当前位置:文档之家› 培优专题15_三角形总复习(含答案)

培优专题15_三角形总复习(含答案)

15、三角形总复习

【知识精读】

1. 三角形的内角和定理与三角形的外角和定理;

2. 三角形中三边之间的关系定理及其推论;

3. 全等三角形的性质与判定;

4. 特殊三角形的性质与判定(如等腰三角形);

5. 直角三角形的性质与判定。

三角形一章在平面几何中占有十分重要的地位。从知识上来看,许多内容应用十分广泛,可以解决一些简单的实际问题;从证题方法来看,全等三角形的知识,为我们提供了一个及为方便的工具,通过证明全等,解决证明两条线段相等,两个角相等,从而解决平行、垂直等问题。因此,它揭示了研究封闭图形的一般方法,为以后的学习提供了研究的工具。因此,在学习中我们应该多总结,多归纳,使知识更加系统化,解题方法更加规范,从而提高我们的解题能力。 【分类解析】

1. 三角形内角和定理的应用

例1. 如图1,已知?ABC 中,∠=?⊥BAC AD BC 90,于D ,E 是AD 上一点。 求证:∠>∠BED C

A B

D C

E

图1

证明:由AD ⊥BC 于D ,可得∠CAD =∠ABC 又∠=∠+∠ABD ABE EBD 则∠∠ABD EBD > 可证∠∠CAD EBD > 即∠∠BED C >

说明:在角度不定的情况下比较两角大小,如果能运用三角形内角和都等于180°间接

求得。

2. 三角形三边关系的应用

例2. 已知:如图2,在?ABC 中,AB AC >,AM 是BC 边的中线。 求证:()AM AB AC >

-1

2

C

A

M

B D

图2

证明:延长AM 到D ,使MD =AM ,连接BD

在?CMA 和?BMD 中,AM DM AMC DMB CM BM ===,∠∠,

∴?∴=??C M A B M D

BD AC

在?ABD 中,AB BD AD -<,而AD AM =2

()

∴-<∴>-AB AC AM AM AB AC 21

2

说明:在分析此问题时,首先将求证式变形,得2AM AB AC >-,然后通过倍长中线的方法,相当于将?AMC 绕点旋转180°构成旋转型的全等三角形,把AC 、AB 、2AM 转化到同一三角形中,利用三角形三边不等关系,达到解决问题的目的。很自然有

()()121

2

AB AC AM AB AC -<<+。请同学们自己试着证明。

3. 角平分线定理的应用

例3. 如图3,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC 。 求证:AM 平分DAB 。

D A

B

M

G

C

图3

证明:过M 作MG ⊥AD 于G ,∵DM 平分∠ADC ,MC ⊥DC ,MG ⊥AD ∴MC =MG (在角的平分线上的点到角的两边距离相等) ∵MC =MB ,∴MG =MB 而MG ⊥AD ,MB ⊥AB

∴M 在∠ADC 的平分线上(到一个角的两边距离相等的点,在这个角的平分线上) ∴DM 平分∠ADC

说明:本题的证明过程中先使用角平分线的定理是为判定定理的运用创造了条件MG =MB 。同时要注意不必证明三角形全等,否则就是重复判定定理的证明过程。

4. 全等三角形的应用

(1)构造全等三角形解决问题

例4. 已知如图4,△ABC 是边长为1的等边三角形,△BDC 是顶角(∠BDC )为 120°的等腰三角形,以D 为顶点作一个60°的角,它的两边分别交AB 于M ,交AC 于N ,连结MN 。求证:?AMN 的周长等于2。

D M '

C

N

A M

B

图4

分析:欲证?AMN 的周长等于2,需证明它等于等边?ABC 的两边的长,只需证

M N BM CN =+。采用旋转构造全等的方法来解决。

证明:以点D 为旋转中心,将?DBM 顺时针旋转120°,点B 落在点C 的位置,点M 落在M'点的位置。

得:∠MBD =∠NCD =90°

∴?∴==?

Rt MBD Rt M CD DCM DBM ??''∠∠90

∴∠NCD 与∠DCM'构成平角,且BM =CM',DM =DM',∠NDM'=∠NDC +∠CDM'=∠NDC +∠BDM =120°-60°=60° 在?MDN 和?M DN '中,

DM DM MDN M DN DN DN ===?='',∠∠,60

∴?∴==+=+∴=+??M D N M DN SAS MN M N M N M C CN BM CN MN BM CN

'()'''

∴?A M N 的周长=++=+++=+=AM AN M N AM AN BM CN AB AC 2 说明:通过旋转,使已知图形中的角、线段充分得到利用,促进了问题的解决。

(2)“全等三角形”在综合题中的应用

例5. 如图5,已知:点C 是∠FAE 的平分线AC 上一点,CE ⊥AE ,CF ⊥AF ,E 、F 为垂足。点B 在AE 的延长线上,点D 在AF 上。若AB =21,AD =9,BC =DC =10。求AC 的长。

C

F D

A

E B

图5

分析:要求AC 的长,需在直角三角形ACE 中知AE 、CE 的长,而AE 、CE 均不是已知长度的线段,这时需要通过证全等三角形,利用其性质,创设条件证出线段相等,进而求出AE 、CE 的长,使问题得以解决。

解:∵AC 平分∠FAE ,CF ⊥AF ,CE ⊥AE ∴CF =CE

CF CE F CEA AC AC ACF ACE HL AF AE CF CE

CD BC

F CEB CDF CBE HL ===?=???

?

?∴?∴=====????

?

?∴?∠∠∠∠9090????()()

∴BE =DF

设BE DF x ==,则AE AB BE x AF AD DF x =-=-=+=+219, AE AF x x x =∴-=+∴=,,2196 在Rt BCE ?中,CE BC BE =-=-=22221068

在Rt ACE ?中,()AC AE CE =+=-+=222

2216817

答:AC 的长为17。

5、中考点拨 例1.

如图,在?ABC 中,已知∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E ,若BD +CE =9,则线段DE 的长为( ) A. 9

B. 8

C. 7

D. 6

A

B

C E

D F

分析:初看此题,看到DE =DF +FE 后,就想把DF 和FE 的长逐个求出后再相加得DE ,但由于DF 与FE 的长都无法求出,于是就不知怎么办了?其实,若能注意到已知条件中的“BD +CE =9”,就应想一想,DF +FE 是否与BD +CE 相关?是否可以整体求出?若能想到这一点,就不难整体求出DF +FE 也就是DE 的长了。

解:∵BF 是∠B 的平分线 ∴∠DBF =∠CBF 又DE ∥BC ∴∠DFB =∠CBF ∴∠BDF =∠DFB ∴DF =BD 同理,FE =CE

∴DF +FE =BD +CE =9 即DE =9 故选A

6、题型展示

例1. 已知:如图6,?ABC 中,AB =AC ,∠ACB =90°,D 是AC 上一点,AE 垂直BD 的延长线于E ,AE BD =

1

2

。 求证:BD 平分∠ABC

A B

F

C E

D 图6

分析:要证∠ABD =∠CBD ,可通过三角形全等来证明,但图中不存在可证全等的三角形,需设法进行构造。注意到已知条件的特点,采用补形构造全等的方法来解决。 简证:延长AE 交BC 的延长线于F 易证??ACF BCD ?(ASA 或AAS )

∴==∴==AF BD

AE BD AE AF EF

1

21

2

于是又不难证得??BAE BFE SAS ?()

∴=∠∠ABD CBD ∴BD 平分∠BAC

说明:通过补形构造全等,沟通了已知和未知,打开了解决问题的通道。

例2. 某小区结合实际情况建了一个平面图形为正三角形的花坛。如图7,在正三角形ABC 花坛外有满足条件PB =AB 的一棵树P ,现要在花坛内装一喷水管D ,点D 的位置必须满足条件AD =BD ,∠DBP =DBC ,才能使花坛内全部位置及树P 均能得到水管D 的喷水,问∠BPD 为多少度时,才能达到上述要求?

C

B

P

A

D

图7

分析:此题是一个实际问题,应先将实际问题转化成数学问题,转化后的数学问题是:如图7,D 为正?ABC 内一点,P 为正?ABC 外一点,PB =AB ,AD =BD ,∠DBP =∠DBC ,求∠BPD =?在解此数学问题时,要用到全等三角形的知识。 解:连CD

BP AB BC

DBP DBC BD BD PBD CBD SAS BPD BCD

====???

?

?∴?∴=∠∠∠∠??()

又 AC BC AD BD CD CD ===???

?

?

∴?∴==?

??ACD BCD SSS ACD BCD ()∠∠30

∴=?∠BPD 30,即∠BPD =?30时,才能达到要求。

【实战模拟】

1. 填空:等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm ,则这个等腰三角形底边的长为____________。

2. 在锐角?ABC 中,高AD 和BE 交于H 点,且BH =AC ,则∠ABC =__________。

3. 如图所示,D 是?ABC 的∠ACB 的外角平分线与BA 的延长线的交点。试比较∠BAC 与∠B 的大小关系。

D

A

D C E

12

4. 如图所示,AB =AC ,∠BAC =90°,M 是AC 中点,AE ⊥BM 。 求证:∠AMB =∠CMD

B

D C

A E

M

5. 设三个正数a 、b 、c 满足(

)()a b c a b c 22

22

4442++>++,求证:a 、b 、c 一定是

某个三角形三边的长。

【试题答案】

1. 5cm

2. 45°

3. 分析:如图所示,∠BAC 是?ACD 的外角,所以∠>∠BAC 1 因为∠1=∠2,所以∠BAC >∠2

又因为∠2是?BCD 的外角,所以∠2>∠B ,问题得证。 答:∠BAC >∠B

∵∠CD 平分∠ACE ,∴∠1=∠2 ∵∠BAC >∠1,∴∠BAC >∠2 ∵∠2>∠B ,∴∠BAC >∠B

4. 证明一:过点C 作CF ⊥AC 交AD 的延长线于F

A

M

E

C

B

D F

4

31

2

∠∠∠∠∠∠129012

+=+=?∴=BAE BAE

又∠BAC =∠ACF =90° AC =AB

∴?∴==??ABM CAF

AM CF F AMB

,∠∠

又AM =MC ,∴MC =CF 又∠3=∠4=45°,CD =CD ∴???CDM CDF

∴=∴=∠∠∠∠F C M D

A M

B

C M D

证明二:过点A 作AN 平分∠BAC 交BM 于N

A

M C

B

D

1E

N 2

3

∠∠∠∠∠∠239023

+=+=?∴=BAE BAE

又AN 平分∠BAC ∴==?∠∠145C 又AB =AC

∴?∴=??ABN CAD

AN CD

又∠∠NAM C ==?45 AM =CM

∴?∴=??N A M D C M A M B CMD

∠∠

说明:若图中所证的两个角或两条线段没有在全等三角形中,可以把求证的角或线段用和它相等的量代换。若没有相等的量代换,可设法作辅助线构造全等三角形。 5. 证明:由已知得:

a b c a b b c c a a b c 4

4

4

2

2

2

2

2

2

4

4

4

222222+++++>++ 即a b c a b b c c a 4

4

4

2

2

2

2

2

2

2220++---<

()()∴++--+-<+-++-

b

c a b

c

a b 442222224222

22

2

2

2

4

22

22240

240

()()()[]()[]

()[]()[

]()()()()()()()()()()a b c a b a

b c a b a b c a b a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c b c a c a b 2222

2

2

2222222

2220

220

00

00

+--<+-++--<+---<+++--+--<++>∴+--+--<∴+-+-+->

、、是某一三角形三边的长。

a b c

三角形培优训练100题集锦

E D F C B A 三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图△ABC中,AB=5,AC=3,求中线AD的取值范围. 2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

培优专题 等腰三角形

培优专题 等腰三角形 等腰三角形是一种特殊的三角形,它具有一般三角形的性质,同时,还具有自身的特殊性,这些特殊性使它比一般三角形应用更加广泛.等腰三角形的性质和判定为证明两个角相等和两条线段相等提供了依据.等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径. 例1 如图1-1,△ABC 中,AB=BC ,M 、N 为BC 边上两点,且∠BAM=∠CAN ,MN=AN ,求∠MAC 的度数. 分析 AB=AC ,MN=AN 可知△ABC 和△AMN 均为等腰三角形,充分利用等腰三角形的性质寻找所求角间的关系. 练习1 1.如图,已知△ABC 中,AB=AC ,AD=AE ,∠BAE=30°,则∠DEC 等于( ). A .7.5° B .10° C .12.5° D .15° 2.如图,AA ′、BB ′分别是△ABC 的外角∠EAB 和∠CBD 的平分线,且AA ′=AB=B ′B ,A ′、B 、C 在一直线上,则∠ACB 的度数是多少? 3.如图,等腰三角形ABC 中,AB=BC ,∠A=20°.D 是AB 边上的点,且AD=BC ,?连结CD ,则∠BDC=________. 例2 如图1-5,D 是等边三角形ABC 的AB 边延长线上一点,BD?的垂直平分线HE?交AC 延长线于点E ,那么CE 与AD 相等吗?试说明理由. 分析 要说明似乎没有任何关系的两条线段相等,往往需要做一些工作,如添加辅助线,构造全等三角形等,从而达到解决问题的目的.

相似三角形培优拔高题(精编文档).doc

【最新整理,下载后即可编辑】 第一讲 相似三角形 1、已知432z y x ==,且1032=+-z y x ,则z y x ++= 。 2、已知△ABC 中,AB=AC,∠BAC=120°,求AB:BC 的值。 3、若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB=10, 23==BQ AQ BP AP ,求线段PQ 的长。 4、若55432+==+c b a ,且2132=+-c b a ,试求a:b:c 。 5、△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC 。若△ABC 的边长为4,AE=2,则BD 的长 为 。 6、点D,E 分别在△ABC 的边AB ,AC 上,DE ∥BC ,点G 在边BC 上,AG 交DE 于点H ,点O 是线段AG 的中点,若 13=DB AD ,则 =OH AO

7、在正方形ABCD 中,P 是CD 的中点,连接AP 并延长交BC 的延长线于点E ,连接DE ,取DE 的中点Q ,连接PQ ,求证: PQ=PC. 8、四边形ABCD 与四边形A 1B 1C 1D 1相似,相似比为2:3,四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2相似,相似比为5:4,则四边形ABCD 与四边形A 2B 2C 2D 2相似且相似比为 。 9、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿 AE 将△ABE 向上折叠,使B 点落在AD 上的F 处。若 四边形EFDC 与矩形ABCD 相似,则AD= 10、已知∠1=∠2=∠3,求证:△ABC ∽△ADE 11、点C 、D 在线段AB 上,△PCD 是等边三角形

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

等腰三角形培优提高练习题[1]

等腰三角形提高训练题1 培优训练 1.等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形 底边的长为 . 2.△ABC 中,AB =AC ,∠A=40°,BP=CE ,BD=CP ,则∠DPF= 度. 3.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F , 若BF =AC ,则∠ABC 的大小是 . (烟台市中考题) 4.△ABC 的一个内角的大小是40°,且∠A=∠B ,那么∠C 的外角的大小是( ) A .140° B .80°或100° C .100°或140° D .80°或140° 5.已知△ABC 中,AB =AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点, 两边PE 、PF 分别交AB 、AC 于点F 、F ,给出以下四个结论:①AE=CF ; ②△EPF 是等腰直角三角形,③S AEPF 四边形=2 1 S ABC ;④EF=AP .当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的是( ) A .1个 B .2个 C .3个 D . 4个 (苏州市中考题) 6.如图,在△ABC 中,∠ACB=90°,AC =AE ,BC =BF ,则∠ECF =( ) A .60° B .45° C .30° D .不确定 7.如图,在△ABC 中,∠B 、∠C 的平分线相交于O 点.作MN ∥BC ,EF ∥AB ,GH ∥AC ,BC =a ,AC=b ,AB =c ,则△GMO 周长+△ENO 的周长-△FHO 的周长 . 8.如图,△ABC 中,AD 平分∠BAC ,AB+BD=AC ,则∠B :∠C 的值= . (“五羊杯”竞赛题) 9.如图,四边形ABCD 中,对角线AC 与BD 相交于E 点,若AC 平分∠DAB ,且AB=AE ,AC=AD ,有如下四个结论: ①AC ⊥BD ;②BC=DE ;③∠DBC=2 1∠DAB ;④△ABE 是等边三角形.请写出正确结论的序号 .(把你认为正确结论的序号都填上) (天津市中考题) 10.等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( ) A .30° B .30°或150° C . 120°或150° D .30°或120°或150° (“希望杯”邀请赛) 11.在锐角△ABC 中,三个内角的度数都是质数,则这样的三角形( ) A .只有一个且为等腰三角形 B .至少有两个且都为等腰三角形 7题 6题 8题 9题 5题

相似三角形培优训练含答案

相似三角形分类提高训练 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动 点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作 EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒. (1)①当t=2.5s时,求△CPQ的面积; ②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着 AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的 速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.

等腰三角形的性质 培优 数学张老师

2、等腰三角形的性质 若按边(角)是否相等分类,两边(角)相等的三角形是等腰三角形(isoscelestriangle).等腰三角形是一类特殊三角形,它的两底角相等;等腰三角形是轴对称图形,底边上的高、中线、顶角的平分线互相重合(简称三线合一),特别地,等边三角形(equilateral triangle)的各边相等,各角都为600 . 解与等腰三角形相关的问题,全等三角形依然是重要的工具,但更多的是思考运用等腰三角形的特殊性质,这些性质为角度的计算、线段相等的证明、直线位置关系的证明等问题提供了新的理论依据,因此,重视全等三角形的运用,又不囿于全等三角形,善于运用等腰三角形的性质探求新的解题途径. 【例l 】如图,AOB 是一钢架,且∠A OB =100,为使钢架更加坚固,需在其内部添加一些钢管EF 、FG 、 GH……添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根. (山东省聊城市中考题) 思路点拨 通过角度的计算,确定添加钢管数的最大值. 【例2】 如图,若AB=AC ,BG=BH ,AK=KG ,则∠BAC 的度数为( ). A .300 B .320 C .360 D .400 (武汉市选拔赛试题) 思路点拨 图中有很多相关的角,用∠BAC 的代数式表示这些角,建立关于∠BAC 的方程. 【例3】如图,在△ABC 中,已知∠A=900,AB=AC ,D 为AC 上一点,AE ⊥BD 于E ,延长AE 交BC 于F .问 当点D 满足什么条件时,∠ADB=∠CDF,请说明理由. (安徽省竞赛题改编题) 思路点拨 本例是探索条件的问题,可先假定结论成立,逐步逆推过去,找到相应的条件,若∠ADB=∠CDF,这一结论如何用?因∠ADB 与∠CDF 对应的三角形不全等,故需构造全等三角形,而作顶角的平分线或底边上的高(中线)是等腰三角形中一条常用辅助线. 【例4】如图,在△ABC 中,AC=BC ,∠ACB=900,D 是AC 上一点,AE⊥BD 交BD 的延长线于E ,且 .21BD AF 求证:BD 是∠ABC 的角平分线. (北京市竞赛题)

全等三角形专题培优[带答案]

全等三角形专题培优 考试总分: 110 分考试时间: 120 分钟 卷I(选择题) 一、选择题(共 10 小题,每小题 2 分,共 20 分) 1.如图为个边长相等的正方形的组合图形,则 A. B. C. D. 2.下列定理中逆定理不存在的是() A.角平分线上的点到这个角的两边距离相等 B.在一个三角形中,如果两边相等,那么它们所对的角也相等 C.同位角相等,两直线平行 D.全等三角形的对应角相等 3.已知:如图,,,,则不正确的结论是() A.与互为余角 B. C. D. 4.如图,是的中位线,延长至使,连接,则的值为() A. B. C. D. 5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B. C. D. 6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有() A.个 B.个 C.个 D.个 7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可 供选择的地址有() A.一处 B.二处 C.三处 D.四处 8.如图,是的角平分线,则等于() A. B. C. D. 9.已知是的中线,且比的周长大,则与的差为() A. B. C. D. 10.若一个三角形的两条边与高重合,那么它的三个内角中() A.都是锐角 B.有一个是直角 C.有一个是钝角 D.不能确定 卷II(非选择题) 二、填空题(共 10 小题,每小题 2 分,共 20 分) 11.问题情境:在中,,,点为边上一点(不与点,重合) ,交直线于点,连接,将线段绕点顺时针方向旋转得

八年级专题培优讲义: 等腰三角形的性质的综合运用

专题讲义 等腰三角形的性质运用 夯实基础 1.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( ) A .40° B .100° C .40°或70° D .40°或100° 2. 一个等腰三角形两边长分别为20和10,则周长为( ) A .40 B .50 C .40或50 D .不能确定 3.如图,在△ABC 中,BC =8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于( ) A .8 B .4 C .12 D .16 4.如图,折叠长方形纸片ABCD ,沿对角线BD 折叠,使DC 落在DC′处,交AB 于G , (1)求证:DG=GB (2)图中全等的三角形共有______ 对。 例题剖析 遇直角△可构“一线三垂直”模型,证全等 【例1】在平面直角坐标系中,点A (4,0)、B (0,8),以AB 为斜边作等腰直角△ABC ,则点C 坐标为__________ 【例2】如图,在等腰△ABC 中,AB =AC ,射线BC 上有一动点G ,GE ⊥AC 于E , GF ⊥AB 于F ,AB 上的高为CD 。 (1)当G 在BC 间运动时,求证:GE+GF=CD 。 (2)当G 运动到BC 外时,试判断出GE 、GF 、CD 间关系,并加以证明。 G F E D C B A C ' G D C B A

【例3】如图,△ABC 中,AB =AC ,且BD =CE ,连结DE 交BC 于G , 试判断线段DG 与EG 的长度有怎样的关系,证明你的结论。 【例4】如图,等腰Rt △ABC 中,∠ACB=90°,CA=CB ,点D 在AB 上,AD=AC ,BE ⊥直线CD 于E (1)求∠BCD 的度数; (2)求证:CD=2BE ; (3)若点O 是AB 的中点,请直接写出三条线段CB 、BD 、CO 之间的数量关系. 【例5】已知如图,AB ⊥BC ,CD ⊥BC ,∠AMB=75°,∠DMC=45°,AM=MD ,求证:AB=BC 。 【例6】如图,△ABC 为等边三角形,D 、E 为两动点,两动点分别从C 点和A 点出发,沿CB 和AC 方向以相同的速度运动,AD 与BE 交于F 点,试判断∠AFE 的度数是否变化,若不变,求出其值,若变化,求出其范围。 【例7】如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF 。 G E D C B A M C B D A F B E D A F E D C B A

相似三角形培优难题集锦(含答_案)

一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F, G是EF中点,连接DG.设点D 运动的时间为t秒. (1)当t为何值时,AD=AB,并 求出此时DE的长度; (2)当△DEG与△ACB相似时, 求t的值. 2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它 们都停止移动.设移动的时间为t 秒. (1)①当t=2.5s时,求△CPQ的 面积; ②求△CPQ的面积S(平方米)关 于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中 , ACB=90°,AC=6,BC= (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中, BA=BC=20cm,AC= 30cm,点P从A点出发, 沿着AB以每秒4cm的速 度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

相似三角形培优专题

相似三角形培优专题1. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D. 求证:(1)△ACD∽△ABC; (2)AC2=AD?AB; (3)CD2=AD?DB. A 证明:(1)∵∠ACB=90°,CD⊥AB, ∴∠CDA=90°=∠ACB, ∵∠A=∠A, ∴△ACD∽△ABC. (2)∵△ACD∽△ABC, ∴AC AD AB AC =, ∴AC2=AD?AB; (3)∵CD⊥AB, ∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°, ∵∠ACB=90° ∴∠A+∠B=90° ∴∠ACD=∠B ∴△ACD∽△BCD, ∴CD AD BD CD =, ∴CD2=AD?DB.

2.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证: (1)△ACP∽△PDB, (2)CD2=AC?BD. 证明:(1)∵△PCD是等边三角形, ∴∠PCD=∠PDC=∠CPD=60°, ∴∠ACP=∠PDB=120°, ∵∠APB=120°, ∴∠APC+∠BPD=60°, ∵∠CAP+∠APC=60° ∴∠BPD=∠CAP, ∴△ACP∽△PDB; (2)由(1)得△ACP∽△PDB, ∴, ∵△PCD是等边三角形, ∴PC=PD=CD, ∴, ∴CD2=AC?BD.

3. 如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC 的边BC=15,高AH=10, (1)求证:△ADG∽△ABC; (2)求这个正方形的边长和面积. 解:(1)∵四边形形DEFG是正方形, ∴DG∥BC ∴△ADG∽△ABC; (2) 如图,高AH交DG于M,设正方形DEFG的边长为x,则DE=MH=x, ∴AM=AH﹣MH=10﹣x, ∵ADG∽△ABC, ∴DG AM BC AH =, ∴ 10 1510 x x - =, ∴x=6, ∴x2=36. 答:正方形DEFG的边长和面积分别为6,36.

word完整版培优专题3 等腰三角形含答案1推荐文档

3:在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系, 理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问 【知识精读】 (-)等腰三角形的性质 1.有关定理及其推论 定理:等腰三角形有两边相等; 3等腰三角形 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的 顶角平分线、底边上的中线、底边上的高互相重合。等腰三角形是以底边的垂直平分线为对 称轴的轴对称图形; 推论2:等边三角形的各角都相等,并且每一个角都等于 60 2.定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系, 由两边相等推出两 角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、 底边上的高、顶 角的平分线“三线合一”的性质是今后证明两条线段相等, 两个角相等以及两条直线互相垂 直的重要依据。 (二)等腰三角形的判定 1.有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成 “等角 对 等边”。) 推论 1:三个角都相等的三角形是等边三角形。 推论 2:有一个角等于60°的等腰三角形是等边三角形。 推论 它是证明线段相等的重要定

题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题, 在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合, 添加辅助线时, 有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况 来定。 【分类解析】 例1.如图,已知在等边三角形 ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM 丄BC ,垂足为M 。求证:M 是BE 的中点。 所以/ 1 = - / ABC 2 又因为CE = CD ,所以/ CDE = / E 所以/ ACB = 2/ E 即/ 1=/ E 所以BD = BE ,又DM 丄BC ,垂足为 M 分析:欲证M 是BE 的中点,已知 DM 丄BC ,所以想到连结 BD ,证BD = ED 。因为△ ABC 是等边三角形,/ DBE = - / ABC ,而由 CE = CD ,又可证/ E = - / ACB ,所以/ 1 2 2 =/ E ,从而问题得证。 证明:因为三角形 ABC 是等边三角形,D 是AC 的中点 所以M 是BE 的中点 (等腰三角形三线合一定理) 例2.如图,已知: ABC 中,AB AC , D 是 BC 上一点,且 AD DB , DC CA , 求 BAC 的度数。 E D

培优专题等腰三角形含答案

9、等腰三角形【知识精读】 (-)等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。 (二)等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。 【分类解析】 例1. 如图,已知在等边三角形ABC中,D是AC的中点,E为BC 延长线上一点,且CE=CD,DM⊥BC,垂足为M。求证:M是BE的中点。 分析:欲证M是BE的中点,已知DM⊥BC,所以想到连结BD,证 1∠ABC,而由CE=CD,BD=ED。因为△ABC是等边三角形,∠DBE= 2 1∠ACB,所以∠1=∠E,从而问题得证。 又可证∠E= 2 证明:因为三角形ABC是等边三角形,D是AC的中点

相似三角形的综合应用(培优提高)

相似三角形的应用 【学习目标】 1、探索相似三角形的性质,能运用性质进行有关计算. 2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【知识回顾】 一、相似三角形的性质 (1)对应边的比相等,对应角相等. (2)相似三角形的周长比等于相似比. (3)相似三角形的面积比等于相似比的平方...... . (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 二、相似三角形的应用: 1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等 3、利用三角形相似,可以解决一些不能直接测量的物体的长度.如求河的宽度、求建筑物的高度等. 【典型例题】 例1:如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少? 【同步练习】如图,△ABC 是一块三角形余料,AB=AC=13cm ,BC=10cm ,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少? 例2:阅读以下文字并解答问题: 在“测量物体的高度” 活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高 A B C Q M D N P E

度.在同一时刻的阳光下,他们分别做了以下工作: 小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1). 小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米. 小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米. 小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m 的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m . (1)在横线上直接填写甲树的高度为 米. (2)求出乙树的高度(画出示意图). (3)请选择丙树的高度为( ) A 、6.5米 B 、5.75米 C 、6.05米 D 、7.25米 (4)你能计算出丁树的高度吗?试试看. 【同步练习】如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度. 图1 图2 图3 图4

培优专题讲解_等腰三角形(含解答)-

等腰三角形专题练习题 等腰三角形是一种特殊的三角形,它具有一般三角形的性质,同时,还具有自身的特殊性,这些特殊性使它比一般三角形应用更加广泛.等腰三角形的性质和判定为证明两个角相等和两条线段相等提供了依据.等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径. 例1如图1-1,△ABC中,AB=BC,M、N为BC边上两点,且∠BAM=∠CAN,MN=AN,求∠MAC的度数. 练习1 1.如图1-2,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于().A.7.5° B.10° C.12.5° D.18° 1-2 2.如图1-3,AA′、BB′分别是△ABC的外角∠EAB和∠CBD的平分线,且AA′=AB=B′B,A′、B、C在一直线上,则∠ACB的度数是多少? 1-3

3.如图1-4,等腰三角形ABC中,AB=BC,∠A=20°.D是AB边上的点,且AD=BC,?连结CD,则∠BDC=________. 1-4 例2 如图1-5,D是等边三角形ABC的AB边延长线上一点,BD?的垂直平分线HE?交AC 延长线于点E,那么CE与AD相等吗?试说明理由. 练习2 1.已知如图1-6,在△ABC中,AB=CD,D是AB上一点,DE⊥BC,E为垂足,ED?的延长线交CA的延长线于点F,判断AD与AF相等吗? 1-6 1-7 1-8 2.如图1-7,△ABC是等腰直角三角形,∠BAC=90°,点D是△ABC内一点,且∠DAC=∠DCA=15°,则BD与BA的大小关系是() A.BD>BA B.BD

等腰三角形培优提高试题

等腰三角形培优提高试题

————————————————————————————————作者:————————————————————————————————日期:

一.选择题(共6小题) 1.已知,等腰三角形的一条边长等于6,另一条边长等于3,则此等腰三角形的周长是()A.9 B.12 C.15 D.12或15 2.如图所示,在△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB的角平分线且相交于点F,则图中的等腰三角形有() A.6个B.7个C.8个D.9个 (第2题)(第3题)(第4题) 3.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、 A、B为顶点的三角形是等腰三角形,这样的B点有() A.1个B.2个C.3个D.4个 4.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.3cm2B.4cm2C.5cm2D.6cm2 5.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为() A.7 B.11 C.7或11 D.7或10 6.如图:D,E分别是△ABC的边BC、AC上的点,若AB=AC,AD=AE,则() A.当∠B为定值时,∠CDE为定值B.当∠α为定值时,∠CDE为定值 C.当∠β为定值时,∠CDE为定值D.当∠γ为定值时,∠CDE为定值 二.填空题(共8小题) 7.已知等腰三角形一腰上的中线将三角形周长分成2:1两部分,已知三角形底边长为5cm,

则腰长为cm. 8.如图,在△ABC中,EG∥BC,BF平分∠ABC,CF平分∠ACB,AB=10,AC=12,△AEG的周长为. (第8题)(第9题)(第10题) 9.如图,已知△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,则∠BAC=°.10.如图,△ABC中,AP垂直∠ABC的平分线BP于点P.若△ABC的面积为32cm2,BP=6cm,且△APB的面积是△APC的面积的3倍.则AP=cm. 11.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为.12.如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是2,则六边形的周长是. (第12题)(第14题)(第14题) 13.如图,∠AOB=60°,C是BO延长线上的一点,OC=10cm,动点P从点C出发沿CB以2cm/s 的速度移动,动点Q从点O发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t (s)表示移动的时间,当t=时,△POQ是等腰三角形. 14.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为. 三.解答题(共15小题) 15.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.

相似三角形培优题

1.(2013?雅安)如图,在?ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF= 2.(2013?恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE 并延长交DC于点F,则DF:FC=() 3.(2013?自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为() 4.(2013?新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为() A. 2 B.或C.或D. 2或或 5.(2013?孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A, ∠DCE=∠CBD,∠EDF=∠DCE.则EF等于() A.B.C.D.

6.(2013安顺)在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE= . 7.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 8.(2013东营中考)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值() A. 只有1个 B. 可以有2个 C. 可以有3个 D. 有无数个 9.(2013台湾、33)如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?() A.甲>乙,乙>丙B.甲>乙,乙<丙C.甲<乙,乙>丙D.甲<乙,乙<丙 10、(2013?黔东南州)将一副三角尺如图所示叠放在一起,则的值是. 11、(2013?牡丹江)劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工成一个边长比是1:2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其它顶点均在三角形的边上,则这个平行四边形的较短的边长为.

三角形培优训练100题集锦(学生用)

三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图ABC ?中,5=AB ,3=AC ,求中线AD 的取值范围。 分析:本题的关键是如何把AB ,AC ,AD 三条线段转化到同一个三角形当中。 解:延长AD 到E ,使DA DE =,连接BE 又∵CD BD =,CDA BDE ∠=∠ ∴()SAS CDA BDE ???,3==AC BE ∵BE AB AE BE AB +- (三角形三边关系定理) 即822 AD ∴41 AD 2、如图,ABC ?中,E 、F 分别在AB 、AC 上,DF DE ⊥,D 是中点,试比较CF BE +与 EF 的大小。 证明:延长FD 到点G ,使DF DG =,连接BG 、EG ∵CD BD =,DG FD =,CDF BDG ∠=∠ ∴CDF BDG ??? E C A B D A

人教版八年级数学上册等腰三角形培优专题练习.doc

等腰三角形培优专题 等腰三角形是一种特殊的三角形,它具有一般三角形的性质,同时,还具有自身的特殊性,这些特殊性使它比一般三角形应用更加广泛.等腰三角形的性质和判定为证明两个角相等和两条线段相等提供了依据.等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径. 练习 1.如图,已知△ A.7.5°ABC中, AB B.10° =AC ,AD = C.12.5 ° AE ,∠ BAE D.18° = 30 °,则 ∠ DEC 等于(). 2.如图,AA′、 BB′分别是△ABC的外角∠C 在一直线上,则∠ACB的度数是多少?EAB 和∠CBD 的平分线,且AA′= AB = B′B,A′、 B 、 3.如图,则∠ BDC 等腰三角形 = ________ ABC . 中,AB =AC ,∠ A =20 °. D 是AB 边上的点,且AD = BC ,连 结 CD , 例 2 如图, D 是等边三角形ABC 的 AB 边延长线上一点, E 是等边三角形ABC 的 AC 边延长线上一点,且EB = ED .那么CE 与 AD 相等吗?试说明理由. E

C A B D

练习 线交1.已知如图,在△ CA 的延长线于点 ABC中,AB=CD,D是 F ,判断AD 与 AF 相等吗? AB 上一点,DE⊥BC , E 为垂足,ED? 的延长 2.如图,△ABC = 15°,则 BD 与 A . BD>BA 是等腰直角三角形,∠ BA 的大小关系是( B . BD

初中数学--培优专题13-等腰三角形(含答案)(2)

9、等腰三角形 【知识精读】 (―)等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两 角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶 角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂 直的重要依据。 (二)等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。 推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线

等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问 题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题, 在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合, 添加辅助线时, 有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况 来定。 【分类解析】 例1.如图,已知在等边三角形 ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD , DM 丄BC ,垂足为M 。求证:M 是BE 的中点。 分析:欲证M 是BE 的中点,已知 DM 丄BC ,所以想到连结 BD ,证BD = ED 。因为△ 1 1 ABC 是等边三角形,/ DBE = / ABC ,而由CE = CD ,又可证/ E = / ACB ,所以/ 1 2 2 =/ E ,从而问题得证。 证明:因为三角形ABC 是等边三角形,D 是AC 的中点 1 所以/ 1= — / ABC 2 又因为CE = CD ,所以/ CDE = Z E 所以/ ACB = 2/ E 即/ 1=Z E 所以BD = BE ,又DM 丄BC ,垂足为 M 所以M 是BE 的中点 (等腰三角形三线合一定理) 例 2.如图,已知: ABC 中,AB 二 AC , D 是 BC 上一点,且 AD 二 DB , DC 二 CA , 求.BAC 的度数。 D E

相关主题
文本预览
相关文档 最新文档