当前位置:文档之家› 数字图像去噪典型算法仿真与分析

数字图像去噪典型算法仿真与分析

数字图像去噪典型算法仿真与分析
数字图像去噪典型算法仿真与分析

数字图像去噪典型算法仿真与分析

个人信息*********

摘要:图像去噪是数字图像处理中的重要环节和步骤。本文首先介绍了常见的图像噪声;然后,在介绍图像去噪的基本方法和原理的基础上,讨论了均值滤波、中值滤波和维纳滤波三种典型的图像去噪方法;最后,对包含有高斯噪声和椒盐等噪声的图像进行去噪,并对其去噪效果进行了仿真和分析比较,得出了三种方法各自的适用性特点。

关键词:图像去噪;均值滤波;中值滤波;维纳滤波

Simulation and Analysis of Image De-noising Methods

in Digital Image

Name:***

(个人信息****)

Abstract: Image denoising is one of the most important parts and steps of image processing. Firstly, the paper introduces the common image noise. Then, based on the principle and methods of eliminating image noise, it discusses mean filtering, median filtering, and Wiener filtering which are typical image donoising. Finally, it uses these methods to eliminate image noise which contains Gaussian noise and salt&pepper noise. And through comparing and analyzing the effect of these methods, it concludes the applicability of each method in different application.

Key words:image denoising; mean filtering; median filtering; Wiener filtering

0 引言

数字图像是现代人们获取信息的主要来源。由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会收到多种噪声的污染。一般来说,现实中的图像都是带噪图像。噪声使图像变得模糊,甚至淹没图像特征,给后面图像区域分割、分析判断等工作带来了困难。因此,在边缘检测、图像分割、特征提取、模式识别等高层次处理之前,选用适当的方法尽量地去除噪声干扰是一个非常重要的环节和步骤,也一直是图像处理研究领域进行的主要课题之一。

在图像去噪的研究方面,国外的一些学者提出了大量的算法,如一些典型的图像去噪算法,均值滤波、中值滤波、维纳滤波、小波变换等[1-5]。近年来,一些改进的、新型的算法也被许多学者提出。文[6]提出了一种改进的均值滤波算法,该算法针对均值滤波在抑制噪声的过程中会损失图像的边缘等细节信息问题,在计算局部窗口中心像素灰度均值时,既考虑了窗口各像素与中心像素间的灰度差异,又顾及了窗口各像素与中心像素间的距离;但是容易导致图像细节因过度平滑而变得模糊。对于复杂的噪声图像,文[7]提出了一种基于同性质点个数的噪声点检测算法,这是一种改进的中值滤波算法,该算法对于脉冲噪声来说不仅在滤除噪声方便有较好的效果,保持图像细节信息方面也取得了一定的成就;但对未知噪声类型的图像进行滤除时其效果就不明显。针对经典维纳滤波器存在的不足,文[8]提出了一种新的自适应维纳滤波器,该滤波器能够根据不同

的图像特性在给定的多个模板之间自适应的选择模板,使得滤波效果更加理想;但是对于不太复杂的图像,新的自适应维纳滤波和普通维纳滤波相比,改善空间不是很大,效果不是很明显。

综上,现有的图像去噪方法大致可以分为两类:一类是空间域方法,另一类是频率域方法。本文主要围绕着空间域的去噪方法,分析几种典型的空间域去噪方法,研究总结各算法的优缺点、适用性及处理效率等,并通过MATLAB进行仿真和分析比较。

1 噪声

噪声可以理解为妨碍人的视觉器官或系统传感器对所接收图像源信息进行理解或分析的各种因素。噪声在理论上可以定义为“不可预测,只能用概率统计方法来认识的随机误差”[9]。

1.1 图像系统中的常见噪声

依据噪声产生的原因,将经常影响图像质量的噪声源分为三类:阻性元器件部产生的高斯噪声;光电转换过程中的泊松噪声(椒盐噪声);感光过程中产生的颗粒噪声。根据噪声和信号的关系也可以将其分为两种形式:一类是加性噪声,另一类是乘性噪声。

1.2 图像去噪的意义

噪声在图像处理中是一个非常重要的问题,它对图像的输入、采集、处理的各个环节以及最终的输出结果都会产生一定的影响。特别是在图像的输入、采集过程中,噪声是个十分关键的问题,若输入伴有较大噪,必然影响之后的处理以及最终的处理效果。因此,任何一个良好的图像处理系统,无论是模拟处理还是计算机处理无不把减少最前一级的噪声作为主攻目标。去噪处理已成为图像处理

中极其重要的环节和步骤。

2 图像去噪典型算法

现有的图像去噪方法大致可以划分为两类:一类是空间域方法,主要采用各种图像平滑模板对图像进行卷积处理,以达到压抑或消除噪声的目的;另一类是频率域方法,主要通过对图像进行变换后,选用适当的频率带通滤波器进行滤波处理,再经过反变换得到去噪后图像。本文的工作主要围绕着空间域方法,对三种典型的空间域去噪方法,均值滤波、中值滤波和维纳滤波,进行讨论、仿真与分析。

2.1 均值滤波

均值滤波也称为线性滤波,其采用的主要方法为邻域平均法[1-4]。均值滤波的基本思想是用领域几个像素值的均值来代替原图像中的各个像素值,其领域的选取通常为像素的4领域和8领域。

假定有一幅由L*H个像素组成的图像f(x,y),令Sxy表示中心在(x,y)点,尺寸为M*N的滑动模板窗口。均值滤波过程就是计算模板中所有像素的均值g(x,y),由公式1给出;然后将g(x,y)代替该点(x,y)原来的像素值f(x,y),得到去噪后图像F(x,y),如公式2所示。

这个操作可以用其系数1/M*N的卷积模板来实现。由上式可知,经过均值处理后,噪声的均值不变,方差变小,说明噪声的强度减弱了,即噪声得到了抑制。当然,这种方法在平滑噪声的同时,也会模糊信号的细节和边缘,即在清除

噪声的同时也会对图像的高频细节成分造成破坏和损失,使图像模糊。

2.2 中值滤波

中值滤波是一种非线性信号处理方法,它的基本原理是把数字图像或数字序

列中的一点的值用该点的一个邻域中的各点值的中值代替。通俗地讲中值滤波就

是用一个活动窗口沿图象移动,窗口中心位置的象素灰度用窗口所有象素灰度的

中值来代替。

其算法步骤为:首先确定一个以某个像素(x,y)为中心点的邻域,常用的有方

形、十字形和圆形等邻域;然后将邻域中的各个像素的灰度值进行排序,取其中

间值作为中心点像素灰度的新值,这里的邻域通常被称为窗口,这个窗口可以是

3*3、5*5等;当窗口在图像中上下左右进行移动后,利用中值滤波算法可以很

好地对图像进行平滑处理[1-4]。它是一种邻域运算,类似于卷积,但计算的不是

加权求和,而是把邻域中的像素按灰度级进行排序然后选择该组的中间值作为输

出像素值。

即用该像素的相邻像素的灰度中值来代替该像素的值,由公式3给出。

(,)(,)((,))xy

x y S f x y median f x y -∈= (3) 领域的大小决定在多少个数值中求中值,窗口的形状决定在什么样的几何空

间中去元素计算中值。窗口的大小和形状有时对滤波效果影响很大。

2.3 维纳滤波

维纳(Wiener)滤波器是一种自适应滤波器,它根据图像的局部方差调整滤

波器的输出,它的最终目标是使恢复图像g(x,y)与原始图像f(x,y)的均方差最小。

所谓自适应滤波,就是利用潜意识可以获得的滤波器参数等结果,自动的调节现

时刻的滤波器参数,以适应信号的噪声未知的或随时间变换的统计特性。

Wiener算法[1] [5]首先估计出像素的局部矩阵均值和方差:

然后,对于每一个像素利用Wiener滤波器估计出其像素值:

这里,v2是图像中噪声的方差。维纳滤波去噪方法根据图像的局部方差来调整滤波器的输出,当局部方差大时,滤波器的平滑效果较弱;当局部方差小时,滤波器平滑效果较强。它比线性滤波器具有更好的选择性,可以更好地保存图像的边缘和高频细节信息。

3 仿真结果及分析

利用MATLAB图像处理工具箱的函数可以非常方便地实现以上三种滤波方法。但是,为了加深对这三种滤波方法的理解和运用,本文采用了自编的MATLAB 程序来进行仿真,其中Wiener滤波器采用MATLAB自带函数。

为了比较以上几种不同图像去噪的方法的优劣,本文对同一幅图像利用MATLAB工具箱人为添加不同的图像噪声;然后分别采用均值滤波、中值滤波、维纳滤波等平滑处理办法对图像进行去噪复原,得到了丰富的实验结果。限于篇幅,本文只给出了对添加有均值为零的高斯噪声和椒盐噪声的Leda图像进行三种滤波算法处理的结果,如图1、图2、图3所示。

图1 Leda原始图像和添加噪声图像

图2 Leda添加高斯噪声的仿真结果

图3Leda添加椒盐噪声的仿真结果

通过对实验结果进行分析比较,从主观上可以得出以下结论:

1) 对于均值滤波,由图2可以看出,图像中噪声含量很少,说明均值滤波对均值为零的高斯噪声有比较好的抑制作用。由图3可以看出均值滤波对椒盐噪声的去除效果不明显,噪声虽然得到了一定的抑制,但是图像边缘变得比较模糊,而且随着滤波器尺寸的增加,图像的细节锐化程度相应降低。因为均值滤波只是

将某点出现的噪声强度,让周围的数据平均分担了,所以得到的结果是噪声幅值减小,但是噪声点的颗粒面积同时变大,而椒盐噪声均值不为零。

2) 对于中值滤波,由图2可以看出,中值滤波对高斯噪声的抑制效果不明显,因为高斯噪声使用随机大小的幅值污染所有的点,因此无论怎样进行数据选择得到的始终还是被污染的值。由图3可以看出中值滤波对去除椒盐噪声效果明显,因为椒盐噪声只在画面中的部分点上随机出现,根据中值滤波原理可知,通过数据排序的方法将图像中未被噪声污染的点代替噪声点的值的概率比较大,因此噪声的抑制效果很好。中值滤波与均值滤波相比,对画面清晰度的保持效果明显,缺点是因为涉及大量排序运算,运算速度较慢,对图像的实时处理有影响,对一些细节多,特别是点、线、尖顶细节较多的图像不宜采用中值滤波的方法,因为细节点有可能被当成了噪声点。

3) 对于维纳滤波,由图(1-3)的对比可以看出,维纳滤波器去除高斯白噪声的效果较好,去除椒盐噪声的效果较差,从图中可以清晰的看到一些明显的噪声点。维纳滤波能较好保存图像的边缘和高频细节信息,但去噪后的图像仍略显模糊。

为了更客观地说明各算法的滤波性能,采用峰值信噪比PSNR(Peak Signal Noise Ratio)作为客观评价的尺度,PSNR值越大,表示恢复图像与原始图像越接近,PSNR定义为:

其中,M,N表示图像的尺寸,f(x,y)表示原始图像的灰度值,g(x,y)表示滤波后的图像灰度值。各算法对噪声图像处理后的PSNR如表1所示:

matlab图像去噪算法设计(精)

数字图像去噪典型算法及matlab实现 希望得到大家的指点和帮助 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。实验一:均值滤波对高斯噪声的效果 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5 K3=filter2(fspecial('average',7),J)/255; %模板尺寸为7 K4= filter2(fspecial('average',9),J)/255; %模板尺寸为9 subplot(2,3,3);imshow(K1); title('改进后的图像1'); subplot(2,3,4); imshow(K2); title('改进后的图像2');

数字图像去噪典型算法仿真与分析

数字图像去噪典型算法仿真与分析 个人信息********* 摘要:图像去噪是数字图像处理中的重要环节和步骤。本文首先介绍了常见的图像噪声;然后,在介绍图像去噪的基本方法和原理的基础上,讨论了均值滤波、中值滤波和维纳滤波三种典型的图像去噪方法;最后,对包含有高斯噪声和椒盐等噪声的图像进行去噪,并对其去噪效果进行了仿真和分析比较,得出了三种方法各自的适用性特点。 关键词:图像去噪;均值滤波;中值滤波;维纳滤波 Simulation and Analysis of Image De-noising Methods in Digital Image Name:*** (个人信息****) Abstract: Image denoising is one of the most important parts and steps of image processing. Firstly, the paper introduces the common image noise. Then, based on the principle and methods of eliminating image noise, it discusses mean filtering, median filtering, and Wiener filtering which are typical image donoising. Finally, it uses these methods to eliminate image noise which contains Gaussian noise and salt&pepper noise. And through comparing and analyzing the effect of these methods, it concludes the applicability of each method in different application. Key words: image denoising; mean filtering; median filtering; Wiener filtering 0 引言 数字图像是现代人们获取信息的主要来源。由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会收到多种噪声的污染。一般来说,现实中的图像都是带噪图像。噪声使图像变得模糊,甚至淹没图

数字图像处理与分析实验作业(DOC)

数字图像处理与分析实验作业 作业说明:作业题目分为基本题和综合应用题。基本题主要是考察大家对教材涉及的一些基本图像处理技术的理解和实现。而综合应用题主要是考察大家综合利用图像处理的若干技术来解决实际问题的能力。 注:所有实验用图像均可从网上下载,文档中的图片只是示例。 作业要求: 编程工具:Matlab或者VC(可以使用OpenCV:https://www.doczj.com/doc/e412598519.html,/)。因为很多基本的图象处理算法已经集成在很多的编程工具中,而编程训练中基本题的目的是让同学们加深对这些算法的理解,所以基本题要求同学们只能使用图像读取和显示相关的函数(例如Matlab的imread imshow,imwrite,OpenCV的cvCreateImage,cvLoadImage,cvShowImage),而不要直接调用相关的API(例如二维DFT,图象均衡等等),但在综合应用题中则无此限制。 上交的作业包括:实验报告和程序。其中实验报告要求写出算法分析(必要时请附上流程图),函数说明(给出主要函数的接口和参数说明),实验结果(附图)及讨论分析。提交的程序,一定要确保可以运行,最好能写个程序说明。 基本题一共有10道,可以从中任选2道题来完成。综合应用题有2道,可以从中任选1道来完成。 请各位同学务必独立完成,切忌抄袭! 基本题 一、直方图变换 要求对原始Lena 图像实现以下三种取整函数的直方图均衡化: 线性函数: t k= int[(L -1) t k+ 0.5]; 对数函数: t k= int[( L-1)log(1+9t k) + 0.5] ; 指数函数: t k= int[(L -1)exp( t k-1) + 0.5] ; 要求给出: 1、原始图像和分别采用上述三种方式均衡化后的图像; 2、原始图像的直方图和上述三种方式对应均衡化后的直方图。

浅议数字图像去噪技术及其应用

浅议数字图像去噪技术及其应用 数字图像去噪技术一直以来都是数字图像处理研究领域的一个热点问题,该技术在当代已经越来越重要,并广泛应用到人们生活的方方面面。笔者在数字图像去噪技术方面也做了一点粗浅的研究,本文就结合笔者的认识和体会谈一谈几种数字图像去噪方法和数字图像去噪技术在现实中的应用。 标签:数字图像;图像噪声;去噪技术;中值滤波;小波滤波 在数字化发展的今天,信息在人们生活和工作中的作用越来越突出,并逐渐改变着人们的生活和工作方式,其中最主要、最直观的信息就是图像信息。然而,在实际应用中数字图像经常会由于元器件、电阻、电磁干扰等设备因素,温度、光照等外界环节因素以及人为因素的影响产生图像噪声,从而使得图像质量不理想,偏离了原始图片。因此,数字图像去噪就成为一个亟待解决的问题,具有很强的现实意义。下面笔者就谈一谈几种数字图像去噪方法和数字图像去噪技术在现实中的应用。 1 数字图像去噪方法 当前,数字图像去噪的方法有很多,从本质上讲这些方法都是低通滤波的方法。低通滤波既有有利的地方,也有不利的地方,它既能消除图像噪声,又能消除图像中一些有用的高频信息。因而,我们所研究的各种数字图像去噪方法从根本上来说就是权衡去噪和保留高频信息。在数字图像去噪方法中,我们比较常见的有以下几种方法: 1.1 中值滤波算法 中值滤波算法最早是由Turky于1971年提出来的,是一种典型的非线性空间域去噪算法。其算法利用了像素点和噪声点之间的灰度值差别很大这一特性。中值滤波算法的主要原理是:以一个像素为中心取其邻域,然后对邻域中各像素的灰度值进行排序,取中值作为中心像素的灰度值,换句话说就是中心像素点的灰度值被邻域像素点灰度值的中值所替代。这种方法能很好的消灭噪声,但同时也损坏了图像的边缘,造成了部分细节的丢失。因此,部分科学家和学者在此基础上又提出了中心加权中值滤波算法、开关中值滤波算法、极值中值滤波算法等等,这些方法都是针对中值滤波算法的缺陷提出来的,具有很强的实用价值。 1.2 维纳滤波算法 维纳滤波算法是由Wiener提出来的,是一种典型的线性滤波方法。其理论依据是最小均方误差准则,该准则的具体含义是:将含有噪声的信号运用滤波变换后得到的恢复后的估计信号与原信号相比,它们之间有最小的均方差误差。维纳滤波算法既适用于连续平稳随机过程,也适用于离散平稳随机过程。但是,对于非平稳态的随机过程,一般来说,维纳滤波算法不太适用。

数字图像去噪典型算法及matlab实现

图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。 实验一:均值滤波对高斯噪声的效果 代码 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5

去噪算法的分析与实现

去噪算法的分析与实现 摘要为了进一步提高一些图像处理效果如边缘检测质量和适用性,也对噪声滤波处理进行了分析,实验结果标明,在去除椒盐噪声方面,中值滤波优于双边滤波;双边滤波对低频的噪声却有很好的效果;高斯滤波对高斯噪声有很好的处理效果;双边滤波用处理时间的代价换取了边缘磨平少的效果,而高斯滤波恰恰相反。 关键词噪声;滤波;图像处理 1 选题背景 图像的滤波重建是图像处理学的一个重要分支,早在20世纪40年代,N.Wiener就阐明了再平稳条件下的线性滤波理论,即Wiener滤波器理论,这些理论在控制领域得到了广泛的应用。但是Wiener要求储量大,计算的复杂度高,在后来的图像处理领域逐渐诞生了双边滤波,高斯滤波,中值滤波等算法。 优化边缘检测算法,加入了各种滤波算法,通过编写一些小的程序实现各种滤波的过程,这是优化图像的一种方式也是图像处理的一般步骤,滤波的目的是减少图像上噪声和失真,但是使用滤波算法或多或少都会减少边缘的强度,因而图像的增强和滤波之间是一个折衷的选择。滤波的图像效果会有些模糊,也称为模糊处理。 实现滤波的算法有很多种,CV_BLUR(简单滤波)、CV_BLUR_NO_SCALE (简单无缩放变换的滤波)、CV_MEDIAN(中值滤波)、CV_GAUSSIAN(高斯滤波)、CV_BILATERAL(双边滤波)。 2 主要滤波算法原理分析 2.1 高斯滤波 滤波算法中,周围局部领域的像素值决定了目标点的像素值。具体实现在2D高斯滤波中分别将不同的高斯权重值也就是加权平均之后得到的当前点的最后结果。然而此处的高斯权重因子是利用了两个像素之间的空间距离得出的。通过高速分布曲线我们可以看出,离目标像素越远的点对最终结果的贡献越小,反之则越大。 2.2 双边滤波 双边滤波是在高斯滤波中加入一部分权重来得到更好的处理效果,应用了卷积原理。先对其进行离散化,这个步骤是在处理前完成的。而且没有必要对每一个局部像素从整张图像上都用加权操作这个过程,从距离上,如果像素超了一定程度,其实实际上对目标像素的影响是非常非常小的,几乎可以忽略不计。

最新数字图像去噪典型算法仿真与分析

数字图像去噪典型算法仿真与分析 1 个人信息********* 2 3 摘要:图像去噪是数字图像处理中的重要环节和步骤。本文首先介绍了常见 4 5 的图像噪声;然后,在介绍图像去噪的基本方法和原理的基础上,讨论了均值 6 滤波、中值滤波和维纳滤波三种典型的图像去噪方法;最后,对包含有高斯噪 7 声和椒盐等噪声的图像进行去噪,并对其去噪效果进行了仿真和分析比较,得8 出了三种方法各自的适用性特点。 9 关键词:图像去噪;均值滤波;中值滤波;维纳滤波 Simulation and Analysis of Image De-noising Methods 10 11 in Digital Image 12 Name:*** 13 (个人信息****) 14 Abstract: Image denoising is one of the most important parts and steps 15 of image processing. Firstly, the paper introduces the common image noise. 16 Then, based on the principle and methods of eliminating image noise, it 17 discusses mean filtering, median filtering, and Wiener filtering which 18 are typical image donoising. Finally, it uses these methods to eliminate 19 image noise which contains Gaussian noise and salt&pepper noise. And through comparing and analyzing the effect of these methods, it concludes 20 21 the applicability of each method in different application.

数字图像处理:部分课后习题参考问题详解

第一章 1.连续图像中,图像为一个二维平面,(x,y)图像中的任意一点,f(x,y)为图像于(x,y)于处的值。 连续图像中,(x,y)的取值是连续的,f(x,y)也是连续的 数字图像中,图像为一个由有限行有限列组成的二维平面,(i,j)为平面中的任意一点,g(i,j)则为图像在(i,j)处的灰度值,数字图像中,(i,j) 的取值是不连续的,只能取整数,对应第i行j 列,g(i,j) 也是不连续的,表示图像i行j列处图像灰度值。 联系:数字图像g(i,j)是对连续图像f(x,y)经过采样和量化这两个步骤得到的。其中 g(i,j)=f(x,y)|x=i,y=j 2. 图像工程的容可分为图像处理、图像分析和图像理解三个层次,这三个层次既有联系又有区 别,如下图所示。 图像处理的重点是图像之间进行的变换。尽管人们常用图像处理泛指各种图像技术,但比较狭义的图像处理主要是对图像进行各种加工,以改善图像的视觉效果并为自动识别奠定基础,或对图像进行压缩编码以减少所需存储空间 图像分析主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。如果说图像处理是一个从图像到图像的过程,则图像分析是一个从图像到数据的过程。这里的数据可以是目标特征的测量结果,或是基于测量的符号表示,它们描述了目标的特点和性质。 图像理解的重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像容含义的理解以及对原来客观场景的解释,从而指导和规划行动。 如果说图像分析主要以观察者为中心来研究客观世界,那么图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界(包括没有直接观察到的事物)的。

图像去噪理论基础.doc

一,背景 随着各种数字仪器和数码产品的普及,图像和视频已成为人类活动中最常用的信息载体,它们包含着物体的大量信息,成为人们获取外界原始信息的主要途径。然而在图像的获取、传输和存贮过程中常常会受到各种噪声的干扰和影响而使图像降质,并且图像预处理算法的好坏又直接关系到后续图像处理的效果,如图像分割、目标识别、边缘提取等,所以为了获取高质量数字图像,很有必要对图像进行降噪处理,尽可能的保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。所以,降噪处理一直是图像处理和计算机视觉研究的热点。 图像视频去噪的最终目的是改善给定的图像,解决实际图像由于噪声干扰而导致图像质量下降的问题。通过去噪技术可以有效地提高图像质量,增大信噪比,更好的体现原来图像所携带的信息,作为一种重要的预处理手段,人们对图像去噪算法进行了广泛的研究。在现有的去噪算法中,有的去噪算法在低维信号图像处理中取得较好的效果,却不适用于高维信号图像处理;或者去噪效果较好,却丢失部分图像边缘信息,或者致力于研究检测图像边缘信息,保留图像细节。如何在抵制噪音和保留细节上找到一个较好的平衡点,成为近年来研究的重点。 二,图像去噪理论基础 2.1 图像噪声概念 噪声可以理解为“妨碍人们感觉器官对所接收的信源信息理解的因素”。例如,一幅黑白图片,其平面亮度分布假定为f(x,y),那么对其接收起干扰作用的亮度分布R(x,y),即可称为图像噪声。但是,噪声在理论上可以定义为“不可预测,只能用概率统计方法来认识的随机误差”。因此将图像噪声看成是多维随机过程是合适的,因而描述噪声的方法完全可以借用随机过程的描述,即用其概率分布函数和概率密度分布函数。但在很多情况下,这样的描述方法是很复杂的,甚至是不可能的。而实际应用往往也不必要。通常是用其数字特征,即均值方差,相关函数等。因为这些数字特征都可以从某些方面反映出噪声的特征。 2.2 常见的图像噪声 在我们的图像中常见的噪声主要有以下几种: (1),加性噪声 加性嗓声和图像信号强度是不相关的,如图像在传输过程中引进的“信道噪声”电视摄像机扫描图像的噪声的。这类带有噪声的图像g可看成为理想无噪声图像f与噪声n之和,即: (2),乘性噪声 乘性嗓声和图像信号是相关的,往往随图像信号的变化而变化,如飞点扫描图像中的嗓声、电视扫描光栅、胶片颗粒造成等,这类噪声和图像的关系是: (3),量化噪声 量化嗓声是数字图像的主要噪声源,其大小显示出数字图像和原始图像的差异,减少这种嗓声的最好办法就是采用按灰度级概率密度函数选择化级的最优化措施。 (4),“椒盐”噪声 此类嗓声如图像切割引起的即黑图像上的白点,白图像上的黑点噪声,在变换域引入的误差,使图像反变换后造成的变换噪声等。

图像去噪去噪算法研究 开题报告

图像去噪去噪算法研究论文开题报告 (1)选题的目的、意义 目的: 由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会受到多种噪声的污染,影响了图像的视觉效果,甚至妨碍了人们正常识别。另外,在图像处理的某些环节当输入的对象并不如预想时也会在结果图像中引入噪声。这些噪声在图像上常表现为—引起较强视觉效果的孤立象素点或象素块[1]。一般,噪声信号与要研究的对象不相关它以无用的信息形式出现,扰乱图像的可观测信息。要构造一种有效抑制噪声的滤波必须考虑两个基本问题能有效地去除目标和背景中的噪声;同时,也要能很好的保护图像目标的形状、大小及特定的几何和拓扑结构特征。 意义: 噪声的污染直接影响着对图像边缘检测、特征提取、图像分割、模式识别等处理,使人们不得不从各种角度进行探索以提高图像的质量[2] [3]。所以采用适当的方法尽量消除噪声是图像处理中一个非常重要的预处理步骤。现在图像处理技术已深入到科学研究、军事技术、工农业生产、医学、气象及天文学等领域。科学家利用人造卫星可以获得地球资源照片、气象情况;医生可以通过X射线或CT对人体各部位的断层图像进行分析。但在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以对图像的噪声处理就显得十分重要[4] [5]。图像去噪作为图像处理的一个重要环节,可以帮助人们更加准确地获得我们所需的图像特征,使其应用到各个研究领域,帮助解决医学、物理、航天、文字等具体问题。如何改进图像去噪算法,以有效地降低噪声对原始图像的干扰程度,并且增强视觉效果,提高图像质量,使图像更逼真,仍存在继续研究的重要意义。 (2)国内外对本课题涉及问题的研究现状 针对图像去噪的经典算法,科学工作者通过努力,提出了一些的改进算法,比如模拟退火法[6]。但是模拟退火法存在的问题是计算过程复杂,计算量大,即使使用计算机代替人工计算也会耗用大量时间。后来在众多研究者的努力下,产生了很多其他不同的方法。而现今已卓有成效的非线性滤波方法有正则化方法、最小能量泛函方法、各向异性扩散法[7] [8]。 目前常用的降噪方法有在空间域进行的,也有将图像数据经过傅里叶等变换以后转到频域中进行的[9]。其中频域里的滤波需要涉及复杂的域转换运算,相对而言硬件实现起来会耗费更多的资源和时间。在空间域进行的方法有均值或加权后均值滤波、中值或加权中值滤波、最小均方差值滤波和均值或中值的多次迭代等。实践证明,这些方法虽有一定的降噪效果,但都有其局限性。比如加权均值在细节损失上非常明显;而中值仅对脉冲干扰有效,对高斯噪声却无能为力[10] [11] [12] [13]。实上,图像噪声总是和有效数据交织在一起,若处理不当,就会使边界轮廓、线条等变得模糊不清,反而降低了图像质量。 对于去除椒盐噪声,主要使用中值滤波算法。中值滤波是在1970年由Tukey提出的一种一维滤波器。它主要是指用实心邻域范围内的所有值的中值代替所作用的点值,但是必须注意的是邻域内的点的个数是正奇数,这是为了保证取中值的便利性,若是偶数,则中值就会产生两个[14] [15]。中值滤波以一种简单的非线性平滑技术。它是以排序统计理论作为基础,有效抑制噪声的非线性处理数字信号技术。中值滤波对消除椒盐噪声非常有效。在图像处理中,常用中值滤波保护图像边缘信息,它是一种经典的去除图像噪声算法[16]。但是它在去除图像噪声过程中,往往会将图像的细节比如细线、棱角的地方破坏掉。后来

滤波图像降噪算法研究报告

研究生课程论 文 基于滤波的图像降噪算法的研究 课程名称专业文献阅读与综述 姓名张志化 学号1200214006 专业模式识别与智能系统 任课教师钟必能 开课时间2018.9——2018.11 教师评阅意见: 论文成绩评阅日期 课程论文提交时间:2018 年11月11日

基于滤波的图像降噪算法的研究 摘要:图像在获取和传输过程中,往往受到噪声的干扰,而降噪的目的是尽可能保持原始信号主要特征的同时除去信号中的噪声。目前的图像去噪方法可以将图像的高频成分滤除,虽然能够达到降低噪声的效果,但同时破坏了图像细节。边缘特性是图像最为有用的细节信息,本文对邻域平均法、中值滤波法及维纳滤波法的图像去噪算法进行了研究分析和讨论。 关键词:滤波;图像噪声;图像降噪算法;评价方法; 1 引言 数字图像处理,就是利用数字计算机或其他数字硬件,对图像信息转换而来的电信号进行某种数字运算,以提高图像的实用性,进而达到人们所要求的某种预期效果[1]。数字图像处理已经广泛应用于遥感、工业检测、医学、气象、侦查、通信、智能机器人等众多学科与工程领域中。 数字图像处理技术的优点主要有:<1)再现性好。数字图像处理不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的真实再现。 <2)处理精度高。按目前的技术,几乎可以将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16 位甚至更高,意味着图像的数字化精度可以满足应用需求。 (3>适用面宽。图像可以来自多种信息源。从图像反映的客观实体尺度看,可以小到电了显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,均可用计算机来处理。 (4>灵活性高。由于图像的光学处理从原理上讲只能进行线性运算,极大地限制了光学图像处理能实现的目标;而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数字公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 (5>信息压缩的潜力大。数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一

图像椒盐噪声与高斯噪声去噪方法研究

德州学院毕业论文开题报告书 2011年3月16日院(系)物理系专业电子信息工程 姓名田程程学号200700802041 论文题目图像椒盐噪声与高斯噪声去噪方法研究 一、选题目的和意义 图像去噪的最终目的是改善给定的图像,解决实际图像由于噪声干扰而导致图像质量下降的问题。通过去噪技术可以有效地提高图像质量,增大信噪比,更好的体现原来图像所携带的信息,作为一种重要的预处理手段,人们对图像去噪算法进行了广泛的研究。在现有的去噪算法中,有的去噪算法在低维信号图像处理中取得较好的效果,却不适用于高维信号图像处理;或者去噪效果较好,却丢失部分图像边缘信息,或者致力于研究检测图像边缘信息,保留图像细节。如何在抵制噪音和保留细节上找到一个较好的平衡点,成为近年来研究的重点。 二、本选题在国内外的研究现状和发展趋势 随着各种数字仪器和数码产品的普及,图像和视频已成为人类活动中最常用的信息载体,它们包含着物体的大量信息,成为人们获取外界原始信息的主要途径。然而在图像的获取、传输和存贮过程中常常会受到各种噪声的干扰和影响而使图像降质,并且图像预处理算法的好坏又直接关系到后续图像处理的效果,如图像分割、目标识别、边缘提取等,所以为了获取高质量数字图像,很有必要对图像进行降噪处理,尽可能的保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。所以,降噪处理一直是图像处理和计算机视觉研究的热点。

三、课题设计方案 本设计为图像椒盐噪声与高斯噪声去噪方法研究 一、研究高斯噪声和椒盐噪声特性 二、研究去噪算法,提出适合去除高斯噪声和椒盐噪声的算法 三、计算机仿真 四、计划进度安排 第一周至第二周:根据寒假期间针对论文题目收集的有关资料,认真分析和整理资料,形成撰写论文的大体框架。对论文的撰写形成明确地认识,认真书写开题报告,完成开题报告并上交。 第三周至第五周:学习和研究图像椒盐噪声与高斯噪声去噪方法。 第六周至第十一周:对前期的关于图像椒盐噪声与高斯噪声去噪方法的研究进行总结。 第十二周:根据论文指导意见和建议对论文进行修改和完善后形成论文终稿。

数字图像处理整理经典

名词解释 数字图像:是将一幅画面在空间上分割成离散的点(或像元),各点(或像元)的灰度值经量化用离散的整数来表示,形成计算机能处理的形式。 1.数字图像:一幅图像f(x,y),当x,y和幅值f为有限的离散数值时,称该图像为数字图像。 图像:是自然生物或人造物理的观测系统对世界的记录,是以物理能量为载体,以物质为记录介质的信息的一种形式。 数字图像处理:采用特定的算法对数字图像进行处理,以获取视觉、接口输入的软硬件所需要数字图像的过程。 图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。 无损压缩:可精确无误的从压缩数据中恢复出原始数据。 灰度直方图:灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数。或:灰度直方图是指反映一幅图像各灰度级像元出现的频率。 细化:提取线宽为一个像元大小的中心线的操作。 8、8-连通的定义:对于具有值V的像素p和q ,如果q在集合N8(p)中,则称这两个像素是8-连通的。 9、中值滤波:中值滤波是指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。 10、像素的邻域: 邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。即{(x=p,y=q)}p、q为任意整数。像素的四邻域:像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1), (x,y-1) 11、灰度直方图:以灰度值为自变量,灰度值概率函数得到的曲线就是灰度直方图。 12.无失真编码:无失真编码是指压缩图象经解压可以恢复原图象,没有任何信息损失的编码技术。 13.直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为平坦的直方图,以此来修正原图像之灰度值。 14.采样:对图像f(x,y)的空间位置坐标(x,y)的离散化以获取离散点的函数值的过程称为图像的采样。 15.量化:把采样点上对应的亮度连续变化区间转换为单个特定数码的过程,称之为量化,即采样点亮度的离散化。 16.灰度图像:指每个像素的信息由一个量化的灰度级来描述的图像,它只有亮度信息,没有颜色信息。 17.色度:通常把色调和饱和度通称为色度,它表示颜色的类别与深浅程度。 18.图像锐化:是增强图象的边缘或轮廓。 19.直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法 20. 数据压缩:指减少表示给定信息量所需的数据量。 像素的邻域:邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。即{(x=p,y=q)}p、q为任意整数。 像素的四邻域:像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1),(x,y-1) 灰度直方图:灰度直方图是指反映一幅图像各灰度级像元出现的频率。?、中值滤波:中值滤波是指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。 像素数字图像是由有限的元素组成的,每个元素都有一个特定的位置和幅值,这些元素称为图像元素、画面元素或像素。 4.空间分辨率:是图像中可辨别的最小细节。

数字图像处理的基本方法

一、图像的预处理技术 图像处理按输入结果可以分为两类,即输入输出都是一副图像和输入一张图像输出不再是图像的数据。图像处理是个很广泛的概念,有时候我们仅仅需要对一幅图像做一些简单的处理,即按照我们的需求将它加工称我们想要得效果的图像,比如图像的降噪和增强、灰度变换等等。更多时候我们想要从一幅图像中获取更高级的结果,比如图像中的目标检测与识别。如果我们将输出图像中更高级的结果视为目的的话,那么我们可以把输入输出都是一幅图像看作是整个处理流程中的预处理。下面我们将谈到一些重要的预处理技术。 (一)图像增强与去噪 图像的增强是一个主观的结果,原来的图像按照我们的需求被处理成我们想要的效果,比如说模糊、锐化、灰度变换等等。图像的去噪则是尽可能让图像恢复到被噪声污染前的样子。衡量标准是可以度量的。不管是图像的增强与去噪,都是基于滤波操作的。 1.滤波器的设计方法 滤波操作是图像处理的一个基本操作,滤波又可分为空间滤波和频域滤波。空间滤波是用一个空间模板在图像每个像素点处进行卷积,卷积的结果就是滤波后的图像。频域滤波则是在频率域看待一幅图像,使用快速傅里叶变换将图像变换到频域,得到图像的频谱。我们可以在频域用函数来保留或减弱/去除相应频率分量,再变换回空间域,得到频域滤波的结果。而空间滤波和频域滤波有着一定的联系。频域滤波也可以指导空间模板的设计,卷积定理是二者连接的桥梁。 (1)频域滤波 使用二维离散傅里叶变换(DFT )变换到频域: ∑∑-=+--==10)//(210),(),(N y N vy M ux i M x e y x f v u F π 使用二维离散傅里叶反变换(IDFT )变换到空间域: ∑∑-=-=+=1010)//(2),(1),(M u N v N vy M ux i e v u F MN y x f π 在实际应用中,由于该过程时间复杂度过高,会使用快速傅里叶变换(FFT )来加速这个过程。现在我们可以在频域的角度看待这些图像了。必须了解的是,图像中的细节即灰度变化剧烈的地方对应着高频分量,图像中平坦变化较少的地方对应着低频分量。图像中的周期性图案/噪声对应着某一个频率区域,那么在频域使用合适的滤波器就能去除相应的频率分量,再使用傅里叶反变换就能看到实际想要的结果。 不同的是,在频域的滤波器不再是做卷积,而是做乘积,因为做乘法的目的在于控制频率分量。比较有代表性的有如下几个滤波器: 高斯低通滤波器 222/),(),(σv u D e v u H -= D 是距离频率矩形中心的距离。该滤波器能保留低频分量,逐渐减小高频分量,对原图像具有模糊作用。

数字图像处理课后参考答案

数字图像处理 第一章 1.1解释术语 (2)数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置和每个像素的灰度级数的图像形式称为数字图像。 (3)图像处理:是指对图像信息进行加工以满足人的视觉或应用需求的行为。 1.7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。彩色图像、多光谱图像和高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术和方法。 1.8基本思路是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。 1.9基本思路是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。 1.10基本思路是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储和实时传输的应用需求。1.11基本思路是,通过数学方法和图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。 1.12基本目的是,找出便于区分和描述一幅图像中背景和目标的方法,以方便图像中感兴趣的目标的提取和描述。 第二章 2.1解释下列术语 (18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。(19)灰度分辨率:是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。 (20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻和垂直相邻的4个像素称为该像素的4邻域像素,他们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。

图像去噪算法的研究进展

图像去噪算法的研究进展 一.图像去噪问题的简述 随着各种数字仪器和数码产品的普及,图像和视频已成为人类活动中最常用的信息载体,它们包含着物体的大量信息,成为人们获取外界原始信息的主要途径。然而在图像的获取、传输和存贮过程中常常会受到各种噪声的干扰和影响而使图像降质,并且图像预处理算法的好坏又直接关系到后续图像处理的效果,如图像分割、目标识别、边缘提取等,所以为了获取高质量数字图像,很有必要对图像进行降噪处理,尽可能的保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。所以,降噪处理一直是图像处理和计算机视觉研究的热点。 图像去噪的最终目的是改善给定的图像,解决实际图像由于噪声干扰而导致图像质量下降的问题。图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。通过去噪技术可以有效地提高图像质量,增大信噪比,更好的体现原来图像所携带的信息,作为一种重要的预处理手段,人们对图像去噪算法进行了广泛的研究。在现有的去噪算法中,有的去噪算法在低维信号图像处理中取得较好的效果,却不适用于高维信号图像处理;或者去噪效果较好,却丢失部分图像边缘信息,或者致力于研究检测图像边缘信息,保留图像细节。如何在抵制噪音和保留细节上找到一个较好的平衡点,成为近年来研究的重点。 1.1常见的图像噪声 (1),加性噪声 加性嗓声和图像信号强度是不相关的,如图像在传输过程中引进的“信道噪声”电视摄像机扫描图像的噪声的。这类带有噪声的图像g可看成为理想无噪声图像f与噪声n之和,即: (2),高斯噪声 主要由阻性元器件内部产生。 (3),“椒盐”噪声 此类嗓声如图像切割引起的即黑图像上的白点,白图像上的黑点噪声,在变换域引入的误差,使图像反变换后造成的变换噪声等。 二.图像去噪问题的经典算法 目前比较经典的图像去噪算法主要有以下三种: (1)均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。如图: (2)中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 },i=1,2,···N,则中值滤波输出为:设模板尺寸为M,M=2r+1,r为模板半径,给定1-D信号序列{f i

心音去噪的研究与实现

心音去噪的研究与实现 心音是最重要的信号之一。然而,许多外界因素会影响心音信号的采集。心音是弱电气信号以至很弱的外部噪声就能导致信号中的病理和生理信息的错误判断,从而导致疾病的错诊。因此对心音信号去噪的研究非常重要。 本文提出了一种基于matlab的更系统的心音去噪的研究与分析。基于matlab的心音去噪的研究首先应用matlab的强大的图像处理功能将含噪心音信号变换到小波域,用小波变换在母粒的层次上对其进行分解,并采用软阈值函数的小波变换阈值法去噪,得到小波分解系数,采用这样的方法信号的去噪效果显著改善了。根据小波分解得到的各段分解系数,利用小波变换合成重构信号。最后,本文是使用陷波滤波器消除50HZ的工频和35HZ的机电干扰信号。 引言 心音信号是用于检测心脏性能,获取生理和病理信息的重要信号之一。然而,在心音信号的采集过程中不可避免的会受到周围噪音的影响,比如电磁干扰,工频噪声,由人本身的呼吸、肺音产生的电干扰等。因此,我们采集到的是混合信号。有时噪声信号会严重干扰有效信号,造成有效信号的丢失,这对于提取相应的病理信息是及其不利的。为了减少有用信息的缺失,去噪是采集信号中的至关重要的过程。心音信号去噪旨在消除干扰信号保留有效信号。 1.1研究的背景 国外稍早于国内开始研究心音信号的去噪。Liang H,Lukkarinens,Hartimo I在1997年提出了基于信号包络图的心音分段算法,采用了小波的分解与重构,使用shannon平均能量包络计算,选定阈值,找出峰值点位置,利用小波变换识别S1和S2。Hebden等主要运用统计学原理和神经网络识别S1和S2。由于识别过程不需要同时记录心音图作为参考信号,不仅节省了存储空间,也免于了隔离设备的限制,更重要的是,在某种程度上节约了费用。另外,从2005年起如何提取第三心音S3成为了研究热点。由于低振幅、低频率、持续时间短,提取S3成了个难题。提取S1和S2的方法可以获得准确的结果但计算比较复杂且不适用于S3。Kumar等首先采用小波阈值变换过滤从含噪心音中分离出S1,S2,和S3,然后使用高频标记和识别S3。 在中国,心音分析仍处于初级阶段,时间频率分析已应用于心音信号的处理。现阶段已经完成了信号的线性分析(短时傅里叶变换,小波变换和Garbo expanding)非线性时频分析(winger-Ville分布, 科恩分布和时频分布级数),提出了心音信号处理的应用和研究。然而,心音信号去噪仍停留在硬件去噪水平。 1.2研究的价值 心音信号包含了心脏各部分的心理病理信息.更重要的是心音信号易被心血管疾病影响,心音信号检测是心血管疾病无创性检测的重要方法。 在采集心音信号的过程中,心音信号易受外界噪声的干扰(人本身呼吸的声音,皮肤摩擦的声音,工频噪声(50HZ),机电干扰(35HZ)和外部环境的高斯白噪声)。这样的情况下部分有用的心音信号就丢失了,导致诊断疾病的准确性和精度降低了。传统的去噪方法仅使用硬件去噪,但去噪效果不尽人意。更糟糕的是,硬件去噪中频率干扰很容易被引入。本文提出matlab编程去噪算法,最小化有效信息的损失,以便更有效地消除噪声。 2.心音数据库的建设 研究基于matlab的心音去噪,去噪需采用不同类型的心音信号。我们数据库里,心音去噪包括正常心音和非正常心音数据库。前者包括正常心音信号,快速的心跳声音,心底和心尖部正常心音。后者则包括第二心音的重叠率的分裂、减弱、增强,第一心音的分裂、减

数字图像处理论文

数字图像处理的发展、应用及前景 数字图像处理(Dital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。 形式化的数学表示可表示为:f(x,y)表示幅图像。x,y,f为有限、离散值。黑白图像可用二维函数f(x,y)表示,其中x,y是平面的二维坐标,f(x,y)表示点(x,y)的亮度值(灰度值)。对模拟图像来讲,f(x,y)显然是连续函数。为了适应数字计算机的处理,必须对连续图像函数进行空间和幅值数字化。空间坐标(x,y)的数字化称为图像采样,而幅值数字化被称为灰度级量化。经过数字化后的图像称为数字图像(或离散图像)。 (1)数字图像的灰度图像的阵列表示法。 设连续图像f(x,y)按等间隔采样,排成MxN阵列(一般取方阵列NxN) 图像阵列中每个元素都是离散值,称为像素(pix—el)。在数字图像处理中,一般取阵列N和灰度级C都是2的整数幂,即取N=及G=。对一般电视图像,N取256或512,灰度级C取64级(m=6bit)至256级m=8bit),即可满足图像处理的需要。对特殊要求的图像,如SAR图片取10000×10000,灰度级m取8bit或者16bit。 (2)数字图像的二值图像表示法。 所谓二值图像就是只有黑白两个灰度级,即像素灰度级非1即0。如文字图片,其数字图像可用每个像素1Bit的矩阵表示,以减少存储量。二值图像还可采用一些特有的表示方法,如链码仅称Freeman码)。常用链码是八向链码,能进一步减少存储量。 数字图像处理作为一门学科大约形成于2O世纪60年代初期。数字图像处理技术是一门新兴的技术,但它已经在各行各业显示出了特有的优点,它已经极大地提高了生产效率,引起了越来越多的人们的关注。早期的图像处理的目的是改善图像的质量、

相关主题
文本预览
相关文档 最新文档