当前位置:文档之家› 二极管及八大电路保护元器件知识分享

二极管及八大电路保护元器件知识分享

二极管及八大电路保护元器件知识分享

二极管及八大电路保护元器件知识分享

电路保护主要有两种形式:过压保护和过流保护。选择适当的电路保护器件是实现高效、可靠电路保护设计的关键,涉及到电路保护器件的陶瓷气体放电管、半导体放电管和玻璃放电管;钳位型过压器件有瞬态抑制以下是其具体作用:1.放电管的作用放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过2.瞬态抑制二极管的作用3.压敏电阻的作用4.贴片压敏电阻的作用5.ESD静电放电二极管的作用:6.PTC 自恢复保险丝的作用:7.8.磁珠的作用再具体谈一下二极管基础知识-分类,应用,特性,原理,参数二极管的特性与应用二极管的应用1、整流二极管2、开关元件3、限幅元件4、继流二极管5、检波二极管6、变容二极管二极管的工作原理二极管的类型一、根据构造分类1、点接触型二极管二、根据用途分类1、检波用二极管三、根据特性分类1、一般用点接触型二极管

这种二极管正如标题所说的那样,通常被使用于检波和整流电路中,是正向和反向特性既不特别好,也不特别坏的中间产品。如:SD34、SD46、1N34A等等属于这一类。

2、高反向耐压点接触型二极管

是最大峰值反向电压和最大直流反向电压很高的产品。使用于高压电路的检波和整流。这种型号的二极管一般正向特性不太好或一般。在点接触型锗二极管中,有SD38、1N38A、OA81等等。这种锗材料二极管,其耐压受到限制。要求更高时有硅合金和扩散型。

3、高反向电阻点接触型二极管

正向电压特性和一般用二极管相同。虽然其反方向耐压也是特别地高,但反向电流小,因此其特长是反向电阻高。使用于高输入电阻的电路和高阻负荷电阻的电路中,就锗材料高反向电阻型二极管而言,SD54、1N54A等等属于这类二极管。

4、高传导点接触型二极管

它与高反向电阻型相反。其反向特性尽管很差,但使正向电阻变得足够小。对高传导点接触型二极管而言,有SD56、1N56A等等。对高传导键型二极管而言,能够得到更优良的特性。这类二极管,在负荷电阻特别低的情况下,整流效率较高。

防反接保护电路

防反接保护电路 防反接保护电路 1,通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反接保护。如下图1示: 这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管MUR3020PT,额定管压降为0.7V,那么功耗至少也要达到:Pd=2A×0.7V=1.4W,这样效率低,发热量大,要加散热器。 2,另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。这些方案的缺点是,二极管上的压降会消耗能量。输入电流为2A时,图1中的电路功耗为1.4W,图2中电路的功耗为2.8W。 图1,一只串联二极管保护系统不受反向极性影响,二极管有0.7V的压降 图2 是一个桥式整流器,不论什么极性都可以正常工作,但是有两个二极管导通,功耗是图1的两倍MOS管型防反接保护电路 图3利用了MOS管的开关特性,控制电路的导通和断开来设计防反接保护电路,由于功率MOS管的内阻很小,现在MOSFET Rds(on)已经能够做到毫欧级,解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。 极性反接保护将保护用场效应管与被保护电路串联连接。保护用场效应管为PMOS场效应管或NMOS场效应管。若为PMOS,其栅极和源极分别连接被保护电路的接地端和电源端,其漏极连接被保护电路中PMOS元件的衬底。若是NMOS,其栅极和源极分别连接被保护电路的电源端和接地端,其漏极连接被保护电路中NMOS元件的衬底。一旦被保护电路的电源极性反接,保护用场效应管会形成断路,防止电流烧毁电路中的场效应管元件,保护整体电路。 具体N沟道MOS管防反接保护电路电路如图3示

电路保护元器件行业技术水平及发展趋势分析

电路保护元器件行业技术水平及发 展趋势分析 1、技术水平 电路保护元器件行业存在着较高的技术壁垒,欧美、日本等发达国家的企业掌握着主导产业发展方向的核心技术和标准,韩国、中国等国家的优秀企业则拥有部分关键技术,并在产品设计和制造上有一定的优势。中国产业信息网发布的《2014-2019年中国保险元器件行业市场研究与投资战略规划报告》显示行业技术水平的主要标志如下: 其一,生产设备设计和组装的能力。虽然目前全球电路保护元器件市场年产值达到60 亿美元,但产品系列多、规格广,所需要的生产设备较难标准化,市场上专业的电路保护元器件生产设备制造商较少,因此厂商需要自己研发、设计,然后自制设备或寻找工业机床生产商定制或者根据行业经验采购相关设备进行自我组装、调试。 其二,原材料选择定制的能力。电路保护元器件作为电路保护的安全元器件,运用领域广,各运用领域对电路保护元器件的性能要求各异,因而对电路保护元器件的原材料就有着不同的要求。为满足下

游客户不同的要求,电路保护元器件生产商需要具备较强的原材料选择定制能力。 其三,产品柔性生产能力。电路保护元器件企业提供的产品具有多品种、多批次、非标准化的特征及高精度特点,因此要求生产商具有完善的品质控制体系,并具备柔性生产的能力,使生产模块化、弹性强,能在同一系统内生产尽可能多样的产品品种,满足多个行业、多个客户、不同规格产品的市场需求。 其四,绿色环保生产能力。一方面,欧盟制定了REACH 法规、RoHS 指令等对在这些国家和地区销售的产品提出了严格的环保要求;另一方面,SONY、CANON 等最终用户还制定了环保要求更为严格的绿色合作伙伴认证。因此,电路保护元器件生产商需要选择合适的材料和绿色环保制造工艺,这也是生产商占领市场的重要手段。 其五,核心生产环节技术: ①熔体加工工艺。可熔体加工工艺是管状熔断器、径向引线式熔断器、电力熔断器等过电流保护元器件的关键制造工艺,具体包括可熔体成型、绕线和点锡球三项工艺,可熔体的尺寸、绕线节距、锡球直径及一致性决定了产品的熔断特性和稳定性。 ②焊接生产工艺。焊接生产环节是指可熔体(或PPTC 芯片)与端电极的焊接。如果焊接工艺不完善,焊接部位接触电阻增大,将影响过电流保护元器件的性能,影响过电流保护元器件电路保护功能的

完整版二极管7种应用电路详解

极管7种应用电路详解之一 许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它 在电路中的应用 第一反应是整流, 对二极管的其他特性和应用了解不多, 认识上也认为掌握了二极管的 单向导电特性,就能分析二极管参与的各种电路, 实际上这样的想法是错误的, 而且在某种程度上是害 了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析, 许多二极管电路无法用单向导电 特性来解释其工作原理。 二极管除单向导电特性外, 还有许多特性,很多的电路中并不是利用单向导电特性就能分析二 极管所构成电 路的工作原理, 而需要掌握二极管更多的特性才能正确分析这些电路, 例如二极管构成的 简易直流稳压电路,二极管构成的温度补偿电路等。 941二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中, 由于电路简单,成本低,所以 应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是 0.6V 左右,对锗二极管而言是 0.2V 左右。 如图9-40所示是由普通3只二极管构成的简易直流稳压电路。电路中的 VD1、VD2和VD3 是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。 图9-40 3只普通二极管构成的简易直流稳压电路 1 ?电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难 了。 关于这一电路的分析思路主要说明如下。 (1) 从电路中可以看出 3只二极管串联,根据串联电路特性可知, 这3只二极管如果导通会同时导通, 如果截止 会同时截止。 (2) 根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还 是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在 VD1正极通过电阻 R1接电路中 的直流工作电压+V , VD3的负极接地,这样在 3只串联二极管上加有足够大的正向直流电压。由此分 析可知,3只二 极管VD1、VD2和VD3是在直流工作电压+V 作用下导通的。 (3) 从电路中还可以看出,3只二极管上没有加入交流信号电压, 因为在VD1正极即电路中的 A 点与 地之间接 有大容量电容 C1,将A 点的任何交流电压旁路到地端。 2 ?二极管能够稳定直流电压原理说明 电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定 了电路中A 点的直流电压。 众所周知,二极管内部是一个 PN 结的结构,PN 结除单向导电特性之外还有许多特性,其中 !£ mime i-yAn^Of

防护电路设计(SMBJ、肖特基二极管)

防护电路设计 1.防护电路中的元器件 1.1过压防护器件 1.1.1钳位型过压防护器件 ①压敏电阻 MOV电路符号 压敏电阻英文varistor或MOV,它以氧化锌为基料,加入多种添加剂,经过混料造粒, 压制成坯体,高温烧结,两面印烧银电极,焊接引出端,最后包封等工序而制成。 优点是价格便宜,通流量大,响应速度快,缺点是寄生电容大,不适合用在高频电路中。 压敏电阻器广泛应用于家用电器及其它电子产品中,起过电压保护、防雷、抑制浪涌电 流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等作用。 压敏电压的选择:交流电路其最小值一般选择被保护设备电压2-3倍,直流电路选取为 工作电压的1.8-2倍。 由于压敏制作时可能存在微小缺陷,或者当承受不同电流冲击,造成管芯的压敏电阻体 分布不均,一些部位电阻会降低,导致漏电流增加,最终导致薄弱点微融化,最终导致 老化。所以一般串接热熔点来避免。 压敏可串并联使用。 ②TVS TVS电路符号 TVS是一种限压型的过压保护器,它将过高的电压钳制至一个安全范围,藉以保护后 面的电路,有着比其它保护元件更快的反应时间,这使TVS可用在防护lighting、 switching、ESD等快速破坏性瞬态电压。 特点:可分为单双向,响应时间快、漏电流低、击穿电压误差小、箝位电压较易控制、 并且经过多次瞬变电压后,性能不下降,可靠性高,体积小、易于安装。缺点是能承受 的浪涌电流较小,且功率大的寄生电容也大,低电容的功率较小。适用于细保护或者二 级保护。

选型注意,单双向,电压,功率,电容都要考虑到。 单向TVS伏安特性双向TVS伏安特性 1.1.2开关型过压防护器具 ①气体放电管 GDT电路符号 气体放电管是一种陶瓷或玻璃封装的、内充低压惰性气体的短路型保护器件,一般分两电极和三电极两种结构。其基本的工作原理是气体放电。当极间的电场强度超过气体的击穿强度时,就引起间隙放电,从而限制了极间的电压,使与气体放电管并联的其它器件得到保护。可分为二极和三极两种。 陶瓷气体放电管具有通流量大(KA级),漏电流小,寄生电容小等优点,缺点是其响应速度慢(μs级),动作电压精度低,有续流现象。适用于粗保护或者初级保护。 选型方法:min(UDC)≥1.25*1.15Up 1.25是安全余量,1.15是电源波动系数。 特性曲线

防反接保护电路

1,通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反接保护。如下图1示: 这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管MUR3020PT,额定管压降为,那么功耗至少也要达到:Pd=2A×=,这样效率低,发热量大,要加散热器。 2,另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。这些方案的缺点是,二极管上的压降会消耗能量。输入电流为2A时,图1中的电路功耗为,图2中电路的功耗为。 图1,一只串联二极管保护系统不受反向极性影响,二极管有的压降 图2 是一个桥式整流器,不论什么极性都可以正常工作,但是有两个二极管导通, 功耗是图1的两倍 MOS管型防反接保护电路

图3利用了MOS管的开关特性,控制电路的导通和断开来设计防反接保护电路,由于功率MOS管的内阻很小,现在MOSFET Rds(on)已经能够做到毫欧级,解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。 极性反接保护将保护用场效应管与被保护电路串联连接。保护用场效应管为PMOS 场效应管或NMOS场效应管。若为PMOS,其栅极和源极分别连接被保护电路的接地端和电源端,其漏极连接被保护电路中PMOS元件的衬底。若是NMOS,其栅极和源极分别连接被保护电路的电源端和接地端,其漏极连接被保护电路中NMOS元件的衬底。一旦被保护电路的电源极性反接,保护用场效应管会形成断路,防止电流烧毁电路中的场效应管元件,保护整体电路。 具体N沟道MOS管防反接保护电路电路如图3示 图3. NMOS管型防反接保护电路 N沟道MOS管通过S管脚和D管脚串接于电源和负载之间,电阻R1为MOS管提供电压偏置,利用MOS管的开关特性控制电路的导通和断开,从而防止电源反接给负

元器件的基本知识

元器件的基本知识: 一、电阻:在PCB板上用字符R表示,无方向。 1、定义:各种材料的物体对通过它的电流呈现一定的阻力,这种阻碍电流的作用叫做电阻。 2、主要作用:(1)负载电阻. (2)分流器、分压器. (3)与电容配合作滤波器. (4)确定晶体管工作点的偏置电阻. (5)稳压电源中的取样电阻. 3、基本单位:欧姆(Ω) 倍率单位:千欧(KΩ)兆欧(МΩ) 单位换算:1兆欧=1000千欧=1000000欧 4、分类:按材料分:碳膜电阻线绕电阻水泥电阻 按功能分:(1)可调电阻(又称电位器)(2)固定电阻 (1)可调电阻又可分为自动(如光敏电阻、热敏电阻、压敏电阻、 磁敏电阻、气敏电阻、点敏电阻、湿敏电阻)和手动两种 按封装形式分:DIP(插件)电阻SMT(贴片)电阻 5、阻值标识辨别方法: (1)数字表识法:(直接用阿拉伯数组进行标识) 用于SMT表贴电阻 (2)色环标识法:(用一定的颜色,按照一定的原则进行标识) 用于DIP插件电阻 1)数字标识法换算方法: 以三位数的电阻为例,前两位为有效数字,最后一位表示零的个数(或称10多少次方) 如: 392 最后一位数“2”表示零的个数,即2个零,即392=3900欧姆=3.9千欧 750 最后一位数“0”表示零的个数,即0个零,即750=75欧姆 335 最后一位数“5”表示零的个数,即5个零,即335=3300000欧姆=3300千欧=3.3兆欧 1RO表示0欧姆5R1表示5.1欧姆R10表示0.1欧姆 电阻上的数字通常有三位和四位两种:三位为普通电阻,四位为精密电阻,普通电阻(三位数)误差为±1% *注意:及时阻值大小相同,两者也不可轻易混用,代替原则一般为精密电阻可替代普通电阻,而普通电阻不可替代精密电阻。 特殊精密电阻:一般的精密电阻常用四位数字来表示,但在0603型的电阻上再打印四位数字,不但印刷成本高,而且肉眼难于辨别,故有E96系列的标示方法。(具体对照“精密电阻代号换算表”)目前多采用两位数字和一位字母来表示,即用01~96这96个二位数依次代表E96系列中100~976这96个基本数值,而第三位英文字母A、B、C、D、E、F、X、Y 则表示零的个数0、1、2、3、4、5、-1、-2 例如:“15B”表示:140*加1个零=1400Ω “66B”表示:475*加1个零=4750Ω=4.75 KΩ “09C”表示:121*加2个零=12100Ω=12.1 KΩ “68X”表示:499*减1个零=49.9Ω *注意:也有三位数字的电阻的字体下有“-”,也表示为精密电阻。 2)色环标识法: 各种颜色所表示的数字:银金黑棕红橙黄绿蓝紫灰白 -2 -1 0 1 2 3 4 5 6 7 8 9

二极管钳位电路

二极管钳位电路 钳位电路 (1)功能:将输入讯号的位准予以上移或下移,并不改变输入讯号的波形。 (2)基本元件:二极管D、电容器C及电阻器R(直流电池VR)。 (3)类别:负钳位器与正钳位器。 (4)注意事项 D均假设为理想,RC的时间常数也足够大,不致使输出波形失真。 任何交流讯号都可以产生钳位作用。 负钳位器 (1)简单型 工作原理 Vi正半周时,DON,C充电至V值,Vo=0V。 Vi负半周时,DOFF,Vo=-2V。 (2)加偏压型 工作原理 Vi正半周时,二极管DON,C被充电至V值(左正、右负),Vo=+V1(a)图或-V1(b)图。 Vi负半周时,二极管DOFF,RC时间常数足够大,Vo=V C + Vi(负半周)=2V。 re5838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 几种二极管负钳位器电路比较

正钳位器 (1)简单型 工作原理 Vi负半周时,DON,C充电至V值(左负、右正),Vo=0V。Vi正半周时,DOFF,Vo=V C + V i(正半周) =2V。 (2)加偏压型

判断输出波形的简易方法 1 由参考电压V1决定输出波形于坐标轴上的参考点。 2 由二极管D的方向决定原来的波形往何方向移动,若二极管的方向为,则波形必 须向上移动;若二极管的方向为,则波形必须往下移动。 3 决定参考点与方向后,再以参考点为基准,将原来的波形画于输出坐标轴上,即为我们所求。 几种二极管正钳位器电路比较

补充:二极管的钳位作用,是指把高电位拉到低电位;二极管的稳压作用,是指一种专用的稳压管,它是有固定稳压参数的,在电路上是把负极接在电路的正极上,正极接在地端,当电路中的电压高于稳压二极管稳压值时,稳压二极管瞬间对地反向导通,当把电压降到低于该稳压值时二极管截止,起到稳压保护电路中元件的作用。 不一定非得用稳压二极管来稳压,用一般的二极管串联也行,例如三个二极管串联,负极接地正极一路接负载,一路接一足够大的电阻再接电源就可以实现伏的稳压。

二极管及八大电路保护元器件知识分享

二极管及八大电路保护元器件知识分享 电路保护主要有两种形式:过压保护和过流保护。选择适当的电路保护器件是实现高效、可靠电路保护设计的关键,涉及到电路保护器件的陶瓷气体放电管、半导体放电管和玻璃放电管;钳位型过压器件有瞬态抑制以下是其具体作用:1.放电管的作用放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过2.瞬态抑制二极管的作用3.压敏电阻的作用4.贴片压敏电阻的作用5.ESD静电放电二极管的作用:6.PTC 自恢复保险丝的作用:7.8.磁珠的作用再具体谈一下二极管基础知识-分类,应用,特性,原理,参数二极管的特性与应用二极管的应用1、整流二极管2、开关元件3、限幅元件4、继流二极管5、检波二极管6、变容二极管二极管的工作原理二极管的类型一、根据构造分类1、点接触型二极管二、根据用途分类1、检波用二极管三、根据特性分类1、一般用点接触型二极管 这种二极管正如标题所说的那样,通常被使用于检波和整流电路中,是正向和反向特性既不特别好,也不特别坏的中间产品。如:SD34、SD46、1N34A等等属于这一类。 2、高反向耐压点接触型二极管 是最大峰值反向电压和最大直流反向电压很高的产品。使用于高压电路的检波和整流。这种型号的二极管一般正向特性不太好或一般。在点接触型锗二极管中,有SD38、1N38A、OA81等等。这种锗材料二极管,其耐压受到限制。要求更高时有硅合金和扩散型。 3、高反向电阻点接触型二极管 正向电压特性和一般用二极管相同。虽然其反方向耐压也是特别地高,但反向电流小,因此其特长是反向电阻高。使用于高输入电阻的电路和高阻负荷电阻的电路中,就锗材料高反向电阻型二极管而言,SD54、1N54A等等属于这类二极管。 4、高传导点接触型二极管 它与高反向电阻型相反。其反向特性尽管很差,但使正向电阻变得足够小。对高传导点接触型二极管而言,有SD56、1N56A等等。对高传导键型二极管而言,能够得到更优良的特性。这类二极管,在负荷电阻特别低的情况下,整流效率较高。

二极管及其应用电路--笔记整理

半导体二极管及其应用电路 1.半导体的特性 自然界中的各种物质,按导电能力划分为:导体、绝缘体、半导体。半导体导电能力介于导体和绝缘体之间。它具有热敏性、光敏性(当守外界热和光的作用时,它的导电能力明显变化)和掺杂性(往纯净的半导体中掺入某些杂质,会使它的导电能力明显变化)。利用光敏性可制成光电二极管和光电三极管及光敏电阻;利用热敏性可制成各种热敏电阻;利用掺杂性可制成各种不同性能、不同用途的半导体器件,例如二极管、三极管、场效应管等。 2.半导体的共价键结构 在电子器件中,用得最多的材料是硅和锗,硅和锗都是四价元素,最外层原子轨道上具有4个电子,称为价电子。每个原子的4个价电子不仅受自身原子核的束缚,而且还与周围相邻的4个原子发生联系,这些价电子一方面围绕自身的原子核运动,另一方面也时常出现在相邻原子所属的轨道上。这样,相邻的原子就被共有的价电子联系在一起,称为共价键结构。 当温度升高或受光照时,由于半导体共价键中的价电子并不像绝缘体中束缚得那样紧,价电子从外界获得一定的能量,少数价电子会挣脱共价键的束缚,成为自由电子,同时在原来共价键的相应位置上留下一个空位,这个空位称为空穴, 自由电子和空穴是成对出现的,所以称它们为电子空穴对。在本征半导体中,电子与空穴的数量总是相等的。我们把在热或光的作用下,本征半导体中产生电子空穴对的现象,称为本征激发,又称为热激发。 由于共价键中出现了空位,在外电场或其他能源的作用下,邻近的价电子就可填补到这个空穴上,而在这个价电子原来的位置上又留下新的空位,以后其他价电子又可转移到这个新的空位上。为了区别于自由电子的运动,我们把这种价电子的填补运动称为空穴运动,认为空穴是一种带正电荷的载流子,它所带电荷和电子相等, 符号相反。由此可见, 本征半导体中存在两种载流子:电子和空穴。而金属导体中只有一种载流子——电子。本征半导体在外电场作用下,两种载流子的运动方向相反而形成的电流方向相同。本征半导体的导电能力取决于载流子的浓度。温度越高,载流子的浓度越高。因此本征半导体的导电能力越强,温度时影响半导体性能的一个重要的外部因素。

TVS二极管在电路设计中的应用

TVS二极管在电路设计中的应用 摘要:瞬变电压抑制二极管(Transient Voltage Suppressor)是一种保护敏感元器件免受ESD和EMI浪涌脉冲的有效、低成本的器件。本文介绍了TVS二极管的特性及关键参数;给出了TVS二极管选型及在电路设计中的典型应用,同时给出了TVS二极管的性能优化及使用时注意事项。 关键词:TVS;电路设计;元器件保护 Abstract: Transient voltage suppression is an effective low-cost chip, to protect sensitive electronic component from electrostatic discharge and electromagnetic interference surge interference. In this article , will describes as below : 1). the characteristics and Key parameters of Transient voltage suppression; 2). How to select Transient voltage suppression and the typical application in circuit design, 3).the Transient voltage suppression performance optimization and operating precautions. Key words: TVS; circuit design; electronic component protection 引言 瞬态抑制(TVS)二极管又叫箝位型二极管,是目前普遍使用的一种高效能电路保护器件,它的外型与普通二极管相同,但其吸收的浪涌功率可达数千瓦,它的主要特点是在 反向应用条件下,当承受一个高能量的脉冲时,其工作阻抗立即降至极低的导通值,从而 允许大电流通过,同时把电压箝制在预定水平,其响应时间<1ns,因此可有效地保护电子 线路中的精密元器件。具有响应时间快、瞬态功率大、漏电流低、击穿电压偏差小、箝位 电压较易控制、损坏极限较高、体积小等优点。 1 TVS二极管的特性及关键参数 1.1 TVS二极管的特性 在规定的反向应用条件下,TVS二极管对受保护的线路呈高阻抗状态。当瞬间电压超过其击穿电压时,TVS二极管就会提供一个低阻抗的路径,并通过大电流方式使流向被保护元器件的瞬间电流分流到TVS二极管,同时将受保护元器件两端的电压限制在TVS二极

继电器驱动电路中的二极管保护电路

1、继电器线圈没有安装续流二极管。 2、继电器触点没有安装RC消火花电路。 3、三极管的基极对地要有一个下拉电阻,防止误动。 4、三极管与单片机连接之间应采用光耦进行隔离,继电器供电的12V与单片机5V要不共地。 继电器内部具有线圈的结构,所以它在断电时会产生电压很大的反向电动势,会击穿继电器的驱动三极管,为此要在继电器驱动电路中设置二极管保护电路,以保护继电器驱动管。 图11-61所示是继电器驱动电路中的二极管保护电路,电路中的K l是继电器,VD1是驱动管VT1的保护二极管,Rl和Cl构成继电器内部开关触点的消火花电路。

1.电路分析 继电器内部有一组线圈,图11-62所示是等效电路。在继电器断电前,流过继电器线圈Ll的电流方向为从上而下,在断电后线圈产生反向电动势阻碍这一电流变化,即产生一个从上而下流过的电流,如图中虚线所示。根据前面介绍的线圈两端反向电动势判别方法可知,反向电动势在线圈Ll上的极性为下正上负。 (1)正常通电情况下电路分析。直流电压+V加到VD1负极,VD1处于截止状态,VD1内阻相当大,所以二极管在电路中不起任何作用,也不影响其他电路工作。 (2)电路断电瞬间电路分析。继电器Kl两端产生下正上负、幅度很

大的反向电动势,这一反向电动势正极加在二极管正极上,负极加在二极管负极上,使二橛管处于正向导通状态,反向电动势产生的电流通过内阻很小的二极管VD1构成回路。二极管导通后的管压降很小,这样继电器Kl两端的反向电动势幅度被大大减小,达到保护驱动管VT1的目的。 2.故障检测方法 对于这一电路中的保护二极管不能采用测量二极管两端直流电压降的方法来判断检测故障,也不能采用在路测量二极管正向和反向电阻的方法,因为这一二极管两端并联着继电器线圈,这一线圈的直流电阻很小,所以无法通过测量电压降的方法来判断二极管质量。应该采用代替检查的方法。 3.二极管过压保护电路 图11-63所示是视放输出管保护电路。电路中,VD1和VD2是保护二极管。在正常情况下,显像管的阴极电压不是很高,二极管VD 2处于反向偏置,VD2截止,对电路无影响。 当因为显像管打火而使阴极电压升高到一定程度时,VD2的正极电压大于负极电压,VD2导通。VD2导通后,打火电压通过VD2对

二极管7种应用电路详解

二极管7种应用电路详解之一 许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。 二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。 9.4.1 二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V 左右,对锗二极管而言是0.2V左右。 如图9-40所示是由普通3只二极管构成的简易直流稳压电路。电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。 图9-40 3只普通二极管构成的简易直流稳压电路 1.电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。 关于这一电路的分析思路主要说明如下。 (1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。 (2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。由此分析可知,3只二极管VD1、VD2和VD3是在直流工作电压+V作用下导通的。 (3)从电路中还可以看出,3只二极管上没有加入交流信号电压,因为在VD1正极即电路中的A点与地之间接有大容量电容C1,将A点的任何交流电压旁路到地端。 2.二极管能够稳定直流电压原理说明 电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定了电路中A点的直流电压。 众所周知,二极管内部是一个PN结的结构,PN结除单向导电特性之外还有许多特性,其中

三大常见电路保护器件

三大常见电路保护器件 电路保护主要有两种形式:过压保护和过流保护。选择适当的电路保护器件是实现高效、可靠电路保护设计的关键,涉及到电路保护器件的选型,我们就必须要知道各电路保护器件的作用。在选择电路保护器件的时候我们要知道保护电路不应干扰受保护电路的正常行为,此外,其还必须防止任何电压瞬态造成整个系统的重复性或非重复性的不稳定行为。 电路保护最常见的器件有三:GDT、MOV和TVS。 GDT(陶瓷气体放电管) GDT有单极和三极两种形式。三极GDT是一个看似简单的器件,能在大难临头的关键时刻保持一个差分线对的平衡:少许的不对称可以使瞬变脉冲优先耦合到平衡馈线的某一侧,因而产生一个巨大的差分信号。即使瞬变事件对称地发生在平衡馈线上,两个保护器件响应特性的微小差别也会使一个破坏性的脉冲振幅出现在系统的输入端上。三极GDT在一个具有共用气体容积的管内提供一个差分器件和两个并联器件。造成一对电极导通的任何条件都会使所有三个电极之间导通,因为气体的状态(绝缘状态、电离状态或等离子状态)决定了放电管的行为。 在正常的工作条件下,一只GDT的并联阻抗约为1TΩ,并联电容为1pF以下。当施加在GDT两端的电势低于气体电离电压(即“辉光”电压)时,GDT的小漏电流(典型值小于1 pA)和小电容几乎不发生变化。一旦GDT达到辉光电压,其并联阻抗将急剧下降,从而电流流过气体。不断增加的电流使大量气体形成等离子体,等离子体又使该器件上的电压进一步降低至15V左右。当瞬变源不再继续提供等离子电流时,等离子体就自动消失。GDT 的净效果是一种消弧作用,它能在1ms内将瞬变事件期间的电压限制在大约15V以下。GDT的一个主要优点是迫使大部分能量消耗在瞬变的源阻抗中,而不是消耗在保护器件或

电路过流保护元件

电路过流保护元件--自恢复保险丝简介及注意事项 目录:行业新闻星级:3星级人气:16发表时间:2012-02-28 14:12:00 【大中小】文章出处:凯泰电子网责任编辑:自恢复保险丝作者:自恢复保险丝 自恢复保险丝,俗称--正温度系数热敏电阻(PTC Resettable Fuse),是一种电路过流过温保护元器件产品,广泛应用于通讯设备(配线架保安单元,通讯终端设备,卫星接收器(DVB)计算机及周机设备等),汽车电子(电动雨括器,中控锁,电动坐椅,汽车线束,防盗器等等),电动玩具(电动遥控车,电子琴,电动童车等等),电源(电力电源,通信电源,充电器,UPS电源,变压器等等)..... 特点: PTC自恢复保险丝,主要是通过电路中的异常电流来达到保护作用。在正常工作状态下,它的阻抗很小,像一根导线串联在电路中;一旦电路发生故障短路,它的内阻值会随着电路中的电流值的增大而发生改变,直至达到保护。(待故障排除后,它的内阻值又恢复到低阻状态,继续工作) 选型应注意如下几点: PTC选型时,决定性的四个主要参数:电路中的电压值、正常工作电流值、保护启始电流值值、环境温度。 选用过流保护用PTC热敏电阻作为过流过热保护元件,首先确认线路最大正常工作电流(就是过流保护用PTC热敏电阻的不动作电流)和过流保护用PTC热敏电阻安装位置(正常工作时)最高环境温度、其次是保护电流(就是过流保护用PTC热敏电阻的动作电流)、最大工作电压、额定零功率电阻,同时也应考虑元件的外形尺寸等因素。如下图所示:使用环境温度,不动作电流及动作电流三者之间的关系。

应用原理 当电路处于正常状态时,通过过流保护用PTC热敏电阻的电流小于额定电流,过流保护用PTC热敏电阻处于常态,阻值很小,不会影响被保护电路的正常工作。当电路出现故障,电流大大超过额定电流时,过流保护用PTC热敏电阻陡然发热,呈高阻态,使电路处于相对"断开"状态,从而保护电路不受破坏。当故障排除后,过流保护用PTC热敏电阻亦自动回复至低阻态,电路恢复正常工作。 图2 为电路正常工作时的伏-安特性曲线和负载曲线示意图,由A点到B点,施加在PTC 热敏电阻上的电压逐步升高,流过PTC热敏电阻的电流也线性增加,表明PTC热敏电阻的电阻值基本不变,即保持在低电阻态;由B点到E点,电压逐步升高,PTC热敏电阻由于发热而电阻迅速增大,流过PTC热敏电阻的电流的也迅速降低,表明PTC热敏电阻进入保护状态。正常的负载曲线低于B点,PTC热敏电阻就不会进入保护状态。

MAX2140内部ESD二极管的保护电路设计

MAX2140内部ESD二极管的保护电路设计 在对MAX2140 SDARS接收器进行热插拔操作(接通电源或断开电源)时,可能使其内部静电放电(ESD)保护二极管失效,热插拔不是该器件的标准操作。但这种情况会发生在很多应用中,尤其是在汽车工业中,经常会进行热插拔的操作。本文分析了热插拔操作可能造成ESD二极管失效的原因,并帮助设计合理的电路来预防二极管的失效。 概述 在进行装配、测试和故障处理时,有时需要对MAX2140 SDARS接收器进行非标准操作。其中一个例子就是热插拔操作,即在不关闭电源的情况下,直接将该器件与电路进行连接或断开连接。热插拔操作在汽车电子领域尤其常见,因为部件的模块化设计,模块之间的距离以及多个系统同时工作的需求,常常需要重新连接模块。 热插拔操作如何导致二极管失效 热插拔操作会导致瞬变,包括较大的电压、浪涌电流、振铃以及极性倒置。而这些瞬态过程的背后是能量交换、有限的充电/放电时间和自激等物理现象。 图1所示是MAX2140的一个热插拔操作。 在进行热插拔操作时,电缆接头会产生压降(如图中红色箭头所示)。与此同时,天线模块内部的旁路电容呈短路状态。这样就会导致MAX2140电气地的电位高于天线模块的电气地。而MAX2140的内部ESD二极管与该IC的接地引脚16连接,所以这种地电位差就会在该二极管上产生一个短时间的正向电压。该正向电压的尖峰可能会超过器件的绝对最大额定值,即所谓的电过载(EOS)。二极管的正向电压规定为-0.3V到+4.3V (VCC_xx至GND、VINANT至GND、AGCPWM至GND、VOUTANT至GND)。设计仿真表明-1.3V、电流为72mA时允许短时间的工作。 防止ESD二极管失效的设计 防止EOS的方法因具体应用的不同而不同。这里所推荐的是一些常规设计改进措施:

电子元器件基础知识培训(资料)

电子元件基础知识培训 一、电阻 1、电阻的外观、形状如下图示: 2、电阻在底板上用字母R (Ω)表示、图形如下表示: 从结构分有:固定电阻器和可变电阻器 3、电阻的分类: 从材料分有:碳膜电阻器、金属膜电阻器、线绕电阻器、热敏电阻等 从功率分有:1/16W 、1/8W 、1/4W(常用)、1/2W 、1W 、2W 、3W 等 4、电阻和单位及换算:1M Ω(兆欧姆)=1000K Ω(千欧姆)=1000'000Ω(欧姆) 一种用数字直接表示出来 5电阻阻值大小的标示 四道色环电阻 其中均有一 一种用颜色作代码间接表示 五道色环电阻 道色环为误 六道色环电阻 差值色环 四道色环电阻的识别方法如下图 五道色环电阻的识别方法如下图 常用四道色环电阻的误差值色环颜色 常用五道色环电阻的误差值色是 是金色或银色,即误差值色环为第四 棕色或红色,即第五道色环就是误 道色环,其反向的第一道色环为第一 差色环,第五道色环与其他色环相 道色环。 隔较疏,如上图,第五道色环的反 向第一道即为第一道色环。 四道色环电阻阻值的计算方法: 阻值=第一、第二道色环颜色代表的数值×10 即上图电阻的阻值为:33×10=33Ω(欧姆) 第三道色不订所代表的数值 0

五道色环电阻阻值的计算方法: 阻值=第一、二、三道色环颜色所代表的数值×10 即上图电阻阻值为:440×10=4.4Ω(欧姆) 7、电阻的方向性:在底板上插件时不用分方向。 二:电容 1、 电容的外观、形状如下图示: 2、 电容在底板上用字母C 表示,图形如下表示: 从结构上分有:固定电容和可调电容 3电容的分类 有极性电容:电解电容、钽电容 从构造上分有: 无极性电容:云母电容、纸质电容、瓷片电容 4、 电容的标称有容量和耐压之分 电容容量的单位及换算:1F ”(法拉)=10 u F(微法)=10 pF (皮法) 5、 电容容量标示如下图: 100uF ∕25V 47uF ∕25V 0.01 uF 0.01uF ∕1KV 0.022uF ∕50V 上图的瓷片电容标示是用103来表示的,其算法如下:10×10=0.01 uF =10000 pF 另电容的耐压表示此电容只能在其标称的电压范围内使用,如超过使用电压范围则会损坏炸裂或失效。 6、 电容的方向性:在使用时有极性电容要分方向,无极性不用分方向。 三、晶体管 (一)晶体二极管 1、晶体二极管外形如下图: 第四道色不订所代表的数值 -2 6 12 3

电力系统继电保护题库_第三部分 元件保护和辅助保护剖析

第三部分元件保护和辅助保护 3.1选择题④ 1.电力系统不允许长期非全相运行,为了防止断路器一相断开后,长时间非全相运行,应采取措施断开三相,并保证选择性。其措施是装设:(C)。 A.断路器失灵保护 B.零序电流保护 C.断路器三相不一致保护 2.母联电流相位比较式母线差动保护当母联断路器和母联断路器的电流互感器之间发生故障时(A)。 A.将会快速切除非故障母线,而故障母线反而不能快速切除 B.将会快速切除故障母线,非故障母线不会被切除 C.将会快速切除故障母线和非故障母线 D.故障母线和非故障母线均不会被切除 3.双母线接线形式的变电站,当母联断路器断开运行时,如一条母线发生故障,对于母联电流相位比较式母差保护会(B)。 A.仅选择元件动作 B.仅差动元件动作 C.差动元件和选择元件均动作 D.差动元件和选择元件均不动作 4.在母差保护中,中间变流器的误差要求,应比主电流互感器严格,一般要求误差电流不超过最大区外故障电流的(C)。

A.3% B.4% C.5% 5.中阻沆型母线差动保护在母线内部故障时,保护装置整组动作时间不大于(B)ms。 A.5 B.10 C.20 D.30 6.如图3.1,中阻抗型母差保护中使用的母联断路器电流取自靠II母侧电流互感器,如母联断路器的跳闸保险烧坏(即断路器无法跳闸),现II母发生故障,在保护正确工作的前提下将不会出现的是: (A)。 ①包括单选题和多选题,题号带*者为多选题。 A.II母差动保护动作,丙、丁断路器跳闸,甲、乙线路因母差保护停信由对侧高频闭锁保护在对侧跳闸,切除故障,全站失压 B.II母差动保护动作,丙、丁断路器跳闸,失灵保护动作,跳甲、乙断路器,切除故障,全站失压 C.II母差动保护动作,丙、丁断路器跳闸,因母联断路器跳不开,导致I母差动保护动作,跳甲、乙两条线路,全站失压 7.母线差动保护的暂态不平衡电流与稳态不平衡电流相比,(A)。

全球及中国电路保护元器件行业发展现状

1、产业概况 1993年-2016年二十多年间,在前十个年度电路保护元器件的市场销售数量和销售金额呈平稳增长;自2003年起,受益于数字技术、通讯技术、新能源等新技术的发展,电路保护元器件市场需求呈快速增长趋势。 2011年到2016年间,全球电路保护元器件市场的需求量的年复合增长率将达9.74%,到2016年全球电路保护元器件总需求量将达到1,761.46亿只;销售金额年复合增长率为6.68%,到2016年市场总额将达到77.72亿美元。 2、产业分布 目前,全球电路保护元器件主要由美国和日本的生产商提供;2010年美日两国共销售电路保护元器件约为32.32亿美元,占全球总销售额的61.52%。欧洲因为德国的EPCOS、法国的Mersen(GCL)、瑞士的Schurter、荷兰的NXP、以及STMicroelectronics(法国ThomsonSemiconductors和意大利SGSMicroelectronics合并而成)等传统电路保护元器件生产商在某一高端电路保护元器件领域的竞争优势,整体仍具有很大的竞争力,2010年欧洲生产商的总销售额约为11.98亿美元,占全球总销售额的22.80%。 而韩国、中国(包括香港、台湾以及大陆)等国家和地区在电路保护元器件生产领域还不具备很强的竞争力,但在其建立起竞争优势的细分领域,在人力成本、产品的性价比方面具有很大优势。 根据2010年的销售额统计,过电流保护元器件和过电压保护元器件的销售金额比约为1:1;销售额最大的细分产品为熔断器,达到15.31亿美元,占总销售额的29.14%,其次是自复保险丝产品,达到6.43亿美元,占总销售额的12.24%,具体如下所示(按销售额划分): 3、需求市场 从下游应用领域来看,电子产品是电路保护元器件的最大应用市场。2010年全球共消费电路保护元器件52.54亿美元,其中电子产品领域消费28.37亿美元,约占总消费额的54%,工业领域和汽车电子领域分别消费15.09亿美元和6.41亿美元,占总消费额的29%和12%,其它领域消费2.66亿美元,约占总消费额的5%。 电子产品的发展速度快,其更新换代遵循“摩尔定律”摩尔定律是指电子产品的性能每隔18个月就可提高一倍),这是推动电路保护元器件高速发展的主要动力。 从电路保护元器件需求的地区分布来看,亚太地区是电路保护元器件的主要消费地区;2011年亚洲电路保护元器件的预计消费额达到28.28亿美元,约占全球总消费额的50%。这

二极管的电路符号及图片识别

一:二极管的分类 1、按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。 2、根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管、硅功率开关二极管、旋转二极管等。 3、按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。 1)整流二极管 将交流电源整流成为直流电流的二极管叫作整流二极管。 2)检波二极管 检波二极管是用于把迭加在高频载波上的低频信号检出来的器件,它具有较高的检波效率和良好的频 率特性。 3)开关二极管 在脉冲数字电路中,用于接通和关断电路的二极管叫开关二极管,它的特点是反向恢复时间短,能满足高频和超高频应用的需要。 4) 稳压二极管 稳压二极管是由硅材料制成的面结合型晶体二极管,它是利用PN结反向击穿时的电压基本上不随电流的变化而变化的特点,来达到稳压的目的,因为它能在电路中起稳压作用,故称为、稳压二极管(简称稳压管)。 5)变容二极管 变容二极管是利用 PN结的电容随外加偏压而变化这一特性制成的非线性电容元件,被广泛地用于参量放大器,电子调谐及倍频器等微波电路中。 6))瞬态电压抑制器TVS 一种固态二极管,专门用于ESD 保护。TVS 二极管是和被保护电路并联的,当瞬态电压超过电路的正常工作电压时,二极管发生雪崩,为瞬态电流提供通路,使内部电路免遭超额电压的击穿。 7)发光二极管 用磷化镓、磷砷化镓材料制成,体积小,正向驱动发光。工作电压低,工作电流小,发光均匀、寿命长、可发红、黄、绿单色光。 8)肖特基二极管

基本原理是:在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V左右。其特长是:开关速度非常快:反向恢复时间trr 特别地短。因此,能制作开关二极和低压大电流整流二极管。 二:二极管的特性 通过简单的实验说明二极管的正向特性和反向特性。 1. 正向特性。 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2. 反向特性。 在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。

相关主题
文本预览
相关文档 最新文档