当前位置:文档之家› 数字图像处理 图像去噪方法

数字图像处理 图像去噪方法

数字图像处理 图像去噪方法
数字图像处理 图像去噪方法

图像去噪方法

一、引言

图像信号在产生、传输和记录的过程中,经常会受到各种噪声的干扰,噪声可以理解为妨碍人的视觉器官或系统传感器对所接收图像源信

息进行理解或分析的各种元素。噪声对图像的输入、采集、处理的各个环节以及最终输出结果都会产生一定影响。图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等。我们平常使用的滤波方法一般有均值滤波、中值滤波和小波滤波,他们分别对某种噪声的滤除有较好的效果。对图像进行去噪已成为图像处理中极其重要的内容。

二、常见的噪声

1、高斯噪声:主要有阻性元器件内部产生。

2、椒盐噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。

3、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。

一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声等,减少噪声的方法可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均值滤波算法和中值滤波算法.图像频率域去噪方法

是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。

三、去噪常用的方法

1、均值滤波

均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。其基本原理是用均值替代原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像

f?sf(x,y),其中,s为模板,M 在该点上的灰度g(x,y),即g x,y=1

M

为该模板中包含当前像素在内的像素总个数。这种算法简单,处理速度快,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别是在边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。

(均值滤波对加高斯、椒盐噪声图像处理后的对比图)

2、中值滤波

中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术。其实现原理如下:将某个像素邻域中的像素按灰度值进行排序,然后选择该序列的中间值作为输出的像素值,让周围像素灰

度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点。利用中值滤波算法可以很好地对图像进行平滑处理。这种算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。

(中值滤波对加高斯、椒盐噪声图像处理后的对比图)

3、小波变换

小波变换是一种窗口大小固定但其形状可改变的时频局部化分析方法。小波变换利用非均匀的分辨率,即在低频段用高的频率分辨率和低的时间分辨率(宽的分析窗口);而在高频段利用低的频率分辨率和高的时间分辨率(窄的分析窗口),这样就能有效地从信号(如语言、图像等)中提取信息,较好地解决了时间和频率分辨率的矛盾。对于一副图像,我们关心的是它的低频分量,因为低频分量是保持信号特性的重要部分,高频分量则仅仅起到提供信号细节的作用,而且噪声也大多属于高频信息。这样,利用小波变换,噪声信息大多集中在次低频、次高频、以及高频子块中,特别是高频子块,几乎以噪声信息为主,为此,将高频子块置为零,对次低频和次高频子块进行一定的抑制,则可以达到一定的噪声去除效果。

(小波变换对加高斯、椒盐噪声图像处理后的对比图)

四、结果分析

1、对于均值滤波:均值滤波对高斯噪声的抑制是比较好的,处理后的图像边缘模糊较少。但对椒盐噪声的影响不大,因为在削弱噪声的同时整幅图像内容总体也变得模糊,其噪声仍然存在。

2、对于中值滤波:由图像处理的结果可以看出,它只影响了图像的基本信息,说明中值滤波对高斯噪声的抑制效果不明显。这是因为高斯噪声使用随机大小的幅值污染所有的点,因此无论怎样进行数据选择,得到的始终还是被污染的值。而由图还可以看出,中值滤波对去除“椒盐”噪声可以起到很好的效果,因为椒盐噪声只在画面中的部分点上随机出现,所以根据中值滤波原理可知,通过数据排序的方法,将图像中未被噪声污染的点代替噪声点的值的概率比较大,因此噪声的抑制效果很好,同时画面的轮廓依然比较清晰。由此看来,对于椒盐噪声密度较小时,尤其是孤立噪声点,用中值滤波的效果非常好的。

3、对于小波变换:由图可以看出,小波变换对高斯噪声有比较好的抑制作用,而且,在去除噪声的同时可以较好地保持图像的细节。由图可以看出,图像上的“椒盐”噪声很明显,说明小波变换对“椒盐”噪声的去除效果不大。小波变换是一种时频局部化分析方法。即随着分辨率的降低,噪声的小波变换值逐渐减小,信号占主导地位;而随着分辨率的提高,噪声的小波变换值增大,信号被噪声淹没。所以,对小波变换,提高分辨率和有效去除噪声,两者不可兼得。

五、总结体会

该报告是基于第一次报告中提出的在图像处理中噪声污染的问

题,分析三种去噪方法对两种图像噪声的滤波处理。分析结果可以得到:均值滤波是典型的线性滤波,对高斯噪声抑制是比较好的;中值滤波是常用的非线性滤波方法,对椒盐噪声特别有效;小波变换对分辨率低的高斯噪声去除有不错的效果。

六、参考文献

冈萨雷斯.数字图象处理(第二版)[M].北京:电子工业出版社,2007.

基于Matlab的数字图像典型去噪算法.齐齐哈尔大学.齐齐哈尔大学.TP391.72

附件程序

均值滤波程序:

clc;close all;clear all;

image=imread('cameraman.tif');

[m,n]=size(image);

J=imnoise(image,'gaussian',0,0.005); %加高斯噪声

J=double(J);

figure(1),imagesc(J),colormap(gray)

title('加高斯噪声图像')

image1=J;

H=1/2*[0 1/4 0;

1/4 1 1/4;

0 1/4 0];

for i=2:m-1

for j=2:n-1

temp=J(i-1:i+1,j-1:j+1);

image1(i,j)=sum(sum(H.*temp));

end

end

figure(2),imagesc(image1),colormap(gray)

title('3x3高斯噪声均值滤波')

K=imnoise(image,'salt & pepper',0.02); %加椒盐噪声

K=double(K);

figure(3),imagesc(K),colormap(gray)

title('加椒盐噪声图像')

image2=K;

for i=2:m-1

for j=2:n-1

temp=K(i-1:i+1,j-1:j+1);

image2(i,j)=sum(sum(H.*temp));

end

end

figure(4),imagesc( image2),colormap(gray)

title('3x3椒盐噪声均值滤波')

中值滤波程序:

clc;close all;clear all;

image=imread('cameraman.tif');

[m,n]=size(image);

J=imnoise(image,'gaussian',0,0.005); %加高斯噪声figure(1),imagesc(J),colormap(gray)

title('加高斯噪声图像')

image1=J;

for i=2:m-1

for j=2:n-1

temp=J(i-1:i+1,j-1:j+1);

temp=sort(temp(:));

image1(i,j)=temp(5);

end

end

figure(2),imagesc(image1),colormap(gray)

title('3x3高斯噪声中值滤波')

K=imnoise(image,'salt & pepper',0.02); %加椒盐噪声figure(3),imagesc(K),colormap(gray)

title('加椒盐噪声图像')

image2=K;

for i=2:m-1

for j=2:n-1

temp=K(i-1:i+1,j-1:j+1);

temp=sort(temp(:));

image2(i,j)=temp(5);

end

end

figure(4),imagesc( image2),colormap(gray)

title('3x3椒盐噪声均值滤波')

小波变换程序:

load sinsin

b=imread('cameraman.tif');

J=imnoise(b,'salt & pepper',0.02);

[thr,sorh,keepapp]=ddencmp('den','wv',J);

xd=wdencmp('gbl',J,'sym4',2,thr,sorh,keepapp); subplot(221),imshow(J)

title('加椒盐噪声图像')

subplot(222),imshow(xd,[0,255])

title('椒盐噪声小波去噪')

K=imnoise(b,'gaussian',0,0.005);

[thr,sorh,keepapp]=ddencmp('den','wv',K);

xd=wdencmp('gbl',K,'sym4',2,thr,sorh,keepapp); subplot(223),imshow(K)

title('加高斯噪声图像')

subplot(224),imshow(xd,[0,255])

title('高斯噪声小波去噪')

图像去噪方法

图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声(一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在),但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差(在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量。对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差。标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差。)最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。

改变图像质量的几种滤波方法比较

1 改变图像质量的几种滤波方法比较 一、概述 滤波是图像处理重要技术之一,是提高图像质量的主要手段。对输入的图像实现直方图均衡化;设计完成同态滤波器,并用之改善图象质量;对某图像加入不同类型﹑不同强度的噪声(周期﹑椒盐噪声),并分别用空间域和频率域的方法抑制噪声。 二、图像处理过程 1.直方图均衡化 输入一幅图片,统计原图直方图数组,用一个数组hf 记录hf(i);i 从0到255,令pa(i)=pa(i-1)+hf(i),其中hf(i)为灰度值为i 的像素点占总像素点的概率;一个数组F 记录新的索引值,即令F(i,j)= (pa(f(i,j)+1))*255;依次循环每一个像素,取原图的像素值作为数组F 的下标值,取该下标对应的数组值为均衡化之后的像素值。结果显示原图图像、原图直方图,均衡化后的图像和直方图,并用于对比。 其中图像中灰度级出现的概率近似为: ()n n r p k k r =,k=0,1,2,…,L -1。而变换函数为:00()(),0,1,2,,1 k k j k k r j j j n s T r p r k L n ======-∑∑ 2.巴特沃斯同态滤波器: 图像f(x,y)是由光源照度场(入射分量)fi(x,y)和场景中物体反射光(反射分量)的反射场fr(x,y)两部分乘积产生,关系式为: f(x,y)=fi(x,y)*fr(x,y); fi(x,y)的性质取决于照射源,fr(x,y)取决于成像物体的特性。一般情况下,照度场f i ( x , y) 的变化缓慢,在频谱上其能量集中于低频;而反射场f r ( x , y) 包含了所需要的图像细节信息,它在空间的变化较快,其能量集中于高频. 这样就可以根据照度—反射模型将图像理解为高频分量与低频分量乘积的结果。由于两个函数乘积的傅立叶变换是不可分的,故不能直接对照度和反射的频率部分分别进行操作。

实验三常用图像滤波方法

实验三常用图像滤波方法 一、实验目的 1、熟悉并掌握MATLAB图像处理工具箱的使用; 2、理解并掌握常用的图像的滤波技术。 二、实验环境 MATLAB 6.5以上版本、WIN XP或WIN7计算机 三、相关知识 1 imnoise imnoise函数用于对图像生成模拟噪声,如: i=imread('e:\w01.tif'); j=imnoise(i,'gaussian',0,0.02);模拟均值为0方差为0.02的高斯噪声,j=imnoise(i,'salt&pepper', 0.04) 模拟叠加密度为0.04的椒盐噪声 2 fspecial fspecial函数用于产生预定义滤波器,如: h=fspecial('sobel');%sobel水平边缘增强滤波器 h=fspecial('gaussian');%高斯低通滤波器 h=fspecial('laplacian');%拉普拉斯滤波器 h=fspecial('log');%高斯拉普拉斯(LoG)滤波器 h=fspecial('average');%均值滤波器 3 基于卷积的图像滤波函数 imfilter函数,filter2函数,二维卷积conv2滤波,都可用于图像滤波,用法类似,如: i=imread('e:\w01.tif'); h=[1,2,1;0,0,0;-1,-2,-1];%产生Sobel算子的水平方向模板

j=filter2(h,i); 或者: h = fspecial(‘prewitt’) I = imread('cameraman.tif'); imshow(I); H = fspecial('prewitt‘); %预定义滤波器 M = imfilter(I,H); imshow(M) 或者: i=imread('e:\w01.tif'); h=[1,1,1;1,1,1;1,1,1]; h=h/9; j=conv2(i,h); 4 其他常用滤波举例 (1)中值滤波 medfilt2函数用于图像的中值滤波,如: i=imread('e:\w01.tif'); j=medfilt2(i,[M N]);对矩阵i进行二维中值滤波,领域为M*N,缺省值为3*3 (2)利用拉氏算子锐化图像, 如: i=imread('e:\w01.tif'); j=double(i); h=[0,1,0;1,-4,0;0,1,0];%拉氏算子 k=conv2(j,h,'same');

matlab图像去噪算法设计(精)

数字图像去噪典型算法及matlab实现 希望得到大家的指点和帮助 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。实验一:均值滤波对高斯噪声的效果 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5 K3=filter2(fspecial('average',7),J)/255; %模板尺寸为7 K4= filter2(fspecial('average',9),J)/255; %模板尺寸为9 subplot(2,3,3);imshow(K1); title('改进后的图像1'); subplot(2,3,4); imshow(K2); title('改进后的图像2');

常用图像去噪方法比较及其性能分析

龙源期刊网 https://www.doczj.com/doc/c610399931.html, 常用图像去噪方法比较及其性能分析 作者:孟靖童王靖元 来源:《信息技术时代·下旬刊》2018年第02期 摘要:本文介绍了噪声的分类模型,之后又分别介绍了空间域去噪、傅里叶去噪算法以及小波去噪中的部分算法,并分别对相似算法进行了分析比较。同时为了更好的比较出各算法之间的去噪差别针对其中部分去噪算法进行了用matlab的实现,比较了去噪的效果。 关键词:数字图像;噪声;滤波 一、引言 随着当今社会数字化的普及,人们传递图像信息的方式已经从之前单纯的实物传递变为当今的数字图像的传递。然而由于各种原因会导致数字图像真实性减弱。针对这种问题,数字图像处理技术应运而生。数字图像处理技术的产生,不仅满足了人们的视觉,同时经过处理的图像还可以更好的应用于图像加密,图像识别等领域。 二、空间域去噪算法 (一)均值滤波去噪 通过计算某一滤波目标区域内的算数平均值来替代目标区域中心所对应的像素值的方法来达到去除噪声的目的。而加权均值滤波则是在原有均值滤波的基础上,通过对某些更趋进于真实像素的点进行加权的方法来达到更好的去噪效果,使最终区域中心像素更加趋近于真实像素。 利用均值滤波可以很好的去除由高斯噪声带来的对于图像的影响,然而对于由于椒盐噪声带来的对于图像的影响,均值滤波去除的效果并不很好。同时,由于均值滤波的算法是通过取目标范围内一小区域中点灰度值的平均值,来决定区域中心点灰度值的,所以不可避免的造成图像经过均值滤波后会导致图像部分原始真实细节被滤掉,造成视觉上细节不清楚的情况。并且所取范围越大,图像中细节部分越不清晰,图像越平滑。 (二)中值滤波去噪 通过求区域中心点及其周围点灰度值的中值,来代替该中心点的灰度值。因此利用中值去噪的方法可以较好的弥补均值滤波对于图像边缘不清晰处理的缺点。然而由于中值滤波对于所选滤波区域的选择要求较高,因此对于滤波区域大小形状的选择需要根据具体图像来确定。此外,与均值滤波相比,中值滤波对于椒盐噪声的处理比对于高斯噪声的处理更好。 (三)维纳滤波去噪

数字图像处理-图像去噪方法

图像去噪方法 一、引言 图像信号在产生、传输和记录的过程中,经常会受到各种噪声的干扰,噪声可以理解为妨碍人的视觉器官或系统传感器对所接收图像源信 息进行理解或分析的各种元素。噪声对图像的输入、采集、处理的各个环节以及最终输出结果都会产生一定影响。图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等。我们平常使用的滤波方法一般有均值滤波、中值滤波和小波滤波,他们分别对某种噪声的滤除有较好的效果。对图像进行去噪已成为图像处理中极其重要的内容。 二、常见的噪声 1、高斯噪声:主要有阻性元器件内部产生。 2、椒盐噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。 3、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。 一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声等,减少噪声的方法可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均值滤波算法和中值滤波算法.图像频率域去噪方法

是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。 三、去噪常用的方法 1、均值滤波 均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。其基本原理是用均值替代原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后 ∑f?sf(x,y),其中,s为模图像在该点上的灰度g(x,y),即g(x,y)=1 M 板,M为该模板中包含当前像素在内的像素总个数。这种算法简单,处理速度快,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别是在边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。

图像去噪原理

图像去噪 甘俊霖 噪声是图像干扰的重要原因。一副图像在实际应用中可能存在各种各样的噪声,这些噪声可能在传输中产生,也可能在量化等处理中产生。因此,正是为了处理这种问题,是有噪声的图片变得更加清晰,人们研究出各种各样的方式去除图像中的噪声。 首先,为了让本报告易懂,我先解释几个名词的含义。 线性滤波算法:利用图像原始的像素点通过某种算术运算得到结果像素点的滤波算法,如均值滤波、高斯滤波,由于线性滤波是算术运算,有固定的模板,因此滤波器的算法函数是确定并且唯一的。 非线性滤波算法:原始数据域处理结果数据之间存在的是一种逻辑关系,即采用逻辑运算实现的,如最大值滤波器、最小值滤波器、中值滤波器,通过比较领域内灰度值大小来实现的,它没有固定的模板和特定的转移函数。 高斯噪声:噪声服从高斯分布,即某个强度的噪声点个数最多,离这个强度越远噪声点越少,且这个规律服从高斯分布。高斯噪声是一种加性噪声,即噪声直接加到原图像上,因此可以采用线性滤波器滤除掉。 椒盐噪声:类似把胡椒和盐撒到图像上,因此得名,是一种在图像上出现很多白点或黑点的噪声。椒盐噪声可以认为是一种逻辑噪声,采用线性滤波器滤除的结果不好,一般采用中值滤波器滤波可以得到较好的结果。 白噪声:指在较宽的频率范围内,各等带宽的频带所含的噪声能量相等。由于白光是各个频率的单色光混合的,因此我们把这种性质叫做“白色的”,就把这种噪声称作白噪声。 现在介绍,我采用的去噪算法。 (1)均值滤波:均值滤波是典型的线性滤波算法。其采用的主要方法为领域平均法,即对待处理的某个像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,

图像去噪去噪算法研究 开题报告

图像去噪去噪算法研究论文开题报告 (1)选题的目的、意义 目的: 由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会受到多种噪声的污染,影响了图像的视觉效果,甚至妨碍了人们正常识别。另外,在图像处理的某些环节当输入的对象并不如预想时也会在结果图像中引入噪声。这些噪声在图像上常表现为—引起较强视觉效果的孤立象素点或象素块[1]。一般,噪声信号与要研究的对象不相关它以无用的信息形式出现,扰乱图像的可观测信息。要构造一种有效抑制噪声的滤波必须考虑两个基本问题能有效地去除目标和背景中的噪声;同时,也要能很好的保护图像目标的形状、大小及特定的几何和拓扑结构特征。 意义: 噪声的污染直接影响着对图像边缘检测、特征提取、图像分割、模式识别等处理,使人们不得不从各种角度进行探索以提高图像的质量[2] [3]。所以采用适当的方法尽量消除噪声是图像处理中一个非常重要的预处理步骤。现在图像处理技术已深入到科学研究、军事技术、工农业生产、医学、气象及天文学等领域。科学家利用人造卫星可以获得地球资源照片、气象情况;医生可以通过X射线或CT对人体各部位的断层图像进行分析。但在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以对图像的噪声处理就显得十分重要[4] [5]。图像去噪作为图像处理的一个重要环节,可以帮助人们更加准确地获得我们所需的图像特征,使其应用到各个研究领域,帮助解决医学、物理、航天、文字等具体问题。如何改进图像去噪算法,以有效地降低噪声对原始图像的干扰程度,并且增强视觉效果,提高图像质量,使图像更逼真,仍存在继续研究的重要意义。 (2)国内外对本课题涉及问题的研究现状 针对图像去噪的经典算法,科学工作者通过努力,提出了一些的改进算法,比如模拟退火法[6]。但是模拟退火法存在的问题是计算过程复杂,计算量大,即使使用计算机代替人工计算也会耗用大量时间。后来在众多研究者的努力下,产生了很多其他不同的方法。而现今已卓有成效的非线性滤波方法有正则化方法、最小能量泛函方法、各向异性扩散法[7] [8]。 目前常用的降噪方法有在空间域进行的,也有将图像数据经过傅里叶等变换以后转到频域中进行的[9]。其中频域里的滤波需要涉及复杂的域转换运算,相对而言硬件实现起来会耗费更多的资源和时间。在空间域进行的方法有均值或加权后均值滤波、中值或加权中值滤波、最小均方差值滤波和均值或中值的多次迭代等。实践证明,这些方法虽有一定的降噪效果,但都有其局限性。比如加权均值在细节损失上非常明显;而中值仅对脉冲干扰有效,对高斯噪声却无能为力[10] [11] [12] [13]。实上,图像噪声总是和有效数据交织在一起,若处理不当,就会使边界轮廓、线条等变得模糊不清,反而降低了图像质量。 对于去除椒盐噪声,主要使用中值滤波算法。中值滤波是在1970年由Tukey提出的一种一维滤波器。它主要是指用实心邻域范围内的所有值的中值代替所作用的点值,但是必须注意的是邻域内的点的个数是正奇数,这是为了保证取中值的便利性,若是偶数,则中值就会产生两个[14] [15]。中值滤波以一种简单的非线性平滑技术。它是以排序统计理论作为基础,有效抑制噪声的非线性处理数字信号技术。中值滤波对消除椒盐噪声非常有效。在图像处理中,常用中值滤波保护图像边缘信息,它是一种经典的去除图像噪声算法[16]。但是它在去除图像噪声过程中,往往会将图像的细节比如细线、棱角的地方破坏掉。后来

图像滤波去噪处理

摘要 图像是信息社会人们获取信息的重要来源之一。在通过图像传感器将现实世界中的有用图像信号进行采集、量化、编码、传输、恢复的过程中,存在大量影响图像质量的因素。因此图像在进行使用之前,一般都要经过严格的预处理如去噪、量化、压缩编码等。噪声的污染直接影响着对图像边缘检测、特征提取、图像分割、模式识别等处理,使人们不得不从各种角度进行探索以提高图像的质量。所以采用适当的方法尽量消除噪声是图像处理中一个非常重要的预处理步骤。图像处理技术在20世纪首先应用于图像的远距离传送,而改善图像质量的应用开始于1964年美国喷气动力实验室用计算机对“徘徊者七号”太空船发回的月球照片进行处理,并获得巨大成功。现在图像处理技术已深入到科学研究、军事技术、工农业生产、医学、气象及天文学等领域。科学家利用人造卫星可以获得地球资源照片、气象情况;医生可以通过X射线或CT对人体各部位的断层图像进行分析。但在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以对图像的噪声处理就显得十分重要。 因此我选择图像去噪方面进行了解及研究,现将自己已了解的知识进行汇总。

目录 摘要 (2) 一、图像滤波的应用 (4) 二、均值滤波 (5) 2.1 均值滤波的思想 2.2 均值滤波的算法 2.3 均值滤波的实验结果 三、中值滤波 (7) 3.1 中值滤波的思想 3.2 中值滤波的算法 3.3 中值滤波的实验结果 四、维纳滤波 (8) 4.1 维纳滤波的思想 4.2 维纳滤波的算法 4.3 维纳滤波的实验结果 五、小波变换 (9) 5.1 小波变换滤波的思想 5.2 小波变换滤波的算法 5.3 小波变换滤波的实验结果 六、Contourlet变换的图像去噪 (11) 6.1 Contourlet变换的基本思想 6.2Contourlet变换的算法 七、全变差正则化的Shearlet收缩去噪 (12) 7.1 Shearlet收缩去噪原理简介 7.2 Shearlet收缩去噪算法 八、结果分析及自己的收获 (12) 8.1结果分析 8.2自己的收获 参考文献 (13)

滤波图像降噪算法研究报告

研究生课程论 文 基于滤波的图像降噪算法的研究 课程名称专业文献阅读与综述 姓名张志化 学号1200214006 专业模式识别与智能系统 任课教师钟必能 开课时间2018.9——2018.11 教师评阅意见: 论文成绩评阅日期 课程论文提交时间:2018 年11月11日

基于滤波的图像降噪算法的研究 摘要:图像在获取和传输过程中,往往受到噪声的干扰,而降噪的目的是尽可能保持原始信号主要特征的同时除去信号中的噪声。目前的图像去噪方法可以将图像的高频成分滤除,虽然能够达到降低噪声的效果,但同时破坏了图像细节。边缘特性是图像最为有用的细节信息,本文对邻域平均法、中值滤波法及维纳滤波法的图像去噪算法进行了研究分析和讨论。 关键词:滤波;图像噪声;图像降噪算法;评价方法; 1 引言 数字图像处理,就是利用数字计算机或其他数字硬件,对图像信息转换而来的电信号进行某种数字运算,以提高图像的实用性,进而达到人们所要求的某种预期效果[1]。数字图像处理已经广泛应用于遥感、工业检测、医学、气象、侦查、通信、智能机器人等众多学科与工程领域中。 数字图像处理技术的优点主要有:<1)再现性好。数字图像处理不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的真实再现。 <2)处理精度高。按目前的技术,几乎可以将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16 位甚至更高,意味着图像的数字化精度可以满足应用需求。 (3>适用面宽。图像可以来自多种信息源。从图像反映的客观实体尺度看,可以小到电了显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,均可用计算机来处理。 (4>灵活性高。由于图像的光学处理从原理上讲只能进行线性运算,极大地限制了光学图像处理能实现的目标;而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数字公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 (5>信息压缩的潜力大。数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一

MATLAB图像滤波去噪分析及其应用

《MATLAB图像滤波去噪分析及其应用》,双线性滤波、Kirsch滤波、超限邻域滤波、逆滤波、双边滤波、同态滤波、小波滤波、六抽头滤波、约束最小平方滤波、非线性复扩散滤波、Lee滤波、Gabor滤波、Wiener 滤波、Kuwahara滤波、Beltrami流滤波、Lucy Richardson滤波、NoLocalMeans滤波等研究内容。 《MATLAB图像滤波去噪分析及其应用》全面而系统地讲解了MATLAB图像滤波去噪分析及其应用;结合算法理论,详解算法代码(代码全部可执行且验证通过),以帮助读者更好地学习本书内容。对于网上讨论的大部分疑难问题,本书均有涉及。 第1章图像颜色空间相互转换与MATLAB实现 1.1图像颜色空间原理 1.1.1RGB颜色空间 1.1.2YCbCr颜色空间 1.1.3YUV颜色空间 1.1.4YIQ颜色空间 1.1.5HSV颜色空间 1.1.6HSL颜色空间 1.1.7HSI颜色空间 1.1.8CIE颜色空间 1.1.9LUV颜色空间 1.1.10LAB颜色空间 1.1.11LCH 颜色空间 1.2颜色空间转换与MATLAB实现 1.2.1图像YCbCr与RGB空间相互转换及MATLAB实现 1.2.2图像YUV与RGB空间相互转换及MATLAB实现 1.2.3图像YIQ与RGB空间相互转换及MATLAB实现 1.2.4图像HSV与RGB空间相互转换及MATLAB实现 1.2.5图像HSL与RGB空间相互转换及MATLAB实现 1.2.6图像HSI与RGB空间相互转换及MATLAB实现 1.2.7图像LUV与RGB空间相互转换及MATLAB实现 1.2.8图像LAB与RGB空间相互转换及MATLAB实现 1.2.9图像LCH 与RGB空间相互转换及MATLAB实现 第2章图像噪声概率密度分布与MATLAB实现 2.1噪声概率密度分布函数 2.1.1均匀分布 2.1.2正态分布 2.1.3卡方分布 2.1.4F分布 2.1.5t分布 2.1.6Beta分布 2.1.7指数分布 2.1.8Gamma分布 2.1.9对数正态分布 2.1.10瑞利分布 2.1.11威布尔分布

图像去噪方法

图像去噪方法 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声(一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在),但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差(在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量。对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差。标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差。)最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。

图像去噪的发展历程与方法简介

图像去噪的发展历程与方法简介 1 图像去噪的概念 2 图像去噪的发展历程与现状 2.1图像去噪传统方法 2.2全变分去噪的提出 1 图像去噪的概念 图像去噪指的是利用各种滤波模型,通过传统滤波、小波、偏微分方程等多种方法从已知的含有噪声的图像中去掉噪声部分。图像去噪从整个图像分析的流程上来讲属于图像的预处理阶段,从数字图像处理的技术角度来说属于图像恢复的技术范畴,它的存在有着非常重要的意义。 图像恢复问题是图像处理中最基本的问题,图像恢复以图像退化的数学模型为基础,通过退化现象的某种先验知识来重建、恢复原来的图像。其中图像退化的原因主要是源于图像的获取和传输的过程中受到各种因素的干扰。 对图像进行去噪是对图像作进一步处理的可靠保证,如果对含有噪声的图像进行特征提取、图像融合等处理后的结果,显然不能令人满意。另外,由于不同的成像机理,得到的初始图像中都含有大量不同性质的噪声,这些噪声的存在影响着人们对图像的观察,干扰人们对图像信息的理解。噪声严重的时候,图像几乎变形,更使得图像失去了存储信息的本质意义。显然,对图像进行去噪处理,是正确识别图像信息的必要特征。 在对有噪声图像和模糊图像恢复时,除了去除噪声外,一个很重要的目标是保护图像的重要细节(包括几何形状细节如纹理、细线、边缘和对比度变化细节)。但是噪声的去除和细节的保护是一对矛盾关系,因为噪声和细节都属于图像信号中的高频部分,很难区分出它们,所以在滤除图像噪声的同时,也会对图像的特征造成破坏,致使图像模糊。为了抑制图像中的噪声,更好地复原因噪声污染引起的图像质量退化,有必要寻找更好的去噪方法,保证在去除噪声的同时,还能保持边缘和纹理信息。近年来,为了解决这一问题,研究者们提出了很多模型和方法。 图像是人类视觉的基础,而视觉是人类最重要的感知手段,图像恰恰又客观的反映了自然景物,成为了人类认识世界和人类本身的重要源泉。随着科技的日新月异,数字图像也于20世纪50年代诞生。而所谓的数字图像,可以将其看成是一个矩阵或是一个二维数组,在计算机上表示的方式。每个像素取值为0~255的整数。取值越大,表明这个格子越亮;反之,这个格子越暗。而数字图像所载有的信息就是每个像素的取值。

2.1图像滤波方法的比较实验报告

课程大作业实验报告2.1 图像滤波方法的比较 课程名称:数字图像处理 组长:张佳林学号:200830460232 年级专业班级: 08 自动化 2 班 (ppt 制作,数据整 理) 成员一:卢洪炬学号:200830460222 年级专业班级:08 自动化 2 班(实验报告,编程) 成员二:余嘉俊学号: 200830460231 年级专业班级: 08 自动化 2 班(编程,程序整理) 指导教师邓继忠 报告提交日期2010 年 12 月 4 日项目答辩日期2010 年 12 月 5 日

目录 1项目要求 (3) 2项目开发环境 (3) 3系统分析·························································3 3.1 系统的主要功能分析 (3) 3.2 系统的基本原理 (4) 3.1 系统的关键问题及解决方法 (9) 4系统设计····························· ···························10 4.1 程序流程图及说明····························· (10) 4.2 程序主要模块功能介 绍 (11) 5实验结果与分析··················································11 5.1 实验结果····························· (11) 5.2 项目的创新之 处 (15) 5.3 存在问题及改进设 想 (15)

6心得体会························································15 6.1 系统开发的体会····························· (15) 6.2 对本门课程的改进意见或建议 (15)

图像去噪方法及发展

图像去噪方法及其发展概述学院(系):机械工程学院 专业:机械制造及其自动化 学生姓名:高某某

一、概述 图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵。但是图像在生成和传输过程中常常因受到各种噪声的干扰和影响而使图像降质,这对后续图像的处理(如分割、压缩和图像理解等)将产生不利影响。噪声种类很多,如:电噪声、机械噪声、信道噪声和其他噪声。为了抑制噪声,改善图像质量,便于更高层次的处理,必须对图像进行去噪预处理。消除图像噪声的工作称之为图像滤波或平滑。数字图像噪声去除涉及光学系统、微电子技术、计算机科学、数学分析等领域,是一门综合性很强的边缘科学,如今其理论体系已十分完善,且其实践应用很广泛,在医学、军事、艺术、农业等都有广泛且成熟的应用。 噪声在理论上可以定义为“不可预测,只能用概率统计方法来认识的随机误差”,因此将图像噪声看成是多维随机过程是合适的,因而描述噪声的方法完全可以借用随机过程的描述,即用其概率分布函数和概率密度分布函数。但在很多情况下,这样描述方法是很复杂,甚至不可能的,而实际应用往往也不必要,通常使用其数值特征,即均值方差、相关函数等。因为这些数值特征都可以从某些方面反映出噪声的特征。 二、图像中的噪声 噪声对图像信号幅度和相位的影响十分复杂,有些噪声和图像信号相互独立不相关,有些是相关的,噪声本身之间也可能相关。因此要减少图像中的噪声,必须针对具体情况采用不同方法,否则很难获得满意的处理效果。一般图像处理中常见的噪声有: 1.加性噪声。加性噪声和图像信号强度是不相关的,如图像在传输过程中引进的“信道噪声”、电视摄像机扫描图像的噪声的。这类带有噪声的图像可看成为理想无噪声图像f与噪声n 之和,即 g = f + n 2.乘性噪声。乘性噪声和图像信号是相关的,往往随图像信号的变化而变化,如飞点扫描图像中的噪声、电视扫描光栅、胶片颗粒造成等,这类噪声和图像的关系是 g = f + fn 3.量化噪声。量化噪声是数字图像的主要噪声源,其大小显示出数字图像和原始图像的差异,减少这种噪声的最好办法就是采用按灰度级

MATLAB实现频域平滑滤波以及图像去噪代码

MATLAB实现频域平滑滤波以及图像去噪代码用MATLA实现频域平滑滤波以及图像去噪代码 悬赏分:50 - 解决时间 :2008-11-8 14:21 是数字图象处理的实验,麻烦高人给个写好的代码,希望能在重要语句后面附上一定的说明,只要能在 MATLAE t运行成功,必然给分。具体的实验指导书上的要求如下 : 频域平滑滤波实验步骤 1. 打开 Matlab 编程环境 ; 2. 利用’imread '函数读入图像数据; 3. 利用' imshow' 显示所读入的图像数据 ; 4. 将图像数据由' uint8 ' 格式转换为' double ' 格式,并将各点数据乘以 (-1)x+y 以便 FFT 变换后的结果中低频数据处于图像中央; 5. 用' fft2 ' 函数对图像数据进行二维 FFT 变换,得到频率域图像数据; 6. 计算频率域图像的幅值并进行对数变换,利用' imshow' 显示频率域图像; 7. 在频率图像上去除滤波半径以外的数据 (置 0); 8. 计算频率域图像的幅值并进行对数变换,利用' imshow' 显示处理过的 频域图像数据; 9. 用' ifft2 ' 函数对图像数据进行二维 FFT 逆变换,并用' real '函数取其实部,得到处理过的空间域图像数据; 10. 将图像数据各点数据乘以 (-1)x+y; 11. 利用' imshow' 显示处理结果图像数据; 12. 利用' imwrite '函数保存图像处理结果数据。 图像去噪实验步骤 : 1. 打开 Matlab 编程环境;

2. 利用' imread' 函数读入包含噪声的原始图像数据 ; 3. 利用' imshow' 显示所读入的图像数据 ; 4. 以 3X3 大小为处理掩模,编写代码实现中值滤波算法,并对原始噪声图像进行滤波处理 ; 5. 利用' imshow' 显示处理结果图像数据 ; 6. 利用' imwrite ' 函数保存图像处理结果数据。 即使不是按这些步骤来的也没关系,只要是那个功能,能实现就0K谢谢大家%%%%%%%%spatial frequency (SF) filtering by low pass filter%%%%%%%% % the SF filter is unselective to orientation (doughnut-shaped in the SF % domain). [FileName,PathName,FilterIndex] = uigetfile ; filename = fullfile(PathName, FileName) ; [X map] = imread(filename, fmt); % read image L = double(X); % transform to double %%%%%%%%%%%%% need to add (-1)x+y to L % calculate the number of points for FFT (power of 2) fftsize = 2 .A ceil(log2(size(L))); % 2d fft Y = fft2(X, fftsize(1), fftsize (2)); Y = fftshift(Y); % obtain frequency (cycles/pixel) f0 = floor([m n] / 2) + 1; fy = ((m: -1: 1) - f0(1) + 1) / m; fx = ((1: n) - f0(2)) / n; [mfx mfy] = meshgrid(fx, fy); % calculate radius SF = sqrt(mfx .A 2 + mfy .A 2);

毕业设计--基于双边滤波的图像去噪的方法

学号:1008431110 本科毕业论文(设计) (2014届) 基于双边滤波的图像去噪方法 院系电子信息工程学院 专业通息工程 姓名 指导教师讲师 2014年4月

双边滤波是非线性的滤波方法,是结合图像的像素值相似度空间邻近度和空间领近度的一种折衷处理,同时考虑灰度相似性和空域信息,达到保边去噪的目的。双边滤波具有简单、非迭代、局部的特点。双边滤波器的好处是可以做边缘保存,一般过去用的维纳滤波或者高斯滤波去降噪,都会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波比高斯滤波多了一个高斯方差,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。但是由于保存了过多的高频信息对于彩色图像里的高频噪声,双边滤波器不能够彻底的滤掉,只能够对于低频信息进行较好的滤波。其具体的操作方法有两个,第一个是高斯模版,用个模板对图像中的每一个像素值进行扫描,然后把某一点和其邻域内像素的加权平均值代替那一个中心的值高斯滤波器是根据高斯函数的形状来选择其权值的线性平滑滤波器,高斯滤波是线性平滑滤波的一种,最适合去除的噪声类型是服从正态分布的噪声。第二个是以灰度级的差值作为函数系数生成的模板。然后这两个模板点乘就得到了最终的双边滤波模板,最后得到双边滤波处理后的图像。 关键词:图像;去噪;双边滤波;高斯滤波

The bilateral filter is a nonlinear filtering method, is the combination of image pixel value similarity space proximity and space brought a compromise approach degree, considering the gray similarity and spatial information, to achieve the purpose of edge preserving denoising. The bilateral filter has the advantages of simple, non iterative, local. The bilateral filter is good to do edge preservation,generally used Wiener filtering or Gauss filter to denoise, will obviously fuzzy edge, for the protection of high frequency detail is not obvious. Bilateral filtering than Gauss filter has a Gauss variance, it is Gauss filter function based on the spatial distribution, so near the edge, the pixel will not affect the farther to the pixel on the edge of the value, thus ensuring the preservation of edge pixel values. But because of the high frequency information saved too much for the high frequency noise in the color image, the bilateral filter can not be completely filtered out, can only be better filtering for the low frequency information. The specific operation method has two, the first is Gauss template, scanning for each pixel in the image with a template, and then the weighted one point and its neighborhood pixels instead of the average value of a central value Gauss filters are linear smoothing filter to select the weights based on the Gauss function the shape, the Gauss filter is a linear smoothing filter for noise removal, the type is subject to normally distributed noise. The second is the difference of gray level as function coefficients generated templates. Then the two template dot get bilateral filtering template final, finally get the image after bilateral filtering. Key words: Image ;Denoising;Bilateral Filtering;Gauss Filtering

常用图像去噪方法比较及其性能分析

常用图像去噪方法比较及其性能分析 发表时间:2019-03-15T15:13:24.833Z 来源:《信息技术时代》2018年6期作者:孟靖童王靖元[导读] 本文介绍了噪声的分类模型,之后又分别介绍了空间域去噪、傅里叶去噪算法以及小波去噪中的部分算法,并分别对相似算法进行了分析比较。 (国际关系学院,北京 100091) 摘要:本文介绍了噪声的分类模型,之后又分别介绍了空间域去噪、傅里叶去噪算法以及小波去噪中的部分算法,并分别对相似算法进行了分析比较。同时为了更好的比较出各算法之间的去噪差别针对其中部分去噪算法进行了用matlab的实现,比较了去噪的效果。关键词:数字图像;噪声;滤波 一、引言 随着当今社会数字化的普及,人们传递图像信息的方式已经从之前单纯的实物传递变为当今的数字图像的传递。然而由于各种原因会导致数字图像真实性减弱。针对这种问题,数字图像处理技术应运而生。数字图像处理技术的产生,不仅满足了人们的视觉,同时经过处理的图像还可以更好的应用于图像加密,图像识别等领域。 二、空间域去噪算法 (一)均值滤波去噪 通过计算某一滤波目标区域内的算数平均值来替代目标区域中心所对应的像素值的方法来达到去除噪声的目的。而加权均值滤波则是在原有均值滤波的基础上,通过对某些更趋进于真实像素的点进行加权的方法来达到更好的去噪效果,使最终区域中心像素更加趋近于真实像素。 利用均值滤波可以很好的去除由高斯噪声带来的对于图像的影响,然而对于由于椒盐噪声带来的对于图像的影响,均值滤波去除的效果并不很好。同时,由于均值滤波的算法是通过取目标范围内一小区域中点灰度值的平均值,来决定区域中心点灰度值的,所以不可避免的造成图像经过均值滤波后会导致图像部分原始真实细节被滤掉,造成视觉上细节不清楚的情况。并且所取范围越大,图像中细节部分越不清晰,图像越平滑。 (二)中值滤波去噪 通过求区域中心点及其周围点灰度值的中值,来代替该中心点的灰度值。因此利用中值去噪的方法可以较好的弥补均值滤波对于图像边缘不清晰处理的缺点。然而由于中值滤波对于所选滤波区域的选择要求较高,因此对于滤波区域大小形状的选择需要根据具体图像来确定。此外,与均值滤波相比,中值滤波对于椒盐噪声的处理比对于高斯噪声的处理更好。(三)维纳滤波去噪 维纳滤波通过寻找一个滤波模型使得被过滤后图像与原图像的均方差最小。因此维纳滤波的去噪效果随局部方差的增大而减弱。与邻域均值滤波法相比,维纳滤波可以更好的处理高斯噪声带来的对于图片的影响。同时,由于维纳滤波法是一种自适应的滤波器,所以较邻域滤波可以更好的处理图像边缘的细节。然而维纳滤波却无法很好的处理信噪比较低的图像信号。实验中发现,维纳滤波在处理完运动模糊图像后会出现较严重类似于高斯噪声的影响,加入中值去噪得到更清晰图像,同时可以与最后一张仅添加中值去噪图片做对比。 三、基于傅里叶变换图像去噪 傅里叶变换图像去噪利用了图像与噪声主要分布频段不同的特点,即图像信息大多分布在低频段及中频段,而噪声则是分布在高频段。通过衰减信号的高频段来减弱噪声对于图像的影响。 其算法可表示为: G(μ,v)=H(μ,v)F(μ,v) 其中F(μ,v)为f(μ,v)经傅里叶变换得到,通过函数H(μ,v)衰减高频分量后的F(μ,v)得到输出G(μ,v),之后只需对其进行傅里叶逆变换即可得到去早后图像g(x,y)。 此算法可简单表述为: (1)把原图像通过傅里叶变换从空间域变到频域; (2)对变换到频域的图像进行一定程度的衰减,具体衰减方法根据原图像实际情况而定;(3)对处理后图像从频率域经傅里叶逆变换得到去噪后图像。 经由傅里叶变换去噪可得出低通滤波器及巴特沃斯低通滤波器。 (一)理想低通滤波器 理想低通滤波器仅允许低频信号通过,因此大部分高频噪声被截止,从而达到去噪的效果。理想低通滤波器设计原理简单,且去噪效果理想,然而由于理想低通滤波器的原理是完全滤掉高频信息,因此导致经处理后图像边缘模糊,同时会出现较严重的振铃现象。(二)巴特沃斯低通滤波 相比于理想低通滤波器,巴特沃斯低通滤波器对于信号选择通过和不通过的频率之间并没有明显的不连续界限,因此可以缓解理想低通滤波器图像边缘模糊的缺点。 同时巴特沃斯低通滤波器的振铃现象会随其公式阶数的增加而明显增强。 四、基于小波变换的图像去噪方法 (一)小波系数收缩法 小波系数收缩法可分为小波阈值收缩法和小波比例收缩法两类。

相关主题
文本预览
相关文档 最新文档