当前位置:文档之家› 弯管参数计算及编程实现

弯管参数计算及编程实现

弯管参数计算及编程实现
弯管参数计算及编程实现

弯管参数计算及编程实现

船舶软件建立三维管道模型后,需要自动生成管子加工信息,这样就提高了设计效率。其中弯管参数主要是下料长度,弯角和转角。

下料长度是由各管段实长,即管子中心线长度,减去弯管部分切线长再加上弯管部分。实长就是向量的模。

弯角用向量的点乘来求解,即余弦定理。

转角用向量的叉乘来求解,比用两面角的方法精度要高。因为向量叉乘运算时的数字运算比三角函数精度高点。

因为都是矢量代数运算,所以需要一个矢量类,类定义如下:

1:

//------------------------------------------------------------------------------

2: // Copyright (c) 2011 eryar All Rights Reserved.

3: //

4: // File : Vector.h

5: // Author : eryar@https://www.doczj.com/doc/e618187564.html,

6: // Date : 2011-12-2 21:34

7: // Version : 1.0v

8: //

9: // Description :

10: //

11:

//==============================================================================

12:

13: #ifndef _VECTOR_H_

14: #define _VECTOR_H_

15:

16: #pragma once

17:

18: #include

19: #include

20: #include

21: using namespace std;

22:

23: class CVector

24: {

25: public:

26: CVector();

27: CVector(const CVector& v);

28: CVector(double x, double y, double z);

29: virtual ~CVector();

30:

31: // Overload operators

32: CVector& operator = (const CVector& v);

33: bool operator == (const CVector& v) const; 34: bool operator != (const CVector& v) const; 35: CVector operator + (const CVector& v) const; 36: CVector operator - (const CVector& v) const; 37: CVector operator * (double k) const;

38: // 向量点乘

39: double operator * (const CVector& v) const; 40:

41: // 向量叉乘

42: CVector CrossProduct(const CVector& v);

43:

44: // 求向量的模

45: double Magnitude(void) const;

46:

47: //

48: void Show(void) const;

49:

50: private:

51: double m_x;

52: double m_y;

53: double m_z;

54: };

55:

56: #endif// _VECTOR_H_

求解转角代码如下:

1:

//------------------------------------------------------------------------------

2: // Copyright (c) 2011 eryar All Rights Reserved.

3: //

4: // File : Main.cpp

5: // Author : eryar@https://www.doczj.com/doc/e618187564.html,

6: // Date : 2011-12-2 21:33

7: // Version : 1.0v

8: //

9: // Description :

10: //

11:

//=================================================================== ===========

12:

13: #include "Vector.h"

14:

15: int main(int argc, char* argv[])

16: {

17: // One Pipe piece

18: CVector aVector(287, 0, 0);

19: CVector bVector(313, 204, 165);

20: CVector cVector(0, 746, 0);

21:

22: // Another pipe piece

23: // CVector aVector(150, 0, 0);

24: // CVector bVector(50, 150, 150);

25: // CVector cVector(50, 250, 0);

26:

27: CVector alpha;

28: CVector beta;

29: double phi = 0;

30:

31: aVector.Show();

32: bVector.Show();

33: cVector.Show();

34:

35: alpha = aVector.CrossProduct(bVector);

36: beta = bVector.CrossProduct(cVector);

37:

38: phi = (alpha * beta) / (alpha.Magnitude() * beta.Magnitude());

39: cout<<"Rotate : "<

41: return 0;

42: }

[键入文字] 毕业设计说明书塑料弯管注射模具设计 学生姓名:学号: 学院: 专业: 指导教师: 年月

塑料弯管注塑模具设计 摘要 本文研究的是90带螺纹的塑料弯管及其注射成型的总体设计过程。弯管成90直角,因此侧向分型抽芯是研究的重点。塑料弯管上有一段螺纹,本研究采用的是比较简单轻便的设计模式,因此采取了瓣合模的成型方式。因为不使用复杂的脱螺纹装置,这一点对于螺纹类的制品具有指导意义。本文选择了正确的注塑机型号,采用PROE进行模具的体积确定与分型面的选择,决定采取一模四腔的方式,这将会快速的提高生产量与生产效率。本研究成功设计,将会为以后的弯管类塑料提供极高的参考价值,并且对于生产有很高的经济效益。 关键词:塑料弯管,侧向分型抽芯,瓣合模

Plastic pipe injection mold design Abrtract This paper studies a 90-degree bend with thread and plastic injection mold of design process.The bend has a 90-degre .So the focus of the study is side parting core pulling.There was a thread on plastic pip.This study uses a simple design patterns.So flap spotting is the better method .Because which avoid the complex the installation of the unscrewing,which gives a guiding significance for the products of thread. By selecting the right injection molding machine https://www.doczj.com/doc/e618187564.html,ing PROE determine the volume of the mold and parting line selection.It is to decide taking a mold with a four cavity, which would rapidly increase the production capacity and production efficiency.Successful design of this study will be for the future of plastic pipe classes provide a high reference value, and for the production of high economic efficiency. Key words:plastic pipe,side parting core pulling,flapclamping

第一章煨管设备及弯管计算弯管按其制作方法不同,可分为煨制弯管、冲压弯管和焊接弯管。煨制弯管又分为冷煨和热煨两种。本章着重介绍常用煨管设备的结构特点、性能及操作等方面的知识,以及煨制弯管的下料计算。 第一节弯管的一般知识 弯管是改变管道方向的管件。在管子交叉、转弯、绕梁等处,都可以看到弯管。 煨制弯管具有较好的伸缩性、耐压高、阻力小等优点。因此,在施工中常被采用。 弯管的主要形式有:各种角度的弯头、U形管、来回弯(或称乙字弯)和弧形弯管等,如图1—1所示。 弯头是带有一个任意弯曲角的管件,它被用在管子的转弯处。弯头的弯曲半径用R表示。R较大时,管子的弯曲部分就较大,弯管就比较平滑;R较小时,管子的弯曲部分就较小,弯得就较急。 来回弯是带有两个弯曲角(一般为135°)的管件。来回弯管子弯曲端中心线间的距离叫做来回弯的高度,用字母h表示。室内采暖立支管与干管及散热器连接,管道与不在同一平面上的接点连接时,一般需采用来回弯。 U形管是成正半圆形的管件。管子的两端中心线问的距离d等于两倍弯曲半径R。U形管可代替两个90°弯头,经常用来连接上下配置的两个圆翼形散热器。 图1-1弯管的主要形式 弧形弯管是带有三个弯曲角的管件。中间角一般成90°,侧角成135°。弧形弯管用于绕过其它管子,在有冷热水供应的卫生设备配管时,经常采用弧形弯管。 弯管尺寸由管径、弯曲角度和弯曲半径三者确定。弯曲角度根据图纸和施工现场实际情况确定,然后制出样板,照样板煨制并按样板检查煨制管件弯曲角度是否符合要求。样板可用圆钢煨制,圆钢的直径根据所煨管径的大小选用,10-14mm即可。弯管的弯曲半径应按管径大小、设计要求及有关规定而定。既不能过大,也末虚选得太小。因为弯曲半径过大,不但用材料多,而且管子弯曲部分所占的地方也大,这样会给管道装配带来困难;弯曲半径选

管道流量计算方式 DN15、DN25、DN50管径的截面积分别为: DN15:152*3.14/4=176.625平方毫米,合0.0177平方分米。 DN25:252*3.14/4=490.625平方毫米,合0.0491平方分米。 DN50:502*3.14/4=1962.5平方毫米,合0.1963平方分米。 设管道流速为V=4米/秒,即V=40分米/秒,且1升=1立方分米,则管道的流量分别为(截面积乘以流速): DN15管道:流量Q=0.0177*40=0.708升/秒, 合2.55立方米/小时。 DN25管道:流量Q=0.0491*40=1.964升/秒, 合7.07立方米/小时。 DN50管道:流量Q=0.1963*40=7.852升/秒, 合28.27立方米/小时。 注:必须给定流速才能计算流量,上述是按照4米/秒计算的。 电缆载流量 电缆载流量: 电缆载流量是指一条电缆线路在输送电能时所通过的电流量,在热稳定条件下,当电缆导体达到长期允许工作温度时的电缆载流量称为电缆长期允许载流量。 电缆载流量口决 估算口诀 二点五下乘以九,往上减一顺号走。 三十五乘三点五,双双成组减点五。 条件有变加折算,高温九折铜升级。

穿管根数二三四,八七六折满载流。 说明 (1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是”截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。 “二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为 2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。 “三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。 “条件有变加折算,高温九折铜升级”。上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。如16mm’铜线的载流量,可按25mm2铝线计算。 计算电缆载流量选择电缆 (根据电流选择电缆) 导线的载流量与导线截面有关,也与导线的材料、型号、敷设方法以及环境温度等有关,影响的因素较多,计算也较复杂。各种导线的载流量通常可以从手册中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。 1. 口诀铝芯绝缘线载流量与截面的倍数关系 10下五,100上二, 25、35,四、三界,. 70、95,两倍半。 穿管、温度,八、九折。 裸线加一半。 铜线升级算。 说明口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数来表示。为此将我国常用导线标称截面(平方毫米)排列如下: 1、1.5、 2.5、 4、 6、 10、 16、 25、 35、 50、 70、 95、 120、 150、185……

毕业设计 题目弯管垫片的模具设计系别 专业 班级 姓名 学号 指导教师 日期

设计任务书 设计题目: 弯管垫片模具的设计 设计要求: 1.冲裁、翻边工艺性分析的确定。 2.有关计算及模具设计。 3.节约材料及零件的精确度。 4.提高加工零件的效率及模具使用寿命。 设计进度: 11月23日-11月30日查阅、收集资料 12月1日-12月7日主要设计计算 12月8日-12月14日结构设计 12月15日-12月22日模具的整体设计 12月23日-12月25日校核、修改、提交论文 指导教师(签名):

目录 摘要 (1) 前言 (2) 1 工艺性分析和方案确定 (3) 1.1工艺的分析 (3) 1.2工艺的确定 (3) 1.3毛胚形状,尺寸和下料方式的确定 (4) 1.4工件的排样设计 (5) 1.5排样和材料的利用率 (5) 1.6冲模结构的确定 (5) 2 各部分工艺力的计算 (7) 2.1工艺力的计算 (7) 2.2闭模高度: (9) 2.3冲裁设备的选择 (9) 2.4压力机容许偏心载荷 (10) 3 工件的尺寸计算 (12) 3.1主工作部分尺寸计算 (12) 3.2落料刃口尺寸计算 (12) 3.3切边刃口尺寸计算 (13) 4 翻边尺寸计算 (15) 4.1翻边的工作部分尺寸计算 (15) 4.2凸模承压能力的效核 (15) 4.3抗纵向弯曲应力的效核 (16) 5 弹性元件的计算 (20) 6 主要零件的设计 (22) 6.1定位零件的设计 (22) 6.2卸料装置的设计 (22) 6.3推件装置的设计 (24) 7 导柱导套及模柄的选用 (27) 7.1导柱导套的选用 (27) 7.2模柄的选用 (27) 7.3模架选择及模具的动作过程 (27) 结论 (28) 致谢 (29) 参考文献. (30)

管道水流量计算公式 A.已知管的内径12mm,外径14mm,公差直径13mm,求盘管的水流量。压力为城市供水的压力。 计算公式1:1/4∏×管径的平方(毫米单位换算成米单位)×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s) 计算公式2:一般取水的流速1--3米/秒,按1.5米/秒算时: DN=SQRT(4000q/u/3.14) 流量q,流速u,管径DN。开平方SQRT。 其实两个公式是一样的,只是表述不同而已。另外,水流量跟水压也有很大的关系,但是现在我们至少可以计算出大体的水流量来了。 备注:1.DN为Nomial Diameter 公称直径(nominal diameter),又称平均外径(mean outside diameter)。 这是缘自金属管的管璧很薄,管外径与管内径相差无几,所以取管的外径与管的内径之平均值当作管径称呼。 因为单位有公制(mm)及英制(inch)的区分,所以有下列的称呼方法。 1. 以公制(mm)为基准,称 DN (metric unit) 2. 以英制(inch)为基准,称NB(inch unit) 3. DN (nominal diameter) NB (nominal bore) OD (outside diameter) 4. 【例】 镀锌钢管DN50,sch 20 镀锌钢管NB2”,sch 20 5. 外径与DN,NB的关系如下: ------DN(mm)--------NB(inch)-------OD(mm) 15-------------- 1/2--------------21.3 20--------------3/4 --------------26.7 25-------------- 1 ----------------33.4 32-------------- 1 1/4 -----------42.2 40-------------- 1 1/2 -----------48.3 50-------------- 2 -----------60.3 65-------------- 2 1/2 -----------73.0 80-------------- 3 -----------88.9 100-------------- 4 ------------114.3 125-------------- 5 ------------139.8 B.常用给水管材如下:

弯管模具的设计及工艺探讨陈小磊 发表时间:2017-12-01T17:31:40.020Z 来源:《建筑科技》2017年第11期作者:陈小磊 [导读] 气辅中空注射成型是注射成型时塑料熔体注入模具型腔的 60%~70% 后,再通过辅助设备将高压惰性气体注入型腔,高压惰性气体在熔体中形成气道,推动熔体充满型腔。 长城汽车股份有限公司技术中心河北保定 071000 摘要:金属管材的弯曲在现代工业领域应用十分广泛,主要用于汽车、机械、环保、化工、民用等行业。笔者从事汽车零部件的制造行业多年,主要研究发动机上的EGR及排气管方面的零件产品制造,多为不锈钢焊管(如AISI304)的弯管、成型产品。气辅中空注射成型是注射成型时塑料熔体注入模具型腔的 60%~70% 后,再通过辅助设备将高压惰性气体注入型腔,高压惰性气体在熔体中形成气道,推动熔体充满型腔。 关键词:弯管机;模具;参数 引言:弯管工艺广泛用于汽车、轮船、飞机及各种运载器上。近年来,随着现代技术的发展及新技术的应用,各种运载器上均使用了大量的管件,而为使管件保证足够的强度及较轻的重量,通常均由薄壁金属管制成。管件在弯曲时由于外侧受拉而变薄,内侧受压而增厚,使其截面发生畸变。为此必须设计合适的弯管模具及工艺参数。弯管模具主要包括弯曲模、夹紧钳口、压料滑槽(随动模)和芯轴,本文论述其设计及工艺。 1 模具结构及动作概述 弯管模具的标准结构,主要有轮模、夹模、导模、芯棒、防皱板等五部分组成,工作时其动作过程为:芯棒进芯,夹模夹紧管材随轮模一起转动,导模压紧管材随着管材的弯曲而跟随,而防皱板固定不动,当弯管角度达到设定角度后,芯棒退出,导模、夹模松开、复位,完成整个动作。 2 模具设计 2.1 轮模 轮模是整个弯管模具设计的核心,设计时一般先从它开始。产品管材外径D,壁厚,弯曲半径R(设计三要素)确定后,在设计轮模弯曲半径时必须考虑管材的反弹,从而确定模具的弯曲半径R,: 式中: R管件弯曲半径(回弹后弯曲半径); σs管件屈服极限,N/mm2; E管件弹性模数,N/mm2; Rx相对弯曲半径, Rx=R/D,D为管件外径; m=K1+K0/2Rx,K1为管材截面形状系数,K0为钢材的相对强化系数。 R,一般圆整后作为轮模设计参数使用。通常,为简便起见,当Rx=2一10时,可按经验公式确定:弯曲合金钢管时,R’≈0.94R;弯曲碳钢管时,R≈(O.96一O.98)R。当Rx≦1.5时,可不考虑回弹因素。目前,Rx=1为行业技术的最高水平,由于成本高、难度大,一般设计均不考虑。轮模型腔直径按管材外径D设计,管材壁厚、外径决定了管材的强度,直接影响夹模的夹持长度,轮模夹持长度与夹模配合,在后面的夹模设计将进行论述。轮模由于频繁受夹模的夹紧冲击及管材的弯曲力,因此要求整体韧性好,有良好的抗冲击能力,且型腔表面耐磨,目前一般采用调质+氮化的热处理工艺,型腔表面硬度可达HRC55一HRC6O。 3 夹模 夹模设计的主要尺寸为长度尺寸,它主要取决于产品两个弯曲之间的直段长度,夹模长尺寸过小,不能夹紧管材,弯管时管材易打滑,操作外观,弯曲部分出坑,不满足产品要求。反之,尺寸过大,容易将前一个弯夹扁、变形,这在工艺上是不充许的。因此,长尺寸要选择合适。通常按(2一3)D设计,如果产品直段长度<(2一3)D,可考虑使用仿形模具结构设计,增加夹持稳定性。对于只有一个弯曲的产品可考虑在夹紧时增加支撑手柄,提高夹持稳定性。夹模型腔直径按管材外径D设计,为保证夹持稳定、不打滑,型腔直径一般按下差设计(与之配合夹持的轮模直段型腔尺寸设计相同),通过设备调整夹模的夹紧程度,达到最佳状态,从而保证弯管稳定夹持,且满足外观要求。为保证夹模夹紧过程管材外表面不被夹伤,型腔的棱角必须有R角设计。夹模一般淬火处理到HRC50左右,从而提高耐磨性和使用寿命。 4 压料滑槽(随动模) 压料滑槽见图1,在弯曲厚壁、大弯曲半径管件时,常采用滚轮结构。该结构由于设计简单,模具费用低而往往被采用。但它的弯管质量较差,尤其在弯曲薄壁管件时,容易出现内壁起皱,上壁凹陷等弯管缺陷,为改善这一状态,一般要使用压料滑槽。 图1 压料滑槽(随动模) 目前,比较理想的结构是带随动油缸的压料滑槽。根据所弯管件规格的不同,随动模速度可自行调节,比如,随动模速度大于弯曲模

第一节弯管的一般知识 弯管是改变管道方向的管件。在管子交叉、转弯、绕梁等处,都可以看到弯管。 煨制弯管具有较好的伸缩性、耐压高、阻力小等优点。因此,在施工中常被采用。 弯管的主要形式有:各种角度的弯头、U形管、来回弯(或称乙字弯)和弧形弯管等,如图1—1所示。 弯头是带有一个任意弯曲角的管件,它被用在管子的转弯处。弯头的弯曲半径用R表示。R较大时,管子的弯曲部分就较大,弯管就比较平滑;R较小时,管子的弯曲部分就较小,弯得就较急。 来回弯是带有两个弯曲角(一般为135°)的管件。来回弯管子弯曲端中心线间的距离叫做来回弯的高度,用字母h表示。室内采暖立支管与干管及散热器连接,管道与不在同一平面上的接点连接时,一般需采用来回弯。 U形管是成正半圆形的管件。管子的两端中心线问的距离d等于两倍弯曲半径R。U形管可代替两个90°弯头,经常用来连接上下配置的两个圆翼形散热器。 图1-1弯管的主要形式 弧形弯管是带有三个弯曲角的管件。中间角一般成90°,侧角成135°。弧形弯管用于绕过其它管子,在有冷热水供应的卫生设备配管时,经常采用弧形弯管。 弯管尺寸由管径、弯曲角度和弯曲半径三者确定。弯曲角度根据图纸和施工现场实际情况确定,然后制出样板,照样板煨制并按样板检查煨制管件弯曲角度是否符合要求。样板可用圆钢煨制,圆钢的直径根据所煨管径的大小选用,10-14mm即可。弯管的弯曲半径应按管径大小、设计要求及有关规定而定。既不能过大,也末虚选得太小。因为弯曲半径过大,不

但用材料多,而且管子弯曲部分所占的地方也大,这样会给管道装配带来困难;弯曲半径选得太小时,弯头背部管壁由于过分伸长而减薄,使其强度降低,而在弯头里侧管壁被压缩,形成皱纹状态。因此,一般规定:热煨弯管的弯曲半径应不小于管子外径的3.5倍;冷煨弯管的弯曲半径应不小于管子外径的4倍;焊接弯头的弯曲半径应不小于管子外径的1.5倍;冲压弯头弯曲半径应不小于管子外径。 弯管时,弯头里侧的金属被压缩,管壁变厚;弯头背面的金属被拉伸、管壁变薄。弯曲半径越小,弯头背面管壁减薄就越严重,对背部强度的影响就越大。为了使管子弯曲后不致对原有的工作性能有过大改变,一般规定管子弯曲后,管壁减薄率不得超过15%。管壁减薄率可按下式进行计算: 式中A——管子弯曲后外侧母线处管壁的减薄率(%); D W——管子外径(mm); R——弯管的弯曲半径(mm)。 弯管时,由于管子弯曲段内外侧管壁厚度的变化,还使得弯曲段截面由原来的圆形变成了椭圆形。弯管断面形状的改变,会使管子的过流断面面积减小,从而增加流体阻力,同时还会降低管子承受内压力的能力,因此,一般对弯管的椭圆率做以下规定:管径小于或等于150mm时,椭圆率不得大于10%;管径小于或等于200mm时,椭圆率不得大于8%。 管道的椭圆率可按下式进行计算: 式中T——椭圆率(%); d1——最大椭圆变形处的长径(mm); d2——最大椭圆变形处的短径(mm)。 应用水、煤气钢管和直缝焊接钢管制作冷煨弯管或热煨弯管时,管子的焊缝应位于距侧面中心线45°的地方,如图1-2所示。以免弯曲时,管子焊缝开裂。

请教:已知管道直径 D ,管道内压力P,能否求管道中流体的流速和流量?怎么求 已知管道直径 D ,管道内压力 P ,还不能求管道中流体的流速和流量。你设想管道末端有一阀 门,并关闭的管内有压力 P ,可管内流量为零。管内流量不是由管内压力决定,而是由管 内沿途压力下降坡度决定的。所以一定要说明管道的长度和管道两端的压力差是多少才能求 管道的流速和流量。 对于有压管流,计算步骤如下: 1 、计算管道的比阻 S ,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻 s=0.001736/d^5.3 或用 s=10.3n2/d^5.33 计算,或查有关表格; 2、确定管道两端的作用水头差H=P/( ρ g),),H 某一断面的压强),P 以 Pa 为单位; 3、计算流量Q: Q = (H/sL)^(1/2) 4、流速 V=4Q/(3.1416d^2) 以 m 为单位;P 为管道两端的压强差(不是 式中: Q――流量,以 m^3/s L――管道起端至末端的长度,以为单位;H――管道起端与末端的水头差,以 m 为单位。 m^ 为单位; 管道中流量与压力的关系 管道中流速、流量与压力的关系 流速 :V=C√(RJ)=C√[PR/( ρgL)] 流量: Q=CA√(RJ)= √[P/( ρgSL)] 式中: C――管道的谢才系数; L――管道长度; P――管道两端的压力差;R―― 管道的水力半径;ρ――液体密度; g――重力加速度; S――管道的摩阻。FgvfK6。管道的内径和压力流量的关系 似呼题目表达的意思是:压力损失与管道内径、流量之间的关系,如果是这个问题,则正确的答案应该是:压力损失与流量的平方成正比,与内径 5.33 方成反比,即流量越大压力损失越大,管径越大压力损失越小,其定量关系可用下式表示: 压力损失(水头损失)公式(阻力平方区) h=10.3*n^2 * L* Q^2/d^5.33 n――上式严格说是水头损失公式,水头损失乘以流体重度后才是压力损失。式中 管内壁粗糙度; L――管长; Q――流量; d――管内径r1FY3p。 在已知水管 :管道压力 0.3Mp 、管道长度 330 、管道口径 200 、怎么算出流速与每小时流量? 管道压力 0.3Mp 、如把阀门关了,水流速与流量均为零。(应提允许压力降) 管道长度 330 、管道口径 200 、缺小单位,管道长度 330 米?管道内径 200 为毫米?其中有无阀门与弯头,包括其形状与形式。 水管道是钢是铸铁等其他材料,其内壁光滑程度不一样。 所以无法计算。 如果是工程上大概数,则工程中水平均流速大约在0.5 -- 1 米/秒左右,则每小时的流量为:0.2 ×0.2 ×0.785 ×1(米 /秒,设定值)×3600 =113 (立方 /小时) 管道每米的压力降可按下式计算:

弯管模具设计分析 摘要:管材的冷弯成型,应用范围越来越广泛,而相应的弯管质量也要求越来越高,为保证弯管质量,必须设计合理的弯管模具,文章论述了弯管过程中的模具设计及相应的工艺参数。 关键词:弯管;模具结构;轮模;夹模;导模;防皱板 金属管材的弯曲在现代工业领域应用十分广泛,主要用于汽车、机械、环保、化工、民用等行业。笔者从事汽车零部件的制造行业多年,主要研究发动机上的EGR及排气管方面的零件产品制造,多为不锈钢焊管(如AISI 304)的弯管、成型产品。文章根据实际工作经验,分析弯管模具设计的几个要点。 1 模具结构及动作概述 如图1所示,为一套弯管模具的标准结构,主要有轮模、夹模、导模、芯棒、防皱板等五部分组成,工作时其动作过程为:芯棒进芯,夹模夹紧管材随轮模一起转动,导模压紧管材随着管材的弯曲而跟随,而防皱板固定不动,当弯管角度达到设定角度后,芯棒退出,导模、夹模松开、复位,完成整个动作,文章将围绕这五个部件的设计进行论述。 2 模具设计 2.1 轮模 轮模是整个弯管模具设计的核心,设计时一般先从它开始。产品管材外径D,壁厚δ,弯曲半径R(设计三要素)确定后,在设计轮模弯曲半径时必须考虑管材的反弹,从而确定模具的弯曲半径R’: 目前,Rx=1为行业技术的最高水平,由于成本高、难度大,一般设计均不考虑。 轮模型腔直径按管材外径D设计,管材壁厚、外径决定了管材的强度,直接影响夹模的夹持长度,轮模夹持长度与夹模配合,在后面的夹模设计将进行论述。 轮模由于频繁受夹模的夹紧冲击及管材的弯曲力,因此要求整体韧性好,有良好的抗冲击能力,且型腔表面耐磨,目前一般采用调质+氮化的热处理工艺,型腔表面硬度可达HRC55~HRC60。 2.2 夹模 夹模设计的主要尺寸为长度尺寸,它主要取决于产品两个弯曲之间的直段长度,夹模长尺寸过小,不能夹紧管材,弯管时管材易打滑,操作外观,弯曲部分

弯管工艺守则

山东五征集团农业装备事业部管理文件 SC-NZ290300-2015004 版/次:A/0 弯管工艺守则 2015-9-24发布 2015-9-25实施

农业装备事业部技术部发布 前言 本规定是山东五征集团农业装备事业部结构件车间弯管设备使用支持性文件,目的是规范农业装备事业部结构件车间(以下简称结构件车间)弯管设备的正确使用和日常管理,使之制度化。通过实施,保证作业质量,提高员工的工作效率,保障良好的工作秩序。 本程序依据GB/T 28763-2012给出的规则起草。 本程序由山东五征集团有限公司农业装备事业部技术部提出。 本程序由山东五征集团有限公司农业装备事业部技术部归口。 本程序由山东五征集团农业装备事业部技术部负责组织起草。 本程序主要起草人: 审核: 会签:

参数名 称 参数值最大弯 管外径/mm 10 16 2 5 3 8 4 2 6 6 3 7 6 8 9 11 4 15 9 16 8 21 9 27 3 最大弯管壁厚/mm 1. 2 1. 2 3 4 4 5 5 5 6 8 12 12 16 20 4.3 弯管机的弯管外径范围为:当弯管最大外径小于114mm时,为0.3至1倍的弯管最大半径;当弯管最大外径大于或等于114mm时,为0.4至1倍的弯管最大半径。 4.4结构件车间弯管机弯管参数: 弯管机型 号 弯管外径mm 弯管壁厚mm 弯曲半径mm DWFB63 19至63 ≤5 50至250 DWFB114 48至114 ≤8 100至750 5 结构件车间现有的弯管模具 材料类型材料规格mm 壁厚 mm 弯曲半径(默认为中径)mm 对应设备 圆管φ16 2 58 DWFB63 φ25 2 50 DWFB63 φ25 2 150 DWFB63 φ33 3 101.5 DWFB63 Φ35 4 60 DWFB63 Φ42 3 100 DWFB63

一、90°弯管的计算 90°弯管在管道工程中应用最广,其弯曲半径月因制作方法不同而异。对于冷煨弯管,常取R=(4~6)D;热煨弯管取R=4D;冲压弯头或焊接弯头,常取R=(1~1.5)D。弯曲半径确定以后,即可计算出弯曲部分的下料长度,并能确定热煨时的加热长度,如图1-3所示。从图中可知,管道弯曲后,其弯曲段的外弧、内弧不是原来的直管实际长度,而只有弯管中心线的长度在弯曲前后不变,其展开长度等于原直管段长度。现设弯曲段起止端点分别为a、b,当弯曲角为90°时,管子弯曲段的长度正好是以r为半径所画圆的周长的1/4,其弧长用弯曲半径来表示,即为 弧长 由式(1-3)可知,90°弯管弯曲段的展开长度为弯曲半径的1.57倍。 图1-3 90°弯臂 在弯制U形弯、反向双弯头或方形伸缩器时,如以设计图样要求或实际测量得出的两个相邻90°弯头的中心距尺寸进行划线煨制,那么弯成的两个弯头中心距将比原来的距离要大些,这是由于金属管材加热弯曲时产生延伸的结果。下料时,应将两个弯头中心距减去这一延伸误差,再划出第二个弯头中心线和加热长度,这样才能使两个弯头弯好后,中心线间的距离正好等于所需要的尺寸。延伸误差如图1-4所示,其数值可按下式进行计算: 式中△L——延伸长度(mm); R——弯曲半径(mm); ——第二个弯曲角的角度(°)。

图1-4U形弯划线示意图 1-第一个弯头 2-规定的第二个弯头中心线位置 3-实际第二个弯头中心线位置4-第二个弯头 下面以方形伸缩器为例,说明弯管划线下料计算方法。 在图1-5a中,已知方形伸缩器的尺寸单位为mm,管径为DNl50,弯曲半径R=4DN=600mm。 若划线在图1-5b的直线上进行,并以左边端点o为起点,由图上可以看出 Oa=1500—R=1500—600=900mm ab是弯曲部分,其弧长为 ab=1.57R=1.57 X 600=942mm 从a到d由两个反向90°弯加一直管段bc组成,直管段bc的长度应减去延伸误差△L,则 bc=2100—2R—△L 由式(1—4)可知 △L=600X(1—0.00875×90)=127.5mm 那么bc=2100—2×600—127.5=772.5mm 依此类推,便可计算出各管段的下料长度,如图1—5b所示,划线工作便可顺利进行。 在实际工作中,煨制多个弯头组成的管件时,划线工作都分几次去完成。首先在草图上计算出各段下料长度,选取适当长度的直管;然后从一端开始逐个弯头进行制作,在前一个弯头制作好之后,再划下一个,以便处理在弯管工作中的尺寸误差。 图1—5b方形伸缩器的下料 二、任意弯管的计算 任意弯管是指任意弯曲角度和任意弯曲半径的弯管。这种弯管弯曲部分的展开长度可按下式进行计算: 式中L——弯曲部分的展开长度(mm);

已知1小时流量为10吨水,压力为0.4 水流速为1.5 试计算钢管规格 题目分析:流量为1小时10吨,这是质量流量,应先计算出体积流量,再由体积流量计算出管径,再根据管径的大小选用合适的管材,并确定管子规格。(1)计算参数,流量为1小时10吨;压力0.4MPa(楼主没有给出单位,按常规应是MPa),水的流速为1.5米/秒(楼主没有给出单位,我认为只有单位是米/秒,这道题才有意义) (2)计算体积流量:质量流量m=10吨/小时,水按常温状态考虑则水的密度ρ=1吨/立方米=1000千克/立方米;则水的体积流量为Q=10吨/小时=10立方米/小时=2777.778立方米/秒 (3)计算管径:由流量Q=Av=(π/4)*d*dv;v=1.5m/s;得: d=4.856cm=48.56mm (4)选用钢管,以上计算,求出的管径是管子内径,现在应根据其内径,确定钢管规格。由于题目要求钢管,则: 1)选用低压流体输送用镀锌焊接钢管,查GB/T3091-2008,选择公称直径为DN50的钢管比较合适,DN50镀锌钢管,管外径为D=60.3mm,壁厚为 S=3.8mm,管子内径为d=60.3-3.8*2=52.7mm>48.56mm,满足需求。 2)也可选用流体输送用无缝钢管D57*3.0,该管内径为51mm 就这个题目而言,因要求的压力为0.4MPa,选用DN50的镀锌钢管就足够了,我把选择无缝钢管的方法也介绍了,只是提供个思路而已。 具体问题具体分析。 1、若已知有压管流的断面平均流速V和过流断面面积A,则流量Q=VA 2、若已知有压流水力坡度J、断面面积A、水力半径R、谢才系数C,则流量Q=CA(RJ)^(1/2),式中J=(H1-H2)/L,H1、H2分别为管道首端、末端的水头,L 为管道的长度。 3、若已知有压管道的比阻s、长度L、作用水头H,则流量为 Q=[H/(sL)]^(1/2) 4、既有沿程水头损失又有局部水头损失的有压管道流量: Q=VA=A√(2gH)/√(1+ζ+λL/d) 式中:A——管道的断面面积;H——管道的作用水头;ζ——管道的局部阻力系数;λ——管道的沿程阻力系数;L——管道长度;d——管道内径。 5、对于建筑给水管道,流量q不但与管内径d有关,还与单位长度管道的水头损失(水力坡度)i有关.具体关系式可以推导如下: 管道的水力坡度可用舍维列夫公式计算i=0.00107V^2/d^1.3 管道的流量q=(πd^2/4)V 上二式消去流速V得: q = 24d^2.65√i ( i 单位为m/m ), 或q = 7.59d^2.65√i ( i 单位为kPa/m )

山东五征集团农业装备事业部管理文件 SC-NZ290300-2015004 版/次:A/0 弯管工艺守则 2015-9-24发布 2015-9-25实施农业装备事业部技术部发布

前言 本规定是山东五征集团农业装备事业部结构件车间弯管设备使用支持性文件,目的是规范农业装备事业部结构件车间(以下简称结构件车间)弯管设备的正确使用和日常管理,使之制度化。通过实施,保证作业质量,提高员工的工作效率,保障良好的工作秩序。 本程序依据GB/T 28763-2012给出的规则起草。 本程序由山东五征集团有限公司农业装备事业部技术部提出。 本程序由山东五征集团有限公司农业装备事业部技术部归口。 本程序由山东五征集团农业装备事业部技术部负责组织起草。 本程序主要起草人: 审核: 会签: 批准:

弯管工艺守则 1 范围 1.1 本程序适用于金属管材在冷态下弯曲的缠绕式数控弯管机。 1.2 本程序适用于农装结构件车间DW63与DW114型号单头液压弯管机。 2 规范性引用文件 下列文件对本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新程序适用于本文件。 GB/T 28763-2012 数控弯管机 3术语和定义 数控弯管机 至少应有主轴回转、卡头直线运动及卡头旋转的三轴运动,并用数控系统控制的弯管机。 4弯管机参数 4.1 弯管机主参数是弯管最大外径。 4.2 弯管机的主参数和基本参数应符合下表规定 4.3 弯管机的弯管外径范围为:当弯管最大外径小于114mm时,为0.3至1倍的弯管最大半径;当弯管最大外径大于或等于114mm时,为0.4至1倍的弯管最大半径。 4.4结构件车间弯管机弯管参数: 5 结构件车间现有的弯管模具

弯管模具设计标准 第一册

前言 随着公司的不断发展,之前的模具设计思路和方式需要进行整改,纠正模具设计师的随意行为,为此我们需要建立一套适合我司的模具标准化指导文件,其主要好处是①减轻设计的工作量,有利于提高设计质量并缩短模具开发周期;②减少模具各零部件的规格,提高互换性,便于设计与制造、从而降低成本;③规范模具设计师的随意性,有统一性、规范性。针对我司的产品种类和特征,本标准第一册《弯管模》 由于时间和水平原因,本标准难免存在一些问题,欢迎大家及时指正。 编者 二0一五年七月

弯管模具设计标准弯管模具目录 1 弯管模 序号目录页次 1——1 2——1 3——1 4——1 5——1 前言 弯管原理介绍 1.弯管弯曲原理分析 2.常见的弯管缺陷 模具结构图 模具零件图 1 轮模图 2 夹模图 3 导模图 4 防皱模图 5 芯棒图 总结 4 4 5 6 7 9 11 13 14 15

前言 金属管材的弯管在现代工业领域中应用十分广泛,主要用于汽车、机械、环保、化工等行业。我公司从事汽车零部件的制造行业多年,主要研究发动机上的进回油管、高压油管、进出水管、波纹管的弯管成型。主要材质为不锈钢304焊管及无缝管。 弯管原理介绍 (一)弯管弯曲成型原理分析 管材在外力矩作用下弯曲时,弯曲变形区的外侧材料受到切向拉伸而伸长、内侧材料受到切向压缩而缩短。由于切向应力和应变δ沿管材断面的分布是连续的,故当弯曲过程结束,由拉伸区过渡到压缩区,在其交界处一定存在着一层纤维,该层纤维的应变δ=0。此纤维层称为应变中性层,它在断面中的位置可用曲率半径R表示。管坯在弹性弯曲阶段,应力沿断面呈线性分布,应力与应变间的关系遵守虎克定律,故应力中性层和应变中性层互相重合并通过端面形心。随着弯曲过程的进行,当变形程度超过材料的屈服极限后,变形

学习资料 上次我们学习了弯管的基本知识,这次我们对管件的基本知识进行学习。 所为管件,顾名思义就是管路中的部件称为管件,管件的种类可分为弯头、三通、大小头、封头、异径弯头、翻边短接等,随着工业管路的需求品种可能更多。其中弯头分为长半径弯头和短半径弯头和异径弯头。三通分为三通、四通和多通。这其中分为等径和异径,大小头分为同心和偏心。翻边短接分为长型和短型。他们的类别和代号在GB/T12459-2005中可以查到。 1.5DN称为长半径弯头,1DN称为短半径弯头,也有的地方需要2DN、 2.5DN,但不属于12459-2005标准规定,我们通常也称为非标管件。 三通和四通有等径和异径之分,等径是指三个口径相等称为等径。三个口径不相等称为异径。 封头的形状有椭圆型、半球型、蝶型,在使用中中低压管道一般采用椭圆型,电力高压一般采用半球型。还有封头组合件、三通组合件等多种多样。 对管件的加工方面,一般多采用扩和缩两种加工工艺,就是以钢管做加工毛坯料,通过扩和缩的加工方法使其改变所需产品的形状,既能不破坏原有组织的结构和机械性能,又能保证所需管件用途的质量和机械性能。如推制弯头就是采用扩径的方法加工的一样。根据正常的1.5DN弯头扩径比例为1.4~1.5倍的比率比较理想,大小头和三通的加工工艺采用缩口的加工方法加工而成,封头采用钢板模压法压制而成。 下面咱们学习一下弯头推制过程作业指导书和三通作业指导书。然后学习一些金属材料知识。 根据GB12459-2005标准中碳钢及低合金钢无缝弯头的加工要求。以感应加热推制成型的加工工艺。我们编写的有作业指导书和工艺卡等文件。无缝推制弯头的原理是将无缝弯

流量的概念应该是:单位时间内流过单位面积的体积 这个问题条件不够,需要知道管道长度(用于计算沿程水头损失),还要知道管件布置和阀门布置(计算局部水头损失),这两个条件如果都知道了,就很容易解决了 体积流量=管截面积*流速Vs=π*r^2*u啊!注:u是流速,r是半径,π是pai即3.14 流量Q用体积法测出,即在Δt时间内流入计量水箱中流体的体积ΔV。 管子流量计算公式 1.测量管径大小,计算截面面积. 2.测量管中的流速(米/每秒).少不了的条件. 3.流量=流速*管截面面积. 请问流水的流量流速与管径和压力的计算公式是什么 比如说,直径是10厘米(内径)的管子,在1个压力下,每小时流出的水是多少? 问题补充:再具体讲。我们单位建了一个引水系统,水源地的蓄水池蓄水量为50立方米,管道内径为10厘米,管道全长3300米,高差24米,请问每小时能流出多少吨水? 你问的问题非常复杂,不是一个公式就可以解决的。所以一般都根据经验来解决,当然用公式也能解决,公式很复杂,我给你的参考资料中有。 管道有3300米这么长,因此管道内总的摩擦阻力就很大了,水的流速会很小,估计只有1m/s-1.5m/s的流速。这样算下来,流量大约为10kg/s,每小时的流量为10*3600kg/hour=36000kg/H,也就是每小时大概能流出30多吨水。 求教给水管管径计算公式。 已知流量(L/S)求管径。请教一下公式 一般取水的流速1--3米/秒,按1.5米/秒算时: DN=SQRT(4000q/u/3.14) 流量q,流速u,管径DN。开平方SQRT。 想知道流量的计算公式 Q=4.44F*((p2-p1)/ρ)0.5 流量Q,流通面积F,前后压力差p2-p1,密度ρ,0.5是表示0.5次方。以上全部为国际单位制。适用介质为液体,如气体需乘以一系数。 由Q=F*v可算出与管径关系。 以上为稳定流动公式。 工作压力1MPa,进水口内径33mm,小时流量应是多少(m3)?计算公式如何写? 悬赏分:0 - 解决时间:2006-8-11 06:30 每增加一个压力,流量增加多少?正比吗? 我写的这个式子是根据伯努利方程来的。具体的伯努利方程我就不写了你自己查一下。下面是简化公式: V=根号(2/p*P):p:为密度,P:为工作压力。

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2)

R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s)

g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做

绪论 1.1蓬勃发展的中国模具工业 1.2 我国塑料模具工业和技术的主要发展方向 1.3注射成形基本过程 1.4注射模的基本结构 注射模的基本结构依使用的目的而不同,大致上可以作如下的分类: 单腔二板式结构 二板式结构 多腔二板式结构 普通模具 三板式结构 多腔三板式结构 滑动型心式结构 瓣合式结构 特殊模具脱螺纹结构 多层结构 ABS的主要技术指标见表2-1。 表 2-1

2.2弯管接头注射成型工艺过程 弯管接头注射成形工艺过程如下: 弯管接头塑料模具设计一、塑件的工艺性分析

零件图 1、塑件的结构 C——浇道和浇口的总体积/cm3 生产中每次实际注射量应为公称注射量G的(0.75-0.45)倍,现取0.6G进行计算。每件制品所需浇注系统的体积为制品体积的(0.2-1)倍,现取C=0.6V进行计算。 n2=0.6G/1.6V=0.375G/V=(0.375×60)/190.35=1.46 由以上的计算可知,可采用一模1腔的模具结构。 2、确定型腔的排列方式 本塑件在注射时采用一模1件,即模具需要1个型腔。 3、浇注系统的设计 1)主流道的设计 根据设计手册查得SZ-60/40型注射机喷嘴有关尺寸如下: 分流道在设计时应考虑尽量减小在流道内的压力损失和尽可能避免熔体温度的降低,同时还要考虑减小流道的容积。圆形和正方形流道的效率最高,当分型面为平面时一般采用圆形的截面流道,但考虑到加工的方便性,可采用半圆形的流道。 一般分流道直径在3-10mm范围内,分流道的截面尺寸可根据制品所用的塑料品种、重量和壁厚,以及分流道的长度由《中国模具设计大典》第2卷中图9.2-12 流量的直接的影响,浇口长度L在结构强度允许的条件下以短为好,一般选L=0.5-0.75mm。 确定浇口深度和宽度的经验公式如下: h=nt ① W=nA1/2/30 ② 式中:h——侧浇口深度(mm)中小型制品常用h=0.5-2mm,约为制品最大壁厚的1/3-2/3,取1.5mm t——制品的壁厚(mm) 3.38mm n——塑料材料的系数查表得0.8

相关主题
文本预览
相关文档 最新文档