当前位置:文档之家› 高增益带宽开题报告

高增益带宽开题报告

高增益带宽开题报告
高增益带宽开题报告

南京师范大学中北学院

毕业设计(论文)开题报告

( 13 届)

题目:高增益带宽放大器的研究与设计专业:电子信息工程

姓名: XXX 学号: XXXXXXXX 指导教师:王兴和职称:教授填写日期: 2013年3月20号

南京师范大学中北学院教务处制

开题报告填写要求

1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及院、系审查后生效;

2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网址上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;

3.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2011年4月26日”或“2011-04-26”。

4.院系审查意见栏签章:自办专业盖中北学院教学院长签名章、中北学院公章,非自办专业盖联办二级学院教学院长签名章、联办二级学院公章。

毕业设计(论文)开题报告

1.本课题的目的及研究意义:

随着微电子技术的发展,可变增益放大器是无线通信系统中必不可缺的重要模块,典型地应用在自动增益系统反馈中回路中。它根据接收到的信号强弱,不断进行的手动增益调节,已获得足够大的信号。高增益和带宽往往是矛盾的,增益的增加往往以牺牲带宽为目的。为了克服以上局限,需要电路优化兼顾制造工艺,才能设计出高性能的宽带放大器。因此此课题具有一定的研究意义

2.本课题的国内外的研究现状:

功率放大器发展到现在,有许多种类和应用,模电教科书就介绍过,甲类,乙类,甲乙类。随着科学技术的发展,带宽放大器有了很大的变化,已经广泛应用于军用,民用通信,现在对带宽和放大倍数有了跟高的要求。随着功放相关理论的进一步发展,更优的带宽放大器会出现,并应用于无线电通信

3.本课题的研究内容:

高增益和带宽往往是矛盾的,增益的增加往往以牺牲带宽为目的。为了克服以上局限,需要电路优化兼顾制造工艺,才能设计出高性能的宽带放大器。

本课题研究就是兼顾增益和带宽,从而使放大器达到良好的效果,并且去除电路可能带来的外借干扰。使信号在通频带内进行很好的增益放大。

4.本课题的实行方案、进度及预期效果:

方案:

上网进行相关文档收索,进行学习,有一个初步了解。和导师交流确定设计需要实现的参数,写出初步报告,导师预览。参考人家的设计,为自己设计提供参照

进度:

2月21日~3月3日:查阅资料,对毕业设计有个初步了解

3月4日~3月25日:按照导师要求实现的参数,网上进行搜索实现更进一步了解

3月26日~4月12日:完成开题报告

4月13日~5月1日:开始毕业论文,和毕业设计

5月2日~5月5日:完成毕业设计论文、装订、熟悉论文

5月6日~5月15日:指导老师审阅论文,进行相关修改

5月15日~5月21日:最终定稿

5、已查阅参考文献:

[1]晏泽昕,2-30mHZ带宽功率放大器的研究与设计。电子科技大学。2004年

[2]康华光,电子技术基础,高等教育学出版社,2006年

[3]王康;胡航宇;耿东晛,一种微弱信号的带宽程控高增益放大器,2011年

[4]谈雪梅;俞亚珍,带宽可控增益放大器,2009年

[5]裴忠贵;梅笙,基于VCA822增益自动控制电路,2010年

[6]陈恒江, 刘明峰, 郭良权, 王 ,一种高增益带宽CMOS 全差分运算放大器的设计,2009年

[7]杨骁,齐骋,黄炜炜,凌朝东,一种dB线性数字控制可变增益放大器的设计,2012年

[8]方云龙,宽带放大器设计,2010年

[9]刘宪力田应伟张帅,基于可变增益宽带放大器的设计初探,2009年

[10]单巍,昂志敏,基于AD603的一种微弱信号宽带放大器设计,2009年

[11]粱勤金,一种带宽30MHz_电压增益90dB的视频放大器,1994年

[12]方国军,宽带线性功率放大器的设计,2011年

[13]魏余灵,于善智,带宽75MHz电压增益60dB的放大器,1988年

[14]罗旭全,2~30MHZ功率放大器设计,2009年

[15]王国伟, 施树春,可编程宽带运算放大器的设计与实现,2008年

指导教师意见:

指导教师(签名):

年月日

院(系)审查意见:

学院领导(公章):

年月日

运放带宽相关知识

运放带宽相关知识! 一、单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 二、运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。 就是Gain Bandwidth=放大倍数*信号频率。 当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。

放大器带宽和增益指标

放大器中关于带宽和增益带宽等的主要指标 2008-09-17 14:13 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增以后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 转换速率(也称为压摆率)SR:运放转换速率定义为,运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。由于在转换期间,运放的输入级处于开关状态,所以运放的反馈回路不起作用,也就是转换速率与闭环增益无关。转换速率对于大信号处理是一个很重要的指标,对于一般运放转换速率SR<=10V/μs,高速运放的转换速率SR>10V/μs。目前的高速运放最高转换速率 SR达到6000V/μs。这用于大信号处理中运放选型。 全功率带宽BW:全功率带宽定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个恒幅正弦大信号输入到运放的输入端,使运放输出幅度达到最大(允许一定失真)的信号频率。这个频率受到运放转换速率的限制。近似地,全功率带宽=转换速率/2πVop(Vop是运放的峰值输出幅度)。全功率带宽是一个很重要的指标,用于大信号处理中运放选型。 建立时间:建立时间定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个阶跃大信号输入到运放的输入端,使运放输出由0增加到某一给定值的所需要的时间。由于是阶跃大信号输入,输出信号达到给定值后会出现一定抖动,这个抖动时间称为稳定时间。稳定时间+上升时间=建立时间。对于不同的输出精度,稳定时间有较大差别,精度越高,稳定时间越长。建立时间是一个很重要的指标,用于大信号处理中运放选型。 等效输入噪声电压:等效输入噪声电压定义为,屏蔽良好、无信号输入的的运放,在其输出端产生的任何交流无规则的干扰电压。这个噪声电压折算到运放输入端时,就称为运放输入噪声电压(有时也用噪声电流表示)。对于宽带噪声,普通运放的输入噪声电压有效值约10~20μV。 差模输入阻抗(也称为输入阻抗):差模输入阻抗定义为,运放工作在线性区时,两输入端的电压变化量与对应的输入端电流变化量的比值。差模输入阻抗包括输入电阻和输入电容,在低频时仅指输入电阻。一般产品也仅仅给出输入电阻。采用双极型晶体管做输入级的运放的输入电阻不大于10兆欧;场效应管

高频报告-可调增益宽带放大器设计

可变增益宽带放大器设计 1、应用背景 随着社会发展,随着计算机和互联网的迅速普及,多媒体信息的高速传输呈现飞速增长的趋势,各类型放大器的运用领域不断扩展。在当今科技和通讯高速发展下,各种自动化、智能化仪器装置对信号的要求越来越高,尤其在一些高精度的领域,对小信号的放大与处理要求更为严格。普通的运放存在着本身不可忽略的缺点,用普通的运放设计的放大器一般具有频带窄、噪声系数大、低增益的特点。宽带放大器可以对宽频带、小信号、交直流信号进行高增益的放大,广泛应用于军事、光纤通信、电子战设备及微波仪表和医用设备等高科技领域上,具有很好的发展前景。研究和设计一款高增益、高精度、低噪声、增益可控性高的宽带放大器成为了人们的广泛关注。[1]要同时满足这些性能指标,对电路设计提出了很高的要求,尤其是高频PCB 和电磁兼容的设计要求。 2、设计目的 要求所设计的高频小信号放大器输入/输出电压处于动态可变范围的前提下,同时兼顾增益与带宽的要求,使其具有较宽的频带,同时具备低噪声、工作稳定的特点。 3、系统设计 根据设计要求,可将系统分为以下几部分模块:前置放大电路、中间级增益可调放大电路、后级功率放大电路。为降低噪音,在多级放大电路中,应注意第一级放大电路的降噪设计,可通过选用低噪声芯片设计固定增益放大电路,并注意设计反馈电路。中间级增益可调放大电路可选择可编程增益芯片,通过调整接入电阻调整增益。[2] 图表一 系统设计框图 4、方案选择 4.1芯片类型选择 4.1.1AD603 AD603是一种具有程控增益调整功能的芯片。它是美国ADI 公司的专利产品,是一个低噪、90MHz 带宽增益可调的集成运放,它提供精确的引脚可选增益,90 MHz 带宽时增益范围为-11 dB 至+31 dB ,9 MHz 带宽时增益范围为+9 dB 至+51 dB 。用一个外部电阻便可获得任何中间增益范围。折合到输入的噪声谱密度仅为1.3 nV/√Hz ,采用推荐的±5 V 电源时功耗为125mW 。两片AD603级联时,总增益的控制范围为84.28dB ,因此符合增益可调,带宽较宽、低噪声的设计要求。 图 1AD609引脚图 4.1.2AD811 AD811是一款宽带电流反馈型运算放大器,-3 dB 带宽为120 MHz (G=+2),带宽达到35 MHz (0.1dB,G = +2)。低失真特性(带宽最高可达10 MHz)和宽单位增益带宽,使AD811非常适合用作数据采集系统中的ADC 或DAC 缓冲器。该放大器还具有1.9 nV/√Hz 的低电输入信号 输出信号

日志原稿:运放的单位增益带宽概念

在设计二级运放时,我发现对单位增益带宽这个概念不甚了解,从网上搜集一下相关的资料,整理如下: 单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db (或是相当于运放输入信号的0.707) 所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当 知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 注:需要注意的是单位增益带宽的定义条件是在闭环增益为1条件下。我们知道对于反馈系数为β反馈系统,其3dB 增益为)1(00A A β+,考虑到一般10>>A ,可得β=1。而此时 3dB 带宽变为00)1(ωβA +,故有0000)1(ωωβA A =+。一般我们可以将00ωA 看做是单位增益带宽。而对于同一反馈系统而言,其3dB 增益与3dB 带宽的乘积也都为00ωA ,所以在运放中我们一般也将单位增益带宽,也叫做增益/带宽积。若已知某个运放的单位增益带宽=1MHz ,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz 。 运放的带宽是表示运放能够处理交流小信号的能力。运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真。不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量而对于大信号带宽,即功率带宽,需要根据转换速率来计算。而对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。

仿真增益带宽-通用运算放大器模型

仿真增益带宽-通用运算放大器模型 信号信号链工程师 David Zhao (赵大伟) 运算放大器的增益带宽积(GBW)会怎样影响你的电路并不总是显而易见。宏模型有固定的增益带宽积。虽然你可以深入观察这些模型,当然最好不要瞎弄它们。那么你可以做什么? 你可以使用SPICE中的通用放大器的模型来检测你的电路对增益带宽积的灵敏度。大多数基于SPICE的电路仿真器包含一个简单的运算放大器模型,因此你很容易就可以修改。TINA的仿真界面。 首先将DC开环增益设置为1M(120dB)。然后,主极点的频率(单位为Hz)与其相乘将得到放大器的增益带宽积(单位为MHz)。在这个例子中,10Hz的主极点对应10MHz的增益带宽积。对于5MHz,10MHz和100MHz三种不同的增益带宽积,图2分别给出了对应的开环响应。 注意这个简单的模型存在第二个极点(有些人称它为不受欢迎的极点)。有时候,你会想要第二个极点处在一个非常高的频率,比如说10GHz。对于任何合理的增益带宽积,这将会形成一个理想的90°的相位裕量。在这个范例中,我将第二个极点设定为100MHz,等于我仿真时最大的增益带宽积的值。在100MHz增益带宽积的响应中,你可以看到第二个极点的影响,它将会使得开环响应在100MHz的地方开始弯曲。它使得单位增益带宽大约为78MHz,和一个具有78MHz增益带宽积的运算放大器的情况很相似。运算放大器的单位增益带宽和增益带宽积并不一定是相同的值。 对于有源滤波器的设计,很难判断增益带宽积的需求,它是一个可以应用这种技术的很好的例子。图3中使用FilterPro来设计切比雪夫滤波器,它会给出一些增益带宽积值的推荐,然而它的设计准则可能会比一些情况更严格。对于这个设计而言,它推荐了100MHz或更大的增益带宽积来达到近乎理想的滤波器设计特性。,我设定三种增益带宽积(5MHz,10MHz,100MHz)来对设计进行仿真。从结果中可以得出小于100MHz的增益带宽积已经是符合要求的。对于最终的仿真,你应该使用你所选择的运算放大器的宏模型。 我使用了TINA中的参数步进功能,改变主极点从而改变增益带宽积。其它仿真器也有类似的功能。当然,也可以手动地修改参数。无论是哪种方式,改变通用运算放大器的增益带宽积将帮助你洞察增益带宽积对电路的影响。 你曾经使用运算放大器模型来修改其它参数吗?欢迎给出建议。

增益带宽可调放大器_杨曌

电 子 测 试 0 前言 在实际应用中,需要放大的信号往往在一定频率范围内变化,显然,带宽和增益是放大器的两个重要指标。低噪声、宽频带、高效率的放大器设计在工业中经常出现,并且要求的指标不断提高。本文介绍一款前级为可变增益放大器(VGA)AD603调节增益,后级为电流反馈型运放THS3091放大功率,并采用负反馈思想抑制零点漂移问题的设计方案,此方案还采取多种措施来抵抗干扰,降低噪声,获得很好的效果。 1 设计的主要技术指标 2.1 放大器电压增益Av≥40dB,在0~40dB范围内手动连续调节,或5dB步距调节; 2.2 在最大增益下,放大器可过直流,可(1MHz、2MHz、4MHz 三点)预置并显示,并尽量减小带内波动,衰减斜率≥-40db/十倍频; 2.3 在50Ω的负载上,放大器最大不失真输出电压峰峰值≥10V。 2.4 放大器输入为正弦波时,可测量并数字显示输出电压的峰峰值和有效值,输出电压(峰峰值)测量范围为0.5~10V,相对误差小于5%; 2 理论分析与方案选择 综合分析设计指标,主要难点共有三个方面:一是在较宽的带宽内实现较大的放大能力,且以两种方式调节增益;二是保证实现要求的功率输出;三是放大电路的零点漂移问题,因为带宽下限为0Hz,高精度放大器必须最大程度解决零点漂移。 2.1 带宽增益积 带宽增益积是指放大电路通带电压增益与通频带的乘积。本系统设计最大电压增益≥40dB(100倍),通频带最大达到4MHz,所以增益带宽积为:。 2.2 放大器稳定性 为了使放大器稳定,设计时不能接近自激振荡的条件:幅度平衡条件|AF|=1,相位平衡条件φA+φF=π和起振条件|AF|略大于1,留有裕量越大,放大器愈不易产生自激振荡,但设计也就愈困难。 对于电压反馈型运放AD603,人为引入电阻、电容,使它在原自激振荡频率处产生附加相移,不再满足自激条件。对于电流反馈型运放THS3091,采取注意走线布局、选用合适反馈电阻,使其不因阻值过大而产生大分布电容或降低带宽。 2.3 负反馈抑制零点漂移 零点漂移是放大器输入为零时,输出端的电压不为零,并且电压偏置随时间、温度、电源电压等一起变化的现象。由于AD603本身的零点漂移较大,最大为30mV,所以在AD603输出端引入自动零偏调理电路,即将AD603输入短路,不断采样AD603的输出直流偏置电压,送入单片机处理并通过D/A输出,在调零放大器的调零端加入对应的校正电压,使这个直流偏置电压为零。功率放大电路中,则应尽量采用低温漂运放。 此增益带宽可调放大器主要确定以下五个模块: 2.3.1可变增益放大的选择 采用低噪声、精密控制的可变增益放大器AD603作增益控制核心器件,其温度稳定性高,增益(dB)与控制电压(V) 增益带宽可调放大器 杨 曌 (东南大学,211189) 摘要:本论文介绍一款高指标的增益带宽可调放大器的设计与制作。设计采用多重措施来降低噪声,提高效率,并且采用负反馈思想抑制零点漂移。实测表明,设计出的增益带宽可调放大器各项指标能很好地达到设计要求,具有一定的实用性,为工业生产和电子竞赛提供可靠参考。 关键词:增益带宽可调放大器负反馈精度 Adjustable amplifier gain bandwidth Yang Zhao (SoutheastUniversity,211189) Abstract:This paper describes design and fabrication of super quality amplifier with adjustable gain bandwidth. Multiple measures were taken by this design to reduce noise, increase efficiency, and negative feedback to inhibit of zero-point drift. Measurement shows that this amplifier meets the design requirements, and can provide reliable reference for practicability of industrial production and electronic competition. Keywords:adjustable gain bandwidth;amplifier;negative feedback;accuracy ·16·

高速高增益运算放大器的设计及应用

2008 年 4 月 JOURNAL OF CIRCUITS AND SYSTEMS April, 2008 文章编号:1007-0249 (2008) 02-0031-05 高速高增益运算放大器的设计及应用* 朱颖,何乐年,严晓浪 (浙江大学超大规模集成电路设计研究所,浙江杭州 310027) ??ǖ本文设计了一种高速高增益放大器,该放大器通过增加全差分的共源共栅电路作为辅助放大器来提高运放增益,并采用频率补偿和钳位管相结合的技术改善运放的频响特性,使得运放在通频带范围内类似于单极点运放,大大减少了运放的转换时间。采用SMIC的0.35μm工艺模型进行仿真,结果表明,运放的直流增益达到110dB,带宽266MHz(负载电容C load=1pF),相位裕度55°,只需10ns即可达到0.1%的稳定精度,因而是一种有效的高速高精度运放的实现途径。 ???ǖ运算放大器;高增益;高速 ?????ǖTN401 ?????ǖA 1 引言 随着数模混和电路应用的发展,对模拟电路的速度和精度提出了越来越高的要求。模拟电路的速度和精度与运算放大器的性能有关,为了得到更快的速度和更高的精度,要求运算放大器具有更宽的单位增益带宽和更高的直流电压增益。 本文设计的运放用于光电鼠标芯片中的A/D变换的采样放大级。整体设计要求采样放大器的采样速率为12~40MHz,直流电压增益100dB。它的输入信号是CMOS图像传感器经双差分采样后的输出信号,幅度为±0.4V,经过开关电容电路构成的精确放大两倍的电路后,输出信号幅度为±0.8V。 以上是本文提出的对运放的速度和精度的要求。在通常的情况下,两级运算放大器在实现高精度的同时无法实现高速度[1],共源共栅结构的运放在实现高速的同时无法实现高精度[1]。常规的高增益运算放大器可以实现很高的精度[1],但是零极点对的存在严重影响了运放的稳定性和速度。为了同时满足速度和精度的要求,本文提出了一种改进的套筒型增益提高运算放大器,该运放采用频率补偿和钳位管相结合的技术改善运放的频响特性,减少运放的转换时间。另外为了达到加大输出摆幅的目的,还增加了一级增益接近于1的线性输入/输出特性电路。仿真表明,运放的直流增益达到110dB,带宽266MHz(负载电容C load=1pF),相位裕度55°,只需10ns即可达到0.1%的稳定精度,完全满足光电鼠标芯片采样放大级的要求。 2 电路结构 增益提高运算放大器使用折叠式共源共栅电路作为其辅助放大器,其实质就是通过反馈增加输出阻抗,从而达到增加增益的目的。增益提高放大器的常规电路图如图1(a)所示,改进电路图如图1(b)所示。常规的增益提高运算放大器的稳定性和转换时间常常受到零极点对的影响。如果零极点对所对应的频率小于闭环运放的主极点,需要的转换时间便大大延长。 为了加快转换时间,在辅助放大器的输出端增加了补偿电容,使得零点和极点尽可能地接近甚至对消。频率补偿后运放所表现的转换特性接近于单极点运放的转换特性,大大加快了运放的转换时间,具体将在3.1和3.2.1中论述。 对于折叠式共源共栅电路来说,针对其特点,在辅助放大器输出端增加了一对栅漏短接的NMOS 管,它们只在辅助放大器输出端的差值大于V th时导通,起钳位作用并加快了运放的转换速率。而且 * ????ǖ2005-01-25 ????:2005-07-03

运放带宽,增益带宽积和频率响应

运放带宽,增益带宽积和频率响应 任何电路的带宽都是最重要的。因此,运放带宽是运算放大器电路中一个特别重要的因素. 运放带宽、增益和增益带宽积都是紧密相关的。 由于任何运放都有限的带宽,在任何电路的设计开始时,都必须仔细考虑增益、带宽和频率响应。 运放带宽 虽然运算放大器有一个非常高的增益,这一级别的增益开始下降在一个低频。开环断点,即增益下降3dB的频率通常只有几赫兹。 长寿命和仍然非常流行的741运算放大器有一个6赫兹左右的开环断点。除此之外,响应以-6dB/倍频程或-20 dB/10的速率下降。注:八度是频率的两倍,十年是频率的十倍,因此这两个数字是表达相同特征的两种方式。 典型运算放大器开环增益带宽图

运放增益、带宽及补偿 OP放大器通常具有较低的断点的主要原因之一是,几乎所有OP AMP都包含了一个称为补偿的特性。 这种频率补偿用于确保运算放大器在所有工作条件下保持稳定。最早的运放容易发生不稳定,因此,几乎所有运放IC设计中都引入了补偿,这是理所当然的。 无补偿的典型运放开环增益带宽 补偿对运放带宽的影响是为了减小断点.这意味着,如果没有补偿,断点和带宽将更大,但代价是不稳定。 反馈对运放带宽的影响 在使用运算放大器设计实际电路时,采用负反馈来控制增益。应用这种反馈可以使非常高的增益交换带宽。 这样,就可以在所需的带宽范围内实现非常平坦的频率响应曲线。

闭环运算放大器增益和频率响应 运放增益带宽积 在设计运放电路时,一个称为运放增益带宽积的图形是很重要的。 OP放大器增益带宽积通常是为特定的运放类型、开环配置和加载的输出指定的: GBP=Avxf GBP=Avxf 其中: 运放增益带宽积 AV=电压增益 F=截止频率(Hz) 对于电压反馈放大器,运算放大器增益带宽积为常数.但是,由于增益和带宽之间的关系不是线性的,所以它不适用于电流反馈放大器。 因此,将增益降低10倍将使带宽增加同样的因子。

运放参数的详细解释和分析-part18_压摆率(SR)

我始终觉得运放的压摆率(SR)是与运放的增益带宽积GBW同等重要的一个参数。但它却常常被人们所忽略。说它重要的原因是运入的增益带宽积GBW是在小信号条件下测试的。而运放处理的信号往往是幅值非常大的信号,这更需要关注运放的压摆率。 压摆率可以理解为,当输入运放一个阶跃信号时,运放输出信号的最大变化速度,如下图所示 它的数学表达式为: 因此在运放的数据手册中查到的压摆率的单位是V/us.下表就是运放datasheet中标出的运放的压摆率。 我在实验室里测过OPA333对阶跃信号响应的波形如下图所示。希望能让大家看的更直观:

讨论完定义和现象,我们来看一下压摆率SR的来源。先看一下运放的内部结构: 这个图有点眼熟,是的,运放的SR主要限制在内部第二级的Cc电容上。这个电容同时也决定着运放的带宽。那运放的压摆率,主要是由于对第二级的密勒电容充电过程的快慢所决定的。再深究一下,这个电容的大小会影响到运放的压摆率,同时充电电流的大小也会影响到充电的

快慢。这也就解释了,为什么一般超低功耗的运放压摆率都不会太高。好比水流流速小,池子又大。只能花更长的时间充满池子。 下表是一些常用到TI运放的压摆率和静态电流: 上面简单说了一个影响压摆率SR的因素。下面该说SR对放大电路的影响了。它的直接影响,就是使输出信号的上升时间或下降时间过慢,从而引起失真。下图是测试的OPA333增益G=10时波形。由于OPA333的增益带宽积为350kHz,理论上增益为10的时候的带宽为35kHz。但下图是24kHz时测试的结果。显然输出波形已经失真,原因就是压摆率不够了。带宽也变成了27kHz左右。

运放带宽相关知识

运放带宽相关知识 运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。就是Gain Bandwidth=放大倍数*信号频率。当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。也就是在设计电路时要同时满足增益带宽和功率带宽。 主要交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。 1.开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 2.单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增以后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 3.转换速率(也称为压摆率)SR:运放转换速率定义为,运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。由于在转换期间,运放的输入级处于开关状态,所以运放的反馈回路不起作用,也就是转换速率与闭环增益无关。转换速率对于大信号处理是一个很重要的指标,对于一般运放转换速率SR<=10V/μs,高速运放的转换速率SR>10V/μs。目前的高速运放最高转换速率SR达到6000V/μs。这用于大信号处理中运放选型。 4.全功率带宽BW:全功率带宽定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个恒幅正弦大信号输入到运放的输入端,使运放输出幅度达到最大(允许一定失真)的信号频率。这个频率受到运放转换速率的限制。近似地,全功率带宽=转换速率/2πV op(Vop

增益带宽

4. Unit gain bandwidth The gain–bandwidth product (designated as GBWP, GBW, GBP or GB ) for an amplifier is the product of the amplifier's bandwidth and the gain at which the bandwidth is measured. For devices such as operational amplifiers that are designed to have a simple one-pole frequency response, the gain–bandwidth product is nearly independent of the gain at which it is measured; in such devices the gain–bandwidth product will also be equal to the unity-gain bandwidth of the amplifier (the bandwidth within which the amplifier gain is at least 1). For an amplifier in which negative feedback reduces the gain to below the open-loop gain, the gain–bandwidth product of the closed-loop amplifier will be approximately equal to that of the open-loop amplifier. According to S. Srinivasan, "The parameter characterizing the frequency dependence of the operational amplifier gain is the finite gain–bandwidth product (GB)." Let be a first-order transfer function given by: We will show that: Proof: Example for

教科书所忽略的运算放大电路的有效带宽

教科书所忽略的运算放大电路的有效带宽 你还并不熟悉的增益带宽积概念 这篇博客就来吧啦吧啦运算放大电路设计中,很多人都不清楚的几个概念和应用技巧。关键词主要有:有效带宽、各种增益、负反馈、稳定性、实例解说。 声明:本文只针对单电压反馈型运算放大器(VFA)电路进行分析说明。 整篇文章围绕“我们设计的电路实际的有效带宽是多少?”的问题进行解说。解说的思路: ①举例引出问题简单思考; ②找出埋藏在深处的多个关键点; ③再举经典电路实例说明实际应用中的妙处。 一、先看开题电路图例,引出简单的问题 图1同相、反相放大电路 上面是什么电路,大家不屑言说,不就是放大电路嘛,同相放大、反相放大,没什么可说道的! 只说对了一半,电路是经典到普通的不能再普通的应用了。但在我眼里更愿把它们看成是有源滤波器,如果你经常处理微弱信号,我想你也会有这种看法的。这样一说,估计部分人就该有想法了吧。 不如我们先看看运算放大器噪声模型如下图所示,如果是闭环放大电路则同时要考虑外围电阻热噪声和电流噪声与电阻形成的电压噪声。

图2.1运放噪声模型图2.2 折算到输入的总的等效噪声 等效输入噪声,一般默认为等效到同相输入端。这里也不必去纠结“有的文章中怎么都放在反相输入端”的问题。其实只是2种思路。如果采用“在输入端加入抵消噪声电压”的思路去定义等效输入噪声,那么为了抵消正端的噪声,也就在负端输入相等的噪声了。也就出现了有的文章按此种方法来定义,把等效输入噪声模型就放到了负端。 我们常讲运放在选型时,其中一条规则就是“我们要用最合适的,不是最贵最大带宽的”,因为我们总是试图最小化电路噪声,进而更精密地处理微弱信号。往往带宽最合适是最有效的,就像运放噪声的各种类型都是由对应的噪声频谱密度来定义和给出的,我们最小化带宽也就最大限度地最小化了噪声。同时最小化的带宽也在以低通滤波的功能存在于电路中。 前文既然说是有源滤波器,增益好说,那运放电路有效带宽是多少呢,请看下文慢慢分解。 二、接续上文,解决带宽问题就要先看几个增益相关的概念: 增益带宽积(GBP):大多都不陌生,针对上面的疑问,大家首先想到的估计也是这个概念。很好,它是闭环条件下VFA的普遍属性,当开环频响为单级点时,增益带宽积在数值上就等于单位增益带宽了。可以参见下图理解其概念。 大家在电路设计中有目的地依据GBP选型,都觉得很了解运放了,但是我现在要问:稍微想一下增益带宽积到底是哪个增益和哪个带宽的积呢?为什么是那个样子呢?你的概念里又有几种增益几种带宽呢?下面的内容会逐渐解惑并给出具体结论的。

对高分辨率ADC应用中的增益误差和带宽考虑(精)

对高分辨率ADC应用中的增益误差和带宽考虑更新时间:2008年 09月03日浏览次数: 2 作者:来源:【字体:小大】【收藏】【打印】 想象一下,一个由运算放大器(op amp)所驱动并设置为16位的高分辨率ADC。为了使该对ADC和放大器达到16位的性能,在其它条件相同的情况下,有必要使驱动放大器达到一个显着优于1LSB或0.0015%的增益精度。这个精度水平为选择放大器带来了两个限度,它们都与其增益误差相关联。 与放大器闭环增益相关的两个增益误差来源为: * 由于放大器的有限环路增益而引起的增益误差。 * 由于不充分的闭环带宽导致的增益误差。 在选择放大器时,这两种误差来源都应该考虑到。 图1的波德图显示了开环增益 (AVO),回馈衰减因数(β),噪声增益(1/ β),和环路增益Aβ(或AVOβ@DC)间的关系,为非反相运算放大器电路的频率的功能。在非常低的频率下,开环增益为100dB。这个放大器的主要极点补偿把极点设置于10Hz 与100Hz之间。在一个decade后,这个开环增益的坡度在增长的频度下为-20dB/decade。 环路增益Aβ被定义为开环增益与闭环增益的差。环路增益在回馈理论中具有一个特别位置,可以告诉我们正在产生多少可用于控制信号的开环增益。它与电路的增益误差或精度直接相关。如果一个放大器的开环增益和环路增益很大,那么回馈信号βVOUT就将变成与输入信号近似相同的拷贝。这就解释了为什么运算放大器的两个终端在使用大量的负电流回馈时,变得基本相等。回馈越大,回路增益越大,两个输入之间就越紧密,而所得的差就是增益误差了。注意Aβ与开环增益AVO一样,取决于频率,随频率的降低而降低。更高的环路增益相当于更高的精度。 有限开环增益引起的闭环增益误差 量度由有限开环增益引起的误差是简单直接的。在图

带宽增益积及关于放大器不受基本增益带宽积的电流反馈运放电路

科技名词定义 中文名称:增益带宽积 英文名称:gain-bandwidth product 定义:有源器件或电路的增益与规定带宽的乘积。增益带宽积是评价放大器性能的一项指标。 应用学科:通信科技(一级学科);通信原理与基本技术(二级学科) 例如 一个放大器的GBP号称为1G。如果它的增益为+2V/V。那么带宽 =1G÷2=500M。如果它的增益为+4V/V,那么带宽=1G÷4=250M。以此类推。总之,增益和带宽之间满足这个简单的乘积关系。 所以像某些运放,制造厂商宣称的GBP很高,如3.9G。可是它的条件是G(增益)=+20V/V。其实算下来,带宽也很有限了。而有 些运放,制造厂商用增益为+1V/V,输出电压为small signal条件下的带宽来定义运放,这样还显得实在很多。 首先F上和F下表示的是什么?? 运放增益带宽积=1时,没有放大作用,Po/Pi=1是正确的 增益带宽积只在放大倍数=1 条件下有效,是运放的静态指标作为选择运放使用,放大倍数不为一的时候无效。 “F上与F下是增益为-3dB时的频率”再结合问题不完整也不对; 首先增益只能是+的,-的是指放大倍数,举例40dB即放大倍数为-100; 应该是: 设F上限截止频率=x;F下限截止频率=y; 那么在3dB的增益下,电压放大倍数为 3/(1+ x/F)(1+ y/F) 那么 GBW=(Po/Pi)*电压放大倍数 单位增益带宽GB: 单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db

(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 单位增益带宽, 电压增益为 1 时的带宽. 有的文件称为 "带宽增益乘积" GBW, 可以用来估算你的放大器电路带宽. 如ICL76XX 的GBW=44KHz, 当接成电压跟随器 G=1 时 BW=44KHz, 而接成正反相运算电路 G=10 时, BW=4.4KHz. 关于放大器不受基本增益带宽积的电流反馈运放电路 电流反馈放大器不受基本增益带宽积的限制,随着信号幅度的增加,带宽的损失非常小。因为可以在最小失真的条件下对大信号进行调节,这些放大器在非常高的频率下通常都具有优异的线性度。而电压反馈放大器的带宽随着增益的增加降低,电流反馈放大器在很宽的增益范围上维持其大部分带宽不变。 正因为如此,准确地说,电流反馈运放没有增益带宽积的限制。当然,电流反馈运放也不是无限快,其压摆率(Slew Rate)不受内部偏置电流的限制,但受三极管本身的速度限制。对给定的偏置电流,这就容许不用通常可能影响稳定性的正反馈或其方法来获得较大的压摆率。 那么如何构建这些电路呢?电流反馈运放具有一个与差分对相对的输入缓冲器,该输入缓冲器大多数情况下常常是射极跟随器或其它非常类似的电路。正相输入端具有高阻抗,而缓冲器的输出,即放大器的反相输入具有低阻抗。相比之下,电压反馈放大器的输入都是高阻。 电流反馈运放的输出是电压,并且它与流出或流入运放的反相输入端的电流有关,这由称为互阻抗(transimpedance)的复杂函数Z(s)来表示(图1)。在直流时,互阻抗是一个非常大的数,并且像电压反馈运放一样,它随着频率的增加具有单极点滚降特性。 电流反馈运放灵活性的关键之一是具有可调节的带宽和可调节的稳定性。因为反馈电阻的数值实际上改变放大器的交流环路的动态特性,所以能够影响带宽和稳定性两个方面。加之具有非常高的压摆率和基于反馈电阻的可调节带宽,你可以获得与器件的小信号带宽非常接近的大信号带宽。在甚至更好的情况下,该带宽在很宽的增益范围内大部分都维持不变。而因为具有固有的线性度,你也可以在高频大信号时获得较低的失真。

运放带宽相关知识

一、单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 二、运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。 就是Gain Bandwidth=放大倍数*信号频率。 当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。 在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。 也就是在设计电路时要同时满足增益带宽和功率带宽。

运算放大器带宽计算

运算放大器带宽计算 互阻抗放大器是一款通用运算放大器,其输出电压取决于输入电流和反馈电阻器: 我经常见到图 1 所示的这款用来放大光电二极管输出电流的电路。几乎所有互阻抗放大器电路都需要一个与反馈电阻器并联的反馈电容器 (CF),用以补偿放大器反相节点的寄生电容,进而保持稳定性。 有大量文章都介绍了在使用某种运算放大器时应如何选择反馈电容器,但我认为这根本就是错误的方法。 不管我们半导体制造商相信什么,工程师都不会先选择运算放大器,然后再通过它构建电路!大部分工程师都是先罗列一系列性能要求,再寻找能满足这些要求的部件。 鉴于这种考虑,最好先确定电路中允许的最大反馈电容器,然后选择一个具有足够增益带宽积 (GBW) 的运算放大器,以便能与该反馈电容器稳定工作。 下面是为互阻抗放大器确定所需运算放大器带宽的简易方法的步骤。 步骤 1:确定允许的最大反馈电容。 反馈电容器连同反馈电阻器构成放大器频率响应中的一个极点:

高于这个极点频率时,电路的放大性就会降低。最大反馈电容器值可由反馈电阻器和所需的带宽确定: 我们可通过让反馈电容器等于或小于公式 3 计算得到的值,来确保电路满足带宽要求。 步骤 2:确定放大器反相输入端电容。 以显示光电二极管的接点电容 (CJ) 以及放大器的差分 (CD) 及共模(CCM1、CCM2)输入电容。这些值通常在运算放大器和光电二极管的产品说明书中提供。 从本图中可以很明显看到 CJ、CD 和 CCM2 是并联的,因此反相输入端电容是: 由于非反相端接地,因此 CCM1 不会增加输入电容。这时候 CD 和 CCM2 可能还不知道,因为我们还没有选择特定的运算放大器。 我经常将 10pF 作为其相加过后的合理估计值。随后可用确切值来替代,以确定特定运算放大器是否合适。 既然我们已经确定了 CF 和 CIN 的值,那现在就能计算出所需的运算放大器带宽。我将在第二部分介绍该计算,并在设计实例中应用以上过程。 Part2

放大器中关于带宽和增益带宽等的主要指标

放大器中关于带宽和增益带宽等的主要指标: 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增以后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 转换速率(也称为压摆率)SR:运放转换速率定义为,运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。由于在转换期间,运放的输入级处于开关状态,所以运放的反馈回路不起作用,也就是转换速率与闭环增益无关。转换速率对于大信号处理是一个很重要的指标,对于一般运放转换速率SR<=10V/μs,高速运放的转换速率SR>10V/μs。目前的高速运放最高转换速率SR达到6000V/μs。这用于大信号处理中运放选型。 全功率带宽BW:全功率带宽定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个恒幅正弦大信号输入到运放的输入端,使运放输出幅度达到最大(允许一定失真)的信号频率。这个频率受到运放转换速率的限制。近似地,全功率带宽=转换速率/2πVop(Vop是运放的峰值输出幅度)。全功率带宽是一个很重要的指标,用于大信号处理中运放选型。 建立时间:建立时间定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个阶跃大信号输入到运放的输入端,使运放输出由0增加到某一给定值的所需要的时间。由于是阶跃大信号输入,输出信号达到给定值后会出现一定抖动,这个抖动时间称为稳定时间。稳定时间+上升时间=建立时间。对于不同的输出精度,稳定时间有较大差别,精度越高,稳定时间越长。建立时间是一个很重要的指标,用于大信号处理中运放选型。

相关主题
文本预览
相关文档 最新文档