当前位置:文档之家› 三大常见电路保护器件

三大常见电路保护器件

三大常见电路保护器件
三大常见电路保护器件

三大常见电路保护器件

电路保护主要有两种形式:过压保护和过流保护。选择适当的电路保护器件是实现高效、可靠电路保护设计的关键,涉及到电路保护器件的选型,我们就必须要知道各电路保护器件的作用。在选择电路保护器件的时候我们要知道保护电路不应干扰受保护电路的正常行为,此外,其还必须防止任何电压瞬态造成整个系统的重复性或非重复性的不稳定行为。

电路保护最常见的器件有三:GDT、MOV和TVS。

GDT(陶瓷气体放电管)

GDT有单极和三极两种形式。三极GDT是一个看似简单的器件,能在大难临头的关键时刻保持一个差分线对的平衡:少许的不对称可以使瞬变脉冲优先耦合到平衡馈线的某一侧,因而产生一个巨大的差分信号。即使瞬变事件对称地发生在平衡馈线上,两个保护器件响应特性的微小差别也会使一个破坏性的脉冲振幅出现在系统的输入端上。三极GDT在一个具有共用气体容积的管内提供一个差分器件和两个并联器件。造成一对电极导通的任何条件都会使所有三个电极之间导通,因为气体的状态(绝缘状态、电离状态或等离子状态)决定了放电管的行为。

在正常的工作条件下,一只GDT的并联阻抗约为1TΩ,并联电容为1pF以下。当施加在GDT两端的电势低于气体电离电压(即“辉光”电压)时,GDT的小漏电流(典型值小于1 pA)和小电容几乎不发生变化。一旦GDT达到辉光电压,其并联阻抗将急剧下降,从而电流流过气体。不断增加的电流使大量气体形成等离子体,等离子体又使该器件上的电压进一步降低至15V左右。当瞬变源不再继续提供等离子电流时,等离子体就自动消失。GDT 的净效果是一种消弧作用,它能在1ms内将瞬变事件期间的电压限制在大约15V以下。

GDT的一个主要优点是迫使大部分能量消耗在瞬变的源阻抗中,而不是消耗在保护器件或被保护的电路中。GDT的触发电压由信号电压的上升速率(dV/dt)、GDT的电极间隔、气体类型以及气体压力共同确定。该器件可以承受高达20 kA的电流。

MOV(压敏电阻)

它是一种是随电压而变化的非线性电阻器。烧结的金属氧化物形成一种犹如两个背对背串接的齐纳二极管的结构。在正常工作情况下,MOV的典型漏电流为10 mA量级,并联电容约为45 pF。电压升高到超过MOV阈值,就会使其中一个分布式齐纳二极管产生雪崩,因而使该器件对被保护的节点进行箝位。不断增加的电流最终使器件两端的电压上升——这是大多数批量材料都有的一个限制因素。

作为一种箝位器件,MOV能大量吸引瞬变能量,而气体放电管则将瞬变能量耗散在瞬变源阻抗以及瞬变源与被保护节点之间的电阻中。在容许MOV的漏电和并联电容的应用场合(如电源、POTS和工业传感器),MOV可配合GDT,对闪电引起的瞬变进行良好的二次防护,因为MOV的触发速度要比气体等离子体避雷器快一个数量级。反复出现的过热应力的累积会使MOV过热,降低其性能。因此,务必仔细分析你打算支持的瞬变规范,确定你要求MOV吸收的总能量和最坏情况下的瞬变重复率,保守地制定器件的规格。

TVS(瞬变电压抑制器)

一个TVS的并联电容通常只有几十皮法,但有些新的TVS的并联电容增加了不到10 pF。电压最低的TVS,其漏电流往往为100mA以上,而工作电压为12V以上的TVS,其漏电流则为5mA以下。当前TVS的发展趋势是提高集成度,支持高密度便携设备。在芯片尺寸封装中包含多个器件,使节点间隙更好地匹配被保护的IC或接口连接器。集成的TVS

与EMI滤波器可在一个封装内完成两个关键任务,并可简化通过I/O口布放总线的工作。多个TVS封装因其小巧而成为高密度组件中最常见的保护器件。

GDT/MOV/TVS的比较

压敏电阻的响应时间为ns级,比空气放电管快,比TVS管稍慢一些,一般情况下用于电子电路的过电压保护其响应速度可以满足要求。压敏电阻的结电容一般在几百到几千Pf 的数量级范围,很多情况下不宜直接应用在高频信号线路的保护中,应用在交流电路的保护中时,因为其结电容较大会增加漏电流,在设计防护电路时需要充分考虑。压敏电阻的通流容量较大,但比气体放电管小。具体可分为以下四点:

1.在反应时间上,压敏电阻介于TVS管和气体放电管之间,TVS管为皮秒级,压敏电阻略慢,为纳秒级;而气体放电管最慢,通常为几十个纳秒甚至更多。

2.在通流容量上,压敏电同样介于TVS管和气体放电管之间,TVS管通常只有几百A;而压敏电阻按不同规格,可通过数KA到数十KA的单次8/20μS浪涌电流;而对于气体放电管来说通常10KA级别8/20μS浪涌电流可导通数百次。

3.从原理上看,TVS管基于二极管雪崩效应;压敏电阻器基于氧化锌晶粒间的势垒作用;而气体放电管则是基于气体击穿放电。

4.在电压范围方面,TVS管通常为

5.5V到550V;压敏电阻的范围较宽,可从10V到9000V;而气体放电管可从75V到3500V。

这三种器件各有各的绝技,如何选择,就看你想要防止的损害是什么了,而且在具体的防护方案设计时,并没有规定说只能选择一种防护器件。FAE工程师完全可以根据实际的防护应用,将这三大主力电路保护器件组合使用,相信其叠加的防护能力一定优于单独使用的

防护等级。立创编编举个例子:在电源系统的防雷保护电路中,采用压敏电阻与陶瓷气体放电管配合使用的方案很多,特别是在铁路、通信系统已被广泛使用。压敏电阻与陶瓷气体放电管配合使用的保护电路尽管有许多优点,例如:降低残压、控制压敏电阻的劣化等,但在使用过程中如果电路设计或元件选型存在问题,可能会导致保护电路出现燃烧、爆炸等故障,影响系统的正常运行,因此在选型环节。

电路保护元器件行业技术水平及发展趋势分析

电路保护元器件行业技术水平及发 展趋势分析 1、技术水平 电路保护元器件行业存在着较高的技术壁垒,欧美、日本等发达国家的企业掌握着主导产业发展方向的核心技术和标准,韩国、中国等国家的优秀企业则拥有部分关键技术,并在产品设计和制造上有一定的优势。中国产业信息网发布的《2014-2019年中国保险元器件行业市场研究与投资战略规划报告》显示行业技术水平的主要标志如下: 其一,生产设备设计和组装的能力。虽然目前全球电路保护元器件市场年产值达到60 亿美元,但产品系列多、规格广,所需要的生产设备较难标准化,市场上专业的电路保护元器件生产设备制造商较少,因此厂商需要自己研发、设计,然后自制设备或寻找工业机床生产商定制或者根据行业经验采购相关设备进行自我组装、调试。 其二,原材料选择定制的能力。电路保护元器件作为电路保护的安全元器件,运用领域广,各运用领域对电路保护元器件的性能要求各异,因而对电路保护元器件的原材料就有着不同的要求。为满足下

游客户不同的要求,电路保护元器件生产商需要具备较强的原材料选择定制能力。 其三,产品柔性生产能力。电路保护元器件企业提供的产品具有多品种、多批次、非标准化的特征及高精度特点,因此要求生产商具有完善的品质控制体系,并具备柔性生产的能力,使生产模块化、弹性强,能在同一系统内生产尽可能多样的产品品种,满足多个行业、多个客户、不同规格产品的市场需求。 其四,绿色环保生产能力。一方面,欧盟制定了REACH 法规、RoHS 指令等对在这些国家和地区销售的产品提出了严格的环保要求;另一方面,SONY、CANON 等最终用户还制定了环保要求更为严格的绿色合作伙伴认证。因此,电路保护元器件生产商需要选择合适的材料和绿色环保制造工艺,这也是生产商占领市场的重要手段。 其五,核心生产环节技术: ①熔体加工工艺。可熔体加工工艺是管状熔断器、径向引线式熔断器、电力熔断器等过电流保护元器件的关键制造工艺,具体包括可熔体成型、绕线和点锡球三项工艺,可熔体的尺寸、绕线节距、锡球直径及一致性决定了产品的熔断特性和稳定性。 ②焊接生产工艺。焊接生产环节是指可熔体(或PPTC 芯片)与端电极的焊接。如果焊接工艺不完善,焊接部位接触电阻增大,将影响过电流保护元器件的性能,影响过电流保护元器件电路保护功能的

电路的基本元件和电路定律

第1章 电路的基本元件和电路定律 主要内容:介绍电路模型的概念,电压、电流参考方向的概念,功率的计算及概念,电阻、电容、电感、独立电源和受控源等电路元件,最后介绍基尔霍夫定律。 学时安排:本章分4讲,共8学时。 第一讲 电路模型、电压和电流参考方向以及元件功率 一、主要内容 1、课程的性质和作用 《电路理论》是一门技术基础课程。通过本课程的学习,能运用所学知识解决一些基本的有关电学方面的问题,同时为后续《电子技术》等课程打下基础。 2、教学安排 第1章 10学时、第2章 4学时、第3章 6学时、第4章 6学时、直流电路习题课 2学时、第5章4学时、第6章 8学时、第七章 4学时、第8章6学时、交流与习题课 2学时、第9章 8学时、第10章 4学时、第11章 8学时、第12章 6学时、一阶与非正弦电路习题课 2学时、第13章 6学时、第14章 8学时、第15章 2学时、总复习 2学时 3、电路的作用、组成与任务 电路的作用:完成能量的转换;完成信号的处理。 电路的组成:实际电路是由电气器件相互联接而构成的电流通路。实际电气器件在一定条件下都可用理想元件来代替。由理想元件代替实际电气器件组成的电路叫电路模型。电路是根据电路模型来进行分析的。 电路分析的目的:根据电路结构和已知参数,求电路的电压、电流和功率。 电路是各种各样电器装置的联接体。本书研究的电路是实际电路的电路模型。某些实际器件可用一个理想电路元件代替,某些实际器件需用几个理想电路元件的组合来代替。电路模型就是用理想电路元件代替实际器件组成的电路。 4、电流的参考方向 1)电流的实际方向 电流(又叫电流强度)—单位时间内通过的电流,即dt dq i = 。电流的实际方向是单位正电 荷定向移动的方向。 2)电流的参考方向 A 用箭头表示,如图1-1(a )所示;B 用双下标表示,如图1-1(b )所示。如电流A 3=AB i ,则电流实际方向与参考方向一致;如电流A 3-=AB i ,则电流实际方向与参考方向相反。 A B i (a) (b) 图1-1 电流参考方向 5、电压和电压的参考方向 1)电压的实际方向 电压:单位正电荷在电场力作用下A 点移到B 点电场力所做的功为AB 两点之间的电压, 即 dq dw u = 。 电压的实际方向:高电位指向低电位。 2)电压的参考方向 A 用箭头表示,如图1-2(a )所示; B 用双下标表示,如图1-2(b )所示; C 、用“+”

电路图常见电器元件标识及符号.

电压表 PV 有功电度表 PJ 无功电度表 PJR 频率表 PF 相位表 PPA 最大需量表(负荷监控仪) PM 功率因数表 PPF 有功功率表 PW 无功功率表 PR 无功电流表 PAR 声信号 HA 光信号 HS 指示灯 HL 红色灯 HR 绿色灯 HG 黄色灯 HY 蓝色灯 HB 白色灯 HW 连接片 XB 插头 XP 插座 XS 端子板 XT 电线,电缆,母线 W 直流母线 WB 插接式(馈电)母线 WIB 电力分支线 WP 照明分支线 WL 应急照明分支线 WE 电力干线 WPM 照明干线 WLM 应急照明干线 WEM 滑触线 WT 合闸小母线 WCL 控制小母线 WC 信号小母线 WS 闪光小母线 WF 事故音响小母线 WFS 预告音响小母线 WPS 电压小母线 WV 事故照明小母线 WELM 避雷器 F

快速熔断器 FTF 跌落式熔断器 FF 限压保护器件 FV 电容器 C 电力电容器 CE 正转按钮 SBF 反转按钮 SBR 停止按钮 SBS 紧急按钮 SBE 试验按钮 SBT 复位按钮 SR 限位开关 SQ 接近开关 SQP 手动控制开关 SH 时间控制开关 SK 液位控制开关 SL 湿度控制开关 SM 压力控制开关 SP 速度控制开关 SS 温度控制开关,辅助开关 ST 电压表切换开关 SV 电流表切换开关 SA 整流器 U 可控硅整流器 UR 控制电路有电源的整流器 VC 变频器 UF 变流器 UC 逆变器 UI 电动机 M 异步电动机 MA 同步电动机 MS 直流电动机 MD 绕线转子感应电动机 MW 鼠笼型电动机 MC 电动阀 YM 电磁阀 YV 防火阀 YF 排烟阀 YS 电磁锁 YL 跳闸线圈 YT

二极管及八大电路保护元器件知识分享

二极管及八大电路保护元器件知识分享 电路保护主要有两种形式:过压保护和过流保护。选择适当的电路保护器件是实现高效、可靠电路保护设计的关键,涉及到电路保护器件的陶瓷气体放电管、半导体放电管和玻璃放电管;钳位型过压器件有瞬态抑制以下是其具体作用:1.放电管的作用放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过2.瞬态抑制二极管的作用3.压敏电阻的作用4.贴片压敏电阻的作用5.ESD静电放电二极管的作用:6.PTC 自恢复保险丝的作用:7.8.磁珠的作用再具体谈一下二极管基础知识-分类,应用,特性,原理,参数二极管的特性与应用二极管的应用1、整流二极管2、开关元件3、限幅元件4、继流二极管5、检波二极管6、变容二极管二极管的工作原理二极管的类型一、根据构造分类1、点接触型二极管二、根据用途分类1、检波用二极管三、根据特性分类1、一般用点接触型二极管 这种二极管正如标题所说的那样,通常被使用于检波和整流电路中,是正向和反向特性既不特别好,也不特别坏的中间产品。如:SD34、SD46、1N34A等等属于这一类。 2、高反向耐压点接触型二极管 是最大峰值反向电压和最大直流反向电压很高的产品。使用于高压电路的检波和整流。这种型号的二极管一般正向特性不太好或一般。在点接触型锗二极管中,有SD38、1N38A、OA81等等。这种锗材料二极管,其耐压受到限制。要求更高时有硅合金和扩散型。 3、高反向电阻点接触型二极管 正向电压特性和一般用二极管相同。虽然其反方向耐压也是特别地高,但反向电流小,因此其特长是反向电阻高。使用于高输入电阻的电路和高阻负荷电阻的电路中,就锗材料高反向电阻型二极管而言,SD54、1N54A等等属于这类二极管。 4、高传导点接触型二极管 它与高反向电阻型相反。其反向特性尽管很差,但使正向电阻变得足够小。对高传导点接触型二极管而言,有SD56、1N56A等等。对高传导键型二极管而言,能够得到更优良的特性。这类二极管,在负荷电阻特别低的情况下,整流效率较高。

电路模型和电路元件

《电工电子技术简明教程》第4章习题 4.1 晶体管工作在放大状态、截止状态和饱和状态的条件分别是什么? 4.2 共集电极放大电路与共发射极放大电路相比,动态参数有哪些不同? 4.3判断如图4.1所示各硅晶体管的工作状态。 (a) (b) (c) 4.4 某放大电路中,测得晶体管的三个极静态电位分别为5V、1.3V、1V,判断此晶体管是PNP还是NPN型,是硅管还是锗管。 4.5 在电子电路中,放大的实质是什么?放大的对象是什么?负载上获得的电压或功率来自哪里? 4.6判断如图4.2所示各电路能否正常地放大正弦交流信号?若不能,指出其中的错误,并加以改正。 (a) (b) (c) 图4.2 习题4.6的电路 4.7 用估算法计算放大电路的静态工作点的思路是什么?为什么要设置静态工作点? 4.8 电路如图4.3所示为分压式偏置放大电路,已知U CC=24V,R C=3.3k Ω,R E =1.5 kΩ,R B1=33 kΩ,R B2=10 kΩ,带负载时R L=5.1 kΩ,β=60 。试求: (1)静态值B I、C I和CC U(2)带负载时的电压放大倍数 u A(3)空载时的电压放大倍数u A;(4)估算放大电路的输入电阻和输出电阻。 4.9 已知电路如图 4.4所示,晶体管的β=100,BEQ U=0.7V,CC U=12V, B1 R=25kΩ,B2 R=5kΩ,E1 R=300kΩ,E2 R=1kΩ,C R=5kΩ,S R=500Ω,L R=5kΩ。计算静态工作点;画出微变等效电路;计算电压放大倍数、输入电阻和输出电阻。 4.10 用Multisim或EWB对图4.3、图 4.4电路进行仿真,测量它的静态值。 u CC CC CC 图4.1 习题4.3的图 1

了解一下常用电子元件电路维修知识

了解一下常用电子元件电路维修知识 一、电容篇 1、电容在电路中一般用“C”加数字表示(如C25表示编号为25的电容)。电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。电容的特性主要是隔直流通交流。 电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。 容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量) 电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。 2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。其中:1法拉=103毫法=106微法=109纳法=1012皮法 容量大的电容其容量值在电容上直接标明,如10 uF/16V 容量小的电容其容量值在电容上用字母表示或数字表示6 字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF 数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。 如:102表示10×102PF=1000PF 224表示22×104PF=0.22 uF 3、电容容量误差表 符号 F G J K L M 允许误差±1% ±2% ±5% ±10% ±15% ±20% 如:一瓷片电容为104J表示容量为0. 1 uF、误差为±5%。 4、故障特点 在实际维修中,电容器的故障主要表现为: (1)引脚腐蚀致断的开路故障。 (2)脱焊和虚焊的开路故障。 (3)漏液后造成容量小或开路故障。 (4)漏电、严重漏电和击穿故障。 二、二极管 晶体二极管在电路中常用“D”加数字表示,如: D5表示编号为5的二极管。 1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。正因为二极管具有上述特性,无绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。 电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。 2、识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。 3、测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。 稳压二极管 稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。 1、稳压二极管的稳压原理:稳压二极管的特点就是击穿后,其两端的电压基本保持不变。这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。 2、故障特点:稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。 常用稳压二极管的型号及稳压值如下表: 型号 1N4728 1N4729 1N4730 1N4732 1N4733 1N4734 1N4735 1N4744 1N4750 1N4751 1N4761 稳压值 3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V 15V 27V 30V 75V变容二极管 变容二极管是根据普通二极管内部“PN结”的结电容能随外加反向电压的变化而变化这一原理专门设计出来的一种特殊二极管。 变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上,实现低频信号调制到高频信号上,并发射出去。在工作状态,变容二极管调制电压一般加到负极上,使变容二极管的内部结电容容量随调制电压的变化而变化。 2 维修基础知识 变容二极管发生故障,主要表现为漏电或性能变差: (1)发生漏电现象时,高频调制电路将不工作或调制性能变差。 (2)变容性能变差时,高频调制电路的工作不稳定,使调制后的高频信号发送到对方被对方接收后产生失真。 出现上述情况之一时,就应该更换同型号的变容二极管。

如何看懂电路图及元件符号

如何看懂电路图及元件符号 电子设备中有各种各样的图。能够说明它们工作原理的是电原理图,简称电路图。一张电路图就好象是一篇文章,各种单元电路就好比是句子,而各种元器件就是组成句子的单词。所以要想看懂电路图,还得从认识单词——元器件开始。有关电阻器、电容器、电感线圈、晶体管等元器件的用途、类别、使用方法等内容可以点击本文相关文章下的各个链接,本文只把电路图中常出现的各种符号重述一遍,希望初学者熟悉它们,并记住不忘。 电路图有两种,一种是说明模拟电子电路工作原理的。它用各种图形符号表示电阻器、电容器、开关、晶体管等实物,用线条把元器件和单元电路按工作原理的关系连接起来。这种图长期以来就一直被叫做电路图。 另一种是说明数字电子电路工作原理的。它用各种图形符号表示门、触发器和各种逻辑部件,用线条把它们按逻辑关系连接起来,它是用来说明各个逻辑单元之间的逻辑关系和整机的逻辑功能的。为了和模拟电路的电路图区别开来,就把这种图叫做逻辑电路图,简称逻辑图。 除了这两种图外,常用的还有方框图。它用一个框表示电路的一部分,它能简洁明了地说明电路各部分的关系和整机的工作原理。 电阻器与电位器 符号详见图 1 所示,其中( a )表示一般的阻值固定的电阻器,( b )表示半可调或微调电阻器;( c )表示电位器;( d )表示带开关的电位器。电阻器的文字符号是“ R ”,电位器是“ RP ”,即在 R 的后面再加一个说明它有调节功能的字符“ P ”。 在某些电路中,对电阻器的功率有一定要求,可分别用图 1 中( e )、( f )、( g )、( h )所示符号来表示。 几种特殊电阻器的符号: 第 1 种是热敏电阻符号,热敏电阻器的电阻值是随外界温度而变化的。有的是负温度系数的,用 NTC 来表示;有的是正温度系数的,用 PTC 来表示。它的符号见图( i ),用θ或 t°来表示温度。它的文字符号是“ RT ”。 第 2 种是光敏电阻器符号,见图 1 ( j ),有两个斜向的箭头表示光线。它的文字符号是“ RL ”。 第 3 种是压敏电阻器的符号。压敏电阻阻值是随电阻器两端所加的电压而变化的。符号见图 1 ( k ),用字符 U 表示电压。它的文字符号是“ RV ”。这三种电阻器实际上都是半导体器件,但习惯上我们仍把它们当作电阻器。

电气控制回路八种常用元件原理介绍1

电气控制回路八种常用元件原理介绍 断路器、接触器、中间继电器、热继电器、按钮、指示灯、万能转换开关和行程开关是电气控制回路中最常见的八种元件,以图文并茂的方式介绍常用电气元件的原理及应用,通过了解它们在电气回路中的作用来掌握这些元件平时的运行情况。 1、断路器 低压断路器又称为自动空气开关,可手动开关,又能用来分配电能、不频繁启动异步电机,对电源线、电机等实行保护,当它们发生严重过载、短路或欠压等故障时能自动切断电路。常用断路器外形图(如下图) 1P微型断路器 3P微型断路器

塑壳断路器断路器文字符号为:QF 断路器图形符号为: 单极断路器图形符号三极断路器图形符号

2、接触器 接触器由电磁机构和触头系统两部分组成,接触器最常见线圈电压有AC380V、AC220V、AC110V、AC36V、AC24V、AC12V和DC220V、DC36V、DC24V、DC12V等多种。常用的有AC380V、AC220V,机床常用的有AC110V、AC36V 、DC36V、DC24V、等几种,外形一样,就是线圈的电压有区别。 接触器电磁机构由线圈、动铁心(衔铁)和静铁心组成;接触器触头系统由主触头和辅助触头两部分组成,主触头用于通断主电路,辅助触头用于控制电路中。常用接触器外形图片 接触器文字符号为:KM 接触器图形符号表示为:

接触器线圈图形符号: 接触器主触头图形符 号 : 接触器辅助常开触头图形符号接触器辅助常闭触头图形符号 3、热继电器 热继电器是利用电流通过元件所产生的热效应原理而反时限动作 的继电器。 热继电器文字符号:FR 热继电器图形符号: ---------------------------------

三大常见电路保护器件

三大常见电路保护器件 电路保护主要有两种形式:过压保护和过流保护。选择适当的电路保护器件是实现高效、可靠电路保护设计的关键,涉及到电路保护器件的选型,我们就必须要知道各电路保护器件的作用。在选择电路保护器件的时候我们要知道保护电路不应干扰受保护电路的正常行为,此外,其还必须防止任何电压瞬态造成整个系统的重复性或非重复性的不稳定行为。 电路保护最常见的器件有三:GDT、MOV和TVS。 GDT(陶瓷气体放电管) GDT有单极和三极两种形式。三极GDT是一个看似简单的器件,能在大难临头的关键时刻保持一个差分线对的平衡:少许的不对称可以使瞬变脉冲优先耦合到平衡馈线的某一侧,因而产生一个巨大的差分信号。即使瞬变事件对称地发生在平衡馈线上,两个保护器件响应特性的微小差别也会使一个破坏性的脉冲振幅出现在系统的输入端上。三极GDT在一个具有共用气体容积的管内提供一个差分器件和两个并联器件。造成一对电极导通的任何条件都会使所有三个电极之间导通,因为气体的状态(绝缘状态、电离状态或等离子状态)决定了放电管的行为。 在正常的工作条件下,一只GDT的并联阻抗约为1TΩ,并联电容为1pF以下。当施加在GDT两端的电势低于气体电离电压(即“辉光”电压)时,GDT的小漏电流(典型值小于1 pA)和小电容几乎不发生变化。一旦GDT达到辉光电压,其并联阻抗将急剧下降,从而电流流过气体。不断增加的电流使大量气体形成等离子体,等离子体又使该器件上的电压进一步降低至15V左右。当瞬变源不再继续提供等离子电流时,等离子体就自动消失。GDT 的净效果是一种消弧作用,它能在1ms内将瞬变事件期间的电压限制在大约15V以下。GDT的一个主要优点是迫使大部分能量消耗在瞬变的源阻抗中,而不是消耗在保护器件或

电路过流保护元件

电路过流保护元件--自恢复保险丝简介及注意事项 目录:行业新闻星级:3星级人气:16发表时间:2012-02-28 14:12:00 【大中小】文章出处:凯泰电子网责任编辑:自恢复保险丝作者:自恢复保险丝 自恢复保险丝,俗称--正温度系数热敏电阻(PTC Resettable Fuse),是一种电路过流过温保护元器件产品,广泛应用于通讯设备(配线架保安单元,通讯终端设备,卫星接收器(DVB)计算机及周机设备等),汽车电子(电动雨括器,中控锁,电动坐椅,汽车线束,防盗器等等),电动玩具(电动遥控车,电子琴,电动童车等等),电源(电力电源,通信电源,充电器,UPS电源,变压器等等)..... 特点: PTC自恢复保险丝,主要是通过电路中的异常电流来达到保护作用。在正常工作状态下,它的阻抗很小,像一根导线串联在电路中;一旦电路发生故障短路,它的内阻值会随着电路中的电流值的增大而发生改变,直至达到保护。(待故障排除后,它的内阻值又恢复到低阻状态,继续工作) 选型应注意如下几点: PTC选型时,决定性的四个主要参数:电路中的电压值、正常工作电流值、保护启始电流值值、环境温度。 选用过流保护用PTC热敏电阻作为过流过热保护元件,首先确认线路最大正常工作电流(就是过流保护用PTC热敏电阻的不动作电流)和过流保护用PTC热敏电阻安装位置(正常工作时)最高环境温度、其次是保护电流(就是过流保护用PTC热敏电阻的动作电流)、最大工作电压、额定零功率电阻,同时也应考虑元件的外形尺寸等因素。如下图所示:使用环境温度,不动作电流及动作电流三者之间的关系。

应用原理 当电路处于正常状态时,通过过流保护用PTC热敏电阻的电流小于额定电流,过流保护用PTC热敏电阻处于常态,阻值很小,不会影响被保护电路的正常工作。当电路出现故障,电流大大超过额定电流时,过流保护用PTC热敏电阻陡然发热,呈高阻态,使电路处于相对"断开"状态,从而保护电路不受破坏。当故障排除后,过流保护用PTC热敏电阻亦自动回复至低阻态,电路恢复正常工作。 图2 为电路正常工作时的伏-安特性曲线和负载曲线示意图,由A点到B点,施加在PTC 热敏电阻上的电压逐步升高,流过PTC热敏电阻的电流也线性增加,表明PTC热敏电阻的电阻值基本不变,即保持在低电阻态;由B点到E点,电压逐步升高,PTC热敏电阻由于发热而电阻迅速增大,流过PTC热敏电阻的电流的也迅速降低,表明PTC热敏电阻进入保护状态。正常的负载曲线低于B点,PTC热敏电阻就不会进入保护状态。

电力系统继电保护题库_第三部分 元件保护和辅助保护剖析

第三部分元件保护和辅助保护 3.1选择题④ 1.电力系统不允许长期非全相运行,为了防止断路器一相断开后,长时间非全相运行,应采取措施断开三相,并保证选择性。其措施是装设:(C)。 A.断路器失灵保护 B.零序电流保护 C.断路器三相不一致保护 2.母联电流相位比较式母线差动保护当母联断路器和母联断路器的电流互感器之间发生故障时(A)。 A.将会快速切除非故障母线,而故障母线反而不能快速切除 B.将会快速切除故障母线,非故障母线不会被切除 C.将会快速切除故障母线和非故障母线 D.故障母线和非故障母线均不会被切除 3.双母线接线形式的变电站,当母联断路器断开运行时,如一条母线发生故障,对于母联电流相位比较式母差保护会(B)。 A.仅选择元件动作 B.仅差动元件动作 C.差动元件和选择元件均动作 D.差动元件和选择元件均不动作 4.在母差保护中,中间变流器的误差要求,应比主电流互感器严格,一般要求误差电流不超过最大区外故障电流的(C)。

A.3% B.4% C.5% 5.中阻沆型母线差动保护在母线内部故障时,保护装置整组动作时间不大于(B)ms。 A.5 B.10 C.20 D.30 6.如图3.1,中阻抗型母差保护中使用的母联断路器电流取自靠II母侧电流互感器,如母联断路器的跳闸保险烧坏(即断路器无法跳闸),现II母发生故障,在保护正确工作的前提下将不会出现的是: (A)。 ①包括单选题和多选题,题号带*者为多选题。 A.II母差动保护动作,丙、丁断路器跳闸,甲、乙线路因母差保护停信由对侧高频闭锁保护在对侧跳闸,切除故障,全站失压 B.II母差动保护动作,丙、丁断路器跳闸,失灵保护动作,跳甲、乙断路器,切除故障,全站失压 C.II母差动保护动作,丙、丁断路器跳闸,因母联断路器跳不开,导致I母差动保护动作,跳甲、乙两条线路,全站失压 7.母线差动保护的暂态不平衡电流与稳态不平衡电流相比,(A)。

全球及中国电路保护元器件行业发展现状

1、产业概况 1993年-2016年二十多年间,在前十个年度电路保护元器件的市场销售数量和销售金额呈平稳增长;自2003年起,受益于数字技术、通讯技术、新能源等新技术的发展,电路保护元器件市场需求呈快速增长趋势。 2011年到2016年间,全球电路保护元器件市场的需求量的年复合增长率将达9.74%,到2016年全球电路保护元器件总需求量将达到1,761.46亿只;销售金额年复合增长率为6.68%,到2016年市场总额将达到77.72亿美元。 2、产业分布 目前,全球电路保护元器件主要由美国和日本的生产商提供;2010年美日两国共销售电路保护元器件约为32.32亿美元,占全球总销售额的61.52%。欧洲因为德国的EPCOS、法国的Mersen(GCL)、瑞士的Schurter、荷兰的NXP、以及STMicroelectronics(法国ThomsonSemiconductors和意大利SGSMicroelectronics合并而成)等传统电路保护元器件生产商在某一高端电路保护元器件领域的竞争优势,整体仍具有很大的竞争力,2010年欧洲生产商的总销售额约为11.98亿美元,占全球总销售额的22.80%。 而韩国、中国(包括香港、台湾以及大陆)等国家和地区在电路保护元器件生产领域还不具备很强的竞争力,但在其建立起竞争优势的细分领域,在人力成本、产品的性价比方面具有很大优势。 根据2010年的销售额统计,过电流保护元器件和过电压保护元器件的销售金额比约为1:1;销售额最大的细分产品为熔断器,达到15.31亿美元,占总销售额的29.14%,其次是自复保险丝产品,达到6.43亿美元,占总销售额的12.24%,具体如下所示(按销售额划分): 3、需求市场 从下游应用领域来看,电子产品是电路保护元器件的最大应用市场。2010年全球共消费电路保护元器件52.54亿美元,其中电子产品领域消费28.37亿美元,约占总消费额的54%,工业领域和汽车电子领域分别消费15.09亿美元和6.41亿美元,占总消费额的29%和12%,其它领域消费2.66亿美元,约占总消费额的5%。 电子产品的发展速度快,其更新换代遵循“摩尔定律”摩尔定律是指电子产品的性能每隔18个月就可提高一倍),这是推动电路保护元器件高速发展的主要动力。 从电路保护元器件需求的地区分布来看,亚太地区是电路保护元器件的主要消费地区;2011年亚洲电路保护元器件的预计消费额达到28.28亿美元,约占全球总消费额的50%。这

过流保护电路!

过1流1保护电路 过流保护用PTC热敏电阻是一种对异常温度及异常电流自动保护、自动恢复的保护元件,俗称"自复保险丝""万次保险丝"。它取代传统的保险丝,可广泛用于马达、变压器、开关电源、电子线路等的过流过热保护,过流保护用PTC热敏电阻通过其阻值突变限制整个线路中的消耗来减少残余电流值。传统的保险丝在线路熔断后无法自行恢复,而过流保护用PTC热敏电阻在故障撤除后即可恢复到预保护状态,当再次出现故障时又可以实现其过流过热保护功能。 2.20.1 原理电路 当电路处于正常状态时,通过过流保护用PTC热敏电阻的电流小于额定电流,过流保护用PTC热敏电阻处于常态,阻值很小,不会影响被保护电路的正常工作。当电路出现故障,电流大大超过额定电流时,过流保护用PTC热敏电阻陡然发热,呈高阻态,使电路处于相对"断开"状态,从而保护电路不受破坏。当故障排除后,过流保护用PTC热敏电阻亦自动回复至低阻态,电路恢复正常工作。 javascript:resizepic(this) border=0>

图2.20.1 过流保护电路 2.20.2 主要元器件选择 1.最大工作电压 PTC热敏电阻器串联在电路中,正常工作时仅有一小部分电压保持在PTC热敏电阻器上,当PTC热敏电阻器启动呈高阻态时,必须承受几乎全部的电源电压,因此选择PTC 热敏电阻器时,要有足够高的最大工作电压,同时还要考虑到电源电压可能产生的波动。 2.不动作电流和动作电流 为得到可靠的开关功能,动作电流至少要超过不动作电流的两倍。 由于环境温度对不动作电流和动作电流的影响极大(见图2.20.2),因此要把最坏的情况考虑进去,对不动作电流来说,选应用在允许的最高环境温度时的值,对动作电流来说,选应用在较低环境温度下的值。 图2.20.2 环境温度对不动作电流和动作电流的影响

常见电子元件认识

常见电子元件认识 常见电子元件认识 目录 1. 电阻 (2) 2. 电容 (2) 3. 电感 (2) 4. 晶体二极管 (3) 5. 晶体三极管 (3) 6. 双栅极场效应管 (3) 7. 集成电路 (3) 8. 印刷电路板 (3) 9. 电解电容 (3) 10. 磁棒 (3) 11. 中周 (3) 12. 滤波器 (3) 13. 晶振 (3) 14. 开关 (3) 15. 线圈 (3) 16. 连接插座 (3) 制订者:批准者: 日期: 日期:

常见电子元件认识 常见电子元件认识 在我们生产的产品中,PNP,插件接触的元器件有电阻、电容、二极管、三极管、双栅极场效应管、IC、PCB板等,下面分别对其简单说明。 1、电阻(RESISTOR 简称RES) 1-01.分类 (1)固定电阻: 按材料分有金属皮膜,碳素皮膜等电阻; 按外形分有插脚电阻,表面电阻等电阻; 按名称分有热敏电阻,压敏电阻,色环电阻,贴片电阻等电阻 (2)微调电阻:亦称半可调电阻 (3)可调电阻:亦称电位器或可变电阻 一般情况下(1)类电阻值不变化,(2)(3)类电阻阻值可随调整而变化,我们常用的有色环电阻,代号类电阻,表面电阻等,此类电阻没有方向性 1-02.基本单位及换算:

常见电子元件认识 如右图(二)所示: A=第一色环(十位数) C=第三色环(幂指数) B=第二色环(个位数) D=最末环(误差值色环) 电阻值计算:R =(A ×10+B )×10C A=红色=2 C=黄色=4 B=黑色=0 D=银色=±10% 电阻值:R=(2×10+0)×104 =200 K Ω 误差值:=±10% (二) 即该阻值180=200-200×10%≤R ≤200+200×10%=220内均为OK 注:区分最末环 1)一般金色、银色为最末环 2)与其它色环隔离较远的一环为最末环 特例:五色环电阻的计算方法与四色环计算方法相同,五色色环前三位 为有效数字,如右图(三)所示: A=第一色环(百位数) A=红色2 (三) B=第二色环(十位数) B=红色2 C=第三色环(个位数) C=棕色1 D=第四色环(幂指数) D=橙色3 E=最末环(误差值色环) E=红色=±2% 电阻值计算:R=(A ×100+B ×10+C )×10D R=(2×100+2×10+1)×103 误差值:=±2% 注:由于五色环电阻阻值准确,通常只有两种误差代号:±1%及±2% 1-03-02 代号类电阻,如右图(四)所示: 其阻值用三位代号数值来表示。 计算方法有两种:a )用LCR 测试仪直接读出其电阻值; b )根据表面数值来计算 (四) 代号 电阻值 101 10×10=100Ω 102 10×100=1K Ω 103 10×1000=10K Ω 104 10×10000=100K Ω 271 27×10=270 B A C D 分隔开 B A C D E 103

汽车用保险丝及其保护技术

汽车用保险丝及其保护技术 【摘要】本文主要介绍了汽车用保险丝的功能、结构分类,详细阐述在整车电器系统的设计中如何正确选择合适的保险丝及保险丝在应用中的要点。 【关键词】汽车用保险丝;过电流;短路;相对热能值 Vehicle fuses and its Protection Technique Abstract:T his paper introduces the function 、structural classification、composing and design considerations of the Vehicle fuses,It elaborates how to choose the proper fuse in the design of entire car electric appliance system and the key points in its application. Keywords: Vehicle fuses;Overcurrent;shortcut;relative heat energy value 1 引言 在汽车整车电路中,电源电路由蓄电池、发电机供电设备出发,经由导线、开关、连接器等分配到汽车的各个电器系统,保证各个用电器的正常工作,保险丝一般串连在电路上游,可及时地切断电路下游发生的由于电路短路、超负荷等引发的过电流,是保护构成汽车电路的导线、用电设备、装置等免遭火灾等事故损害的重要部件。正确选用保险丝,当过电流经过时,截面积较小的保险丝金属元件部分会先达到熔点而熔断,从而切断了电路,因此它具有可熔断的特性,所以说保险丝是一种热能响应的装置,是为保护导线、电气元器件,特意在电路上形成一弱化连接,并基于此理念设计产生的一种装置。近年来,随着人们对汽车安全性、舒适性、经济性及环保性要求的不断提高,汽车电气电子化、用电设备也在不断地增加,每辆汽车使用的保险丝的数量及类型出现了增加的趋势。 2 常用的汽车用保险丝 汽车用保险丝中,其中标准化程度最高、世界各国汽车制造厂商均在使用的是插片式保险丝(小电流、短时间脉冲电流

常用电气元件的功能介绍

常用电气元件功能介绍 一、保护、隔离元件 1、刀开关、倒顺开关 功能:用于不频繁分断电源主回路,形成明显的断点。没有带灭弧装置,不能带大电流操作,无保护功能;倒顺开关有换向的作用。 参数:额定电流、接线方式、操作方式等 常用型号:HD11-400/39、HS11-600/39 2、断路器 功能:用于线路保护,主要保护有:短路保护、过载保护等,也可在正常条件下用来非频繁地切断电路。 常用的断路器一般根据额定电流大小分为:框架式断路器(一般630A 以上)、塑壳断路器(一般630A以下)、微型断路器(一般63A以下)。 参数:额定电流、框架电流、额定工作电压、分断能力等 常用型号:C65N D10A/3P、NSX250N、MET20F202 详见《断路器基础知识及常用断路器选型》 3、熔断器 功能:熔断器是一种最简单的保护电器,在电路中主要起短路保护作用。 熔断器就功能上可分为普通熔断器(gG)和半导体熔断器(aR),半导体熔断器主要是用于半导体电子器件的保护,一般动作时间较普通熔断器和断路器快,因此也经常称为快熔;普通熔断器一般只用于线路短路保护。 做线路保护用的熔断器一般只用在一些检测、控制回路中,大部分都被断路器而取代。

参数: 常用型号:RT18-2A/32X、NGTC1-250A/690V 4、刀熔开关 功能:主要用于动力回路的短路保护,也可用于正常情况下非频繁的切断电路。 可替代断路器的部分功能,比断路器更经济。一般用于驱动器前端或总进线电源处做短路保护。 由熔断器和隔离开关延伸而来,也有叫做熔断器式隔离开关。 参数:框架电流、额定电流、额定电压 常用型号: 5、过电压保护器(浪涌保护器) 功能:用于线路的过电压保护,主要用于保护由于雷电等引起的感应电压的冲击,保护线路上的电子元器件。 可分为几个级别,电源进线回路保护的,也有控制回路保护的,应与避雷针等防雷器件配合使用。 参数: 常用型号: 6、热继电器 功能:用于控制对象(电机)的过载保护,常见于对多电机的保护。 当一台变频器驱动多台电机时,需要加热继电器做过载保护,防止其中某台电机因过载而烧坏。一般用于鼠笼或者变频电机,绕线式电机一般不采用热继电器来做过载保护,而用过流继电器。(绕线式电机一般过载能力较鼠笼式强,直接启动时启动电流也交鼠笼式小。)

【总结】八大常用基础电路保护器件作用

【总结】八大常用基础电路保护器件作用作为一名电子工程师,对于电路不说必须要非常精通,但至少能够看得懂电路,知道电路保护器件的作用,在客户提出防护需求时,及时给出有效且具有实施性的整改意见。硕凯电子的FAE电子工程师都具有多年从业经验,以下是工程师合力整理的一些电路保护器件的基础作用总结,希望对大家能够有所帮助。 电路保护元器件应用领域广泛,只要有电的地方就有安装电路保护元器件的必要,如各类家用电器、家庭视听及数码产品、个人护理等消费类电子产品、计算机及其周边、手机及其周边、照明、医疗电子、汽车电子、电力、工业设备等,涵盖人们生产生活的方方面面。电路保护主要有两种形式:过压保护和过流保护。选择适当的电路保护器件是实现高效、可靠电路保护设计的关键,涉及到电路保护器件的选型,我们就必须要知道各电路保护器件的作用。在选择电路保护器件的时候我们要知道保护电路不应干扰受保护电路的正常行为,此外,其还必须防止任何电压瞬态造成整个系统的重复性或非重复性的不稳定行为。 防雷过压器件分为钳位型过压器件和开关型过压器件,开关型过压器件就是我们熟知的防雷器件:陶瓷气体放电管、半导体放电管和玻璃放电管;钳位型过压器件有瞬态抑制二极管、压敏电阻、贴片压敏电阻和ESD放电二极管;过流器件则以PTC元件自恢复保险丝为主,以下是其具体作用: 1.放电管的作用: 放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用,放电管是通过将电压限制在较低的水平,从而起到保护作用。硕凯电子的 放电管又分为气体放电管和固体放电管,气体放电管主要以陶瓷气体放电管和玻璃气体放电管为主,具体应用中放电管类别和型号的选择则需要工程师根据产品应用 端口的防护等级以及相关选型参数来确定。 2.瞬态抑制二极管的作用:瞬态抑制二极管能以10的负12次方秒量级的速度,将其两极间的高阻抗变为低阻抗,吸收高达数千瓦的浪涌功率,使两极间的电压箝位于一个预定值,有效地保护电子线路中的精密元器件,免受各种浪涌脉冲的损坏。 3.压敏电阻的作用:压敏电阻是一种限压型保护器件,电路保护中主要是利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。 4.贴片压敏电阻的作用:贴片压敏电阻主要用于保护元件和电路,防止在电源供应、控制和信号线产生的ESD。 5.ESD静电放电二极管的作用:ESD静电放电二极管是一种过压、防静电保护元件,是为高速数据传输应用的I/O端口保护设计的器件。ESD保护器件是用来避免电子设备中的敏感电路受到ESD(静电放电)的影响。可提供非常低的电容,具有优异的传输线脉冲(TLP)测试,以及IEC6100-4-2测试能力,尤其是在多采样数高达1000之后,进而改善对敏感电子元件的保护。 6.PTC自恢复保险丝的作用:电路正常工作时它的阻值很小(压降很小),当电路出现过流使它温度升高时,阻值急剧增大几个数量级,使电路中的电流减小到安全值以下,从而使后面的电路得到保护。当故障排除之后,PPTC元件很快冷却并将回复到原来的低电阻状态,这样又象一只新的PPTC元件一样可以重新工作了。 7.电感的作用:电磁的关系相信大家都清楚,电感的作用就是在电路刚开始的时候,一切还不稳定的时候,如果电感中有电流通过,就一定会产生一个与电流方向相反的感应电流(法拉第电磁感应定律),等到电路运行了一段时间后,一切都稳定了,电流没有什么变化了,电磁感应也就不会产生电流,这时候就稳定了,不会出现突发性的变故,从而保证了电路的

防护电路中的元器件

防护电路中的元器件  随着社会的不断进步,物联网的发展,电子产品的室外应用场景,持续高增长,电子产品得到了极其广泛的应用,无论是公共事业,还是商用或者民用,已经深入到各个领域,这也造成了产品功能的多样化、应用环境的复杂化。随着产品功能越来越多,其功能接口也越来越丰富,比如:网络接口(带POE功能)、模拟视频接口、音频接口、报警接口、RS485接口、RS232接口等等。功能在不断地增多,但是对于产品的体积要求越来越小,在增加设计难度的同时也会使产品面临着更多的威胁,比如雨季随着雷电的增多,产品批量的损坏;冬季设备安装调试时,由于静电造成设备的功能异常等等。本文着重介绍常用防护器件在产品中的基本应用,通过防护电路来提高产品抗静电、抗浪涌干扰的能力,从而提高产品的稳定性。 通信产品在应用的过程中,由于雷击等原因形成的过电压和过电流会对设备端口造成损害,因此应当设计相应的防护电路,各个端口根据其产品族类、网络地位、目标市场、应用环境、信号类型以及实现成本等多种因素的不同所对应的防护电路也不同。 1、气体放电管 图1 气体放电管的原理图符号 气体放电管是一种开关型保护器件,工作原理是气体放电。当两极间电压足够大时,极间间隙将放电击穿,由原来的绝缘状态转化为导电状态,类似短路。导电状态下两极间维持的电压很低,一般在20~50V,因此可以起到

保护后级电路的效果。气体放电管的主要指标有:响应时间、直流击穿电压、冲击击穿电压、通流容量、绝缘电阻、极间电容、续流遮断时间。 气体放电管的响应时间可以达到数百ns以至数ms,在保护器件中是最慢的。当线缆上的雷击过电压使防雷器中的气体放电管击穿短路时,初始的击穿电压基本为气体放电管的冲击击穿电压,放电管击穿导通后两极间维持电压下降到20~50V;另一方面,气体放电管的通流量比压敏电阻和TVS管要大,气体放电管与TVS等保护器件合用时应使大部分的过电流通过气体放电管泄放,因此气体放电管一般用于防护电路的最前级,其后级的防护电路由压敏电阻或TVS管组成,这两种器件的响应时间很快,对后级电路的保护效果更好。气体放电管的绝缘电阻非常高,可以达到千兆欧姆的量级。极间电容的值非常小,一般在5pF以下,极间漏电流非常小,为nA级。因此气体放电管并接在线路上对线路基本不会构成什么影响。 气体放电管的续流遮断是设计电路需要重点考虑的一个问题。如前所述,气体放电管在导电状态下续流维持电压一般在20~50V,在直流电源电路中应用时,如果两线间电压超过15V,不可以在两线间直接应用放电管。在50Hz交流电源电路中使用时,虽然交流电压有过零点,可以实现气体放电管的续流遮断,但气体放电管类的器件在经过多次导电击穿后,其续流遮断能力将大大降低,长期使用后在交流电路的过零点也不能实现续流的遮断;还存在一种情况就是如果电流和电压相位不一致,也可能导致续流不能遮断。因此在交流电源电路的相线对保护地线、相线对零线以及相线之间单独使用气体放电管都不合适,当用电设备采用单相供电且无法保证实际应用中相线和中线不存在接反的可能性时,中线对保护地线单独使用气体放电管也是不合适的,此时使用气体放电管需要和压敏电阻串联。在交流电源电路的相线对中线的保护中基本不使用气体放电管。 防雷电路的设计中,应注重气体放电管的直流击穿电压、冲击击穿电压、通流容量等参数值的选取。设置在普通交流线路上的放电管,要求它在线路正

相关主题
文本预览
相关文档 最新文档