当前位置:文档之家› 计算机图形学_用C画饼状图

计算机图形学_用C画饼状图

计算机图形学_用C画饼状图
计算机图形学_用C画饼状图

实验题目:根据某公司上半年产品销售状况是:computer50%、printer20%、

plotter10%,scanner5%、computer paper10%、hard disk5%。试画出下图所示的饼状图。

实验目的:熟悉C语言的图形图像函数

实验指导:填充颜色和方式可以自定义

自定义饼状图的代码:

#include "stdio.h"

#include "stdlib.h"

#include "graphics.h"

#include "conio.h"

void main(){

int gdriver,gmode;

detectgraph(&gdriver,&gmode);

if(gdriver<0){

exit(1);

}

initgraph(&gdriver,&gmode,"c:\\tc3\\bgi");

int start,end,i;

int a[5];

start=0;

double d=3.6;

printf("please input the percentage(Y ou should input five times!) :\n");

for(i=0;i<5;i++){

scanf("%d",&a[i]);

}

int top,left,h,w;

top=100;left=300;h=2;w=25;

for(i=0;i<5;i++){

setfillstyle(i+1,4);

end=start+a[i]*d;

pieslice(160,200,start,end,100);

bar(left,top,left+w,top+h*a[i]);

start=end;

top=top+h*a[i];

switch(i){

case 0:outtextxy(340,top-h*a[i]/2,"Computer");continue;

case 1:outtextxy(340,top-h*a[i]/2,"Printer");continue;

case 2:outtextxy(340,top-h*a[i]/2,"Plotter");continue;

case 3:outtextxy(340,top-h*a[i]/2,"Scanner");continue;

case 4:outtextxy(340,top-h*a[i]/2,"Computer paper");continue;

}

}

outtextxy(140,340,"The pie chart of market");

getch();

closegraph();

}

《计算机图形学基础》第一次作业参考答案

《计算机图形学基础》第一次作业参考答案 一、名词解释 1、计算机图形学:是使用计算机通过算法和程序在显示设备上构造出图形来,是真实物体或虚构物体的图形综合技术。 2、图像处理:是景物或图象的分析技术,它所研究的是计算机图形学的逆过程。包括图象增强、模式识别、景物分析、计算机视觉等,并研究如何从图象中提取二维或三维物体的模型。 3、逐点比较法:这是绘图仪经常采用的一种方法,就是在绘图过程中,绘图笔每画一笔,就与规定图形进行比较,然后决定下一步的走向,用步步逼近的方法画出规定的图形。 4、造型技术:要在计算机中构造三维物体的一幅图像,首先必须在计算机中构造出该物体的模型,这一模型是由一批几何数据及数据之间的拓朴关系来表示,这就是造型技术。 二、简答 1、计算机图形系统的组成包括哪些? 答:计算机图形系统由硬件和软件两部分组成,硬件包括:主计算机、图形显示器以及I/O交互工具和存储设备;软件包括操作系统、高级语言、图形软件和应用软件。 现代计算机图形系统与一般计算机系统最主要的差别是具有图形的输入、输出设备以及必要的交互工具,在速度和存储容量上具有较高的要求。另外,人也是这个系统的组成部分。 2、简述图形软件的组成。 答:图形软件系统应该具有良好的结构,要有合理的层次结构的模块结构,以便于设计、维护和调试。 1、零级图形软件:是最底层的软件,主要解决图形设备与主机的通讯、接口等问题,又称设备驱动程序,是一些最基本的输入、输出子程序,要求程序质量高,它是面向系统的,而不是面向用户的。 2、一级图形软件:又称基本子程序,包括生成基本图形元素,对设备进行管理的各程序模块,既面向系统又面向用户。 3、二级图形软件:也称功能子程序,是在一级图形软件基础上编制的,其主要任务是建立图形数据结构,定义、修改和输出图形;以及建立各图形设备之间的联系,要具有较强的交互功能,它是面向用户的。(以上三级通常称为支撑软件) 4、三级图形软件:是为解决某种应用问题的图形软件,是整个应用软件的一部分,通常由用户编写或与设计者一起编写。 三、算法实现 写出Bresenham方法生成直线的C语言算法。 答案: int bres_line(int x1,int y1,int x2,int y2,int color) { int oldcolor,itag; int dx,dy,tx,ty,inc1,inc2,d,curx,cury; oldcolor=setcolor(color);

计算机图形学裁剪算法详解

裁剪算法详解 在使用计算机处理图形信息时,计算机部存储的图形往往比较大,而屏幕显示的只是图的一部分。因此需要确定图形中哪些部分落在显示区之,哪些落在显示区之外,以便只显示落在显示区的那部分图形。这个选择过程称为裁剪。最简单的裁剪方法是把各种图形扫描转换为点之后,再判断各点是否在窗。但那样太费时,一般不可取。这是因为有些图形组成部分全部在窗口外,可以完全排除,不必进行扫描转换。所以一般采用先裁剪再扫描转换的方法。 (a)裁剪前 (b) 裁剪后 图1.1 多边形裁剪 1直线段裁剪 直线段裁剪算法比较简单,但非常重要,是复杂图元裁剪的基础。因为复杂的曲线可以通过折线段来近似,从而裁剪问题也可以化为直线段的裁剪问题。常

用的线段裁剪方法有三种:Cohen-Sutherland,中点分割算法和梁友栋-barskey 算法。 1.1 Cohen-Sutherland裁剪 该算法的思想是:对于每条线段P1P2分为三种情况处理。(1)若P1P2完全在窗口,则显示该线段P1P2简称“取”之。(2)若P1P2明显在窗口外,则丢弃该线段,简称“弃”之。(3)若线段既不满足“取”的条件,也不满足“弃”的条件,则在交点处把线段分为两段。其中一段完全在窗口外,可弃之。然后对另一段重复上述处理。 为使计算机能够快速判断一条直线段与窗口属何种关系,采用如下编码方法。延长窗口的边,将二维平面分成九个区域。每个区域赋予4位编码CtCbCrCl.其中各位编码的定义如下:

图1.2 多边形裁剪区域编码图5.3线段裁剪 裁剪一条线段时,先求出P1P2所在的区号code1,code2。若code1=0,且code2=0,则线段P1P2在窗口,应取之。若按位与运算code1&code2≠0,则说明两个端点同在窗口的上方、下方、左方或右方。可判断线段完全在窗口外,可弃之。否则,按第三种情况处理。求出线段与窗口某边的交点,在交点处把线段一分为二,其中必有一段在窗口外,可弃之。在对另一段重复上述处理。在实现本算法时,不必把线段与每条窗口边界依次求交,只要按顺序检测到端点的编码不为0,才把线段与对应的窗口边界求交。 Cohen-Sutherland裁减算法 #define LEFT 1 #define RIGHT 2 #define BOTTOM 4

计算机图形学实验一

实验一二维基本图元的生成与填充 实验目的 1.了解并掌握二维基本图元的生成算法与填充算法。 2.实现直线生成的DDA算法、中点算法和Bresenham算法。 3.实现圆和椭圆生成的DDA和中点算法, 对几种算法的优缺点有感性认识。 二.实验内容和要求 1.选择自己熟悉的任何编程语言, 建议使用VC++。 2.创建良好的用户界面,包括菜单,参数输入区域和图形显示区域。 3.实现生成直线的DDA算法、中点算法和Bresenham算法。 4.实现圆弧生成的中点算法。 5.实现多边形生成的常用算法, 如扫描线算法,边缘填充算法。 6.实现一般连通区域的基于扫描线的种子填充算法。 7.将生成算法以菜单或按钮形式集成到用户界面上。 8.直线与圆的坐标参数可以用鼠标或键盘输入。 6. 可以实现任何情形的直线和圆的生成。 实验报告 1.用户界面的设计思想和框图。 2.各种实现算法的算法思想。 3.算法验证例子。 4.上交源程序。 直线生成程序设计的步骤如下: 为编程实现上述算法,本程序利用最基本的绘制元素(如点、直线等),绘制图形。如图1-1所示,为程序运行主界面,通过选择菜单及下拉菜单的各功能项分别完成各种对应算法的图形绘制。 图1-1 基本图形生成的程序运行界面 2.创建工程名称为“基本图形的生成”单文档应用程序框架 (1)启动VC,选择“文件”|“新建”菜单命令,并在弹出的新建对话框中单击“工程”标签。 (2)选择MFC AppWizard(exe),在“工程名称”编辑框中输入“基本图形的生成”作为工程名称,单击“确定”按钮,出现Step 1对话框。 (3)选择“单个文档”选项,单击“下一个”按钮,出现Step 2对话框。 (4)接受默认选项,单击“下一个”按钮,在出现的Step 3~Step 5对话框中,接受默认选项,单击“下一个”按钮。

利用C语言图形函数绘图

计算机图形学课程实 验 报 告 实验题目 班 级 姓 名 学 号 指导教师 日 期 西安理工大学理学院应用数学系 二零一二年春季学期 信息与计算科学专业基础课 Computer Graphics Report Of course experiment

实验说明 试验目的: 掌握TurboC 语言图形函数的使用和学会绘制一般图形。 试验地点: 教九楼401 数学系机房 实验要求(Direction ):1. 每个学生单独完成;2.开发语言为TurboC 或C++,也可使用其它 语言;3.请在自己的实验报告上写明姓名、学号、班级;4.每次交的实验报告内容包括:题目、试验目的和意义、程序制作步骤、主程序、运行结果图以及参考文件;5. 自己保留一份可执行程序,考试前统一检查和上交。 实验内容 实验题一 1.1实验题目 用如下图1所示,图中最大正n 边形的外接圆半径为R ,旋转该正n 边形,每次旋转θ角度,旋转后的的n 边形顶点落在前一个正六边形的边上,共旋转N 次,请上机编程绘制N+1个外接圆半径逐渐缩小且旋转的正n 边形。要求:(1) n 、R 、N 、θ要求可以人为自由控制输入;(2)N+1个正六边形的中心(即外接圆的圆心)在显示屏幕中心。 利用C 语言图形函数绘图 实验 1

1.2实验目的和意义 1. 了解如何利用C语言和图形函数进行绘图; 2. 熟悉并掌握C语言的图形模式控制函数,图形屏幕操作函数,以及基本图形函数; 3. 通过对Turbo C进行图形程序设计的基本方法的学习,能绘制出简单的图形; 4. 通过绘制N+1个正n边形,了解图形系统初始化、图形系统关闭和图形模式的控制,并熟练运用图形坐标的设置,包括定点、读取光标、读取x和y轴的最大值以及图形颜色的设置。 1.3程序制作步骤(包括算法思想、算法流程图等) 算法思想: 1.自动搜索显示器类型和显示模式,初始化图形系统,通过printf、scanf语句控制半径r、边数n、多边形的个数k、边的每次旋转角度d,的自由输入; 2.给定一内接圆半径r,由圆内接多边形的算法公式: x[i]=r*cos((i+1) *2.0*pi/n)+320.0 y[i]=240.0-r*sin(2.0*pi/n *(i+1)) 确定出多边形N的各个顶点坐标,然后利用划线函数line(),连接相邻两点,即形成一个正多边形。 3.根据边与角的关系,以及线段定比分点公式,可知旋转后的多边形的各个顶点的坐标。公式如下: x[i]=(x[i]+x[i+1]/(k+1)) y [i]=(y[i]+y[i+1]/(k+1)) k=360/(n*d) (n为多边形的边数,d为多边形旋转的度数) 然后与第二步相同,利用划线函数line(),连接形成又一个旋转过的正多边形,这样就形成了所要绘制的图形; 4.关闭图形系统。 1.4主程序 程序代码: /*----- 多边形的逐次旋转------*/ #include "stdio.h" #include "conio.h" #include "math.h"

计算机图形学裁剪

《计算机图形学》实验报告 学院:理学院专业:信息与计算科学班级:姓名学号指导教师实验时间 4. 实验地点计算机实验室成绩实验项目名称裁剪 实 验 环 境 VC++ 6.0 实 验内容 (1)理解直线裁剪的原理(Cohen-Surtherland算法、梁友栋算法) (2)利用VC+OpenGL实现直线的编码裁剪算法,在屏幕上用一个封闭矩形裁剪任意一条直线。 (3)调试、编译、修改程序。 实验原理编码裁剪算法的主要思想是:对于每条线段,分为三种情况处理。(1)若线段完全在窗口之内,则显示该线段,称为“取”;(2)若线段明显在窗口之外,则丢弃该线段,称为“弃”;(3)若线段既不满足“取”的条件,也不满足“舍”的条件,则把线段分割为两段。其中一段完全在窗口之外,可弃之;对另一段则重复上述处理 实验过程#include #include #include #define LEFT_EDGE 1 #define RIGHT_EDGE 2 #define BOTTOM_EDGE 4 #define TOP_EDGE 8 void LineGL(int x0,int y0,int x1, int y1) { glBegin(GL_LINES); glColor3f(1.0f,0.0f,0.0f); glVertex2f(x0,y0); glColor3f(0.0f,1.0f,0.0f); glVertex2f(x1,y1); glEnd();

} struct Rectangle { float xmin,xmax,ymin,ymax; }; Rectangle rect; int x0,y0,x1,y1; int CompCode(int x,int y,Rectangle rect) { int code=0x00; if(yrect.ymax) code=code|8; if(x>rect.xmax) code=code|2; if(x

计算机图形学实验内容汇总

计算机图形学实验 肖加清

实验一图形学实验基础 一、实验目的 (1)掌握VC++绘图的一般步骤; (2)掌握OpenGL软件包的安装方法; (3)掌握OpenGL绘图的一般步骤; (4)掌握OpenGL的主要功能与基本语法。 二、实验内容 1、VC++绘图实验 (1)实验内容:以下是绘制金刚石图案。已给出VC++参考程序,但里面有部分错误,请改正,实现以下图案。 N=3 N=4

N=5 N=10 N=30

N=50 (2)参考程序 //自定义的一个类 //此代码可以放在视图类的实现文件(.cpp) 里class CP2 { public: CP2(); virtual ~CP2(); CP2(double,double); double x; double y; }; CP2::CP2() { this->x=0.0; this->y=0.0; } CP2::~CP2() { } CP2::CP2(double x0,double y0) { this->x=x0; this->y=y0; }

//视图类的一个成员函数,这个成员函数可以放在OnDraw函数里调用。 //在视图类的头文件(.h)里定义此函数 void Diamond(); //在视图类的实现文件(.cpp)里实现此函数 void CTestView::Diamond() { CP2 *P; int N; double R; R=300; N=10; P=new CP2[N]; CClientDC dc(this); CRect Rect; GetClientRect(&Rect); double theta; theta=2*PI/N; for(int i=0;i #include #include #include //定义输出窗口的大小 #define WINDOW_HEIGHT 300

c语言画直线代码

#include #include #include void Initialize(void) { int GraphDriver; int GraphMode; int ErrorCode; GraphDriver=DETECT; initgraph (&GraphDriver,&GraphMode,""); ErrorCode=graphresult(); if (ErrorCode!=grOk) { printf("Graphics System Error:%s\n",grapherrormsg(ErrorCode)); exit(1); } } void Bresenham(int x1,int y1,int x2,int y2) { int x,x0,interchange; int y,y0,temp; int s1,s2,i; float e; int c=14; x=x1; y=y1; x0=abs(x2-x1); y0=abs(y2-y1); if ((x2-x1)>0) s1=1; else s1=-1; if ((y2-y1)>0) s2=1; else s2=-1; if (y0>x0) { temp=x0; x0=y0; y0=temp; interchange=1; } else interchange=0; e=2*(y0-x0); for (i=0;i<=x0;i++)

{ putpixel (x,y,c); while (e>=0) { if (interchange==1) x=x+s1; else y=y+s2; e=e-2*x0; } if(interchange==1) y=y+s2; else x=x+s1; e=e+2*y0; } } int main() { int x1,x2,y1,y2; Initialize(); scanf("%d,%d,%d,%d",&x1,&y1,&x2,&y2); Bresenham(x1,y1,x2,y2); return 0; }

计算机图形学必考知识点

Phong Lighting 该模型计算效率高、与物理事实足够接近。Phong模型利用4个向量计算表面任一点的颜色值,考虑了光线和材质之间的三种相互作用:环境光反射、漫反射和镜面反射。Phong模型使用公式:I s=K s L s cosαΦα:高光系数。计算方面的优势:把r和v归一化为单位向量,利用点积计算镜面反射分量:I s=K s L s max((r,v)α,0),还可增加距离衰减因子。 在Gouraud着色这种明暗绘制方法中,对公用一个顶点的多边形的法向量取平均值,把归一化的平均值定义为该顶点的法向量,Gouraud着色对顶点的明暗值进行插值。Phong着色是在多边形内对法向量进行插值。Phong着色要求把光照模型应用到每个片元上,也被称为片元的着色。 颜色模型RGB XYZ HSV RGB:RGB颜色模式已经成为现代图形系统的标准,使用RGB加色模型的RGB三原色系统中,红绿蓝图像在概念上有各自的缓存,每个像素都分别有三个分量。任意色光F都可表示为F=r [ R ] + g [ G ] + b [ B ]。RGB颜色立方体中沿着一个坐标轴方向的距离代表了颜色中相应原色的分量,原点(黑)到体对角线顶点(白)为不同亮度的灰色 XYZ:在RGB 系统基础上,改用三个假想的原色X、Y、Z建立了一个新的色度系统, 将它匹配等能光谱的三刺激值,该系统称为视场XYZ色度系统,在XYZ空间中不能直观地评价颜色。 HSV是一种将RGB中的点在圆柱坐标系中的表示法,H色相S饱和度V明度,中心轴为灰色底黑顶白,绕轴角度为H,到该轴距离为S,沿轴高度为S。 RGB优点:笛卡尔坐标系,线性,基于硬件(易转换),基于三刺激值,缺点:难以指定命名颜色,不能覆盖所有颜色范围,不一致。 HSV优点:易于转换成RGB,直观指定颜色,’缺点:非线性,不能覆盖所有颜色范围,不一致 XYZ:覆盖所有颜色范围,基于人眼的三刺激值,线性,包含所有空间,缺点:不一致 交互式计算机程序员模型 (应用模型<->应用程序<->图形库)->(图形系统<->显示屏).应用程序和图形系统之间的接口可以通过图形库的一组函数来指定,这和接口的规范称为应用程序编程人员接口(API),软件驱动程序负责解释API的输出并把这些数据转换为能被特定硬件识别的形式。API提供的功能应该同程序员用来确定图像的概念模型相匹配。建立复杂的交互式模型,首先要从基本对象开始。良好的交互式程序需包含下述特性:平滑的显示效果。使用交互设备控制屏幕上图像的显示。能使用各种方法输入信息和显示信息。界面友好易于使用和学习。对用户的操作具有反馈功能。对用户的误操作具有容忍性。Opengl并不直接支持交互,窗口和输入函数并没有包含在API中。 简单光线跟踪、迭代光线跟踪 光线跟踪是一种真实感地显示物体的方法,该方法由Appel在1968年提出。光线跟踪方法沿着到达视点的光线的相反方向跟踪,经过屏幕上每一象素,找出与视线所交的物体表面点P0,并继续跟踪,找出影响P0点光强的所有的光源,从而算出P0点上精确的光照强度。光线跟踪器最适合于绘制具有高反射属性表面的场景。优缺点:原理简单,便于实现,能生成各种逼真的视觉效果,但计算量开销大,终止条件:光线与光源相交光线超出视线范围,达到最大递归层次。一般有三种:1)相交表面为理想漫射面,跟踪结束。2)相交表面为理想镜面,光线沿镜面反射方向继续跟踪。3)相交表面为规则透射面,光线沿规则透射方向继续跟踪。 描述光线跟踪简单方法是递归,即通过一个递归函数跟踪一条光线,其反射光想和折射光线再调用此函数本身,递归函数用来跟踪一条光线,该光线由一个点和一个方向确定,函数返回与光线相交的第一个对象表面的明暗值。递归函数会调用函数计算指定的光线与最近对象表面的交点位置。 图形学算法加速技术BVH, GRID, BSP, OCTree 加速技术:判定光线与场景中景物表面的相对位置关系,避免光线与实际不相交的景物表面的求交运算。加速器技术分为以下两种:Bounding Volume Hierarchy 简写BVH,即包围盒层次技术,是一种基于“物体”的场景管理技术,广泛应用于碰撞检测、射线相交测试之类的场合。BVH的数据结构其实就是一棵二叉树(Binary Tree)。它有两种节点(Node)类型:Interior Node 和Leaf Node。前者也是非叶子节点,即如果一个Node不是Leaf Node,它必定是Interior Node。Leaf Node 是最终存放物体/们的地方,而Interior Node存放着代表该划分(Partition)的包围盒信息,下面还有两个子树有待遍历。使用BVH需要考虑两个阶段的工作:构建(Build)和遍历(Traversal)。另一种是景物空间分割技术,包括BSP tree,KD tree Octree Grid BSP:二叉空间区分树 OCTree:划分二维平面空间无限四等分 Z-buffer算法 算法描述:1、帧缓冲器中的颜色设置为背景颜色2、z缓冲器中的z值设置成最小值(离视点最远)3、以任意顺序扫描各多边形a) 对于多边形中的每一个采样点,计算其深度值z(x,y) b) 比较z(x, y)与z缓冲器中已有的值zbuffer(x,y)如果z(x, y) >zbuffer(x, y),那么计算该像素(x, y)的光亮值属性并写入帧缓冲器更新z缓冲器zbuffer(x, y)=z(x, y) Z-buffer算法是使用广泛的隐藏面消除算法思想为保留每条投影线从COP到已绘制最近点距离,在投影后绘制多边形时更新这个信息。存储必要的深度信息放在Z缓存中,深度大于Z缓存中已有的深度值,对应投影线上已绘制的多边形距离观察者更近,故忽略该当前多边形颜色,深度小于Z缓存中的已有深度值,用这个多边形的颜色替换缓存中的颜色,并更新Z缓存的深度值。 void zBuffer() {int x, y; for (y = 0; y < YMAX; y++) for (x = 0; x < XMAX; x++) { WritePixel (x, y, BACKGROUND_VALUE); WriteZ (x, y, 1);} for each polygon { for each pixel in polygon’s projection { //plane equation doubl pz = Z-value at pixel (x, y); if (pz < ReadZ (x, y)) { // New point is closer to front of view WritePixel (x, y, color at pixel (x, y)) WriteZ (x, y, pz);}}}} 优点:算法复杂度只会随着场景的复杂度线性增加、无须排序、适合于并行实现 缺点:z缓冲器需要占用大量存储单元、深度采样与量化带来走样现象、难以处理透明物体 着色器编程方法vert. frag 着色器初始化:1、将着色器读入内存2、创建一个程序对象3、创建着色器对象4、把着色器对象绑定到程序对象5、编译着色器6、将所有的程序连接起来7、选择当前的程序对象8、把应用程序和着色器之间的uniform变量及attribute变量关联起来。 Vertex Shader:实现了一种通用的可编程方法操作顶点,输入主要有:1、属性、2、使用的常量数据3、被Uniforms使用的特殊类型4、顶点着色器编程源码。输入叫做varying变量。被使用在传统的基于顶点的操作,例如位移矩阵、计算光照方程、产生贴图坐标等。Fragment shader:计算每个像素的颜色和其他属性,实现了一种作用于片段的通用可编程方法,对光栅化阶段产生的每个片段进行操作。输入:Varying 变量、Uniforms-用于片元着色器的常量,Samples-用于呈现纹理、编程代码。输出:内建变量。 观察变换 建模变换是把对象从对象标架变换到世界标架 观察变换把世界坐标变换成照相机坐标。VC是与物理设备无关的,用于设置观察窗口观察和描述用户感兴趣的区域内部分对象,观察坐标系采用左手直角坐标系,可在用户坐标系中的任何位置、任何方向定义。其中有一坐标轴与观察方向重合同向并与观察平面垂直。观察变换是指将对象描述从世界坐标系变换到观察坐标系的过程。(1):平移观察坐标系的坐标原点,与世界坐标系的原点重合,(2):将x e,y e轴分别旋转(-θ)角与x w、y w轴重合。 规范化设备坐标系 规范化设备坐标系是与具体的物理设备无关的一种坐标系,用于定义视区,描述来自世界坐标系窗口内对象的图形。 光线与隐式表面求交 将一个对象表面定义为f(x,y,z)=f(p)=0,来自P0,方向为d的光线用参数的形式表示为P(t)=P0+td. 交点位置处参数t的值满足:f(P0+td)=0,若f是一个代数曲面,则f是形式为X i Y j Z k的多项式之和,求交就转化为寻求多项式所有根的问题,满足的情况一:二次曲面,情况二:品面求交,将光线方程带入平面方程:p*n+c=0可得到一个只需做一次除法的标量方程p=p0+td。可通过计算得到交点的参数t的值:t=(p0*n+c)/(n*d). 几何变换T R S矩阵表示 三维平移T 三维缩放S旋转绕z轴Rz( ) 100dx 010dy 001dz 0001 Sx000 0Sy00 00Sz0 0001 cos-sin00 sin cos00 0010 0001 θθ θθ 旋转绕x轴Rx(θ) 旋转绕y轴Ry(θ) 1000 0cos-sin0 0sin cos0 0001 θθ θθ cos0sin0 0100 -sin0cos0 0001 θθ θθ 曲线曲面 Bezier曲线性质:Bezier曲线的起点和终点分别是特征多边形的第一个顶点和最后一个顶点。曲线在起点和终点处的切线分别是特征多边形的第一条边和最后一条边,且切矢的模长分别为相应边长的n倍;(2)凸包性;(3)几何不变性(4)变差缩减性。端点插值。 均匀B样条曲线的性质包括:凸包性、局部性、B样条混合函数的权性、连续性、B样条多项式的次数不取决于控制函数。 G连续C连续 C0连续满足:C1连续满足: (1)(0) p(1)=(1)(0)(0) (1)(0) px qx py q qy pz qz == ???? ???? ???? ???? (1)(0) p'(1)=(1)'(0)(0) (1)(0) p x q x p y q q y p z q z == ???? ???? ???? ???? C0(G0)连续:曲线的三个分量在连接点必须对应相等 C1连续:参数方程和一阶导数都对应相等 G1连续:两曲线的切线向量成比例 三维空间中,曲线上某点的导数即是该点的切线,只要求两个曲线段连接点的导数成比例,不需要导 数相等,即p’(1)=aq’(0) 称为G1几何连续性。将该思想推广到高阶导数,就可得到C n和G n连续性。

计算机图形学实验三报告

计算机科学与通信工程学院 实验报告 课程计算机图形学 实验题目二维图形变换 学生姓名 学号 专业班级 指导教师 日期

成绩评定表

二维图形变换 1. 实验内容 完成对北极星图案的缩放、平移、旋转、对称等二维变换。 提示:首先要建好图示的北极星图案的数据模型(顶点表、边表)。另外,可重复调用“清屏”和“暂停”等函数,使整个变换过程具有动态效果。 2. 实验环境 软硬件运行环境:Windows XP 开发工具:visual studio 2008 3. 问题分析

4. 算法设计 程序框架: //DiamondView.h class CDiamondView : public CView { …… public: //参数输入和提示对话框 void Polaris();//北极星 …… }; //DiamondView.cpp void CDiamondView::OnMenuDiamond() { IsCutting = FALSE; if(dlgDiamond.DoModal()==IDOK) DrawDiamond(dlgDiamond.m_nVertex,dlgDiamond.

m_nRadius,100);//调用绘制金刚石的函数 } //北极星 void CDiamondView::Polaris() {......} 5. 源代码 //北极星 void hzbjx(CDC* pDC,long x[18],long y[18]) { CPen newPen1,*oldPen; newPen1.CreatePen(PS_SOLID,2,RGB(255,0,0)); oldPen = pDC->SelectObject(&newPen1); POINT vertex1[11]={{x[1],y[1]},{x[2],y[2]},{x[3],y[3]},{x[4],y[4]},{x[5],y[5]},{x[3],y[3]},{x[1],y[1]}, {x[6],y[6]},{x[3],y[3]},{x[7],y[7]},{x[5],y[5]}}; pDC->Polyline(vertex1, 11); newPen1.DeleteObject(); newPen1.CreatePen(PS_SOLID, 2, RGB(0,255,0)); oldPen = pDC->SelectObject(&newPen1); POINT vertex2[5]={{x[6],y[6]},{x[8],y[8]},{x[9],y[9]},{x[3],y[3]},{x[8],y[8]}}; pDC->Polyline(vertex2, 5); POINT vertex3[5]={{x[4],y[4]},{x[10],y[10]},{x[11],y[11]},{x[3],y[3]},{x[10],y[10]}}; pDC->Polyline(vertex3, 5);

计算机图形学实验

实验1 直线的绘制 实验目的 1、通过实验,进一步理解和掌握DDA和Bresenham算法; 2、掌握以上算法生成直线段的基本过程; 3、通过编程,会在TC环境下完成用DDA或中点算法实现直线段的绘制。实验环境 计算机、Turbo C或其他C语言程序设计环境 实验学时 2学时,必做实验。 实验内容 用DDA算法或Besenham算法实现斜率k在0和1之间的直线段的绘制。 实验步骤 1、算法、原理清晰,有详细的设计步骤; 2、依据算法、步骤或程序流程图,用C语言编写源程序; 3、编辑源程序并进行调试; 4、进行运行测试,并结合情况进行调整; 5、对运行结果进行保存与分析; 6、把源程序以文件的形式提交; 7、按格式书写实验报告。 实验代码:DDA: # include # include

void DDALine(int x0,int y0,int x1,int y1,int color) { int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { putpixel((int)(x+0.5),(int)(y+0.5),4); x+=xIncre; y+=yIncre; } } main(){ int gdriver ,gmode ;

C语言-三维图形变换

#include #include #include #include #include #define rad 0.0174532925 #define NUMBER 24 float u[NUMBER]={60.,20.,20.,80.,80.,60.,60.,0.,0.,60.,80.,0.,0.,0.,0.,0.,20.,20.,0.,0.,0.,80.,0.,0.}, v[NUMBER]={20.,60.,60.,0.,0.,20.,20.,20.,20.,20.,0.,0.,20.,20.,60.,60.,60.,60.,60.,60.,0.,0.,0.,0.}, w[NUMBER]={30.,30.,0.,0.,90.,90.,30.,30.,90.,90.,90.,90.,90.,30.,30.,0.,0.,30.,30.,0.,0.,0.,0.,90.}; int ipen[NUMBER]={3,2,2,2,2,2,2,2,2,2,3,2,2,3,2,2,2,3,2,3,2,2,3,2}; int kind[NUMBER]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1}; void draw(float sf,float xc,float yc,float tranm[][4]); void axono2d(float sf,float ox,float oy,float bta,float afa,float x[],float y[],float z[],int kp[],int kl[],int mp); void plot(float x,float y,int ip,int lk); void initm(float unitm[][4]); void mult4x4(float ma[][4],float mb[][4],float mc[][4]); void transform(float x0,float y0,float z0,float *x,float *y,float *z,float tranm[][4]); void translation(float l,float m,float n,float tranm[][4]); void scaling(float sx,float sy,float sz,float tranm[][4]); void rotationx(float xc,float yc,float zc,float alta,float tranm[][4]); void rotationy(float xc,float yc,float zc,float beta,float tranm[][4]); void rotationz(float xc,float yc,float zc,float gama,float tranm[][4]); void projectx(float i,float m,float n,float tranm[][4]); void projecty(float i,float m,float n,float tranm[][4]); void projectz(float i,float m,float n,float tranm[][4]); void mirrxoy(float l,float m,float n,float tranm[][4]); void mirrxoz(float l,float m,float n,float tranm[][4]); void mirryoz(float l,float m,float n,float tranm[][4]); void shearing(float a,float b,float c,float d,float e,float f,float tranm[][4]); main() { int j,m=NUMBER; int gd=DETECT,gm; float tm[4][4]={0.}; initgraph(&gd,&gm,"d:\\tc"); settextstyle(3,0,2); outtextxy(170,4,"3D GRAPFICS TRANSFORMA TION"); setwritemode(1);

计算机图形学实验报告

《计算机图形学》实验报告姓名:郭子玉 学号:2012211632 班级:计算机12-2班 实验地点:逸夫楼507 实验时间:15.04.10 15.04.17

实验一 1 实验目的和要求 理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析实验数据的能力; 编程实现DDA 算法、Bresenham 中点算法;对于给定起点和终点的直线,分别调用DDA 算法和Bresenham 中点算法进行批量绘制,并记录两种算法的绘制时间;利用excel 等数据分析软件,将试验结果编制成表格,并绘制折线图比较两种算法的性能。 2 实验环境和工具 开发环境:Visual C++ 6.0 实验平台:Experiment_Frame_One (自制平台) 3 实验结果 3.1 程序流程图 (1)DDA 算法 是 否 否 是 是 开始 计算k ,b K<=1 x=x+1;y=y+k; 绘点 x<=X1 y<=Y1 绘点 y=y+1;x=x+1/k; 结束

(2)Mid_Bresenham 算法 是 否 否 是 是 是 否 是 否 开始 计算dx,dy dx>dy D=dx-2*dy 绘点 D<0 y=y+1;D = D + 2*dx - 2*dy; x=x+1; D = D - 2*dy; x=x+1; x

3.2程序代码 //-------------------------算法实现------------------------------// //绘制像素的函数DrawPixel(x, y); (1)DDA算法 void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1) { //----------请实现DDA算法------------// float k, b; float d; k = float(Y1 - Y0)/float(X1 - X0); b = float(X1*Y0 - X0*Y1)/float(X1 - X0); if(fabs(k)<= 1) { if(X0 > X1) { int temp = X0; X0 = X1; X1 = temp; }

计算机图形学实验一_画直线

大学实验报告 学院:计算机科学与技术专业:计算机科学与技术班级:计科131

如果 d<0,则M在理想直线下方,选右上方P1点; 如果 d=0,则M在理想直线上,选P1/ P2点。 由于d是xi和yi的线性函数,可采用增量计算提高运算效率。 1.如由pi点确定在是正右方P2点(d>0).,则新的中点M仅在x方向加1,新的d值为: d new=F(xi+2,yi+0.5)=a(xi+2)+b(yi+0.5)+c 而 d old=F(xi+1,yi+0.5)=a(xi+1)+b(yi+0.5)+c d new=d old+a= d old-dy 2.如由pi点确定是右上方P1点(d<0),则新的中点M在x和y方向都增加1,新的d值为 d new=F(xi+2,yi+1.5)=a(xi+2)+b(yi+1.5)+c 而 d old=F(xi+1,yi+0.5)=a(xi+1)+b(yi+0.5)+c d new=d old+a+b= d old-dy+dx 在每一步中,根据前一次第二迭中计算出的d值的符号,在正右方和右上方的两个点中进行选择。d的初始值: d0=F(x0+1,y0+0.5)=F(x0,y0)+a+b/2=a+b/2=-dy+dx/2 F(x0,y0)=0,(x0,y0)在直线上。 为了消除d的分数,重新定义 F(x,y)=2(ax+by+c) 则每一步需要计算的d new 是简单的整数加法 dy=y1-y0,dx=x1-x0 d0=-2dy+dx d new=d old-2*dy,当 d old>=0 d new=d old-2(dy-dx),当d old<0 Bresenham画线算法 算法原理: 与DDA算法 相似,Bresenham 画线算法也要在 每列象素中找到 与理想直线最逼 近的象素点。 根据直线的 斜率来确定变量 在x或y方向递 增一个单位。另 一个方向y或x

什么是计算机图形学

什么是计算机图形学? 计算机图形学是研究通过计算机将数据转换为图形,并在专门显示设备上显示的原理、方法和技术的学科 计算几何:研究几何模型和数据处理的学 科,探讨几何形体的计算机表示、分析和 综合 计算机图形学研究内容:建模,绘制,动画 图形系统的基本功能 1.计算功能 元素生成、坐标变换、求交、剪裁计算。 2.存储功能 存储数据:形体的集合数据、形体间相互关系、数据的实时检索、保存图形的编辑等信息。 3.输入功能 输入信息: 数据、图形信息、图象信息等输入。 命令关键字、操作信息。 4.输出功能 输出信息: 图形信息、文件信息;静态图形、动态图形。 5.交互功能 人─机交互:拾取对象、输入参数;接受命令、数据等。 显示器种类 阴极射线管、随机扫描、存储管式、光栅扫描、等离子和液晶显

示器 从以下几个方面介绍图形显示设备: 图形硬件显示原理 CRT;CRT是利用电子枪发射电子束来产生图像,容易受电磁波干扰液晶显示器;液晶显示器的工作原理是利用液晶的物理特性,在通电时导通,使液晶排列变得有秩序,使光线容易通过;不通电时,排列则变得混乱,阻止光线通过 未来显示器 光栅显示系统的组成 图形显示方式:随机扫描存储管式扫描光栅扫描 图形显示质量与一帧的画线数量有关:当一帧线条太多,无法维持30~60帧/秒刷新频率,就会出现满屏闪烁 光栅扫描显示器的常用概念:行频、帧频(图像刷新率) 水平扫描频率为行频。垂直扫描频率为帧频。 隔行扫描、逐行扫描 隔行扫描方式是先扫偶数行扫描线,再扫奇数行扫描线。像素 屏幕被扫描线分成n 行,每行有m 个点,每个点为一个象素。整个屏幕有m ×n 个象素。具有灰度和颜色信息 分辨率 指CRT单位长度上能分辨出的最大光点(象素)数。分为水平分辨率和垂直分辨率。

相关主题
文本预览
相关文档 最新文档