当前位置:文档之家› 教科书所忽略的运算放大电路的有效带宽

教科书所忽略的运算放大电路的有效带宽

教科书所忽略的运算放大电路的有效带宽
教科书所忽略的运算放大电路的有效带宽

教科书所忽略的运算放大电路的有效带宽

你还并不熟悉的增益带宽积概念

这篇博客就来吧啦吧啦运算放大电路设计中,很多人都不清楚的几个概念和应用技巧。关键词主要有:有效带宽、各种增益、负反馈、稳定性、实例解说。

声明:本文只针对单电压反馈型运算放大器(VFA)电路进行分析说明。

整篇文章围绕“我们设计的电路实际的有效带宽是多少?”的问题进行解说。解说的思路:

①举例引出问题简单思考;

②找出埋藏在深处的多个关键点;

③再举经典电路实例说明实际应用中的妙处。

一、先看开题电路图例,引出简单的问题

图1同相、反相放大电路

上面是什么电路,大家不屑言说,不就是放大电路嘛,同相放大、反相放大,没什么可说道的!

只说对了一半,电路是经典到普通的不能再普通的应用了。但在我眼里更愿把它们看成是有源滤波器,如果你经常处理微弱信号,我想你也会有这种看法的。这样一说,估计部分人就该有想法了吧。

不如我们先看看运算放大器噪声模型如下图所示,如果是闭环放大电路则同时要考虑外围电阻热噪声和电流噪声与电阻形成的电压噪声。

图2.1运放噪声模型图2.2 折算到输入的总的等效噪声

等效输入噪声,一般默认为等效到同相输入端。这里也不必去纠结“有的文章中怎么都放在反相输入端”的问题。其实只是2种思路。如果采用“在输入端加入抵消噪声电压”的思路去定义等效输入噪声,那么为了抵消正端的噪声,也就在负端输入相等的噪声了。也就出现了有的文章按此种方法来定义,把等效输入噪声模型就放到了负端。

我们常讲运放在选型时,其中一条规则就是“我们要用最合适的,不是最贵最大带宽的”,因为我们总是试图最小化电路噪声,进而更精密地处理微弱信号。往往带宽最合适是最有效的,就像运放噪声的各种类型都是由对应的噪声频谱密度来定义和给出的,我们最小化带宽也就最大限度地最小化了噪声。同时最小化的带宽也在以低通滤波的功能存在于电路中。

前文既然说是有源滤波器,增益好说,那运放电路有效带宽是多少呢,请看下文慢慢分解。

二、接续上文,解决带宽问题就要先看几个增益相关的概念:

增益带宽积(GBP):大多都不陌生,针对上面的疑问,大家首先想到的估计也是这个概念。很好,它是闭环条件下VFA的普遍属性,当开环频响为单级点时,增益带宽积在数值上就等于单位增益带宽了。可以参见下图理解其概念。

大家在电路设计中有目的地依据GBP选型,都觉得很了解运放了,但是我现在要问:稍微想一下增益带宽积到底是哪个增益和哪个带宽的积呢?为什么是那个样子呢?你的概念里又有几种增益几种带宽呢?下面的内容会逐渐解惑并给出具体结论的。

图3增益带宽积

讲了增益带宽积和单位增益带宽,再带着上面的问题直接跳转到各种增益的定义。

开环增益,最简单,我们一般用数据手册中的开环频响伯德图,就是它了。

闭环增益,就是加入反馈反馈支路以后的各种增益,其实它包括信号增益、噪声增益。

信号增益,也就是我们要放大的目标信号的增益,分同相放大增益和反相放大增益参见图1。

噪声增益,参考前面提到的等效噪声,噪声增益就是放大电路的等效输入噪声所具有的增益,一般大于等于信号增益。这样的表述感觉也是在循环论证。直接用实际情况说事:就是一个放大电路,当我们把输入短接时,输出的噪声水平除以同相放大增益得到的值就是等效输入噪声。那对应的增益就是噪声增益,当然失调也会算进来,毕竟失调也是一种特殊的噪声----直流噪声。闭环噪声增益只和反馈环路有关。不知说明白没有。不过没关系,下面继续跳转,最后会举例定量计算来得到噪声增益的值。

环路增益,是负反馈理论中的参数,不局限于运放电路,下文会详细说明。

三、独立于运放的负反馈理论的引入和初级解说

我们常用VFA运放有单位增益稳定地有非单位增益稳定地,参见图5,两种类型的频响,也就是完全补偿运放和非完全补偿运放,二者各有各的优缺点,在设计中互为补充,历史选择了他们的共存。图5分别为单级点完全补偿的单位增益稳定的运放和非完全补偿的单位增益不稳定的运放。这里的稳定也就是闭环应用中的稳定性问题,开环时运放的增益等各项指标的离散度比较大,线性区太小,这里也不多述。闭环我这里也就只涉及到负反馈闭环。本篇讨论的运放都默认为VFA型近理想运放,且放大电路都为负反馈。

图4 不同稳定性的运放频响

都说负反馈好,和具有优良指标的运放(都接近无穷大的开环增益和输入阻抗)结合起来,提升了放大电路的很多方面的性能,教科书上都逐条证明之,并简化成虚短虚断的2条百战不殆的应用宝典。

当然正反馈也是闭环,大多用在比较电路中加速响应,用在有源滤波中改善频响。这里强调一点,深度的负反馈只是提高了增益的稳定性,但同时也带来了电路振荡的不稳定隐患,即降低了电路的稳定裕度。

下面直接上负反馈理论,这里只为表达几条自己的意思选择性描述,内容不全,请见谅。强调一下反馈理论是一门自成体系的理论,不是只和运放合作办事的。

图5 负反馈框图

这图,都熟悉,一看求和器下面的“—”号,就知道是负反馈,前向增益为A,反馈系数是β、环路增益就是T=Aβ。

闭环增益公式:

这里直接给出,就不再浪费时间去推导了。其中1+Aβ被称作反馈深度。

反馈网络的加入,使得Vout和Vin的关系也就较可靠地确定下来了。

提到这个图,意在指出环路增益是不依赖与输入输出信号的一个自我运行的环,再如下图详细说明:

图6 负反馈的环路增益求解原理

我们在求解环路增益T时,直接把输入信号(短路)接地,把环路在某一点断开,再注入测试信号VT,获取另一断点处环路反馈回来的信号VR,求出二者比值T=-VR/VT=Aβ(@VIN=0),

废话半天也就是要得到一个结论:环路增益的确和我们的目标信号的位置无关的,目标信号都是要短路的。同时断点的选取的也可以是任意的,可以是输入端也可以是输出端,就看自己是否方便去求。正如下面负反馈与运放结合的例子:选择输出点作为断点,来求解环路增益:

图7 运算放大器环路增益求解过程

输入信号短接为0,断开输出某点,沿着回路2次利用分压比计算,求出T= -VR/VT,

对于近理想运放,认为Rd接近无穷,ro接近于0,以上T的计算公式就近似化简为我们熟悉的公式:

T=a/(1+R2/R1)=aβ

顺便说明一下:在闭环应用中,对于近理想运放,由于噪声是无处不在的,我们一般直接认为噪声增益和反馈系数之倒数等效。这个自己用心想一下就明白

了。

篇幅有限,后续经典应用实例解说请看下篇!

教科书所忽略的运算放大电路的有效带宽&你还并不熟悉的增益带宽

积概念(下)

四、经典电路实例,解说“电路的带宽是多少?”

有了前面几节内容的蹂躏市的铺垫,下面就可以进入正题,经典实例解说。

1、实例一:反相加法器电路,大家看一看它的各项指标如何?

图7 反相求和电路

这个图大家很熟悉,一看就知道是反相加法器,原理就是输入端以电流形式并联反馈,用虚地这条规则来运算,瞬间能给出每一路输入对应的增益和最终的累加输出。

VOUT=-(V1*AV1+V2*AV2+V3*AV3),其中AV*=RFB/R* (注:为表达方便而负号提前)。

上面的运算很正确,但实际设计中我们不光关注放大电路的增益,还要关注能够放大的目标信号的带宽是多少,那各路能处理的输入信号的带宽到底如何呢?

有人说:

V1对应BW1=GBP/Av1

V2对应BW2=GBP/Av2

V3对应BW3=GBP/Av3

也有人说:

V1对应BW1=GBP/(1+AV1)

V2对应BW2=GBP/(1+AV2)

V3对应BW3=GBP/(1+AV3)

哪个对,哪个错或者还有其他答案呢?这时就要想到前面做的铺垫知识了。

其实,上面的两种说法都是错的,这个电路的有效闭环带宽就一个,并且是不依赖于目标信号输入方式的,正确答案应该是:

噪声增益,或者说是1/β(也就是反馈系数的倒数),本身不依赖与目标信号,在本例中Av-noise=1+RFB/Ri,其中Ri为R1,R2,R3的并联值。

同时本电路的有效带宽也就是BW=GBP/Av-noise,即每一路的信号增益都会在这个高端截止频率处出现-3dB的衰减。

可以看出这个值应该比上面两种说法得到的值要小的多。也就是说加法器是牺牲了电路的有效带宽来换取加法特性的。

这个实例说明

① 就是噪声带宽最小化在实际中的应用;

② 也告诉我们不是信号增益决定放大电路带宽的;

③ 指出了增益带宽积是由噪声增益和有效闭环带宽的乘积,更准确地说应该是“增益带宽积和反馈系数的乘积决定了电路的闭环带宽”;

④ 也可应用于本文开头部分提到的有源滤波器的有效带宽的求取得到两种配置的电路具有相同的噪声增益,同时具有相同的有效带宽。

2、实例二,也很经典的电路:运算放大器用于衰减器的配置电路,如下图

图8 运放构成的稳定地衰减器

都说运放不适合做衰减器,毕竟对于大多数运放都不适合工作于单位增益以下。但是只要明白其中奥妙所在,电路稍微一变形,就能做出稳定地衰减器出来,参照TI的技术文档A Single-Supply Op-Amp Circuit Collection。这篇文章很

值得看,即使里面有些错误地配置电路,但主体还是很经典的。衰减器这一电路的技术关键,也同样是噪声增益决定电路稳定性这一方法。兼顾设置目标信号的衰减率,和加大噪声增益满足电路稳定性,一石二鸟,就有了上面的电路和对应的配置表。对于图中电路的噪声增益和信号增益大家可以自行运算试试。总之保证一点----噪声增益足够大后就不怕电路不稳定,即使信号增益是衰减的远小于1的。

3、实例三:噪声增益补偿电路,

电路图如下,信号增益是多少,噪声增益是多少,有效带宽是几何?

图9 提高噪声增益加强电路稳定性

是不是感觉电路很别扭,在实际应用中还是很重要的。

先说这个电路的用武之地,前文提到了VFA运放的两种类型,即完全补偿型和非完全补偿性运放,那么上面的电路即是针对非完全补偿型运放应用于较低信号增益情形下的经典电路。

这里再啰嗦几句,有人会问为什么有单位增益稳定地运放还要考虑单位不稳定的运放呢?前文说了二者各有优点。非完全补偿的运放,具有无与伦比的带宽和压摆率,这种高性能使得此种运放的存在是必然的。比如OPA847,ADA4895等运放。当我们想用优越的带宽和压摆率指标,却又不需要那么大增益时,就有了上面这个电路的经典应用情形出现了。

分析一下:初略考虑,由于虚短存在,RD两端电压差差不多为0,所以对于VIN 而言没有负载效应。

即VIN的增益依然和没有RD时是一样的,为AV=1+RF/RG 。

但RD的加入必然使得反馈环路中的反馈系数大大减小为β=(RD||RG)/[(RD||RG)+RF];

也就是说噪声增益Av-noise=1/β=1+RF/(RD||RG),(注:RD||RG的值可以很小于RG)

总之,RD的加入使得噪声增益大大增加,信号增益不受影响,同时能够保证放大电路的稳定性,也充分利用了非完全补偿型运放的优越特性。这是一石三鸟的事情。当然具体设计参数和优化方式只能因地制宜,这里只讲基础的原理:就是各种增益、实际带宽等参数的获取。

五、总结

从简单的药引子到问题关键点的整理,再到经典实例解说,估计大家心里也都有了个谱,运放电路设计是不是又增加了些许的底气呢?应用实例千千万,万变不离其宗,下面也来汇总几点内容:

① VFA运放自身就是一个低通滤波器,在电路设计时甚至可以直接用来作为优良的有源滤波器,带宽正好、增益可调、噪声最低。

②负反馈理论与运算放大器的结合,使得放大电路的很多性能得到改善,可控度加强,但依然要理解负反馈理论的独立性,它完全不依赖于运放。

③ 闭环噪声增益和电路的反馈系数是不依赖于目标信号输入形式的,只和反馈环本身有关。

④ “反馈系数决定运算放大电路的有效带宽,反馈系数决定了运算放大电路的稳定性”。

⑤ 反馈理论一样用来解决放大电路的稳定性问题的根本;

⑥ 区别对待信号增益、噪声增益,可以在设计中,取长补短、游刃有余、回避很多问题,比如针对非完全补偿型运放的设计举例、衰减器实例中的那样。

好啦,废话这么多,目的就一个:得出上面几条不值钱的总结,分享给大家,想说对于设计问题,多注意细节,多思考本质,把设计当作证明题来做,有理有据有亮点,得分就会高。最后小提一下,打字很幸苦,请尊重作者的劳动!转载请注明出处!

放大器注意参数及概念

最近在使用一款PGA,在PGA输入端接地时发现输出总有个矩形波信号,放大1000倍后非常明显,怀疑是电源引起的干扰。开始的时候在输入正负电源处都加了100uf和0.1的电容,但效果不明显,后来准备再电源输入端再串联一个电阻,一开始电阻选择的是1k,但上电后发现芯片根本都无法工作,测量芯片两端的电源电压发现才一点多v。这时候就看了下数据手册的静态电流,发现竟然是5mA,然后这个PGA是5v供电的,如果PGA正常工作,1k电阻上的分压都能到5v。所以后来用了个50欧的电阻配合着100uf和0.1uf构成了个低通滤波,这样一来芯片工作正常了,然后输出的波纹也小了很多。 在选择运放时应该知道自己的设计需求是什么,从而在运放参数表中来查找。一般来说在设计中需要考虑的问题包括1. 运放供电电压大小和方式选择;2.运放封装选择;3.运放反馈方式,即是VFA (电压反馈运放)还是CFA(电流反馈运放);4.运放带宽;5.偏置电压和偏置t电流选择;6温漂;7.压摆率;8.运放输入阻抗选择;9.运放输出驱动能力大小选择;10.运放静态功耗,即ICC电流大小选择;11.运放噪声选择;12.运放驱动负载稳定时间等等。 偏置电压和输入偏置电流 在精密电路设计中,偏置电压是一个关键因素。对于那些经常被忽视的参数,诸如随温度而变化的偏置电压漂移和电压噪声等,也必须测定。精确的放大器要求偏置电压的漂移小于200μV和输入电压噪声低于6nV/√Hz。随温度变化的偏置电压漂移要求小于1μV/℃。 低偏置电压的指标在高增益电路设计中很重要,因为偏置电压经过放大可能引起大电压输出,并会占据输出摆幅的一大部分。温度感应和张力测量电路便是利用精密放大器的应用实例。 低输入偏置电流有时是必需的。光接收系统中的放大器就必须具有低偏置电压和低输入偏置电流。比如光电二极管的暗电流电流为pA量级,所以放大器必须具有更小的输入偏置电流。CMOS和JFET输入放大器是目前可用的具有最小输入偏置电流的运算放大器。 因为我现在用的是光电池做采集的系统,所以在使用中重点关心了偏置电压和电流。如果还有其他的需要,这时应该对其他参数也需要多考虑了。 1、输入失调电压VIO(Input Offset Voltage) 输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。 输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。 2、输入失调电压的温漂αVIO(Input Offset Voltage Drift) 输入失调电压的温度漂移(又叫温度系数)定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。 这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变

运算放大器组成的各种实用电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 (原文件名:1.jpg)

精心收集:单电源供电时的运算放大器应用大全

单电源运算放大器应用集锦 (一):基础知识 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V 也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC -引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V 也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail 的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail 的电压。虽然器件被指明是轨至轨(Rail-To-Rail)的,如果运放的输出或者输入不支持轨至轨,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是轨至轨。这样才能保证系统的功能不会退化,这是设计者的义务。

运放带宽相关知识

运放带宽相关知识! 一、单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 二、运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。 就是Gain Bandwidth=放大倍数*信号频率。 当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。

(整理)运算放大器基本电路大全

运算放大器基本电路大全 运算放大器电路大全 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一

第5章运算放大电路答案

习题答案 5.1 在题图5.1所示的电路中,已知晶体管V 1、V 2的特性相同,V U on BE 7.0,20)(==β。求 1CQ I 、1CEQ U 、2CQ I 和2CEQ U 。 解:由图5.1可知: BQ CQ BQ )on (BE CC I I R R I U U 213 1 1+=--即 11CQ11.01.4 2.7k 20I -7V .0-V 10CQ CQ I I k +=Ω Ω ? 由上式可解得1CQ I mA 2≈ 2CQ I mA I CQ 21== 而 1CEQ U =0.98V 4.1V 0.2)(2-V 1031=?+=+-R )I I (U BQ CQ CC 2CEQ U =5V 2.5V 2-V 1042=?=-R I U CQ CC 5.2 电路如题图5.2所示,试求各支路电流值。设各晶体管701.U ,)on (BE =>>βV 。 U CC (10V) V 1 R 3 题图5.1

解:图5.2是具有基极补偿的多电流源电路。先求参考电流R I , ()815 17 0266..I R =+?---=(mA ) 则 8.15==R I I (mA ) 9.0105 3== R I I (mA ) 5.425 4==R I I (mA ) 5.3 差放电路如题图5.3所示。设各管特性一致,V U on BE 7.0)(=。试问当R 为何值时,可满足图中所要求的电流关系? 解: 53010 7 0643..I I C C =-==(mA ) 则 I 56V 题图 5.2 R U o 题图5.3

2702 1 476521.I I I I I I C C C C C C == ==== mA 即 2707 065.R .I C =-= (mA ) 所以 61927 07 06...R =-= (k Ω) 5.4 对称差动放大电路如题图5.1所示。已知晶体管1T 和2T 的50=β,并设 U BE (on )=0.7V,r bb ’=0,r ce =。 (1)求V 1和V 2的静态集电极电流I CQ 、U CQ 和晶体管的输入电阻r b’e 。 (2)求双端输出时的差模电压增益A ud ,差模输入电阻R id 和差模输出电阻R od 。 (3)若R L 接V 2集电极的一端改接地时,求差模电压增益A ud (单),共模电压增益A uc 和共模抑制比K CMR ,任一输入端输入的共模输入电阻R ic ,任一输出端呈现的共模输出电阻R oc 。 (4) 确定电路最大输入共模电压围。 解:(1)因为电路对称,所以 mA ...R R .U I I I B E EE EE Q C Q C 52050 21527 062270221=+?-=+?-== = + V 1 V 2 + U CC u i1 u i2R C 5.1k ΩR L U o 5.1kΩ R C 5.1k Ω R E 5.1k Ω -6V R B 2k Ω 题图5.1 R B 2k Ω + - R L /2 + 2U od /2 + U id /2 R C R B V 1 (b) + U ic R C R B V 1 (c) 2R EE + U

运算放大器基本电路大全

运算放大器基本电路大全 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电

放大器带宽和增益指标

放大器中关于带宽和增益带宽等的主要指标 2008-09-17 14:13 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增以后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 转换速率(也称为压摆率)SR:运放转换速率定义为,运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。由于在转换期间,运放的输入级处于开关状态,所以运放的反馈回路不起作用,也就是转换速率与闭环增益无关。转换速率对于大信号处理是一个很重要的指标,对于一般运放转换速率SR<=10V/μs,高速运放的转换速率SR>10V/μs。目前的高速运放最高转换速率 SR达到6000V/μs。这用于大信号处理中运放选型。 全功率带宽BW:全功率带宽定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个恒幅正弦大信号输入到运放的输入端,使运放输出幅度达到最大(允许一定失真)的信号频率。这个频率受到运放转换速率的限制。近似地,全功率带宽=转换速率/2πVop(Vop是运放的峰值输出幅度)。全功率带宽是一个很重要的指标,用于大信号处理中运放选型。 建立时间:建立时间定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个阶跃大信号输入到运放的输入端,使运放输出由0增加到某一给定值的所需要的时间。由于是阶跃大信号输入,输出信号达到给定值后会出现一定抖动,这个抖动时间称为稳定时间。稳定时间+上升时间=建立时间。对于不同的输出精度,稳定时间有较大差别,精度越高,稳定时间越长。建立时间是一个很重要的指标,用于大信号处理中运放选型。 等效输入噪声电压:等效输入噪声电压定义为,屏蔽良好、无信号输入的的运放,在其输出端产生的任何交流无规则的干扰电压。这个噪声电压折算到运放输入端时,就称为运放输入噪声电压(有时也用噪声电流表示)。对于宽带噪声,普通运放的输入噪声电压有效值约10~20μV。 差模输入阻抗(也称为输入阻抗):差模输入阻抗定义为,运放工作在线性区时,两输入端的电压变化量与对应的输入端电流变化量的比值。差模输入阻抗包括输入电阻和输入电容,在低频时仅指输入电阻。一般产品也仅仅给出输入电阻。采用双极型晶体管做输入级的运放的输入电阻不大于10兆欧;场效应管

单电源运放电路图集

单电源运放图集 前言 前段时间去福州出差,看到TI的《A Single-Supply Op-Amp Circuit Collection》这篇文章,觉得不错,就把它翻译了过来,希望能对大家有点用处。这篇文章没有介绍过多的理论知识,想要深究的话还得找其他的文章,比如象这里提到过的《Op Amps for Everyone》。我的E文不好,在这里要感谢《金山词霸》。 ^_^ 水平有限(不是客气,呵呵),如果你发现什么问题请一定指出,先谢谢大家了。 E-mail:wz_carbon@https://www.doczj.com/doc/777814822.html, 王桢 10月29日

介绍 我们经常看到很多非常经典的运算放大器应用图集,但是他们都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1. 1电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限V om以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在V om之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明V oh和V ol。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail的电压。虽然器件被指明是Rail-To -Rail的,如果运放的输出或者输入不支持Rail-To-Rail,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是Rail-To-Rail。这样才能保证系统的功能不会退化,这是设计者的义务。1. 2虚地

几种运算放大器比较器及经典电路的简单分析

运算放年夜器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在阐发它的工作原理时倘没有抓住核心,往往令人头年夜。为此自己特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放年夜器电路的时候,无非是先给电路来个定性,比方这是一个同向放年夜器,然后去推导它的输出与输入的关系,然后得出V o=(1+Rf)Vi,那是一个反向放年夜器,然后得出Vo=Rf*V i……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾面试过至少100个以上的年夜专以上学历的电子专业应聘者,结果能将我给出的运算放年夜器电路阐发得一点不错的没 有超出10个人!其它专业结业的更是可想而知了。 今天,芯片级维修教各位战无不堪的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得入迷入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放年夜倍数很年夜,一般通用型运算放年夜器的开环电压放年夜倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压缺乏1 mV,两输入端近似等电位,相当于“短路”。开环电压放年夜倍数越年夜,两输入真个电位越接近相等。

“虚短”是指在阐发运算放年夜器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不克不及将两输入端真正短路。 由于运放的差模输入电阻很年夜,一般通用型运算放年夜器的输入电阻都在1MΩ以上。因此流入运放输入真个电流往往缺乏1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越年夜,两输入端越接近开路。“虚断”是指在阐发运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不克不及将两输入端真正断路。 在阐发运放电路工作原理时,首先请各位暂时忘失落什么同向放年夜、反向放年夜,什么加法器、减法器,什么差动输入……暂时忘失落那些输入输出关系的公式……这些东东 只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放年夜器(其实在维修中和年夜大都设计过程中,把实际放年夜器当作理想放年夜器来阐发也不会有问题)。 好了,让我们抓过两把“板斧”“虚短”和“虚断”,开始“庖丁解牛”了。 令狐采学

LM324四运放集成电路图文详解

LM324四运放集成电路图文详解 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图2。 图 1 图 2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用, 价格低廉等优点,因此被广泛应用在各种电路中。下面介绍其应用实例。 1.反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大 等。电路无需调试。放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是 消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值,Av=-10。此电路输入电阻为Ri。一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。

2.同相交流放大器 见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。 电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。 3.交流信号三分配放大器 此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。而对信号源的影响极小。因运放Ai 输入电阻高,运放 A1-A4 均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时 Rf=0 的情况,故各放大器电压放大倍数均为 1 ,与分立元件组成的射极跟随器作用相同 R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形有源带通滤波器许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

常见运算放大电路

运算放大器分类总结

一、通用型运算放大器通用型运算放大器 通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。下面就实验室里也常用的LM358来做一下介绍: LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。: 外观管脚图 它的特点如下: ·内部频率补偿 ·直流电压增益高(约100dB) ·单位增益频带宽(约1MHz) ·电源电压范围宽:单电源(3—30V)双电源(±1.5 一±15V) ·低功耗电流,适合于电池供电 ·低输入偏流 ·低输入失调电压和失调电流 ·共模输入电压范围宽,包括接地 ·差模输入电压范围宽,等于电源电压范围 ·输出电压摆幅大(0 至Vcc-1.5V)

大信号频率响应大信号电压开环增益 电压跟随器对小信号脉冲的响应 电压跟随器对小信号脉冲的响应 常用电路: (1)、正向放大器 根据虚短路,虚开路,易知:

(2)、高阻抗差分放大器 电路左半部分可以看作两个同向放大器,分别对e1,e2放大(a+b+1)倍,右半部分为一个差分放大器放大系数为C,因此得到结果: 0 (21)(1) eCeea b (3)、迟滞比较器 将输入电平与参考电平作比较,根据虚短路,虚开路有: 将输入电平与参考电平作比较,根据虚短路,虚开路有: 二、高精度运算放大器 所谓高精度运放是一类受温度影响小,即温漂小,噪声低,灵敏度高,适合微小信号放大用的运算放大器。 高精度运算放大器的运用范畴很广,在产业领域中可用于量测仪器、控

运算放大器积分电路图

运算放大器积分电路图 原理图1 积分运算电路的分析方法与加法电路差不多,反相积分运算电路如图1所 示。根据虚地有, 于是 由此可见,输出电压为输入电压对时间的积分,负号表明输出电压和输入电压在相位上是相反的。 当输入信号是阶跃直流电压U I时,电容将以近似恒流的方式进行充电,输出 电压与时间成线性关系。即 例:在图1的积分器的输入端加入图2中给定输入波形,画出在此输入波形作用下积分器的输出波形,电容器上的初始电压为0。积分器的参数R=10kW、C=0.1mF。 图2给出了在阶跃输入和方波输入下积分器的输出波形。画出积分器输出波形,应对应输入波形,分段绘制。例如对于图2(a)阶跃信号未来之前是一段,阶跃信号到来之后是一段。 对图2(a),当t<t0时,因输入为0,输出电压等于电容器上的电压,初始值为0; 当t≥t0时,u I = -U I,积分器正向积分,输出电压 要注意,当输入信号在某一个时间段等于零时,参阅图2(b)的1ms~2ms、 3ms~4ms…各段。积分器的输出是不变的,保持前一个时间段的最终数值。因为虚地的原因,当输入为零时,积分电阻 R 两端无电位差,故R中无电流,因此 C 不能放电,故输出电压保持不变。 实际应用积分电路时,由于运放的输入失调电压、输入偏置电流和失调电流的影响,会出现积分误差;此外,积分电容的漏电流也是产生积分误差的原因之一。

(a) 阶跃输入信号(b)方波输入信号 图2 积分器的输入和输出波形 实际的积分电路,应当采用失调电压、偏置电流和失调电流较小的运放,并在同相输入端接入可调平衡电阻;选用泄漏电流小的电容,如薄膜电容、聚苯乙烯电容,可以减少积分电容的漏电流产生的积分误差。

增益带宽可调放大器_杨曌

电 子 测 试 0 前言 在实际应用中,需要放大的信号往往在一定频率范围内变化,显然,带宽和增益是放大器的两个重要指标。低噪声、宽频带、高效率的放大器设计在工业中经常出现,并且要求的指标不断提高。本文介绍一款前级为可变增益放大器(VGA)AD603调节增益,后级为电流反馈型运放THS3091放大功率,并采用负反馈思想抑制零点漂移问题的设计方案,此方案还采取多种措施来抵抗干扰,降低噪声,获得很好的效果。 1 设计的主要技术指标 2.1 放大器电压增益Av≥40dB,在0~40dB范围内手动连续调节,或5dB步距调节; 2.2 在最大增益下,放大器可过直流,可(1MHz、2MHz、4MHz 三点)预置并显示,并尽量减小带内波动,衰减斜率≥-40db/十倍频; 2.3 在50Ω的负载上,放大器最大不失真输出电压峰峰值≥10V。 2.4 放大器输入为正弦波时,可测量并数字显示输出电压的峰峰值和有效值,输出电压(峰峰值)测量范围为0.5~10V,相对误差小于5%; 2 理论分析与方案选择 综合分析设计指标,主要难点共有三个方面:一是在较宽的带宽内实现较大的放大能力,且以两种方式调节增益;二是保证实现要求的功率输出;三是放大电路的零点漂移问题,因为带宽下限为0Hz,高精度放大器必须最大程度解决零点漂移。 2.1 带宽增益积 带宽增益积是指放大电路通带电压增益与通频带的乘积。本系统设计最大电压增益≥40dB(100倍),通频带最大达到4MHz,所以增益带宽积为:。 2.2 放大器稳定性 为了使放大器稳定,设计时不能接近自激振荡的条件:幅度平衡条件|AF|=1,相位平衡条件φA+φF=π和起振条件|AF|略大于1,留有裕量越大,放大器愈不易产生自激振荡,但设计也就愈困难。 对于电压反馈型运放AD603,人为引入电阻、电容,使它在原自激振荡频率处产生附加相移,不再满足自激条件。对于电流反馈型运放THS3091,采取注意走线布局、选用合适反馈电阻,使其不因阻值过大而产生大分布电容或降低带宽。 2.3 负反馈抑制零点漂移 零点漂移是放大器输入为零时,输出端的电压不为零,并且电压偏置随时间、温度、电源电压等一起变化的现象。由于AD603本身的零点漂移较大,最大为30mV,所以在AD603输出端引入自动零偏调理电路,即将AD603输入短路,不断采样AD603的输出直流偏置电压,送入单片机处理并通过D/A输出,在调零放大器的调零端加入对应的校正电压,使这个直流偏置电压为零。功率放大电路中,则应尽量采用低温漂运放。 此增益带宽可调放大器主要确定以下五个模块: 2.3.1可变增益放大的选择 采用低噪声、精密控制的可变增益放大器AD603作增益控制核心器件,其温度稳定性高,增益(dB)与控制电压(V) 增益带宽可调放大器 杨 曌 (东南大学,211189) 摘要:本论文介绍一款高指标的增益带宽可调放大器的设计与制作。设计采用多重措施来降低噪声,提高效率,并且采用负反馈思想抑制零点漂移。实测表明,设计出的增益带宽可调放大器各项指标能很好地达到设计要求,具有一定的实用性,为工业生产和电子竞赛提供可靠参考。 关键词:增益带宽可调放大器负反馈精度 Adjustable amplifier gain bandwidth Yang Zhao (SoutheastUniversity,211189) Abstract:This paper describes design and fabrication of super quality amplifier with adjustable gain bandwidth. Multiple measures were taken by this design to reduce noise, increase efficiency, and negative feedback to inhibit of zero-point drift. Measurement shows that this amplifier meets the design requirements, and can provide reliable reference for practicability of industrial production and electronic competition. Keywords:adjustable gain bandwidth;amplifier;negative feedback;accuracy ·16·

几个常用经典差动放大器应用电路详解资料

几个常用经典差动放大器应用电路详解 成德广营浏览数:1507发布日期:2016-10-10 10:48 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。关键词:CMRR差动放大器差分放大器 简介 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。 大学里的电子学课程说明了理想运算放大器的应用,包括反相和同相放大器,然后将它们进行组合,构建差动放大器。图 1 所示的经典四电阻差动放大器非常有用,教科书和讲座 40 多年来一直在介绍该器件。 图 1. 经典差动放大器 该放大器的传递函数为: 若R1 = R3 且R2 = R4,则公式 1 简化为:

这种简化可以在教科书中看到,但现实中无法这样做,因为电阻永远不可能完全相等。此外,基本电路在其他方面的改变可产生意想不到的行为。下列示例虽经过简化以显示出问题的本质,但来源于实际的应用问题。 CMRR 差动放大器的一项重要功能是抑制两路输入的共模信号。如图1 所示,假设V2 为 5 V,V1 为 3 V,则4V为共模输入。V2 比共模电压高 1 V,而V1 低 1 V。二者之差为 2 V,因此R2/R1的“理想”增益施加于2 V。如果电阻非理想,则共模电压的一部分将被差动放大器放大,并作为V1 和V2 之间的有效电压差出现在VOUT ,无法与真实信号相区别。差动放大器抑制这一部分电压的能力称为共模抑制(CMR)。该参数可以表示为比率的形式(CMRR),也可以转换为分贝(dB)。 在1991 年的一篇文章中,Ramón Pallás-Areny和John Webster指出,假定运算放大器为理想运算放大器,则共模抑制可以表示为: 其中,Ad为差动放大器的增益, t 为电阻容差。因此,在单位增益和 1%电阻情况下,CMRR 等于 50 V/V(或约为 34 dB);在 0.1%电阻情况下,CMRR等于 500 V/V(或约为 54 dB)-- 甚至假定运算放大器为理想器件,具有无限的共模抑制能力。若运算放大器的共模抑制能力足够高,则总CMRR受限于电阻匹配。某些低成本运算放大器具有 60 dB至 70 dB的最小CMRR,使计算更为复杂。 低容差电阻 第一个次优设计如图 2 所示。该设计为采用OP291 的低端电流检测应用。R1 至R4 为分立式 0.5%电阻。由Pallás-Areny文章中的公式可知,最佳CMR为 64 dB.幸运的是,共模电压离接地很近,因此CMR并非该应用中主要误差源。具有 1%容差的电流检测电阻会产生 1%误差,但该初始容差可以校准或调整。然而,由于工作范围超过 80°C,因此必须考虑电阻的温度系数。

运算放大器电路及版图设计报告

目录 摘要 (2) 第一章引言 (3) 第二章基础知识介绍 (4) 2.1 集成电路简介 (4) 2.2 CMOS运算放大器 (4) 2.2.1理想运放的模型 (4) 2.2.2非理想运算放大器 (5) 2.2.3运放的性能指标 (5) 2.3 CMOS运算放大器的常见结构 (6) 2.3.1单级运算放大器 (6) 2.3.2简单差分放大器 (6) 2.3.3折叠式共源共栅(Folded-cascode)放大器 (7) 2.4版图的相关知识 (8) 2.4.1版图介绍 (8) 2.4.2硅栅CMOS工艺版图和工艺的关系 (8) 2.4.3 Tanner介绍 (9) 第三章电路设计 (10) 3.1总体方案 (10) 3.2各级电路设计 (10) 3.2.1第三级电路设计 (10) 3.2.2第二级电路设计 (11) 3.2.3第一级电路设计 (12) 3.2.4三级运放整体电路图及仿真结果分析 (14) 第四章版图设计 (15) 4.1版图设计的流程 (15) 4.1.1参照所设计的电路图的宽长比,画出各MOS管 (15) 4.1.2 布局 (17) 4.1.3画保护环 (17) 4.1.4画电容 (17) 4.1.5画压焊点 (18) 4.2 整个版图 (19) 第五章 T-Spice仿真 (21) 5.1提取T-Spice文件 (21) 5.2用T-Spice仿真 (24) 5.3仿真结果分析 (26) 第六章总结 (27) 参考文献 (28)

摘要 本次专业综合课程设计的主要内容是设计一个CMOS三级运算跨导放大器,该放大器可根据不同的使用要求,通过开关的开和闭,选择单级、两级、三级组成放大器,以获得不同的增益和带宽。用ORCAD画电路图,设计、计算宽长比,仿真,达到要求的技术指标,逐级进行设计仿真。然后用L-Edit软件根据设计的宽长比画版图,最后通过T-Spice仿真,得到达到性能指标的仿真结果。 设计的主要结果归纳如下: (1)运算放大器的基本工作原理 (2)电路分析 (3)设计宽长比 (4)画版图 (5)仿真 (6)结果分析 关键词:CMOS运算跨导放大器;差分运放;宽长比;版图设计;T-Spice仿真

相关主题
文本预览
相关文档 最新文档