当前位置:文档之家› 信息存储材料

信息存储材料

信息存储材料
信息存储材料

化学所制备出一系列超高密度信息存储材料

化学所

在国家自然科学基金委、科技部和中国科学院的支持下,中科院化学所的宋延林研究员等从材料的结构功能设计出发,制备出一系列有特色的有机功能薄膜作为信息存储介质,并与国内外研究单位开展了广泛合作,利用扫描探针显微镜等技术实现超高密度信息存储,在《先进材料》(Advanced Materials)等重要学术期刊发表了一系列研究论文,受到了国内外同行的关注。

他们合成了一种具有强电子给体和电子受体、物理化学性质稳定的有机分子,并在其规整薄膜上实现1.1纳米信息点的写入(Adv. Mater. 2003,15(22),1525-29);通过分子间氢键和p-p相互作用自组装制备了超分子单晶薄膜,实现平均点径2.2纳米的信息点的写入,信息点间距可达1.0 nm (Adv. Mater. 2004,16(22),2018-21);与华东理工大学合作,通过对材料结构的设计和改造,在热稳定的新型螺噁嗪薄膜上实现可擦写的多层高密度光学信息存储(A dv. Mater. 2005,17(2),156-160) 和基于二噻吩基乙烯光开关的高信噪比光学信息存储(Chem. Mater. 2006, 18(2), 235-237);与瑞士苏黎世理工学院合作,利用刚性结构和强推拉电子基团的分子,实现真空沉积自组装单晶薄膜的制备和超高密度信息存储(Adv. Mater. 2005, 17, 2170-2173)。他们还通过对材料结构与光电性能关系的深入研究,利用同一材料实现了光电双重高密度信息存储(ChemPhysChem 2005, 6, 478-82)。

在以上研究基础上,他们结合有机推拉电子基团的电学特性和氢键自组装特性,设计了具有推拉电子基团的有机分子4'-氰基-2,6-二甲基-4-羟基偶氮苯(CDHAB),通过分子间氢键和p-p相互作用,成功地在高定向裂解石墨(HOPG)表面自组装制备出分子规整排列的晶态薄膜;通过在STM针尖和HOPG衬底之间施加电压脉冲,在CDHAB薄膜上实现纳米尺寸信息点的写入,信息点的平均直径达1.8纳米;通过在扫描探针显微镜(STM)针尖和HOPG衬底间施加反向电压脉冲,可以实现信息点的逐点擦除。他们还通过对宏观、微观I-V 曲线的测定,以及施加电压前后有机薄膜紫外光谱的变化对信息点产生的机理进行了深入分析。研究结果发表在近日出版的《先进材料》上(Adv. Mater.2006,18(1 5),1983-1987)。

该研究结果实现了自组装有机晶体薄膜上纳米尺度信息点的写入-擦除和再写入,为可擦写的超高密度信息存储材料的设计提供了新的思路和途径。

我科学家在纳米信息存储材料领域获突破

责任编辑:李隽作者:网络2008-05-19

【IT168 资讯】近日,中科院物理所和化学所的科研人员在Rotaxane类分子的结构与电导转变及其在超高密度信息存储中的应用研究方面再获突破。在此前工作的基础上成功地在

H2 Rotaxane分子薄膜中实现了可逆的电导变化和可擦除、稳定、重复的近于单分子尺度的纳米级存储,近期出版的《美国化学学会会志》发表了这一结果。这是目前为止该类分子结构与电导转变的最直接证据,对Rotaxane类分子在分子电子学中的进一步应用具有重要意义。

JACS—宋延林小组—有机超高密度信息存储材料研究

化学研究所

在国家自然科学基金委、科技部和中国科学院的支持下,中科院化学所宋延林课题组的研究人员从分子设计的角度出发,设计合成了一系列有特色的有机功能薄膜作为信息存储介质,并与国内外研究单位开展了广泛合作,利用扫描探针显微镜等技术实现纳米乃至分子尺度上的信息存储。在重要学术期刊上发表了一系列研究论文,受到了国内外同行的关注。

在电学信息存储方面,他们通过分子间氢键和p-p相互作用自组装制备了超分子单晶薄膜,实现平均点径2.2 nm的信息点的写入,信息点间距可达1.0 nm (Adv. Mater. 2004, 16, 2018-2021);设计合成了一系列性质稳定的具有强电子给体和受体的有机功能分子,并在其规整薄膜上分别实现了纳米尺度信息点的写入(Adv. Mater.2003, 15, 1525-1529,Adv. Mater. 2005, 17, 2170-2173, Adv. Mater. 2006, 18, 1983-1987,J. Mater. Chem. 2007, 17, 3530-3535)。

在光学信息存储方面,利用双光子技术实现了可擦写的多层高密度光学信息存储(Adv. Mater.2005, 17, 156-160)和具有高信噪比的光学信息存储(Chem. Mater. 2006, 18, 235-237)。他们还通过对材料结构与光电性能关系的深入研究,利用同一材料实现了光电双重高密度信息存储(ChemPhysChem2005, 6, 478-82),以及具有密写功能的光-质子双响应信息存储(https://www.doczj.com/doc/e45207183.html,.Chem.2007,2064-2067)。

在以上研究的基础上,他们还和该所的杨联明研究员、中科院物理所的高鸿钧研究员等合作,设计合成了含有三苯胺的推、拉电子型化合物2-((Z)-2-(4-diphenylamino) enzylidene)-1,2-dihydro-1-oxoinden-3-ylidene) malononitrile (BDOYM),利用真空沉积的方法制备了其薄膜。三苯胺不仅具有良好的供电子能力,还可以稳定电荷转移态,显著提高了

薄膜的存储性能。该研究结果为进一步发展稳定、可擦写的超高密度信息存储材料提供了新的思路。有关工作发表在近日出版的《美国化学会志》(J. Am. Chem. Soc.2007,129,11674-11675)上。

对BDOYM薄膜施加电压时的导电性变化曲线

(a) 通过STM针尖在BDYOM薄膜表面施加电压脉冲形成信息点图案;(b),(c) 施加反向脉冲电压依次擦除两个信息点图案;(d) 重新写入一个信息点图案;(e) BDYOM薄膜信息

存储前(I)后(II)的局域I-V特性曲线。

美研制出奇特超导材料能改现有信息存储方式

2010年11月04日09:34腾讯科技编译/古木我要评论(0)

字号:T|T

腾讯科技讯(编译/古木)据国外媒体报道,3年前,美国普林斯顿大学的一个研究小组发现了三维拓扑绝缘体,这是一种金属表面的奇怪绝缘体,虽然它独特的属性具有很大应用潜力,但用于量子计算机却并非理想材料。两年来,科学家经过不断探索,完全扭转其性质,使之成为表面是金属、内部却具有超导性的拓扑超导体。这种新材料的发现有望发展出新一代电子学,使当前的信息存储与处理方式完全改观。

表面是金属内部是超导体

据美国物理学家组织网11月3日(北京时间)报道,普林斯顿大学扎西德·哈桑领导的研究小组发现了一种具有“双重性格”新型晶体材料:在极低温度下,晶体内部表现与普通超导体类似,能以零电阻导电;同时,它的表面是仍有电阻的金属,能传输电流。相关成果发表在最新一期《自然·物理学》杂志上。

实验中,为了评价新晶体材料的性能,研究人员利用X光谱进行分析,通过研究X射线轰击出来的单个电子来确定晶体的真实属性,测试发现生成的是一种拓扑超导体。研究人员进一步在晶体的表面发现了不同寻常的电子,其表现得像轻子。由于哈桑小组去年曾经第一次直接观察到了一种被称为螺旋状狄拉克费米子的电子,此时他们立刻认出了这种电子就是科学家长期寻找的马拉约那费米子(Majorana fermions)。

而宾夕法尼亚大学物理学家查尔斯·凯恩预测,如果一种拓扑超导体取代了一种拓扑绝缘体,把这种混合材料置于强磁场中时,其边界电子将变成马拉约那费米子。由于这种新晶体材料囊括了金属、绝缘体和传统超导体等多重“身份”,如何根据电子状态来将它归类让科学家困惑不已。哈桑表示,拓扑超导体除了表面是金属以外,其他部分都是超导体,这将给我们带来许多应用前景。

把绝缘体变成超导体

2007年,哈桑领导的研究小组发现了三维拓扑绝缘体硒化铋。在过去的两年中,研究小组扭转了硒化铋的属性,使其变成了表面是金属、内部为超导体的材料,这种属性就很适合于未来电子学的开发。

为了使超导体具有拓扑性质,参与研究的普林斯顿大学化学教授罗伯特·卡瓦把铜原子嵌入硒化铋半导体的原子晶格中,发明了一种新晶体。这一过程称为半导体掺杂,是一种改变材料电子数量的方法,用来转变其电性。结果发现,在低于4K(约零下269摄氏度)的温

度下,合适的嵌入数量能将晶体转变成一种超导体。但美中不足的是,根据最初的实验结果,超导体无法长久保持其拓扑性质,在真空中仅能保持几个月。

加州大学伯克利分校物理副教授约尔·摩尔说,从理论上而言,如果一种拓扑绝缘体变成了拓扑超导体,它会具有一些超常的性质,最异类的就是出现马拉约那费米子。由普通原子核和电子构成的固体能“生成”具有特异性质的粒子,比如分数电荷,但马拉约那费米子是零质量零电荷,这可能是最奇怪的。尽管还没有能检测拓扑超导体的工具,但哈桑的研究在正确的方向上迈进了一大步。

应用还需再等几十年

量子计算机使用次原子粒子“量子”来存储和处理信息。量子计算机将来能以远远超过今天传统计算机的速度来操作数据,然而,研制更高性能量子计算机的努力,却由于量子行为的不确定而受到阻碍。如果多个马拉约那费米子的运动能被预测,拓扑量子计算机用它们来存储信息将是容错的,即计算机能“知道”自己在执行对错计算时是否出现了错误。

“从新物理学发展到新技术应用需要很长时间,通常要20年到30年时间。”哈桑介绍说,拓扑超导体最激动人心的应用就是高能量子计算机,它能在计算中发现错误,一旦出错就会在信息处理过程中产生抵抗。他解释说,普通电子带负电荷,而马拉约那费米子是中性的,它不会被附近的粒子、原子吸引或排斥,它们的行动就是可预测的,有着预定的轨迹,这是它们真正的潜能所在。

哈桑也称,这种具有双重电子特性的新型超导材料,可以被认为是一种特殊的绝缘体。“我们可以利用这一点来‘哄骗’电子嗖嗖地跑到它的表面上,变成马拉约那费米子。”

“这些超导体是产生和控制马拉约那费米子的理想育儿所。”论文第一作者L·安德鲁·雷说。由于粒子是存在于超导体中的,能以低能耗装置来控制,不仅环保,也避免了当前硅材料不可避免的过热问题。

目前,研究小组还在鉴别其他种类的拓扑超导体和拓扑绝缘体。关于进一步的研究,哈桑和他的团队表示将继续检测马拉约那费米子,找出控制它们性质的方法。他们的两个重要目标,一是找到高温超导的拓扑材料,二是开发内部高度绝缘的拓扑绝缘体

《美国化学学会会志》发表我国纳米信息材料研究新进展

具有稳定、重复、可逆电导转变的功能材料及其在信息存储中的应用是超高密度信息存储研究的重要方向之一。在过去的十多年里,物理研究所的高鸿钧研究组与化学所有机固体院重点实验室的宋延林研究员和张德清研究员等一直在该研究方向进行合作研究。他们追求具有优良电学双稳特性和稳定结构的功能分子材料,通过对有机分子功能基团的修饰,控制分子的结构与物性。

他们在化学所进行分子设计与合成,在物理所进行纳米薄膜材料制备、扫描探针显微术(SPM)的纳米存储实验和相应的理论计算分析,取得了一系列研究成果。在过去五年里,他们在《先进材料》和《美国化学学会会志》上合作发表论文7篇,研究结果多次被国际科学媒体,如《自然?材料》等杂志报道。

Rotaxane类分子在溶液中可以发生可逆的分子构型改变,并随之引起分子电导转变。但这类分子在固体薄膜中能否实现类似在溶液中的结构与电导转变是一个备受关注的问题。2005年,高鸿钧研究组与张德清研究组合作,首次报道了在一种H1 Rotaxane分子薄膜中的纳米尺寸电导改变和在该类薄膜上稳定的超高密度信息存储(《美国化学学会会志》)。

在此工作的基础上,该合作研究团队进一步改进了原有的Rotaxane分子结构,追求更强的功能和实用性。他们成功地在H2 Rotaxane分子薄膜中实现可逆的电导变化和可擦除、稳定、重复的近于单分子尺度的纳米级存储。发表该成果的杂志审稿人认为,“作者提供了令人信服的证据,表明在通过改进的Rotaxane分子薄膜中可以重复地写入和擦除纳米尺寸的信息记录点。其精彩之处是对Rotaxane分子核心结构的小改变可以极大地影响分子功能”。相关结果发表在《美国化学学会会志》上。

同时,《自然?纳米技术》进行了题为Nanorecording: rewriting history的亮点报道。紧接着,该合作研究组在单个分子和亚分子的水平上研究了单个H2分子的结构与电导转变。他们将H2分子置于Au(111)基底上的一层分子膜上,直接发现了Rotaxane分子在外电场诱导下分子结构和相应电导的可逆变化。相关研究结果发表在近期《先进功能材料》上。

Packing more digital images, music, and other data onto silicon chips in USB drive s and smart phones is like squeezing more strawberries into the same size superm arket carton. The denser you pack, the quicker it spoils. The 10 to 100 gigabits of data per square inch on today’s memory cards has an estimated life expectancy

of only 10 to 30 years. And the electronics industry needs much greater data dens ities for tomorrow’s iPods, smart phones, and other devices.

Scientists are reporting an advance toward remedying this situation with a new co mputer memory device that can store thousands of times more data than conventio nal silicon chips with an estimated lifetime of more than one billion years. Their dis covery is scheduled for publication in the June 10 issue of ACS’Nano Letters, a monthly journal (Nanoscale Reversible Mass Transport for Archival Memory).

Alex Zettl and colleagues note in the new study that some of today’s highest-densi

ty experimental storage media can retain ultra-dense data for only a fraction of a s econd. They note that William the Conqueror’s Doomsday Book, written on vellum i n 1086 AD, has survived 900 years. However, the medium used for a digital versio n of the book, encoded in 1986, failed within 20 years.

The researchers describe development of an experimental memory device consistin g of an iron nanoparticle (1/50,000 the width of a human hair) enclosed in a hollo w carbon nanotube. In the presence of electricity, the nanoparticle can be shuttled back and forth with great precision. This creates a programmable memory system t hat, like a silicon chip, can record digital information and play it back using conven tional computer hardware. In lab and theoretical studies, the researchers showed th at the device had a storage capacity as high as 1 terabyte per square inch (a trilli on bits of information) and temperature-stability in excess of one billion years.

Source: American Chemical Society

常见医学图像格式

附录C 图像格式 译者:Synge 发表时间:2012-05-03浏览量:1604评论数:0挑错数:0 翻译:xiaoqiao 在fMRI的早期,由于大多数据都用不同研究脉冲序列采集,然后离线大量重建,而且各研究中心文件格式各不相同、大多数的分析软件也都是各研究单位内部编写运用。如果这些数据不同其他中心交流,数据的格式不影响他们的使用。因此图像格式就像巴别塔似的多式多样。随着fMRI领域的不断发展,几种标准的文件格式逐渐得到了应用,数据分析软件包的使用促进了这些文件格式在不同研究中心和实验室的广泛运用,直到近期仍有多种形式的文件格式存在。这种境况在过去的10年里随着公认的NIfTI格式的发展和广泛认可而优化。该附录就fMRI资料存储的常见问题以及重要的文件格式做一概述, 3.1 数据存储 正如第2章所述,MRI数据的存储常采用二进制数据格式,如8位或16位。因此,磁盘上数据文件的大小就是数据图像的大小和维度,如保存维度128 ×128×96的16位图像需要25,165,824位(3 兆字节)。为了保存图像的更多信息,我们希望保存原始数据,即元数据。元数据包含了图像的各种信息,如图像维度及数据类型等。这点很重要,因为可以获得二进制数据所不知道的信息,例如,图像是128 ×128×96维度的16位图像采集还是128 ×128×192维度的8位图像采集。在这里我们主要讨论不同的图像格式保存不同的数量及种类的元数据。 MRI的结构图像通常保存为三维的资料格式。fMRI数据是一系列的图像采集,可以保存为三维格式,也可以保存为四维文件格式(第4维为时间)。通常,我们尽可能保存为四维数据格式,这样可以减少文件数量,但是有些数据分析软件包不能处理四维数据。3.2 文件格式

常用电脑文件格式(很全哦)

常用文件格式 3DS:矢量格式,为3D Studio的动画原始图形文件,含有纹理和光照信息; ACE:ACE压缩文件格式; AI:矢量格式,是久负盛名的绘图软件Adobe Illustrator文件格式; AIF:Apple计算机的音频文件格式; ANI:WIN95中动画鼠标指针文件; ARJ:ARJ软件压缩的文件; ASC:代码文件; ASF:微软的流媒体格式; ASX:ASF文件的索引格式; ASM:汇编程序文件; ASP:ASP即Active Server Page的缩写。它是一种包含了使用VB Script或Jscript脚本程序代码的网页。 AVI:视频与音频交错文件;最新的MPEG4也采用这种后缀; BAK:备份文件; BAS:BASIC中的源程序文件; BAT:DOS下的批处理文件。Autoexec.bat为自动批处理文件,它是特殊的批处理文件;BIN:光盘镜像文件;有时是一些软件的数据文件; BMP:是Windows所使用的基本位图格式,是小画笔就能轻松创建的文件; BZ2:压缩文件格式; C :C语言中的源程序文件; CAB:微软的压缩文件格式,压缩率很高; CDR:矢量格式,是Corel Draw标准文件格式; CDT:Corel Draw中的模板文件; CED:CCED文件格式; CEL:3DS中的贴图文件; CGM:是压缩的矢量图形文件,Winword可以打开; CHK:检查磁盘命令CHKDSK发现的目录或文件分配表中的错误,校正系统后的文件;CMX:Corel Draw展示交换文件; CMV:是Corel Move平面动画软件中的动画演示文件; COB:COBOL语言源程序文件; COM:可执行的二进制代码系统程序文件,特点非常短小精悍,长度有限制; CPT:位图和矢量图都有,是Corel Photo-Paint的文件格式; CRD:Windows中的卡版盒文件; DAT:视频影像文件,是Video CD(VCD)或Karaoke CD(卡拉OK CD)其于MPEG压缩方法的一种,注意它同数据文件同名;有时是数据文件。 DB:Paradox数据库格式。 DBT:FOXBASE中的数据库文件的辅助文件; DBC:为FOXPRO中的数据库名; DBF:XBASE数据库文件; DDI:早期映象文件,由DiskDUP Imgdrive Img.exe展开; DLL:Windows下应用程序中的动态连结库文件; DOC:文档文件,由Microsoft Word生成,也有一部分是由Word Perfect生成;

信息存储技术的发展过程

信息存储发展史 远古信息存储 1.结绳记事 结绳记事是文字发明前,人们所使用的一种记事方法。即在一条绳子上打结,用以记事。上古时期的中国及秘鲁印地安人皆有此习惯,即到近代,一些没有文字的民族,仍然采用结绳记事来传播信息 上古无文字,结绳以记事。《易.系辞下》:"上古结绳而治,后世圣人易之以书契。"孔颖达疏:"结绳者,郑康成注云,事大大结其绳,事小小结其绳,义或然 也。"晋葛洪《抱朴子.钧世》:"若舟车之代步涉,文墨之改结绳,诸后作而善于前事。"后以指上古时代。例如:奇普(Quipu或khipu)是古代印加人的一种结绳记事的方法,用来计数或者记录历史。它是由许多颜色的绳结编成的。这种结绳记事方法已经失传,目前还没有人能够了解其全部含义。结绳记事(计数):原始社会创始的以绳结形式反映客观经济活动及其数量关系的记录方式。结绳记事(计数)是被原始先民广泛使用的记录方式之一。文献记载:“上古结绳而治,后世圣人易以书契,百官以治,万民以察”(《易·系辞下》)。虽然目前末发现原始先民遗留下的结绳实物,但原始社会绘画遗存中的网纹图、陶器上的绳纹和陶制网坠等实物均提示出先民结网是当时渔猎的主要条件,因此,结绳记事(计数)作为当时的记录方式具有客观基础的。其结绳方法,据古书记载为:“事大,大结其绳;事小,小结其绳,之多少,随物众寡”(《易九家言》),即根据事件的性质、规模或所涉数量的不同结系出不同的绳结。民族学资料表明,近现代有些少数民族仍在采用结绳的方式来记录客观活动 2.甲骨文文字纸张 甲骨文是中国已发现的古代文字中时代最早、体系较为完整的文字。甲骨文主要指殷墟甲骨文,又称为“殷墟文字”、“殷契”,是殷商时代刻在龟甲兽骨上的文字。19世纪末年在殷代都城遗址被今河南安阳小屯发现,继承了陶文的造字方法,是中国商代后期(前14~前11世

常用图片文件格式

总的来说,有两种截然不同的图像格式类型:即有损压缩和无损压缩。 1.有损压缩 有损压缩可以减少图像在内存和磁盘中占用的空间,在屏幕上观看图像时,不会发现它对图像的外观产生太大的不利影响。因为人的眼睛对光线比较敏感,光线对景物的作用比颜色的作用更为重要,这就是有损压缩技术的基本依据。 有损压缩的特点是保持颜色的逐渐变化,删除图像中颜色的突然变化。生物学中的大量实验证明,人类大脑会利用与附近最接近的颜色来填补所丢失的颜色。例如,对于蓝色天空背景上的一朵白云,有损压缩的方法就是删除图像中景物边缘的某些颜色部分。当在·屏幕上看这幅图时,大脑会利用在景物上看到的颜色填补所丢失的颜色部分。利用有损压缩技术,某些数据被有意地删除了,而被取消的数据也不再恢复。 无可否认,利用有损压缩技术可以大大地压缩文件的数据,但是会影响图像质量。如果使用了有损压缩的图像仅在屏幕上显示,可能对图像质量影响不太大,至少对于人类眼睛的识别程度来说区别不大。可是,如果要把一幅经过有损压缩技术处理的图像用高分辨率打印机打印出来,那么图像质量就会有明显的受损痕迹。 2.无损压缩 无损压缩的基本原理是相同的颜色信息只需保存一次。压缩图像的软件首先会确定图像中哪些区域是相同的,哪些是不同的。包括了重复数据的图像(如蓝天) 就可以被压缩,只有蓝天的起始点和终结点需要被记录下来。但是蓝色可能还会有不同的深浅,天空有时也可能被树木、山峰或其他的对象掩盖,这些就需要另外记录。从本质上看,无损压缩的方法可以删除一些重复数据,大大减少要在磁盘上保存的图像尺寸。但是,无损压缩的方法并不能减少图像的内存占用量,这是因为,当从磁盘上读取图像时,软件又会把丢失的像素用适当的颜色信息填充进来。如果要减少图像占用内存的容量,就必须使用有损压缩方法。 无损压缩方法的优点是能够比较好地保存图像的质量,但是相对来说这种方法的压缩率比较低。但是,如果需要把图像用高分辨率的打印机打印出来,最好还是使用无损压缩几乎所有的图像文件都采用各自简化的格式名作为文件扩展名。从扩展名就可知道这幅图像是按什么格式存储的,应该用什么样的软件去读/写等等。 一、BMP图像文件格式 BMP是一种与硬件设备无关的图像文件格式,使用非常广。它采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BblP文件所占用的空间很大。BMP文件的图像深度可选lbit、4bit、8bit及24bit。BMP文件存储数据时,图像的扫描方式是按从左到右、从下到上的顺序。 由于BMP文件格式是Windows环境中交换与图有关的数据的一种标准,因此在Windows 环境中运行的图形图像软件都支持BMP图像格式。

常见的图片文件格式及各自的特点

一、BMP格式 BMP格式是Windows操作系统中的标准图像文件格式,能够被多种Windows应用程序所支持。特点是包含的图像信息较丰富,几乎不进行压缩。缺点是占用磁盘空间过大。所以,目前BMP在单机上比较流行。 二、GIF格式 特点是压缩比高,磁盘空间占用较少,所以这种图像格式迅速得到了广泛的应用。 此外,考虑到网络传输中的实际情况,GIF图像格式还增加了渐显方式。目前Internet上大量采用的彩色动画文件多为这种格式的文件。 但GIF有个小小的缺点,即不能存储超过256色的图像。尽管如此,这种格式仍在网络上大行其道应用,这和GIF图像文件短小、下载速度快、可用许多具有同样大小的图像文件组成动画等优势是分不开的。 三、JPEG格式 JPEG文件的扩展名为.jpg或.jpeg,其压缩技术十分先进,它用有损压缩方式去除冗余的图像和彩色数据,获取得极高的压缩率的同时能展现十分丰富生动的图像,换句话说,就是可以用最少的磁盘空间得到较好的图像质量。 同时JPEG还是一种很灵活的格式,具有调节图像质量的功能,允许你用不同的压缩比例对这种文件压缩,当然我们完全可以在图像质量和文件尺寸之间找到平衡点。 它的应用也非常广泛,特别是在网络和光盘读物上,肯定都能找到它的影子。目前各类浏览器均支持JPEG这种图像格式,因为JPEG格式的文件尺寸较小,下载速度快,使得Web页有可能以较短的下载时间提供大量美观的图像,JPEG同时也就顺理成章地成为网络上最受欢迎的图像格式。 四、JPEG2000格式 JPEG 2000具备更高压缩率以及更多新功能的新一代静态影像压缩技术。 JPEG2000 与JPEG不同的是,JPEG2000 同时支持有损和无损压缩,而JPEG 只能支持有损压缩。无损压缩对保存一些重要图片是十分有用的。JPEG2000的一个极其重要的特征在于它能实现渐进传输,这一点与GIF的"渐显"有异曲同工之妙,即先传输图像的轮廓,然后逐步传输数据,不断提高图像质量,让图象由朦胧到清晰显示,而不必是像现在的JPEG 一样,由上到下慢慢显示。 此外,JPEG2000还支持所谓的"感兴趣区域"特性,你可以任意指定影像上你感兴趣区域的压缩质量,还可以选择指定的部份先解压缩。 JPEG2000可应用于传统的JPEG市场,如扫描仪、数码相机等,亦可应用于新兴领域,如网路传输、无线通讯等等 五、TIFF格式 TIFF的特点是图像格式复杂、存贮信息多。正因为它存储的图像细微层次的信息非常多,图像的质量也得以提高,故而非常有利于原稿的。

常用文件格式大全

常用文件格式大全 不同的文件,有不同的文件格式,区别这些文件格式常常是文件名的后缀名不同,现统计常用文件后缀名如下,供读者参考和查阅。 BAT DOS下的批处理文件。Autoexec.bat为自动批处理文件,它是特殊的批处理文件。 EXE 可执行的程序文件,与COM内部结构不相同,最突出是长度没有限制。 COM 可执行的二进制代码系统程序文件,特点非常短小精焊,长度有限制。 ASM 汇编程序文件为二进制代码文件,可以打个比方,它就像BASIC中的.BAS程序文件一样,为不可执行文件。 ASC 代码文件。 BAK 备份文件 LIB 程序库文件 CHK 检查磁盘命令CHKDSK发现的目录或文件分配表中的错误,校正系统后的文件。 TMP 临时文件 SYS 系统配置文件,最典型的如config.sys,一般可以用EDIT进行编辑。 OBJ 目标文件,源程序编译输出的目标代码。 OLD 备份文件,一般是一些程序对系统配置修改后将原文件复制一份存储为该文件格式。 INI 配置文件,不要以为这个文件只有Windows程序需要,DOS下程序也有不少需要它,如3DS与AutoCAD。 INF 安装配置文件,这在WIN95下使用较多。 HLP HELP帮助文件,这个文件一定要重视,因为它是你每使用一个新软件的最好的说明书,几乎99% 的软件都有这个文件,另外,DOS下的一些帮助放在README以后,帮助便没有了,如UCDOS中的REAME.EXE;有单独DOS的命令,若不知道怎么使用,可以试试以下的命令格式:“DIR?或DIR/?”。 DDI 早期映象文件,由DiskDUP IMGDRIVE IMG.EXE展开 IMG 这个文件要注意,有时它是一个图象文件,但更多的时候,它是映象文件,在早期光盘上,此文件使用最多,能常用HD-COPY IMG UNIMG都软件进行解压(注:IMG这个软件为什么一闪就没了呢,这个软件需要热键激活,按下Ctrl+Alt+S+D+X),如果要安装的软件压缩文件由和几个IMG分开压缩,那最好用UNIMG 将它们全部解压缩,然后安装,它安装时提示你“请插入X序列盘”。 ARJ ARJ(ARJ这个以前风眯一时的压缩软件谁人不晓)软件压缩的文件,它的压缩比较高,使用也特方便顺手,只需要“ARJ a -r -v……” RAR 这也是一个压缩文件,传说比ARJ压缩比更高,笔者没有亲手做试验,故不敢下空此结论。 ZIP 当前最流行的压缩文件,谁不知道ZIP呀,WINZIP,再也不是DOS下的那个UNZIG或PKZIP了,兼容,向下兼容,从游戏到软件,差不多都是它压缩的了。 IMD UCDOS中输法的编码字典文件。 PDV UCDOS中的自由表格UCTAB生成的表格文件,它生成的文件可以被WPS调用,也挺方便的。 BAS BASIC中的源程序文件,BASIC可为初学者最为熟悉的编辑语言,它的优点笔者就不在累赘了,注意QBASIC与QUICK BASIC和GW BASIC是有区别。 C C语言中的源程序文件,它不但造就了我们常常为之日夜奋战的精彩电脑游戏,还创造出UNIX操作系统,有口皆碑的好编程软件。 MAK C语言中的工程文件。 COB COBOL语言源程序文件。 PAS PASCAL语言源程序文件。 FOR FORTRAN语言源程序文件。 FOX FOXBASE伪编译程序文件,比PRG短小运行速度快。

信息材料

1.根据信息材料的功能,可把信息材料主要分为信息收集材料,信息存储材料,信息处理材料,信息传递材料,信息显示材料2还有一类重要的信息材料是半导体激光器材料。 光信息的存储、处理、传递和显示并不是基于半导体激光材料在外场作用下发生某种物理或化学变化来实现,但这些功能都必须有半导体激光器产生的激光参与才得以实现。 3.半导体激光器是信息功能器件的核心器件和通用器件,半导体激光材料也是信息材料中重要的部分。 4.信息收集材料是指用于信息传感和探测的一类对外界信息敏感的材料。 在外界信息如力、热、光、磁、电、化学或生物信息的影响下,这类材料的物理或化学性质(主要是电学性质)会发生相应变化,通过测量这些变化可方便精确地探测、接收和了解外界信息变化。 5.信息传感材料主要包括力敏传感材料、热敏传感材料、光敏传感材料、磁敏传感材料、气敏材料、湿敏材料、压敏材料、生物传感材料等。 6.力敏传感材料是指在外力作用下电学性质会发生明显变化的材料,主要分为金属应变电阻材料和半导体压阻材料两大类。金属应变电阻材料主要有康铜系合金、锰铜合金、镍铁铝铁合金、镍铬合金、铁铬铝合金等。半导体压阻材料主要是单晶硅。(半导体压阻材料便于力敏传感器件的微型化和集成化,在常温下有大量应用,逐步取代金属型应变计。金属应变电阻材料的电阻温度系数、温度灵敏度系数等都比半导体好,具有很高的延展性和抗拉强度,在耐高温、大应变、抗辐射等场合得到广泛使用。) 7.热敏传感材料是指对温度变化具有灵敏响应的材料,主要是电阻随温度显著变化的半导体热敏电阻陶瓷。根据电阻温度系数的正负,可分为正温度系数(BaTiO3、V2O5为基的热敏陶瓷)和负温度系数(过渡金属氧化物为基的热敏陶瓷)热敏材料两类。 8.光敏传感材料在光照下会因各种效应产生光生载流子,用于制作光敏电阻、光敏三极管、光电耦合器和光电探测器。最常用的光学敏感材料是锗、硅和II-VI族、IV-VI族中的一些半导体化合物等,如CdS、CdSe和PbS等半导体化合物,9.磁敏电阻材料是指具有磁性各向异性效应的磁敏材料。这类材料在磁化方向平行电流方向时,阻值最大;在磁化方向垂直于电流方向时,阻值较小。改变磁化方向与电流方向夹角,即可改变磁敏电阻材料的阻值。强磁性簿膜磁敏电阻材料主要是NiCo和NiFe合金薄膜,可制备磁敏二极管或三极管,灵敏度高、温度特性好,可用于磁场测量。 10.巨磁阻效应是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象(巨磁阻效应读出磁头,磁头存储密度迅速提高到3Gb/in2,磁盘记录从4Gb提升到600Gb或更高) 11.气敏材料是对气体敏感,电阻值会随外界气体种类和浓度变化的材料,如SnO2、ZnO、Fe2O3、ZrO2、TiO2和WO2等n 型或p型金属氧化物半导体。气敏材料用于制作气敏传感器,吸附气体后载流子数量变化将导致表面电阻率变化,进而对气体的种类和浓度进行探测。 12.湿敏材料是指电阻值随环境湿度增加而显著增大或降低的一些材料。陶瓷湿敏材料主要有MgCr2O3系、ZnCr2O3系和MnWO4、NiWO4等。高分子湿敏材料是指吸湿后电阻率或介电常数会发生变化的高分子电解质膜,如吸湿性树脂、硝化纤维系高分子膜。 13.信息存储材料是指用来制作各种信息存储器的一些能够记录和存储信息的材料。 在外加物理场(如电场、磁场、光照等)的影响下,信息存储材料发生物理或化学变化,实现对信息的存储。 14.磁记录材料 磁记录材料可方便地进行数据的存储和读取工作。磁性存贮器具有容量大、成本低等优点; 磁记录装置可将记录下来的信号进行放大或缩小,使科研中的数据处理更为方便灵活;磁卡可用于存取款、图书保存以及乘坐交通工具的票证等,方便人们生活。 15.颗粒涂布型磁记录介质是将磁粉、非磁性胶粘剂和少量添加剂等形成的均匀磁性浆料,涂布于聚酯薄膜上制成。 磁粉包括γ-Fe2O3、BaO-Fe2O3、金属粉等。 16.金属磁粉特点是具有较高的磁感应强度和矫顽力。纯铁磁化强度达1700emu/cm3,可在较薄的磁层内得到较大的读出信号;小针状铁粒子可提供较高矫顽力,使磁记录介质承受较大的外场作用。金属磁粉缺点是稳定性差,易氧化或发生其它反应,常用表面钝化或合金化等办法控制表面氧化,但降低粒子的磁化强度 17.钡铁氧体来源丰富,成本低,有较高的矫顽力和磁能积,抗氧化能力强,是一种应用广泛的永磁材料。钡铁氧体矫顽力高达398kA/m,本不适于作磁记录介质,以下特点使其可成为理想高密度磁记录材料:六方形平板结构和垂直于平板

常用图片格式分类

常见的图像文件格式又有哪些呢? 常见的图像文件格式又有哪些呢? 一、BMP格式 BMP是英文Bitmap(位图)的简写,它是Windows操作系统中的标准图像文件格式,能够被多种Windows应用程序所支持。随着Windows操作系统的流行与丰富的Windows应用程序的开发,BMP位图格式理所当然地被广泛应用。这种格式的特点是包含的图像信息较丰富,几乎不进行压缩,但由此导致了它与生俱生来的缺点--占用磁盘空间过大。所以,目前BMP在单机上比较流行。 二、GIF格式 GIF是英文Graphics Interchange Format(图形交换格式)的缩写。顾名思义,这种格式是用来交换图片的。事实上也是如此,上世纪80年代,美国一家著名的在线信息服务机构CompuServe针对当时网络传输带宽的限制,开发出了这种GIF图像格式。 GIF格式的特点是压缩比高,磁盘空间占用较少,所以这种图像格式迅速得到了广泛的应用。最初的GIF只是简单地用来存储单幅静止图像(称为GIF87a),后来随着技术发展,可以同时存储若干幅静止图象进而形成连续的动画,使之成为当时支持2D动画为数不多的格式之一(称为GIF89a),而在GIF89a图像中可指定透明区域,使图像具有非同一般的显示效果,这更使GIF 风光十足。目前Internet上大量采用的彩色动画文件多为这种格式的文件,也称为GIF89a格式 文件。 此外,考虑到网络传输中的实际情况,GIF图像格式还增加了渐显方式,也就是说,在图像传输过程中,用户可以先看到图像的大致轮廓,然后随着传输过程的继续而逐步看清图像中的细节部分,从而适应了用户的"从朦胧到清楚"的观赏心理。目前Internet上大量采用的彩色动画文 件多为这种格式的文件。 但GIF有个小小的缺点,即不能存储超过256色的图像。尽管如此,这种格式仍在网络上大行其道应用,这和GIF图像文件短小、下载速度快、可用许多具有同样大小的图像文件组成动画等 优势是分不开的。 三、JPEG格式 JPEG也是常见的一种图像格式,它由联合照片专家组(Joint Photographic Experts Group)开发并以命名为"ISO 10918-1",JPEG仅仅是一种俗称而已。JPEG文件的扩展名为.jpg或.jpeg,其压缩技术十分先进,它用有损压缩方式去除冗余的图像和彩色数据,获取得极高的压缩率的同时能展现十分丰富生动的图像,换句话说,就是可以用最少的磁盘空间得到较好的图像质量。 同时JPEG还是一种很灵活的格式,具有调节图像质量的功能,允许你用不同的压缩比例对这

各种常见类型的存储

浅谈我们经常遇到的存储 问大家一个问题,什么是SAN、什么是NAS、什么是SCSI,下文进行了很好的分解。 目前磁盘存储市场上,存储分类(如下表一)根据服务器类型分为:封闭系统的存储和开放系统的存储,封闭系统主要指大型机,AS400等服务器,开放系统指基于包括Windows、UNIX、Linux等操作系统的服务器;开放系统的存储分为:内置存储和外挂存储;开放系统的外挂存储根据连接的方式分为:直连式存储(Direct-Attached Storage,简称DAS)和网络化存储(Fabric-Attached Storage,简称FAS);开放系统的网络化存储根据传输协议又分为:网络接入存储(Network-Attached Storage,简称NAS)和存储区域网络(Storage Area Network,简称SAN)。由于目前绝大部分用户采用的是开放系统,其外挂存储占有目前磁盘存储市场的70%以上,因此本文主要针对开放系统的外挂存储进行论述说明。 今天的存储解决方案主要为:直连式存储(DAS)、存储区域网络(SAN)、网络接入存储(NAS)。如下:

开放系统的直连式存储(Direct-Attached Storage,简称DAS)已经有近四十年的使用历史,随着用户数据的不断增长,尤其是数百GB以上时,其在备份、恢复、扩展、灾备等方面的问题变得日益困扰系统管理员。 主要问题和不足为: 直连式存储依赖服务器主机操作系统进行数据的IO读写和存储维护管理,数据备份和恢复要求占用服务器主机资源(包括CPU、系统IO等),数据流需要回流主机再到服务器连接着的磁带机(库),数据备份通常占用服务器主机资源20-30%,因此许多企业用户的日常数据备份常常在深夜或业务系统不繁忙时进行,以免影响正常业务系统的运行。直连式存储的数据量越大,备份和恢复的时间就越长,对服务器硬件的依赖性和影响就越大。 直连式存储与服务器主机之间的连接通道通常采用SCSI连接,带宽为10MB/s、20MB/s、40MB/s、80MB/s等,随着服务器CPU的处理能力越来越强,存储硬盘空间越来越大,阵列的硬盘数量越来越多,SCSI通道将会成为IO瓶颈;服务器主机SCSI ID资源有限,能够建立的SCSI通道连接有限。 无论直连式存储还是服务器主机的扩展,从一台服务器扩展为多台服务器组成的群集(Cluster),或存储阵列容量的扩展,都会造成业务系统的停机,从而给企业带来经济损失,

知识的保持与信息存储-学习资料

知识的保持与信息存储 一、知识保持与信息存储的实质 保持是识记过的经验在人们头脑中的巩固过程,也就是信息的存储过程。保持是识记和再现的中间环节,在记忆过程中有着重要的作用,没有保持也就没有记忆。 知识保持是一个动态过程,存储信息在内容和数量上都会发生变化。数量方面的变化,主要表现为保持的数量随时间的推移而逐渐下降。这就是遗忘现象,我们将在后文详细讨论。在内容方面,由于每个人的知识经验的不同,加工和组织经验的方式不同,人们保持的经验可能有以下几种形式的变化:(1)保持的内容比原来识记的内容更简略、更概括,一些不太重要的信息趋于消失,而主要内容及其显著特征被保持;(2)保持的内容比原来识记的内容更详细、更具体、更完整、更合理和有意义;(3)使原来识记内容中的某些特点更夸张、突出或歪曲,变得更生动、离奇,更具特色。

图16-1命名引起回忆图形的变化 心理学家卡迈克尔(L.Carmichael)曾做过一个实验来证明这种变化。他让被试看12个刺激图形(见图16-1)中间的一系列图形,第一组被试在看图的同时还听到左边一排物体的名称,第二组被试听到的是右边一排物体的名称。图形呈现完毕后,要求两组被试回忆并画出他们所看到的图形。结果表明,被试所画的图形与原来呈现的图形之间有很大的变化,大约有3/4的图形被歪曲了,而且歪曲的图形都相似于他们听过名称的事物的形状。

不仅形象记忆内容在保持的过程中有可能被改造甚至歪曲,文字材料的保持也是如此。心理学家巴特利特(F.C.Bartlett)让被试阅读一篇《魔鬼的故事》的文章,过一段时间后让他们复述。结果发现,经常阅读鬼怪故事的被试在回忆中增添了许多关于鬼的内容和情节,而受过逻辑学训练的被试在回忆中则大量删去了关于鬼的描写,而使故事变得更合乎逻辑。 从以上的研究看出,信息在头脑中的保持不是静止的、凝固的,而是一个重建过程,信息在保持过程中要不断地受到思维的“剪裁”加工而发生变化。 二、知识遗忘的过程与特点 (一)遗忘及其进程 记忆保持的最大变化是遗忘,遗忘和保持是矛盾的两面。记忆的内容不能再认和回忆,或者再认和回忆时发生错误,就是遗忘。遗忘有各种情况,能再认不能回忆叫不完全遗忘,不能再认也不能回忆叫完全遗忘,一时不能再认或回忆叫暂时性遗忘,永久不能再认或回忆叫永久性遗忘。 对于遗忘的进程,德国心理学家艾宾浩斯最早进行了系统的研究。他自己既当主试又当被试,独自进行实验,持续数年之久。为了对结果进行数量分析并排除过去经验的干扰,他采用了无意义音节作为记忆材料。这种材料是由中间一个元音、两边各一个辅音构成的音

photoshop常用图像文件格式

常用图像文件格式 1.PSD格式 PSD格式是Photoshop的专用格式,能保存图像数据的每一个细小部分,包括像素信息、图层信息、通道信息、蒙版信息、色彩模式信息,所以PSD格式的文件较大。而其中的一些内容在转存为其他格式时将会丢失,并且在储存为其他格式的文件时,有时会合并图像中的各图层及附加的蒙版信息,当再次编辑时会产生不少麻烦。因此,最好再备份一个PSD 格式的文件后再进行格式转换。 2.TIFF格式 TIFF格式是一种通用的图像文件格式,是除PSD格式外唯一能存储多个通道的文件格式。几乎所有的扫描仪和多数图像软件都支持该格式。该种格式支持RGB、CMYK、Lab 和灰度等色彩模式,它包含有非压缩方式和LZW压缩方式两种。 3.JPEG格式 JPEG格式也是比较常用的图像格式,压缩比例可大可小,被大多数的图形处理软件所支持。JPEG格式的图像还被广泛应用于网页的制作。该格式还支持CMYK、RGB和灰度色彩模式,但不支持Alpha通道。 4.BMP格式 BMP格式是标准的Windows及OS/2的图像文件格式,是Photoshop中最常用的位图格式。此种格式在保存文件时几乎不经过压缩,因此它的文件体积较大,占用的磁盘空间也较大。此种存储格式支持RGB、灰度、索引、位图等色彩模式,但不支持Alpha通道。它是Windows环境下最不容易出错的文件保存格式。 5.GIF格式 GIF格式是由CompuServe公司制定的,能保存背景透明化的图像形式,但只能处理256种色彩,常用于网络传输,其传输速度要比其他格式的文件快很多,并且可以将多张图像存储为一个文件形成动画效果。 6.PNG格式 PNG格式是CompuServe公司开发出来的格式,广泛应用于网络图像的编辑。它不同于GIF格式图像,除了能保存256色,还可以保存24位的真彩色图像,具有支持透明背景和消除锯齿边缘的功能,可在不失真的情况下进行压缩保存图像。在不久将来,PNG格式将会是未来网页中使用的一种标准图像格式。 PNG格式文件在RGB和灰度模式下支持Alpha通道,但是在索引颜色和位图模式下,不支持Alpha通道。 7.EPS格式 EPS格式为压缩的PostScript格式,可用于绘图或者排版,它最大的优点是可以在排版软件中以低分辨率预览,打印或者出胶片时以高分辨率输出,可以达到效果和图像输出质量两不耽误。EPS格式支持Photoshop里所有的颜色模式,其中在位图模式下还可以支持透明,并可以用来存储点阵图和向量图形。但不支持Alpha通道。 8.PDF格式 PDF格式是Adobe公司开发的Windows,MAC OS,UNIX和DOS系统的一种电子出版软件的文档格式。该格式源于PostScript Level2语言,因此可以覆盖矢量式图像和点阵式图像,且支持超链接。此文件是由Adobe Acrobat软件生成的文件格式,该格式文件可以存储多页信息,包含图形,文档的查找和导航功能。因此在使用该软件时不需要排版就可以获得图文混排的版面。由于该格式支持超文本链接,所以是网络下载经常使用的文件。

多媒体常见五种图像格式详解

多媒体常见五种图像格式详解 【摘要】:自此互联网以及PC的飞速发展,我们的日常生活已经高度的信息化了,多媒体应用技术也不断地深入到我们的生活中。图像、视频这些最直观的信息无时无刻的充斥着我们的眼球。这时我们需要在繁多的图像种类中辨别以及选择我们所要用到的图像种类来准确完整地传达信息。本文通过对多媒体常见的五种图像格式的详细介绍从而可以深刻的了解图像的格式特点及其应用。 【关键词】:多媒体互联网常见图像格式 一.引言 现在的互联网和多媒体技术的高速发展,多媒体的图形图像以其蕴含的信息量优美直观地显现于人们的视网膜中,给人们以绚丽丰富的视觉效果。但是多媒体图像又因其种类繁多而不能被人们所一一了解,甚至是最常见的图像格式也只是对其格式名略有耳闻。那么,本文将对多媒体常见的图像格式做一番简述,介绍它们的特性和不同点以及其实用性。 二.五种图像格式详解 1、BMP图像 BMP图像,即通常所说的位图(Bitmap),是最早应用于Windows操作系统,也是Windows操作系统中的标准图像文件格式,在Windows环境中运行的图形图像软件都支持BMP图像格式。因而这种格式的图像是最常见最简单的,像我们常用的桌面壁纸一般都是BMP格式图像。 BMP图像文件的文件结构一般认为包括了三部分:表头、调色板和图像像素数据,再细分的话,表头部分有分文件头和位图信息头。表头长度为54个字节,内容包括了BMP文件的类型、文件的大小、位图文件的保留字、位图数据距文件头的偏移量以及位图的尺寸等信息。调色板中有若干个表项相对应地定义一种颜色,从而说明位图中的颜色。只有全彩色BMP图像文件内没有调色板数据,其余不超过256种颜色的图像文件都必须设定调色板信息(电视节目制作中的图形图像格式)。图像像素数据每一个点代表一个像素值,它有着比较独特的记录方式:位图中的像素值是以在扫描行内从左到右、扫描行之间从下到上这样的顺序记录的。 BMP图像文件有下列3个特点:

文件的常见储存格式

各种储存格式 文字: 、txt 纯文本文件,不携带字体,字形,颜色等文字修饰控制格式,一般文字处理软件都能打开它。 、doc 使用Microsoft Word创建的格式化文件,用于一般的图文排版。 、html 用超文本标记语言编写生成的文件格式,用于网页制作。 、pdf便携式文档格式,就是由Adobe系统公司开发的一种文件格式,主要应用于电子文档,出版等方面。 图形图像: 、jpg JPEG文件格式就是静态图像压缩的国际标准,就是应用广泛的图像压缩格式,多用于网络与光盘读物上。 、gif 支持透明背景图像,文件很小,色彩限定在256色以内,主要应用在网络上。 .bmp Microsoftpaaint的固定格式,文件几乎不压缩,占用磁盘空间大,普遍应用于Windows中。 动画: 、gif通过同时存储若干幅图像,进而形成连续的动画。主要用于网页。

、swf应用Macromedia公司的Flash制作的动画。具有缩放不失真、文件体积小等特点,它采用了流媒体技术,可以一边下载一边播放,目前被广泛应用于网络上。 音频: 、wav 该格式记录声音的波形,声音文件能够与原声基本一致,质量非常高,主要应用于许忠实记录原生的地方。 .mp3 一种压缩储存声音的文件格式,就是音频压缩的国际标准。特点就是声音失真小,文件小,目前网络上下载歌曲多为此格式。 、midiMIDI就是数字音乐/电子合成乐器的统一标准。MIDI文件储存的就是一系列指令、不就是波形,就是因为它需要的磁盘空间非常小,目前主要用于音乐制作。 视频: 、avi Microsft公司开发的一种数字音频与视频文件格式,主要应用在多媒体光盘上,用来保存电影、电视等各种影像信息。

各种文件的格式(扩展名)及打开方式汇总和说明

ACE : Ace压缩档案格式 ACT : Microsoft office 助手文件 AIF , AIFF :音频互交换文件,Silicon Graphic and Macintosh 应用程序的 声音格式 ANI : Windows 系统中的动画光标 ARC : LH ARC 的压缩档案文件 ARJ : Robert Jung ARJ 压缩包文件 ASD : Microsoft Word 的自动保存文件;Microsoft 高级流媒体格式(microsoft adva need stream ing format ,ASF)的描述文件;可用NSREX打开Velvet Studio 例子文件ASF : Microsoft 高级流媒体格式文件 ASM :汇编语言源文件,Pro/E装配文件 ASP :动态网页文件;ProComm Plus 安装与连接脚本文件;Astound 介绍文件 AST : Astound 多媒体文件;ClarisWorks 助手”文件 Axx : ARJ压缩文件的分包序号文件,用于将一个大文件压至几个小的压缩包中(xx取01-99 的数字) A3L : Authorware 3.x 库文件 A4L : Authorware 4.x 库文件 A3M ,A4M : Authorware Macintosh 未打包文件

A5L : Authorware 5.x 库文件 A3M ,A4M : Authorware Macintosh 未打包文件

A3W , A4W , A5W :未打包的Authorware Windows 文件B BAK :备份文件 BAS : BASIC 源文件 BAT :批处理文件 BIN :二进制文件 BINHex :苹果的一种编码格式 BMP : Windows 或OS/2位图文件 BOOK : Adobe FrameMaker Book 文件 BOX : Lotus Notes 的邮箱文件 BPL : Borlard Delph 4 打包库 BSP : Quake图形文件 BUN : CakeWalk 声音捆绑文件(一种MIDI程序) C C0I :台风波形文件 CAB : Microsoft 压缩档案文件 CAD : Softdek 的Drafix CAD 文件 CAM : Casio照相机格式 CAP :压缩音乐文件格式 CAS :逗号分开的ASC U文件 CCB : Visual Basic 动态按钮配置文件

计算机中常用信息存储格式

文件及其类型 看一看,想一想 1.文件和文件夹 例:关于文件和文件夹,下列说法错误的是( )。 A.在同一文件夹下,可以有2个不同名称的文件 B.在不同文件夹下,可以有2个相同名称的文件 C.在同—文件夹下,可以有2个相同名称的文件 D.在不同文件夹下,可以有2个不同名称的文件 2.文件 P28 文件(File):指计算机里的文件,它是用文件名来标识的一组相关信息的集合体,计算机中的信息通常以文件的形式在存储器中保存的。 3.文件名 文件的名称,通常由主名和扩展名组成,中间用“.”隔开。 指出主名:,扩展名: 提出问题:扩展名的的意义。 4.文件的类型 计算机和网络中的有很多种不同类型的文件,而文件的类型主要是通过其文件名中的扩展名部分来标明的。 从最终使用目的来看,一般文件分为可执行文件和数据文件两大类。 (1)可执行文件:通常以EXE作为文件的扩展名。如QQ.exe

(2)数据文件:需要相应的软件来打开。 如: readme.txt、新年快乐.swf、座次表.doc、成绩表.xls 5.文件属性 如何查看文件属性:选中该文件,然后单击鼠标右键,选择属性。 例:该文件属性如下图所示,以下说法错误的是() A.该文件只能用Windows Media Player播放 B.文件名为“稻香.mp3” C.该文件大小约为3.8MB D.这是一个音频文件 6.计算机中存储信息的单位 计算机中存储数据的最小单位是(bit,又称比特); 存储容量的基本单位是字节(Byte。简称B), 8个二进制位称为1个字节,它们之间的换算关系是 1Byte=8bit, 1KB=1024B=210B=1024 B 1MB=1024KB=220B=1024*1024 B 1GB=1024MB=230B=1024*1024*1024 B 1TB=1024GB 练习:1GB等于( )。 A.1024×1024字节 B.1024M字节 C.1024M二进制位 D.1000M字节 判断:在计算机中数据单位bit的意思是字节()。 7.看书P22-23 《计算机中常用的信息存储格式》完成以下练习 (1)下列哪个是可执行文件的扩展名()。 A. bak B. exe C. bmp D. txt

(完整版)现代计算机存储介质材料及发展

现代计算机存储介质材料的相关介绍以及发展 摘要: 主要介绍了存储介质的发展过程,以及目前存储介质的分类,最后简述了根据各种存储介 质的特性而衍生出的新的存储介质材料,并从其性价比进行了分析。 关键字: 存储介质,闪存,混合硬盘,磁光盘存储介质,强电介质存储,双向一致存储器,光学体 全息存储 引言: 存储介质的评测和分析对构建文件系统过程如何选取存储设备具有重要的指导作用,对文件系统的研究也有参考价值,所以分析存储介质材料,对从价格、容量、读写速度方面选 择存储设备以及存储体系结构的发展起着十分重要的作用。例如软盘、光盘、DVD、硬盘、闪存、U盘、CF卡、SD卡、MMC卡、SM卡、记忆棒(Memory Stick)、xD卡等都属于存储介质。而目前最流行的存储介质是基于闪存的,比如U盘、CF卡、SD卡、SDHC卡、MMC 卡、SM卡、记忆棒、xD卡等。 正文: 计算机存储介质是计算机存储器中用于存储某种不连续物理量的媒体,是存储数据的载 体。 1、存储介质的发展史: 不可否认软盘在很长的一段时间内成为了无可替代的移动存储介质,但进入20世纪90年代,软盘相对较小的容量已经无法满足日益庞大的数据存储需求,人们开 始寻找一种可以取代软盘的移动存储方案。 1994年,美国Iomega公司开始推出一种名为“ZIP”的驱动器,就容量而言,ZIP 盘片100MB的容量已经足以满足当时的移动存储需求,极有可能取代 3.5英寸软盘长达十数年的统治地位,成为主流的移动存储介质。然而,Iomega并没有成功地抓住这一次机会。 直到1996年,M-Systems、Trek、朗科等公司抓住了USB(通用串行总线)标准发展的契机,推出了一个由USB接口和闪存(Flash Memory)组成的移动存储装置, 也就是如今广泛流行的闪存盘。这种无论是体积还是容量都比软盘好许多的新产品 很快取代了 3.5英寸软盘的地位。 在闪存盘迅速占领市场的同时,许多的公司开始为争夺闪存盘的发明权争论和打官司。他们无不声称是自己第一个设想、设计或者生产出了类似闪存盘的产品,而 且,他们当中的某些公司分别在不同的国家申请了相关的专利,相关的争论一直没 有结束,或许,未来也不会得出任何结果。 移动存储介质的研究仍然在继续着。1998年,两个德国科学家发现数据还可以被存储在胶带之中,相关的技术目前主要用于全息影像图鉴定领域。而1999年发布的SD存储卡则彻底地颠覆了消费类电子产品世界。Iomega也在2003年再次推出了新 的移动存储装置REV移动硬盘,但这一次仍旧是未能获得成功。 总的来说,当前使用最为广泛的移动存储介质仍旧是CD-R、DVD-R(±)以及闪存盘2、存储介质的分类: 1)半导体存储器 利用双稳态触发器存储信息(动态存储器除外)速度快,信息易丢失(只读存储器 除外)。常用作主存、高速缓存器。 2)磁芯存储器

文件的常见储存格式

各种储存格式 文字: .txt 纯文本文件,不携带字体,字形,颜色等文字修饰控制格式,一般文字处理软件都能打开它。 .doc 使用Microsoft Word创建的格式化文件,用于一般的图文排版。 .html 用超文本标记语言编写生成的文件格式,用于网页制作。.pdf 便携式文档格式,是由Adobe系统公司开发的一种文件格式,主要应用于电子文档,出版等方面。 图形图像: .jpg JPEG文件格式是静态图像压缩的国际标准,是应用广泛的图像压缩格式,多用于网络和光盘读物上。 .gif 支持透明背景图像,文件很小,色彩限定在256色以内,主要应用在网络上。 .bmp Microsoft paaint的固定格式,文件几乎不压缩,占用磁盘空间大,普遍应用于Windows中。 动画: .gif 通过同时存储若干幅图像,进而形成连续的动画。主要用于网页。 .swf 应用Macromedia公司的Flash制作的动画。具有缩放不失真、文件体积小等特点,它采用了流媒体技术,可以一边下载一边播放,目前被广泛应用于网络上。

音频: .wav 该格式记录声音的波形,声音文件能够和原声基本一致,质量非常高,主要应用于许忠实记录原生的地方。 .mp3 一种压缩储存声音的文件格式,是音频压缩的国际标准。特点是声音失真小,文件小,目前网络上下载歌曲多为此格式。 .midi MIDI是数字音乐/电子合成乐器的统一标准。MIDI文件储存的是一系列指令、不是波形,是因为它需要的磁盘空间非常小,目前主要用于音乐制作。 视频: .avi Microsft公司开发的一种数字音频与视频文件格式,主要应用在多媒体光盘上,用来保存电影、电视等各种影像信息。

相关主题
文本预览
相关文档 最新文档