherichia coli[J]. Applied microbiology and biotechnology, 2005, 67(3): 289-298. [23]. Baneyx F. Rebinant protein expression in Escherichia coli[J]. Current opinion in biotechnology, 1999, 10(5): 411-421.

[24].Friehs K. Plasmid copy number and plasmid stability[M]//New trends and developments in biochemical engineering. Springer Berlin Heidelberg, 2004: 47-82.

[25]. Jana S, Deb J K. RETRACTED ARTICLE: Strategies for efficient production of heterologous proteins in Escherichia coli[J]. Applied microbiology and biotechnology, 2005, 67(3): 289-298. [26]. Rozkov A, Enfors S O. Analysis and control of proteolysis of rebinant proteins in Escherichia coli[M]//Physiological Stress Responses in Bioprocesses. Springer Berlin Heidelberg, 2004: 163-195.

[27]. Valdez-Cruz N A, Caspeta L, Pérez N O, et al. Production of rebinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters[J]. Microb Cell Fact, 2010, 9(1): 18.

[28]. Graumann K, Premstaller A. Manufacturing of rebinant therapeutic proteins in microbial systems[J]. Biotechnology journal, 2006, 1(2): 164-186.

[29]. Andrews B, Adari H, Hannig G, et al. A tightly regulated high level expression vector that utilizes a thermosensitive lac repressor: production of the human T cell receptor Vβ5. 3 in Escherichia coli[J]. Gene, 1996, 182(1): 101-109.

[30]. Shin C S, Hong M S, Bae C S, et al. Enhanced production of human mini‐proinsulin in fed‐batch cultures at high cell density of Escherichia coli BL21 (DE3)[pET‐3aT2M2][J]. Biotechnology progress, 1997, 13(3): 249-257.

[31].Menart V, Jev?evar S, Vilar M, et al. Constitutive versus thermoinducible expression of heterologous proteins in Escherichia coli based on strong PR, PL promoters from phage lambda[J]. Biotechnology and bioengineering, 2003, 83(2): 181-190.

[32].Reilly D E, Yansura D G. Production of monoclonal antibodies in E. coli[M]//Current Trends in Monoclonal Antibody Development and Manufacturing. Springer New York, 2010: 295-308. [33]. Thomas M D, Van Tilburg A. Overexpression of foreign proteins using the Vibrio fischeri lux control system[J]. Methods in enzymology, 2000, 305: 315-329.

[34]. Young C L, Britton Z T, Robinson A S. Rebinant protein expression and purification: a prehensive review of affinity tags and microbial applications[J]. Biotechnology journal, 2012, 7(5): 620-634.

[35]. Nallamsetty S, Waugh D S. A generic protocol for the expression and purification of rebinant proteins in Escherichia coli using a binatorial His6-maltose binding protein fusion tag[J]. Nature protocols, 2007, 2(2): 383-391.

[36]. Peti W, Page R. Strategies to maximize heterologous protein expression in Escherichia coli

with minimal cost[J]. Protein expression and purification, 2007, 51(1): 1-10.

[37]. Arnau J, Lauritzen C, Petersen G E, et al. Current strategies for the use of affinity tags and tag removal for the purification of rebinant proteins[J]. Protein expression and purification, 2006, 48(1): 1-13.

[38] .Porath J. Immobilized metal ion affinity chromatography[J]. Protein expression and purification, 1992, 3(4): 263-281.

[39]. di Guana C, Lib P, Riggsa P D, et al. Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein[J]. Gene, 1988, 67(1): 21-30.

[40].Vincentelli R, Bignon C, Gruez A, et al. Medium-scale structural genomics: strategies for protein expression and crystallization[J]. Accounts of chemical research, 2003, 36(3): 165-172. [41].Baens M, Noels H, Broeckx V, et al. The dark side of EGFP: defective polyubiquitination[J]. PloS one, 2006, 1(1): e54.

[42].Brothers S P, Janovick J A, Conn P M. Unexpected effects of epitope and chimeric tags on gonadotropin-releasing hormone receptors: implications for understanding the molecular etiology of hypogonadotropichypogonadism[J]. The Journal of Clinical Endocrinology & Metabolism, 2003, 88(12): 6107-6112.

[43].Salis H M, Mirsky E A, Voigt C A. Automated design of synthetic ribosome binding sites to control protein expression[J]. Nature biotechnology, 2009, 27(10): 946-950.

[44]. Simmons L C, Yansura D G. Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli[J]. Nature biotechnology, 1996, 14(5): 629-634. [45].Wilson B S, Kautzer C R, Antelman D E. Increased protein expression through improved ribosome-binding sites obtained by library mutagenesis[J]. BioTechniques, 1994, 17(5): 944-953.

[46]. Vimberg V, Tats A, Remm M, et al. Translation initiation region sequence preferences in Escherichia coli[J]. BMC molecular biology, 2007, 8(1): 100.

[47]. Swartz J R. Advances in Escherichia coli production of therapeutic proteins[J]. Current Opinion in Biotechnology, 2001, 12(2): 195-201.

[48]. Zhang W, Xiao W, Wei H, et al. mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli[J]. Biochemical and biophysical research munications, 2006, 349(1): 69-78.

[49].Simmons L C, Reilly D, Klimowski L, et al. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylatedantibodies[J]. Journal of immunological methods, 2002, 263(1): 133-147.

[50].Carrier T A, Keasling J D. Controlling messenger RNA stability in bacteria: strategies for engineering gene expression[J]. Biotechnology progress, 1997, 13(6): 699-708.

[51]. Balbás P. Understanding the art of producing protein and nonprotein molecules in Escherichia coli[J]. Molecular biotechnology, 2001, 19(3): 251-267.

[52].Makrides S C. Strategies for achieving high-level expression of genes in Escherichia coli[J]. Microbiological reviews, 1996, 60(3): 512-538.

[53]. Lopez P J, Marchand I, Joyce S A, et al. The C‐terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo[J]. Molecular microbiology, 1999, 33(1): 188-199.

[54]. Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression[J]. Trends in biotechnology, 2004, 22(7): 346-353.

[55]. Gvritishvili A G, Leung K W, Tombran-Tink J. Codon preference optimization increases heterologous PEDF expression[J]. PLoS One, 2010, 5(11): e15056.

[56]. Puigbo P, Guzman E, Romeu A, et al. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences[J]. Nucleic acids research, 2007, 35(suppl 2): W126-W131.

[57]. Tiwari A, Sankhyan A, Khanna N, et al. Enhanced periplasmic expression of high affinity humanized scFv against Hepatitis B surface antigen by codon optimization[J]. Protein expression and purification, 2010, 74(2): 272-279.

[58]. Tegel H, Tourle S, Ottosson J, et al. Increased levels of rebinant human proteins with the Escherichia coli strain Rosetta (DE3)[J]. Protein expression and purification, 2010, 69(2): 159-167.

[59].Huang C J, Chen R H, Vannelli T, et al. Expression and purification of the cancer antigen SSX2:

a potential cancer vaccine[J]. Protein expression and purification, 2007, 56(2): 212-219.

[60]. Ivanov A V, Korovina A N, Tunitskaya V L, et al. Development of the system ensuring a high-level expression of hepatitis C virus nonstructural NS5B and NS5A proteins[J]. Protein expression and purification, 2006, 48(1): 14-23.

[61]. Galloway C A, Sowden M P, Smith H C. Increasing the yield of soluble rebinant protein expressed in E. coli by induction during late log phase[J]. Biotechniques, 2003, 34(3): 524-6, 528, 530.

[62]. Ou J, Wang L, Ding X, et al. Stationary phase protein overproduction is a fundamental capability of Escherichia coli[J]. Biochemical and biophysical research munications, 2004, 314(1): 174-180.

[63].Mosrati R, Nancib N, Boudrant J. Variation and modeling of the probability of plasmid loss as a function of growth rate of plasmid‐bearing cells of Escherichia coli during continuous cultures[J]. Biotechnology and bioengineering, 1993, 41(4): 395-404.

[64]. Kiefhaber T, Rudolph R, Kohler H H, et al. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic petition between folding and aggregation[J]. Nature Biotechnology, 1991, 9(9): 825-829.

[65].Schein C H, Noteborn M H M. Formation of soluble rebinant proteins in Escherichia coli is favored by lower growth temperature[J]. Nature Biotechnology, 1988, 6(3): 291-294.

[66]. Ramirez O T, Zamora R, Espinosa G, et al. Kinetic study of penicillin acylase production by rebinant E. coli in batch cultures[J]. Process Biochemistry, 1994, 29(3): 197-206.

[67]. Kolaj O, Spada S, Robin S, et al. Use of folding modulators to improve heterologous protein production in Escherichia coli[J]. Microbial cell factories, 2009, 8(1): 9.

[68].Maeng B H, Nam D H, Kim Y H. Coexpression of molecular chaperones to enhance functional expression of anti-BNP scFv in the cytoplasm of Escherichia coli for the detection of B-type natriuretic peptide[J]. World Journal of Microbiology and Biotechnology, 2011, 27(6): 1391-1398.

[69]. Bessette P H, ?slund F, Beckwith J, et al. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm[J]. Proceedings of the National Academy of Sciences, 1999, 96(24): 13703-13708.

肠毒性大肠杆菌的绿色荧光蛋白转化及表达研究

第45卷 增刊2006年5月 厦门大学学报(自然科学版)Journal of Xia men University (Natural Science ) Vol .45 Sup. M ay 2006 收稿日期:2005212227 基金项目:福建省发展和改革委员会重大产业技术开发专项 (20042427)资助 作者简介:朱红梅(1981-),女,硕士研究生. 3通讯作者:fzliubo@https://www.doczj.com/doc/305749089.html, ;htzhou@jingxian .x mu .edu .cn 肠毒性大肠杆菌的绿色荧光蛋白转化及表达研究 朱红梅1 ,周涵韬 1,23 ,张赛群 1,2 ,曹 宜2,刘 波 23 (1.厦门大学生命科学学院,福建厦门361005;2.福建省农业科学院生物技术中心,福建福州350003) 摘要:通过电击转化法,将带有 gfp 标记基因的pG LO 质粒成功转化到肠毒素型大肠杆菌K 88、K 99中,经过紫外检测及荧 光显微镜检测均发现转化菌株发出绿色的荧光,表明gfp 基因得到稳定、高效的表达.进一步通过PCR 分子鉴定、血清型鉴定、微生物学特性分析均表明,转化菌株与原始菌株是一致的.该转化菌株将为研究肠毒性大肠杆菌的致病机理及益生素的筛选提供有效的手段. 关键词:肠毒性大肠杆菌;绿色荧光蛋白;遗传转化中图分类号:Q 943.2 文献标识码:A 文章编号:043820479(2006)S 20043204 肠毒素性大肠杆菌(Enter ot oxigenic Escherichia co 2li .,ETEC )是一类引起人和幼畜(初生仔猪、犊牛、羔羊及断奶仔猪)腹泻的重要病原菌,初生幼畜被ETEC 感染后,常因剧烈水样腹泻和迅速脱水而死亡,发病率和死亡率均很高,是目前的研究热点之一[1] .猪源产肠毒素性大肠杆菌的黏附素抗原主要有K 88,K 99,987P . 来自多管水母(A equoreavitoria )的绿色荧光蛋白(green fluorescence p r otein,GFP )基因是目前应用广泛的一种报告基因[2] .在各种不同的系统中表达后,重组GFP 均可吸收蓝光,发出明亮的绿色荧光.与其它生物标记基因比较,它的最大优点是不需要任何底物或额外的辅助因子,利用其发出的荧光就可以实现 对生物的活体监测[3] ,为重组子的筛选及诸多生物学、免疫学试验提供了一个直观手段. 本研究利用gfp 基因标记ETEC,希望获得gfp 基因稳定表达、特性稳定的发光标记菌株,为进一步研究ETEC 侵染途径及治病机理奠定基础,同时也方便益生素的筛选及效果评价. 1 材料与方法 1.1 材 料 肠毒性大肠杆菌菌株C83905(K 88ac ),C83529(K 99)由福建省农科院畜牧兽医研究所提供.质粒pG 2 LO 购自B i o 2Rad 公司,有Amp (氨卞青霉素)抗性和 阿拉伯糖调控蛋白和gfp 基因. 蛋白胨为上海生工BB I 公司产品,酵母抽提物为OXO I D 公司.d NTPs 、TaqDNA 聚合酶、购自上海生工;100bp DNA Ladder 购自B i olabs . BECK MAN 冷冻离心机,B i o 2Rad Gene Pulser Ⅱ电穿孔仪,B i o 2Rad 电泳仪,OLY MP US 荧光显微镜. 1.2 实验方法 (1)质粒提取方法 挑取紫外灯下发绿色荧光的质粒宿主菌DH 5 α的单菌落,于10mL 含100μg ?mL -1 Amp 的LB 液体 培养基中,37℃振荡培养过夜.碱裂解法提取质粒[4] .提取的质粒用0.8%琼脂糖电泳检测纯度. (2)感受态细胞的制备 在NA 液体中摇床震荡培养ETEC 至OD 600为0.6,取菌液冰浴10m in,8000r/m in 4℃离心收集菌体.冰预冷的无菌水洗菌体4次,最后将菌体重悬于10%甘油中,-70℃冰箱保存备用. (3)电击转化 2mm 电转化杯冰上预冷后,分别加入100μL 感受态细胞和50ng 质粒,冰浴10m in 后进行电击转化,电击条件为2.5kV ,200Ω,25μF .电击结束立即加入900μL 的NA 培养基,混匀并转入1.5mL 的Eppen 2dorf 管中,于37℃、120r/m in 的摇床上振荡培养2h, 取100μL 菌液涂布在NA +100μg ?mL -1 Amp +6mg ?mL -1 阿拉伯糖(ara )筛选培养基上,并置于37℃培养箱培养16h . (4)转化子的荧光检测 将筛选培养基上长出的菌落,紫外灯照射检测绿色荧光.用接种环挑取稀释后的菌液置于载波片上,常规压片,荧光显微镜观察. (5)标记菌株的PCR 鉴定 细菌基因组DNA 的提取方法参照少量制备

1-大肠杆菌重组蛋白表达提取及纯化实验(最新整理)

第一天 1、配置LB培养基: 酵母粉15g、胰蛋白胨30g、氯化钠30g,定容至3000ml。调节PH至 7.4(2M NaOH),高压蒸汽灭菌20分钟,37℃保存。分装成15瓶(每瓶200ml)。 2、接种(超净台要提前杀菌通风) 取4瓶上述培养基,每瓶加200μlAMP(1:1000)、60μl菌液。37℃过夜。 第二天 1、扩大培养(超净台) 4瓶扩至16瓶,每瓶培养基加200μlAMP,摇床培养1小时左右。 2、诱导(超净台) 加40μlIPTG,加完后去除封口的除牛皮纸,扎口较松。25℃摇床培养4小时。 3、离心获取菌体 4℃,8000rpm离心25分钟。注意配平。 4、超声波破碎菌体 离心后去上清,向沉淀加入(600mlPB裂解液、300μl溶菌酶、3mlPMSF)。将菌液转入2个烧杯中,冰浴超声波破菌,400W,75次,每次6秒,间隔2秒。离心收集上清液。 600mlPB裂解液:20mM/L PB,10mM/L EDTA,5%甘油,1mM/L DTT,调节PH至7.4。 超声波破碎:首先用去离子水清洗探头,再将盛有菌液的小烧杯置于有冰 水混合物的大烧杯中,冰水界面略高于菌液面即可。探头浸没于菌液中,不可伸入过长。注意破菌过程中由于冰的融化导致的液面变化。 5、抽滤(双层滤纸) 洗胶(GST)。将上述上清液抽滤,滤液与GST胶混合,磁力搅拌过夜。 第三天

1、抽滤蛋白-胶混合液,滤液取样20μl,留电泳。 2、洗杂蛋白,用1×PBS+PMSF(1000:1)约400ml,洗脱若干次,用移液枪吸去上层泡沫(杂蛋白),至胶上无泡沫为止。 3、洗脱目的蛋白,洗脱液加50ml,分3次进行(15+15+15),每次加入后间歇搅拌,自然静置洗脱15分钟,抽滤,勿使胶干,合并洗脱液,取样20μl,留电泳。用洗脱液调零,测OD280。(OD值达到1.5为佳) 4、将洗脱液置于透析袋中(透析袋应提前煮好),将透析袋置于2L透析液1中,加入磁珠置于4℃冰箱内磁力搅拌器上,4小时后换为透析液2。胶的回收:用3M氯化钠溶液(用1×PBS溶液溶解)、1×PBS(无沉淀)洗涤,20%乙醇洗脱,装瓶。 洗脱液:50mM/LTRIS-HCL 、10mM/LGSH 透析液1:20mM/L TRIS-HCL、1mM/L EDTA 、0.15mM/L DTT 透析液2::0.5mM/L EDTA、1×PBS

大肠杆菌表达重组蛋白的超声破碎及纯化

大肠杆菌表达重组蛋白的超声破碎及纯化 一可溶性蛋白的纯化 (一)菌体的破碎 1. 仪器与材料:-80℃冰箱;超声波细胞破碎仪;50mM PBS或50mM Tris-HCl pH 7.5;50 ml 离心管;冷冻高速离心机 2.方法 2.1反复冻融 2.1.1收集菌液500ml,等分10份,4000 r/min 4℃离心15min,弃上清。 2.1.2 菌体沉淀中加入相同菌液体积的50mM PBS 或50mM Tris-HCl(选择使蛋白稳定的缓冲液和pH)重悬洗涤一次。 2.1.3 然后按原菌液体积的1/4加入缓冲液重悬菌体,并加入蛋白酶抑制剂PMSF和EDTA(带His标签不加),PMSF终浓度为100μg/ml, EDTA的终浓度为。取20μl重悬菌液进行电泳,检测蛋白表达的情况(是否表达,是可溶性表达还是包涵体表达)。 2.1.4 将菌液(经检测有表达)在-80度冰冻,室温融解,反复几次(反复冻融三次),由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。 2.2超声波处理 (对超声波及热敏感的蛋白慎用) 2.2.1 将反复冻融的菌液(必要时可加入1mg/ml 溶菌酶,缓冲液pH>8.0,加入后需静置20min),进行超声破碎,超声条件:400W,工作5秒,间隔5秒,重复一定次数,(根据我们的仪器找出一个比较好的工作条件)。直至菌体溶液变清澈为止,大约花费时间。 2.2.2 取少量经超声破碎后的菌液,10000rpm离心10分钟,分别对上清和沉淀进行检测,并用全菌作为阳性对照,检测菌体破碎程度及目标条带占总蛋白的含量。 注意事项: (1)超声破碎具体条件可根据实验情况而定,要掌握好功率和每次超声时间,降低蛋白被降解的可能。 (2)功率大时,每次超声时间可缩短,不能让温度升高,应保持在4度左右,超声时保持冰浴。 (3)菌体破碎后总蛋白浓度的测定可用Bradford法或者紫外吸收法。 (4)可通过SDS-PAGE 电泳观察菌体破碎程度及目标条带占总蛋白的含量。 二包涵体蛋白的纯化 1菌体的破碎(加溶菌酶处理包涵体效果可能不好,包涵体中总是有残留的溶菌酶,你看看有没有不加溶菌酶的,这个先保留好了) 1.1仪器与材料:超声波细胞破碎仪;20mM PBS或20mM Tris-HCl pH 7.5;裂解液buffer A;溶菌酶10mg/ml;50ml ,15ml离心管;冷冻离心机 1.2 方法 (1) 收集菌液500ml,等分10份,4000 r/min 4℃离心15min,弃上清。

大肠杆菌基因组DNA的提取及荧光定量PCR试验设计

大肠杆菌基因组DNA得提取 一、传统法提取大肠杆菌基因组DNA。 1、实验原理 提取DNA得一般过程就是将分散好得组织细胞在含十二烷基硫酸钠(SDS)与蛋白酶K得溶液中消化分解蛋白质,再用酚与氯仿/异戊醇抽提分离蛋白质,得到得DNA溶液经乙醇沉淀使DNA从溶液中析出。 SDS得作用机理就是由于其能结合蛋白,中与蛋白得电性,使蛋白质得非共价键受到破坏,失去二级结构,从而变形失活,蛋白酶K或链霉蛋白酶E均为光谱蛋白酶,其重要特性就是能在SDS与EDTA(乙二胺四乙酸二钠)存在得情况下保持很高得活性。在匀浆后提取DNA得反应体系中,SDS可通过失活蛋白破坏细胞膜、核膜,并使组织蛋白与DNA分离;而蛋白酶K可将蛋白质降解成小肽或氨基酸,使DNA分子完整地分离出来。用酚、酚/氯仿抽提除去蛋白质,最后用无水乙醇沉淀DNA。为获得高纯度DNA,操作过程中常加入RNaseA除去RNA。CTAB(十六烷基三乙基溴化铵)就是一种去污剂,可溶解细胞膜,它能与核酸形成复合物,在高盐溶液中(0、7 mol/L NaCl)就是可溶得,当降低溶液盐浓度到一定得程度(0、3 mol/L NaCl)时,从溶液中沉淀,通过离心就可将CTAB核酸得复合物与蛋白,多糖物质分开。最后通过乙醇或异丙醇沉淀DNA,而CTAB溶于乙醇或异丙醇而除去。 2、实验试剂与仪器 1)实验材料:大肠杆菌 2)实验试剂: LB液体培养基,TE溶液,10%SDS,蛋白酶K,5mol/L NaCl, CTAB/NaCl溶液,酚/氯仿/异戊醇,异丙醇,70%乙醇 3)实验仪器:恒温摇床、低温离心机、微量移液器、水浴锅

3、溶液配制 1)LB液体培养基:细菌培养用胶化蛋白胨10 g/L,细菌培养用酵母提取物5 g/L,NaCl 10g/L,去离子水。 (搅拌溶解后,用5mol/LNaOH调pH至7、0、用去离子水定容100ml,用20/50ml 摇瓶分装5瓶,包扎好,在121℃,1、034×105 pa高压下蒸汽灭菌20min、) 2)TE缓冲液: 1M Tris 溶液(取Tris242、2g,加ddH2O至1600ml,加热溶解) 1M trisHCl pH8、0 溶液(取 1M Tris 溶液160ml用分析纯盐酸调至Ph=8、0(需浓盐酸约8、5ml),加ddH2O定容至200ml,高压灭菌备用) TE缓冲液(10 mM TrisHCl 1Mm EDTA pH=8、0,1M TrisHCl Buffer PH=8、0 5ml 0、5M EDTA PH =8、0 1ml向烧杯中加入约400mldd H2O均匀混合;将溶液 定容到500ml后,高温高压灭菌,室温保存) 3)蛋白酶K:(20mg蛋白酶K溶于1ml无菌双蒸水,20℃备用) 4)CTAB/NaCl溶液:(5% w/v,5gCTAB溶于100ml 0、5M NaCl溶液中,需加热到 65℃使之溶解,然后室温保存) 4、实验方法步骤 1、将大肠杆菌接种到灭菌好得LB培养基中,一级培养过夜,以10%得接种量进行二级培养,培养至对数期(46h)。 2、取菌液1、5ml置于离心管中,以5000rpm冷冻离心1min,弃上清液 3、加190 ul TE悬浮沉淀,并加10 ul 10%SDS,摇匀直至溶液变粘稠 4、加入1ul蛋白酶K(20mg/ml),混匀,37℃保温1小时。 5、加30ul 5 mol/L NaCl,混匀。 6、加30ul CTAB/NaCl溶液,混匀,65℃保温20min

大肠杆菌表达系统与蛋白表达纯化(参考资料)

8.大肠杆菌表达系统与蛋白表达纯化 大肠杆菌表达系统遗传背景清楚,目的基因表达水平高,培养周期短,抗污染能力强等特点, 是分子生物学研究和生物技术产业化发展进程中的重要工具。因此熟练掌握并运用大肠杆菌表达系统的基本原理和常规操作是对每一个研究生来说是非常必要 的。本章节介绍了实验室常用的大肠杆菌表达系统的构成特点,归纳了利用大肠杆菌表达系统纯化重组蛋白的基本流程和详细 操作步骤,并且结合笔者的操作经验,总结了初学者在操作过程中可能遇到的问题和解决策略。 8.1大肠杆菌表达系统的选择与构建 8.1.1表达载体的选择 根据启动子的不同这些载体大致可以分为热诱导启动子,如λPL,cspA 等和另外一类就是广泛使用的IPTG诱导的启动子,如lac,trc,tac,T5/lac operator,T5/lac operator等。根据表达蛋白质的类型可分为单纯表达载体和融合表达载体。融合表达是在目标蛋白的N端或C端添加特殊的序列,以提高蛋白的可溶性,促进蛋白的正确折叠,实现目的蛋白的快速亲和纯化,或者实现目标蛋白的表达定位。常用的用于亲和纯化融合标签包括 Poly-Arg, Poly-His, Strep-Tag Ⅱ,S-tag,MBP等。其中His-Tag 和GST-Tag 是目前使用最多的。His Tag 大多数是连续的六个His 融合于目标蛋白的N端或C端,通过His 与金属离子:Cu2+>Fe2+>Zn2+>Ni2+ 的螯合作用而实现亲和纯化,其中Ni2+是目前使用最广泛的。His 标签具有较小的分子量,融合于目标蛋白的N端和C端不影响目标蛋白的活性,因此纯化过程中大多不需要去除。目前常使用的表达载体主要是由Novagen 提供的pET 系列和Qiagen 公司提供的pQE 系列。 除了His 标签外,还原性谷胱甘肽S-转移酶是另一种实验室常用的融合标签。它可以通过还原性谷胱甘肽琼脂糖亲和层析而快速纯化。此外,与His 相比,GST 很多时候能够促进目标蛋白的正确折叠,提高目标蛋白表达的可溶性,因此,对于那些用his 标签表达易形成包涵体的蛋白,可以尝试用GST融合表达来改进。当然,GST 具有较大的分子量(26kDa),可能对目的蛋白的活性有影响,因此很多时候切除GST是必须的。目前,GST融合表达系统主要是由GE Healthcare (原Amersham)提供。 8.1.2宿主菌的选择 重组质粒的构建一般选择遗传稳定,转化效率高,质粒产量高的菌株作为受体菌,常用的有E.coli DH5α,E.coli JM 109,E.coli DH 10B ,E.coli NovaBlμe等rec A–和end A–型细胞。作为表达宿主菌必须具备几个基本特点:遗传稳定,生长速度快,表达蛋白稳定。具体操作过程中,根据所使用的表达载体的特点,目的基因密码子的组成等选择特定的表达宿主菌。以下是实验室常用的几种表达宿主: BL2: lon和ompT 蛋白酶缺陷型,避免了宿主对外源蛋白的降解。是经典的使用最广泛的表达受体。适用于Tac,Trc,Lac,λPL,cspA等作为启动子的载体。 BL21(DE3): DE3噬菌体溶源于BL21 形成的带有染色体T7 RNA 聚合酶基因大肠杆菌。IPTG 诱导的lac ΜV5 启动子控制T7 RNA 聚合酶基因表达T7 RNA 聚合酶,进而控制T7 表达系统表达目的蛋白。 BL21(DE3)衍生系列:在经典的T7表达系统BL21(DE3)的基础上,Novagen 公司开发了一些特殊的表达宿主细胞。比如:Origami (DE3),Origami B(DE3)和Rosetta-gami (DE3)菌株带有 trxB和

生物化学实验报告记录:Westernblotting检测大肠杆菌重组蛋白

生物化学实验报告记录:Westernblotting检测大肠杆菌重组蛋白

————————————————————————————————作者:————————————————————————————————日期:

实验三 Western blotting检测大肠杆菌重组蛋白 一、实验目的 利用Western Blotting技术,定性(或定量)检测苦荞黄酮醇合酶基因(Flavon ol synthase gene, FtFLS)在大肠杆菌表达宿主菌Escherichia coli BL(DE3)中的诱导表达。 二、实验原理 黄酮醇合酶(FLS,EC 1.14.11.23)属于2-ODD家族,催化黄酮醇合成支路中最后一步氧化反应,也是直接合成黄酮醇的反应。FLS可以使二氢黄酮醇在C3链中C2和C3之间氧化形成双键,从而生成黄酮醇:a Dihydroflavonol + 2-oxoglutarate + O2 a Flavonol + succinate + CO2 + H2O。 本实验采用PCR的方法,在苦荞黄酮醇合酶基因(FtFLS)ORF起始密码子前引入Kpn?酶切位点,去掉终止密码并引入Bam H ?酶切位点。克隆引入酶切位点后的FtFLS到表达载体pET-30b(+)质粒中,其表达产物分别在N-末端和C-末端各含有6 ×His标签。重组质粒(pET-30b(+)-FtFLS)经鉴定后转化表达宿主菌E. coli BL21(DE3)并使用IPTG进行诱导表达。收集诱导0 h、2 h、4 h、6 h和8 h的产物,经SDS-PAGE后用于考马斯亮蓝R-250染色或Western blotting分析。 Western blotting的标准流程如下:蛋白质首先通过SDS-PAGE胺凝胶电泳分离,通过电泳转移到固相支持物上(硝酸纤维素膜、PVDF膜和尼龙膜);将膜上未反应的位点封闭起来,以抑制抗体的非特异性吸附,固定的蛋白质即可与特异性的多克隆或单克隆抗体相互作用并通过放射、生色或化学发光的方法进行定位。 本实验采用小鼠抗聚组氨酸单克隆抗体(Anti-His tag IgG,一抗)与重组FtF LS蛋白的N-末端和C-末端6 ×His发生抗原-抗体特异反应,再利用辣根过氧化物酶标记羊抗小鼠IgG(peroxidase-Goat Anti- Mouse IgG,二抗)与一抗发生特异结合,最后使用DAB进行显色。DAB即:二氨基联苯胺(3, 3'-diaminobenzidine),是过氧化物酶(Peroxidase)的生色底物。DAB在过氧化氢的存在下失去电子而呈现出颜色变化和积累,形成浅棕色不溶性产物。该方法常用于检测过氧化物酶的活性,它灵敏度高,特异性好,在免疫组化,原位杂交,Western blotting等膜显色中

重组蛋白IFNGA在大肠杆菌中的表达与纯化

高中组 11年级 生物化学 3人项目 重组蛋白IFNGA在大肠杆菌中的表达与纯化

重组蛋白IFNGA在大肠杆菌中的表达与纯化 摘要: 干扰素γ(Interferon gamma,IFN-γ)是体内重要的细胞因子,能够通过调控免疫相关基因的转录协调机体的免疫反应,具有抗病毒、抗肿瘤、增强免疫力能功能。目前对于IFN-α、IFN-β重组表达的较多,而关于IFN-γ 蛋白的纯化表达较少.因此,本研究使用PCR方法扩增IFN-γ基因,将IFN-γ基因分别插入原核表达载体pET-30构建重组表达质粒pET-30--IFN-γ,转化大肠杆菌BL21和Rosetta菌株,在IPTG诱导下表达IFN-γ,SDS-PAGE分析重组表达蛋白。结果表明:成功构建重组表达质粒pET-30-IFN-γ;表达产物主要以包涵体形式存在;经Ni2+-NTA亲和层析纯化,获得高纯度重组蛋白。本实验纯化的蛋白有望在今后用于医学和生物学研究中。 关键词:干扰素;IFN-γ 蛋白;大肠杆菌表达系统;重组表达;蛋白纯化; 一、研究背景 干扰素(IFN)是一种广谱抗病毒剂,并不直接杀伤或抑制病毒,而主要是通过细胞表面受体作用使细胞产生抗病毒蛋白,从而抑制病毒(比如:乙肝病毒)的复制。其类型分为三类,α-(白细胞)型、β-(成纤维细胞)型,γ-(淋巴细胞)型;同时还可增强自然杀伤细胞(NK细胞)、巨噬细胞和T淋巴细胞的活力,从而起到免疫调节作用,并增强抗病毒能力。干扰素是一组具有多种功能的活性蛋白质(主要是糖蛋白),是一种由单核细胞和淋巴细胞产生的细胞因子。它们在同种细胞上具有广谱的抗病毒、影响细胞生长,以及分化、调节免疫功能等多种生物活性。 其中,IFN-γ是体内重要的免疫调节因子,能通过与细胞表面受体结合,诱导病毒感染细胞产生多种抗病毒蛋白,使细胞内产生抗病毒状态而发挥抗病毒作用。在诱导效应因子表达的同时,由于IFN-γ能够提高细胞表面MHC分子的表达,增强免疫活性细胞对病原体的杀伤作用,从而协同促进了机体对病毒感染细胞的杀灭,而使机体处于抗病毒状态。虽然各种类型的干扰素均能介导细胞对病毒感染的反应,但IFN-γ 的免疫调节活性在协调免疫反应和确定机体长期的抗病毒状态中发挥更为重要的作用。其作用可大致总结为以下几点:①

第四章基因在大肠杆菌、酵母中的高效的表达

第四章基因在大肠杆菌、酵母中的高效的表达 前言 基因表达是指结构基因在生物体中的转录、翻译以及所有加工过程。 基因工程主要目标之一是生产常规方法难以生产的大量蛋白质产物—即实现基因的高效表达。 基因高效表达研究是指外源基因在某种细胞中的表达活动,即剪切下外源基因片段,拼接到另一个基因表达体系中,使其能获得原生物活性又可高产的表达产物。 第一节基因的表达系统与表达策略 一、最佳的基因表达体系: ⑴目的基因的表达产量高; ⑵表达产物稳定; ⑶生物活性高; ⑷表达产物容易分离纯化。 二、宿主细胞的选择 (一)适合目的基因表达的宿主细胞的要求: 1、容易获得较高浓度的细胞; 2、能利用易得廉价原料; 3、不致病、不产生内毒素; 4、发热量低、需氧低、适当的发酵温度和细胞形态; 5、容易进行代谢调控; 6、容易进行DNA重组技术操作; 7、产物的产量、产率高, 8、产物容易提取纯化。 (二)宿主细胞分为两大类: 1、原核细胞:常用有大肠杆菌、枯草芽胞杆菌、链霉菌等; 2、真核细胞:常用有酵母、丝状真菌、哺乳动物细胞等。 大肠杆菌目前仍是基因工程研究中采用最多的原核表达体系。 优越性: ①对大肠杆菌的基础生物学、分子遗传学等背景知识和基因表达的调控机理已有了深刻了解。 ②有各类菌株和载体系列。 ③目前以实现多种基因的高效表达。表达基因产物形式多样:细胞内不溶性表达(包含体)、细胞内可溶性表达、细胞周质表达等。 ④易培养,成本低。 缺点: ①大肠杆菌中的表达不存在信号肽,产品多为胞内产物,提取困难。 ②因分泌能力不足,真核蛋白质常形成不溶性的包含体,表达产物需经变性复性才恢复活性。

大肠杆菌蛋白表达体系的构建实验报告

大肠杆菌蛋白表达系统的构建与蛋白质的分离纯化 ●实验目的: 1.学会氯化钙制备大肠杆菌DH10B感受态细胞及掌握质粒转化感受态细胞的操作方法 2.转化BL21(DE3)并在合适条件下诱导表达蛋白,掌握蛋白质诱导表达的原理,学习蛋白质诱导表达的方法 3. 学会使用镍柱分离纯化蛋白质,利用PEPC试剂盒测定PEPC的活力。 ●实验原理: 1. 钙转法:Ca2+能与加入的DNA分子结合,形成抗DNA酶(DNase)的羟基-磷酸钙复合物,并黏附在细菌细胞膜的外表面上。当42℃热刺激短暂处理细菌细胞时,细胞膜的液晶结构发生剧烈扰动,并随之出现许多间隙,为DNA分子提供了进入细胞的通道。 2. 诱导BL21(DE3)表达蛋白质的原理:E. coli BL21(DE3)其DE3是整合在细菌基因组上的一种携带T7 RNA聚合酶基因和lacI基因的λ噬菌体,lacI编码的阻遏蛋白与lac操纵基因结合,从而不能进行外源基因的转录和表达,此时宿主菌正常生长。IPTG为乳糖类似物,不能被细胞利用,可以特异结合阻遏蛋白,阻遏蛋白不能与操纵基因结合,则外源基因大量转录并高效表达。 3. 六聚组氨酸纯化蛋白的原理:亲和层析是一种通过生物分子之间的特异性的相互作用来分离物质的层析方法。 组氨酸是具有杂环的氨基酸,每个组氨基酸含有一个咪唑基团,这个化学结构带有很多额外电子,对于带正电的化学物质有静电引力,亲和层析是利用这个原理来进行吸附的,亲和配体(也就是填料)上的阳离子(一般是镍离子)带正电对组氨酸有亲和作用。组氨酸标签是原核表达载体上6个组氨酸的区段,这个标签在PH8.0时不带电,且无免疫原性,对蛋白质的分泌,折叠,功能基本上无影响.能高度亲和镍离子,用于蛋白质的亲和纯化. 4. 目标蛋白:磷酸烯醇丙酮酸羧化酶(Phosphoenolpyruvate carboxykinase,PEPC. 酸羧化酶的催化下,草酰乙酸转变为磷酸烯醇式丙酮酸和二氧化碳。该反应消耗一分子的三磷酸鸟苷以提供磷酰基。在糖异生作用中,此酶与丙酮酸羧化酶一起构成了从丙酮酸转化为磷酸烯醇式丙酮酸的迂回步骤。

大肠杆菌高效表达重组蛋白策略

大肠杆菌高效表达重组蛋白策略 前言 重组蛋白的制备在蛋白结构分析和医疗应用领域十分重要。药物蛋白的研究需要高纯度的重组蛋白来进行药物动力学和物理化学的研究[1]。重组蛋白在检测酶活、连接配体、蛋白相互作用等生物学领域广泛应用。已经表达出多种重组蛋白被证明有很大的应用潜力[2,3]。通过基因工程改造的方法已经获得了许多性状优良的宿主菌表达系统,尤其是通过大肠杆菌可以大量表达外源基因编码的重组蛋白[4]。但是仍然有两个问题制约着大肠杆菌表达系统对重组蛋白的表达:一个是表达量低,还有一个就是表达错误折叠的蛋白包涵体[5]。蛋白的表达和纯化工艺一直在发展进步,但是超过30%的重组蛋白为不具有生物活性的包涵体,严重影响了重组蛋白的生产应用[6,7]。 在理想条件下,重组蛋白由强启动子进行表达,产生大量的具有生物学活性的可溶性重组蛋白。但是,强启动子会导致重组蛋白的过表达,从而影响宿主菌体的生长并产生包涵体[8]。在某些条件下可以通过变性、复性的方法使包涵体恢复活性[9],但是复性后的蛋白是否能够完全恢复活性仍然未可知。一般来讲,可以通过表达条件的优化来促进蛋白的可溶性表达,比如:诱导温度、培养基组成、宿主菌的种类。还可以通过多种方案来解决蛋白不溶的问题:蛋白重新折叠[10],构建融合蛋白[11]。另外想要进一步增加蛋白可溶性可以与分子伴侣共表达[8]或者低温诱导[12]。本文对目前主要的促进蛋白可溶表达的方法进行了比较全面的总结。 1.大肠杆菌表达系统的构建 1.1选择表达宿主菌 对于大规模的表达重组蛋白,一般选择胞表达或者周质空间表达。与周质空间表达相比,胞表达的表达量更高,因此应用更为广泛。在实验研究和实际生产中,已经有很多大肠杆菌表达系统广泛应用于。在表达体系中较为常用的大肠杆菌为B菌株和K12菌株及它们的衍生菌株(表1[13])。美国国立研究院已经认证了K12菌株的标准性以及安全的使用方案,因此K12菌株在生产应用中具有极大的优势。但是由B菌株演变而来的BL系列菌株与K12相比,突变了lon 和ompT两个基因[14],因此具有许多表达优势:产物积累少,缺少蛋白酶,防止产物被降解。这些优势使得BL菌株也具有非常广泛的应用[15,16,17]。 通常来讲,针对不同的重组蛋白,宿主菌的选择也是不同的。如果重组蛋白含有大肠杆菌稀有密码子,就需要宿主能够表达针对这些密码子的tRNA,比如

真核基因在大肠杆菌中的表达形式

真核基因在大肠杆菌中的表达形式 大肠杆菌被内膜和外膜隔成3个腔:胞内、周质和胞外,表达的蛋白定位于这3个腔内。真核基因在大肠杆菌的表达形式根据表达产物的定位一般可分为两类:胞内表达和蛋白分泌表达。胞内表达是最主要的表达形式,表达产物以可溶性蛋白和/或不溶性的包涵体形式存在于大肠杆菌细胞内。而根据表达产物本身的性质又分为融合表达和非融合表达。 一、胞内表达 1、非融合表达 非融合表达即直接表达天然蛋白,所表达的真核生物蛋白肽链的N端不含有任何原核肽段。真核基因通常缺乏能被原核生物的转录和翻译系统识别的序列,包括启动子、有效地核糖体结合位点,有时还缺乏ATG起始密码子和转录终止子,因此必须插入带有这些调控序列的表达载体方能表达。 有时,非融合表达不能产生目的蛋白,尤其是目的蛋白的氨基酸含有甲硫氨酸时。由于甲硫氨酸是由ATG编码的,在大肠杆菌中,氨基端的甲硫氨酸会被不同程度地去除。此外,非融合蛋白易被宿主蛋白酶破坏,产生无活性的蛋白,这是影响表达效率的重要因素。克服的方法有:①采用Ion-营养缺陷型宿主。大肠杆菌蛋白酶的合成主要依赖于黄嘌呤核苷(Ion),用Ion-宿主,使蛋白酶不能合成,从而保护真核蛋白;②克隆Pin基因。T4噬菌体Pin基因产物为细菌蛋白酶抑制剂,将Pin基因克隆到质粒上,并转化大肠杆菌,可保护真核蛋白。 2、融合表达 融合表达即表达的真核蛋白肽链N端含原核生物肽段,融合表达的方法是将真核基因插入启动子后已证实能高效表达的原核结构基因的下游,以产生融合蛋白的方式表达目的基因。由于融合基因5'端为表达载体中的原核基因序列,已优化的翻译起始区的二级结构不受插入外源基因的干扰,因此,融合表达的效率高。需要注意的是,插入基因的转录方向和阅读框架必须与原核片段的阅读框架相吻合,不能产生移码,否则不能表达。 融合蛋白需经处理后方能释放出真核蛋白,常用的后处理方法有溴化氰和蛋白酶裂解,这就要求融合蛋白在其原核肽段与目的蛋白间应含有能被溴化氰和蛋白酶裂解的序列,而且目的蛋白内部不能含有溴化氰和蛋白酶切割位点。溴化氰能切割蛋氨酸残基后的肽键;牛凝血因子X用Russel蝰蛇毒液活化成因子X a后,能在四肽序列Ile-Glu-Gly-Arg中的精氨酸(Arg)后特异地切割肽链;凝血酶(thrombin)也能识别和切割特定的肽序列,这些

大肠杆菌一般培养方法

使用牛肉膏蛋白胨培养基? 组成成分:牛肉膏 3g,蛋白胨 10g,Nacl 5g,琼脂 15~20g,水1000mL,~。? 具体配置步骤:? 1.称药品?按实际用量计算后,按配方称取各种药品放入大烧杯中.牛肉膏可放在小烧杯或表面皿中称量,用热水溶解后倒入大烧杯;也可放在称量纸上称量,随后放入热水中,牛肉膏使与称量纸分离,立即取出纸片.蛋白胨极易吸潮,故称量时要迅速.? 2.加热溶解?在烧杯中加入少于所需要的水量,然后放在石棉网上,小火加热,并用玻棒搅拌,待药品完全溶解后再补充水分至所需量.若配制固体培养基,则将称好的琼脂放入己溶解的药品中,再加热融化,此过程中,需不断搅拌,以防琼脂糊底或溢出,最后补足所失的水分.? 3. 调pH?检测培养基的pH,若pH偏酸,可滴加lmol/L NaOH,边加边搅拌,并随时用pH试纸检测,直至达到所需pH范围.若偏碱,则用lmol/L HCl进行调节.pH 的调节通常放在加琼脂之前.应注意pH值不要调过头,以免回调而影响培养基内各离子的浓度.?

4.过滤?液体培养基可用滤纸过滤,固体培养基可用4层纱布趁热过滤,以利培养的观察.但是供一般使用的培养基,这步可省略.? 5.分装?按实验要求,可将配制的培养基分装入试管或三角瓶内.分装时可用漏斗以免使培养基沾在管口或瓶口上而造成污染. 分装量:固体培养基约为试管高度的l/5,灭菌后制成斜面.分装入三角瓶内以不超过其容积的一半为宜.半固体培养基以试管高度的1/3为宜,灭菌后垂直待凝.? 6.加棉塞?试管口和三角瓶口塞上用普通棉花(非脱脂棉)制作的棉塞.棉塞的形状,大小和松紧度要合适,四周紧贴管壁,不留缝隙,才能起到防止杂菌侵入和有利通气的作用.要使棉塞总长约3/5塞入试管口或瓶口内,以防棉塞脱落.有些微生物需要更好的通气,则可用8层纱布制成通气塞.有时也可用试管帽或塑料塞代替棉塞.? 7.包扎?加塞后,将三角瓶的棉塞外包一层牛皮纸或双层报纸,以防灭菌时冷凝水沾湿棉塞.若培养基分装于试管中,则应以5支或7支在一起,再于棉塞外包一层牛皮纸,用绳扎好.然后用记号笔注明,培养基名称,组别,日期.?

基因克隆及在大肠杆菌中的表达

KGF-2基因克隆及在大肠杆菌中的表达 1引言 角质形成细胞生长因子-2 ( Keratinocyte Growth Factor-2,KGF-2),又称为成纤维细胞生长因子-10 (Fibroblast Growth Factor-10,FGF-10),是FGFs超家族中角质细胞生长因子家族的一员。 1.1 KGF-2的来源和基因结构 KGF-2主要是由成纤维细胞及其他间充质来源的细胞分泌,如成纤维细胞、损伤修复中的肉芽组织以及上皮组织周围的γδT细胞均可分泌KGF-2。此外,上皮组织的损伤还可上调KGF-2的表达。人kgf-2基因位于染色体的5p12-p13区域,其基因为单拷贝,由3个外显子和2个内含子组成。1997年,Emoto等[1]克隆了人的kgf-2的cDNA,其编码的蛋白质由208个氨基酸组成,N端有39个氨基酸组成的疏水信号肽,成熟蛋白含169个氨基酸,其中4个半胱氨酸形成2对二硫键,另一个折叠在肽中。理论相对分子质量为19.3KD,对肝素具有较强的亲和作用。Kgf-2的立体结构与其它FGF家族成员相似,为β三叶草型。 1.2 KGF-2的功能 KGF-2通过与上皮细胞细胞膜上受体作用特异性促进上皮细胞的增殖、分化和迁移,是胚胎器官发育中重要的多功能信号分子。KGF-2能够通过刺激表皮细胞的增殖、迁移和分化直接促进伤口的愈合,在组织的重塑过程中起趋化作用[2]。KGF-2通过与损伤位点黏膜的表皮细胞上的受体结合,引起细胞向受伤处迁移,保护角质细胞免受ROS诱导的细胞凋亡,由此来加快伤口的愈合。此外,KGF-2同时也能通过刺激其它在组织修复和再生过程中有着非常重要作用的细胞因子(如血小板衍生生长因子,转化生长因子和成纤维细胞生长因子)的表达来间接作用于

重组蛋白在大肠杆菌分泌表达的研究进展

天津药学TianjinPharmacy2009年第21卷第4期 综述 重组蛋白在大肠杆菌分泌表达的研究进展’ 郑海洲,刘晓志,宋欣 (华北制药集团新药研究开发有限责任公司,石家庄050015) 摘要长期以来,大肠杆菌是表达外源蛋白的首选表达系统,重组蛋白分泌表达与胞内表达相比有很大优越性,在细胞周质腔不仅能促进重组蛋白二硫键的形成及正确折叠,还能促进分泌蛋白的N一端加工。本文综述了近年来在大肠杆菌中表达可溶性外源蛋白的进展,目的是为了提高外源蛋白的生物活性。 关键词大肠杆菌,分泌表达,重组蛋白 中图分类号:Q591.2文献标识码:A文章编号:1006-5687(2009)04-0040-03 Advanceinthesecretoryexpressionofrecombinantproteininescherichiacoil ZhengHaizhou,“uXiaozhi,S0ngXin (NCPCNewDrugResearchandDevelopmentCo.,Ltd,Shijiazhuang050015) ABSTRACTEscherichiacoliisoneofthemostwidelyusedhostsfortheproductionofrecombinantproteins.Productionof8ecre—toryproteinsinescherichiacoliprovidesseveraladvantagesoverexpressioninthecytoplasm.Periplasmprovidestheoxidativeen—vironmenttofacilitatecorrectdisulfidebondingandproteinfolding.ItalsoallowscorrectprocessingofN—terminalaminoacidduringsecretion.ThisreviewdiscussesrecentadvancesinsecretoryandextracellularproductionofrecombinantproteinsSOastoimprovethebiologicalactivityofthehetemlogousproteins. KEYWORDSescherichiacoli,secretoryexpression,recombinantprotein 大肠杆菌具有遗传背景清楚、繁殖快、成本低、表达量高、表达产物容易纯化等优点,是基因表达技术中发展最早和目前应用最广泛的是经典表达系统…。蛋白分泌表达是指重组异源蛋白通过运输或分泌方式定位于细胞周质,甚至穿过外膜进入培养基中。重组蛋白分泌表达的优势在于胞周质或胞外分泌表达过程中,信号肽在细胞内剪切,更有可能产生目的蛋白的天然N一末端,如果含甲硫氨酸可能会降低产物的可溶性和稳定性旧1;大肠杆菌的胞周质中含有一系列的酶,并提供了一个氧化环境,有利于二硫键的正确形成,并增强巯基蛋白的正确折叠,使活性蛋白质的产量得到 谢负担,使宿主菌适应性增加;周质空间和胞外培养基中宿主菌蛋白含量很低,有利于目的蛋白的纯化。本文将近年来一些提高重组蛋白在大肠杆菌胞周质和胞外分泌表达的策略简述如下。 1利用Ecoli自身存在的分泌途径 根据识别特异的底物及透过细胞外膜机制的不同,革兰阴性菌共分为5种天然分泌系统,即I、Ⅱ、Ⅲ、Ⅳ和V型。革兰阴性菌EcoliK一12和B菌株主 ?收稿日期:2009-06—12分泌机制的研究还不透彻。I型分泌系统通过仅一溶血素途径直接介导胞外分泌,组成元件简单,外源重组蛋白与HlyA 信号序列,需要在体外进行剪切;此外该系统中的一些共表达部件对目的蛋白的转运有竞争作用,重组蛋白 过MTB(mainterminal 后利用以下三种途径透过胞质膜:依赖于SecB的通路、信号识别颗粒(SRP)通路或双精氨酸转移(TAT)J。由于Ecoli跨越内膜的转运装置不完善,蛋白输出能力不够,蛋白酶降解等原因导致分泌效率低,胞外分泌量往往达不到实验或工业生产的要求,目前大肠杆菌的分泌主要是指重组蛋白通过I或Ⅱ型系统透过胞质膜分泌至周质腔。 2信号肽对重组蛋白分泌表达的影响 大肠杆菌的分泌型蛋白定位于内膜、外膜、周质空间和胞外环境,其在N端或C端带有一定的结构,其中N端带有信号肽分子的蛋白,而C端带有分泌信号的系统。信号肽位于分泌蛋白的N端,能有效地引导 万方数据

实验六 GFP在大肠杆菌中的诱导表达和细菌蛋白的超声破碎抽提

实验六GFP在大肠杆菌中的诱导表达和细菌蛋白的超声破碎抽提 [实验原理]把含有外源基因的表达载体转化的大肠杆菌在有相应抗菌素和诱导物的条件下培养,可以诱导外源蛋白在大肠杆菌中表达。利用溶菌酶、反复冻融或超声波破碎的方法将诱导培养的细菌的细胞壁破碎后,可使那些可溶性的外源蛋白释放出来,再利用硫酸铵沉淀、蛋白质层析技术和制备电泳等方法能够将外源蛋白分离纯化出来,供进一步的研究使用。有些过量表达的外源蛋白往往在细菌中形成不溶性的包涵体,细胞破碎、离心后这些包涵体出现在沉淀中,这样的蛋白需要用高浓度的尿素或SDS变性处理后才能溶解。超声破碎时要产生大量的热,会引起蛋白的变性。为了避免产生高温,超声时一般使用间隔的脉冲处理,而且应在冰浴中进行。本实验使用超声波破碎法抽提蛋白,因为表达的外源蛋白GFP(绿色荧光蛋白)比较耐高温,故省去了冰浴。 [仪器、试剂和材料] 1、pGLO转化的大肠杆菌 2、LB培养液 3、氨卞青霉素 4、L-阿拉伯糖 5、硫酸铵 6、细菌蛋白抽提液(100mmol/L NaCl,10mmol/L EDTA,pH 8.0) 7、恒温摇床 8、小型高速离心机 9、超声波组织细胞破碎仪 10、玻璃试管,三角瓶 11、1.5mL和5mL 塑料离心管 12、“枪”,枪头 [实验操作] 1、大肠杆菌的诱导培养: 从Amp+/LB琼脂板上培养的pGLO转化的大肠杆菌中挑取2-3个菌落,接种于Amp+(终浓度为50微克/mL)的5mL LB的玻璃试管中,培养两管,放恒温摇床中,37℃培养过夜。将其中一管保存于4℃,另一管所有5mL的培养物加到装有150mL的LB培养液的三角瓶中,加入L-阿拉伯糖干粉150毫克和氨卞青霉素(终浓度为50微克/mL),恒温摇床上37℃振荡培养过夜。 2、超声破碎抽提: 将诱导培养的大肠杆菌培养物转移到数只5mL离心管中,8000转/分离心5分钟,倾去上清液后,在沉淀上面再加培养物,继续离心,将所有的培养物都收集在一起。每管中加入1.5mL 的细菌蛋白抽提液(100mmol/L NaCl,10mmol/L EDTA,pH 8.0),用枪吹打,使沉淀悬浮。将离心管放在小试管架上,将超声波破碎仪的金属头插到离心管中,调整好试管的位置后关上超声破碎仪的门,打开仪器的电源,对每只离心管中的菌体进行超声破碎。条件:功率80瓦,工作2秒,间隔2秒,每一次处理5个循环。 4次处理后,8000转/分离心5分钟。取出离心管,在紫光灯下观察离心管底的沉淀,如果大量沉淀仍然为绿色,则说明破碎不够,继续按前面方法再超声处理2次,然后再离心。如果仅有很少的绿色沉淀或根本看不到,说明破碎完全。 小心吸出上清液,集中放到干净的5mL离心管中,体积不要超过4mL,逐步地加入少量硫酸铵干粉,使达到饱和,8000转/分离心5分钟。将离心管取出,放紫光灯下观察,沉淀中应该能看到明亮的绿色荧光。将上清液倾去,蛋白沉淀物4℃保存,或冷冻于-20℃。

生物化学实验报告:Western blotting检测大肠杆菌重组蛋白

实验三 Western blotting检测大肠杆菌重组蛋白 一、实验目的 利用Western Blotting技术,定性(或定量)检测苦荞黄酮醇合酶基因(Flavon ol synthase gene, FtFLS)在大肠杆菌表达宿主菌Escherichia coli BL(DE3)中的诱导表达。 二、实验原理 黄酮醇合酶(FLS,EC 1.14.11.23)属于2-ODD家族,催化黄酮醇合成支路中最后一步氧化反应,也是直接合成黄酮醇的反应。FLS可以使二氢黄酮醇在C3链中C2和C3之间氧化形成双键,从而生成黄酮醇:a Dihydroflavonol + 2-oxoglutarate + O2 a Flavonol + succinate + CO2 + H2O。 本实验采用PCR的方法,在苦荞黄酮醇合酶基因(FtFLS)ORF起始密码子前引入Kpn?酶切位点,去掉终止密码并引入Bam H ?酶切位点。克隆引入酶切位点后的FtFLS到表达载体pET-30b(+)质粒中,其表达产物分别在N-末端和C-末端各含有6 ×His标签。重组质粒(pET-30b(+)-FtFLS)经鉴定后转化表达宿主菌E. coli BL21(DE3)并使用IPTG进行诱导表达。收集诱导0 h、2 h、4 h、6 h和8 h的产物,经SDS-PAGE后用于考马斯亮蓝R-250染色或Western blotting分析。 Western blotting的标准流程如下:蛋白质首先通过SDS-PAGE胺凝胶电泳分离,通过电泳转移到固相支持物上(硝酸纤维素膜、PVDF膜和尼龙膜);将膜上未反应的位点封闭起来,以抑制抗体的非特异性吸附,固定的蛋白质即可与特异性的多克隆或单克隆抗体相互作用并通过放射、生色或化学发光的方法进行定位。 本实验采用小鼠抗聚组氨酸单克隆抗体(Anti-His tag IgG,一抗)与重组FtF LS蛋白的N-末端和C-末端6 ×His发生抗原-抗体特异反应,再利用辣根过氧化物酶标记羊抗小鼠IgG(peroxidase-Goat Anti- Mouse IgG,二抗)与一抗发生特异结合,最后使用DAB进行显色。DAB即:二氨基联苯胺(3, 3'-diaminobenzidine),是过氧化物酶(Peroxidase)的生色底物。DAB在过氧化氢的存在下失去电子而呈现出颜色变化和积累,形成浅棕色不溶性产物。该方法常用于检测过氧化物酶的活性,它灵敏度高,特异性好,在免疫组化,原位杂交,Western blotting等膜显色中

相关主题
文本预览
相关文档 最新文档