当前位置:文档之家› Lagrange插值基函数构造插值多项式.docx

Lagrange插值基函数构造插值多项式.docx

Lagrange插值基函数构造插值多项式.docx
Lagrange插值基函数构造插值多项式.docx

数学与软件科学学院实验报告

学期?至第学期年月日

课!呈名称:计算机数值务法专业:级班

实验编号:1实验项目一次、二次Lagrange插值多项式指导教师张莉

姓名:学号:实验成绩:

一、实验目的及要求实验目的:体会使用Lagrange插值基函数构造插值多项式的特点,熟悉使用一次或二次Lagrange插值多项式近似函数y=f(x)的算法。掌握Lagrange插值多项式近似函数f(x)的误差表达式,并会熟练应用。

实验要求:

1.给出一次、二次Lagrange插值算法

2?用C语言实现算法

3?给出误差分析。

二、实验内容

用下列插值节点数据,构造一次和二次Lagrange插值多项式,并计算

f(11.5),f(12.5)的值。(f(x)=sinx)

要求:所需数据都从键盘读入,最后输出结果.

三、实验步骤(该部分不够填写?请填写附页)

步骤一:用为代码描述lagrange插值多项式的算法

Step 1:输入:插值节点控制数n,插值点序列(xi,yi) ,i=O,l,...n,要计算的函数点x.

Step 2: for j=0 to n

{ { forj=0 to n对于给定的x,计算lagrangc基函数li(x)

然后求tmp=tmp* (x-xj) /(xi-xj);

fx=fx+tmp*yi;

Step 3:输111结果。步骤二:编辑程序如下:

# includc

#define MAX N 3

// 定义点的最大维数

typedef struct tagPOINT {

/*the structer of point */

double x;

double y;

} POINT;

〃点的结构

int main()

{

int n,i,j;

POINT pointsLMAX_N+lJ;

double tmp=1.0;

double x;

double lagrange=0.0; clrscr();

printf(”\nlnput n value

scanf(n%d n,&n); /*the number of the points inserted*/

〃输入被插值点的个数

if(n>MAX_N)

{

printf("The i叩ut n is larger than MAX_N,please redefine the MAX_N.\n");

return 1;

1

if(n<=0)

{

printf("Please i叩ut a number between 1 and %d.\n",MAX_N);

}

printf("Now input the (x_i,y_i),i=O,...%d:\n",n);

fbr(i=O;i<=n ;i++)

scanf("%lf %lf',&points[i].x,&points[i].y);

〃输入被插值点

printf("Now input the x value:*'); /*the value of x*/ scanf(“%f,&x); 〃输入待求的点的第一个分量

for(i=0;i<=n;i++)

{

for(j=0;j<=n && j!=i;j++)

tmp*=(x-pointsfj].x)/(points[i].x-points[jl.x);

lagrange+=tmp*points[i].y;

} 〃用lagrange來求多项式

printf(M the results is %lf',lagrange);

实验报告附页

四、实验结果分析与评价(该部分不够填写?请填写附页)

构造lagrange —次插值多项式,求点f 仃1. 5),选取前两个插值点

构造lagrange —次插值多项式,求点f (12.5),选取后两个插值点

构造lagrange 二次插值多项式,求点f (11. 5),结果为:

F:\MYD0CU 1\ 我的课程'

程序设 1\TC\TC.EXE

构造lagrange 二次插值多项式,求点f (12.5),结果为:

F 八MYDOClT 1 \我的课程\程序设

"1\TC\TC.EXE

return 0;

误差分析:当x=ll. 5时,lagrange 一次插值多项式的误差为:

①|R(x) | = |f(2) (a) (x-xO) (x-xl)/2| = |sin(x) (11. 5-11) (11. 5~12)/2|<=0. 125

②当x=12. 5时,bgrEingc —次插值多项式的误差为:

R (x) | = |f(2) (a) (x-xl) (x-x2) | = |sin(x) (12. 5-12) (12. 5-13)/2|<=0. 125

③当x二11. 5 lagrange二次插值多项式的误差为:

|R(x) | = |f(3) (a) (x-xO) (x-xl) (x—x2)/(3*2) |<=| (11.5-11) (11.5-12) (11.5-13 )/61 =0. 0625

④当x=12. 5时,lagrange二次插值多项式的误差为:R(x) =

f (3) (a) (x-x3) (x-xl) (x-x2)/(3*2) |〈二| (12. 5-12) (12. 5-12) (12. 5-13)/(3*2) I 二0? 0625

发现:二次插值的误差要小于一次插值的误差。

注:实验成绩等级分为(90-100分)ft,(80-89分)良,(70?79分)中,(60-69分)及格,(59分)不及格

三次样条插值代码

2 三次样条插值程序 三次样条插值利用方案二(求解固支样条或压紧样条) 按照要求要起点和终点的一阶导数值已知, 可得关于01,,.....,n M M M 的严格对角占优势的三对角方程组 然后利用三对角法(追赶法)解此线性方程组。 (1)编写M 文件,并保存文件名scfit.m % x,y 分别为n 个节点的横坐标和纵坐标值组成的向量 % dx0和dxn 分别为S 的导数在x0和xn 处的值,即m 0和m n n=length(x)-1; h=diff(x); d=diff(y)./h; a=h(2:n-1); b=2*(h(1:n-1)+h(2:n)); c=h(2:n); u=6*diff(d); b(1)=b(1)-h(1)/2; u(1)=u(1)-3*(d(1)-dx0); b(n-1)=b(n-1)-h(n)/2; u(n-1)=u(n-1)-3*(dxn-d(n)); %追赶法部分 for k=2:n-1 temp=a(k-1)/b(k-1); b(k)=b(k)-temp*c(k-1); u(k)=u(k)-temp*u(k-1); end m(n)=u(n-1)/b(n-1); for k=n-2:-1:1 m(k+1)=(u(k)-c(k)*m(k+2))/b(k); end %求S K1,S K2,S K3,S K4 m(1)=3*(d(1)-dx0)/h(1)-m(2)/2; m(n+1)=3*(dxn-d(n))/h(n)-m(n)/2; for k=0:n-1 00 ()S x m '=()n n S x m '=0011111111212212n n n n n n M d M d M d M d μλμλ----??????????????????????=??????????????????????????

Lagrange插值基函数构造插值多项式

数学与软件科学学院实验报告 学期:至第学期年月日 课程名称:___计算机数值方法___ 专业: 级班 实验编号:1 实验项目一次、二次Lagrange 插值多项式指导教师__张莉_ 姓名:学号:实验成绩: 一、实验目的及要求 实验目的:体会使用Lagrange插值基函数构造插值多项式的特点,熟悉使用一次或二次Lagrange插值多项式近似函数y=f(x)的算法。掌握Lagrange插值多项式近似函数f(x)的误差表达式,并会熟练应用。 实验要求: 1. 给出一次、二次Lagrange插值算法 2. 用C语言实现算法 3. 给出误差分析。 二、实验内容 用下列插值节点数据,构造一次和二次Lagrange插值多项式,并计 三、实验步骤(该部分不够填写.请填写附页) 步骤一:用为代码描述lagrange插值多项式的算法 Step 1:输入:插值节点控制数n,插值点序列(xi,yi),i=0,1,…n,要计算的函数点x. Step 2: for j=0 to n { { for j=0 to n 对于给定的x,计算lagrange基函数li(x) 然后求tmp=tmp*(x-xj)/(xi-xj); } fx=fx+tmp*yi; } Step 3:输出结果。 步骤二:编辑程序如下:

#include #define MAX_N 3 // 定义点的最大维数 typedef struct tagPOINT /*the structer of point */ { double x; double y; }POINT; //点的结构 int main() { int n,i,j; POINT points[MAX_N+1]; double tmp=1.0; double x; double lagrange=0.0; clrscr(); printf("\nInput n value :"); /*the number of the points inserted*/ scanf("%d",&n); //输入被插值点的个数 if(n>MAX_N) { printf("The input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("Please input a number between 1 and %d.\n",MAX_N); } printf("Now input the (x_i,y_i),i=0,...%d:\n",n); for(i=0;i<=n;i++) scanf("%lf %lf",&points[i].x,&points[i].y); //输入被插值点 printf("Now input the x value:"); /*the value of x*/ scanf("%lf",&x); //输入待求的点的第一个分量 for(i=0;i<=n;i++) { for(j=0;j<=n && j!=i;j++) tmp*=(x-points[j].x)/(points[i].x-points[j].x); lagrange+=tmp*points[i].y; } //用lagrange来求多项式 printf("the results is %lf",lagrange);

三次样条插值函数

沈阳航空航天大学 数学软件课程设计 (设计程序) 题目三次样条插值函数 班级 / 学号 学生姓名 指导教师

沈阳航空航天大学 课程设计任务书 课程名称数学软件课程设计 院(系)理学院专业信息与计算科学 班级学号姓名 课程设计题目三次样条插值函数 课程设计时间: 2010 年12月20日至2010 年12月31日 课程设计的内容及要求: 1.三次样条插值函数 给出函数在互异点处的值分别为。 (1)掌握求三次样条插值函数的基本原理; (2)编写程序求在第一边界条件下函数的三次样条插值函数; (3)在区间上取n=10,20,分别用等距节点对函数 作三次样条插值函数,利用(1)的结果画出插值函数的图形,并在该图形界面中同时画出的图形。 [要求] 1.学习态度要认真,要积极参与课程设计,锻炼独立思考能力; 2.严格遵守上机时间安排; 3.按照MATLAB编程训练的任务要求来编写程序; 4.根据任务书来完成课程设计论文; 5.报告书写格式要求按照沈阳航空航天大学“课程设计报告撰写规范”; 6.报告上交时间:课程设计结束时上交报告;

7.严谨抄袭行为。 指导教师年月日负责教师年月日学生签字年月日

沈阳航空航天大学 课程设计成绩评定单 课程名称数学软件课程设计 院(系)理学院专业信息与计算科学课程设计题目三次样条插值函数 学号姓名 指导教师评语: 课程设计成绩 指导教师签字 年月日

目录 一正文 (1) 1问题分析 (1) 1.1 题目 (1) 1.2 分析 (1) 2 研究方法原理 (1) 2.1 求三次样条插值多项式,算法组织 (1) 3 算例结果 (3) 二总结 (7) 参考文献 (8) 附录 (9) 源程序: (9) 程序1 (9) 程序2 (10) 程序3 (12) 程序 4 (12)

各种插值方法比较

空间插值可以有很多种分类方法,插值种类也难以举尽。在网上看到这篇文章,觉得虽然作者没能进行分类,但算法本身介绍地还是不错的。 在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括: Inverse Distance to a Power(反距离加权插值法) Kriging(克里金插值法) Minimum Curvature(最小曲率) Modified Shepard's Method(改进谢别德法) Natural Neighbor(自然邻点插值法) Nearest Neighbor(最近邻点插值法) Polynomial Regression(多元回归法) Radial Basis Function(径向基函数法) Triangulation with Linear Interpolation(线性插值三角网法) Moving Average(移动平均法) Local Polynomial(局部多项式法) 下面简单说明不同算法的特点。 1、距离倒数乘方法 距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法 克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法 最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。 4、多元回归法 多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋

五种插值法的对比研究---开题报告

五种插值法的对比研究 1. 选题依据 1.1 选题背景 插值法是一种古老的数学方法,插值法历史悠久。据考证,在公元六世纪时, 我国焯(zhuo) 已经把等距二次插值法应用于天文计算。十七世纪时,Newton 和 Gregory(格雷格里) 建立了等距节点上的一般插值公式,十八世纪时,Lagrange(拉格朗日) 给出了更一般的非等距节点插值公式。 而它的基本理论是在微积分产生以后逐渐完善的,它的实际应用也日益增多,特别是在计算机工程中。许多库函数的计算实际上归结于对逼近函数的计算。 1.2 研究的目的和意义 插值法是数值分析中最基本的方法之一。 在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时, 要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值, 按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。 在实际应用中选用不同类型的插值函数,逼近的效果也不同。在数值计算方法中,我们学习过五种基本的插值方法,即Lagrange 插值、Newton 插值、分段线性插值、分段三次Hermite 插值、样条插值函数。所以通过从这五种插值法的基本思想、特征、性质和具体实例入手,探讨五种插值法的优缺点和适用围,让学习者能够迅速而准确的解决实际问题,掌握插值法的应用。 2. 研究的方法 从具体实例入手并结合Matlab 在科学计算中的优势,通过实验对它们的精度和效率进行比较分析。 3. 论文结构 3.1 论文的总体结构 第一部分 导言 主要介绍选题的背景、目的及意义、研究现状、文献综述等。 第二部分 五种插值法的基本思想、性质及特点 在数值计算方法中,插值法是计算方法的基础,数值微分、数值积分和微分方程数值解都建立在此基础上。 插值问题的提法是:已知f(x)(可能未知或非常复杂函数)在彼此不同的n+1 个实点0x ,1x ,…n x 处的函数值是f(0x ),f(1x ),…,f(n x ),这时我们简单的说f(x)有n+1 个 离散数据对0n i i )}y ,{(x i .要估算f(x)在其它点x 处的函数值,最常见的一种办法就是插值, 即寻找一个相对简单的函数y(x),使其满足下列插值条件:y(i x )=f(i x ),i=0,1,…,n.,并以y(x)作为f(x)的近似值.其中y(x)称为插值函数,f(x)称为被插函数。

数值分析作业-三次样条插值

数值计算方法作业 实验4.3 三次样条差值函数 实验目的: 掌握三次样条插值函数的三弯矩方法。 实验函数: dt e x f x t ? ∞ -- = 2 221)(π 实验内容: (1) 编程实现求三次样条插值函数的算法,分别考虑不同的边界条件; (2) 计算各插值节点的弯矩值; (3) 在同一坐标系中绘制函数f(x),插值多项式,三次样条插值多项式的曲线 比较插值结果。 实验4.5 三次样条差值函数的收敛性 实验目的: 多项式插值不一定是收敛的,即插值的节点多,效果不一定好。对三次样条插值函数如何呢?理论上证明三次样条插值函数的收敛性是比较困难的,通过本实验可以证明这一理论结果。 实验内容: 按照一定的规则分别选择等距或非等距的插值节点,并不断增加插值节点的个数。 实验要求: (1) 随着节点个数的增加,比较被逼近函数和三样条插值函数的误差变化情 况,分析所得结果并与拉格朗日插值多项式比较; (2) 三次样条插值函数的思想最早产生于工业部门。作为工业应用的例子,考

虑如下例子:某汽车制造商根据三次样条插值函数设计车门曲线,其中一 算法描述: 拉格朗日插值: 错误!未找到引用源。 其中错误!未找到引用源。是拉格朗日基函数,其表达式为:() ∏ ≠=--=n i j j j i j i x x x x x l 0) ()( 牛顿插值: ) )...()(](,...,,[.... ))(0](,,[)0](,[)()(1102101210100----++--+-+=n n n x x x x x x x x x x f x x x x x x x f x x x x f x f x N 其中????? ?? ?? ?????? --=--= --= -)/(]),...,[],...,[(]...,[..],[],[],,[)()(],[01102110x x x x x f x x x f x x x f x x x x f x x f x x x f x x x f x f x x f n n n n i k j i k j k j i j i j i j i 三样条插值: 所谓三次样条插值多项式Sn(x)是一种分段函数,它在节点Xi(a

函数的插值方法及matlab程序

6.1 插值问题及其误差 6.1.2 与插值有关的MATLAB 函数 (一) POLY2SYM函数 调用格式一:poly2sym (C) 调用格式二:f1=poly2sym(C,'V') 或f2=poly2sym(C, sym ('V') ), (二) POLYVAL函数 调用格式:Y = polyval(P,X) (三) POLY函数 调用格式:Y = poly (V) (四) CONV函数 调用格式:C =conv (A, B) 例 6.1.2求三个一次多项式、和的积.它们的零点分别依次为0.4,0.8,1.2. 解我们可以用两种MATLAB程序求之. 方法1如输入MATLAB程序 >> X1=[0.4,0.8,1.2]; l1=poly(X1), L1=poly2sym (l1) 运行后输出结果为 l1 = 1.0000 - 2.4000 1.7600 -0.3840 L1 = x^3-12/5*x^2+44/25*x-48/125 方法2如输入MATLAB程序 >> P1=poly(0.4);P2=poly(0.8);P3=poly(1.2); C =conv (conv (P1, P2), P3) , L1=poly2sym (C) 运行后输出的结果与方法1相同. (五) DECONV 函数 调用格式:[Q,R] =deconv (B,A) (六) roots(poly(1:n))命令 调用格式:roots(poly(1:n)) (七) det(a*eye(size (A)) - A)命令 调用格式:b=det(a*ey e(size (A)) - A) 6.2 拉格朗日(Lagrange)插值及其MATLAB程序 6.2.1 线性插值及其MATLAB程序 例 6.2.1 已知函数在上具有二阶连续导数,,且满足条件 .求线性插值多项式和函数值,并估计其误差. 解输入程序 >> X=[1,3];Y=[1,2]; l01= poly(X(2))/( X(1)- X(2)), l11= poly(X(1))/( X(2)- X(1)), l0=poly2sym (l01),l1=poly2sym (l11), P = l01* Y(1)+ l11* Y(2), L=poly2sym (P),x=1.5; Y = polyval(P,x) 运行后输出基函数l0和l1及其插值多项式的系数向量P(略)、插值多项式L和插值Y为l0 = l1 = L = Y = -1/2*x+3/2 1/2*x-1/2 1/2*x+1/2 1.2500 输入程序 >> M=5;R1=M*abs((x-X(1))* (x-X(2)))/2

(精选)三次样条插值的MATLAB实现

MATLAB 程序设计期中考查 在许多问题中,通常根据实验、观测或经验得到的函数表或离散点上的信息,去研究分析函数的有关特性。其中插值法是一种最基本的方法,以下给出最基本的插值问题——三次样条插值的基本提法: 对插值区间[]b a ,进行划分:b x x x a n ≤

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<=Λ10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()()Λ3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。

鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m。 Matlab代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second %dirivitive numbers given. n=length(x0); km=length(x); a(1)=-0.5; b(1)=3*(y0(2)-y0(1))/(2*(x0(2)-x0(1))); for j=1:(n-1) h(j)=x0(j+1)-x0(j); end for j=2:(n-1) alpha(j)=h(j-1)/(h(j-1)+h(j)); beta(j)=3*((1-alpha(j))*(y0(j)-y0(j-1))/h(j-1)+alpha(j)*(y0(j+1)-y0(j))/h(j));

MATLAB三次样条插值之三弯矩法

MATLAB三次样条插值之三弯矩法 首先说这个程序并不完善,为了实现通用(1,2,…,n)格式解题,以及为调用追赶法程序,没有针对节点数在三个以下的情况进行分类讨论。希望能有朋友给出更好的方法。 首先,通过函数sanwanj得到方程的系数矩阵,即追赶法方程的四个向量参数,接下来调 用追赶法(在intersanwj函数中),得到三次样条分段函数系数因子,然后进行多项式合并 得到分段函数的解析式,程序最后部分通过判断输入值的区间自动选择对应的分段函数并计算 改点的值。附:追赶法程序chase %%%%%%%%%%%%%% function [newv,w,newu,newd]=sanwj(x,y,x0,y0,y1a,y1b)?%三弯矩样 条插值?%将插值点分两次输入,x0y0单独输入?% 边值条件a的二阶导数 y1a 和b 的二阶导数y1b,这里建议将y1a和y1b换成y2a和y2b,以便于和三转角代码相区别 ?n=length(x);m=length(y); if m~=n?error('x or y 输入有误,再来'); end?v=ones(n-1,1);u=ones(n-1,1);d=zeros(n-1,1);?w=2*o nes(n+1);?h0=x(1)-x0;?h=zeros(n-1,1); for k=1:n-1?h(k)=x(k+1)-x(k);?end v(1)=h0/(h0+h(1)); u(1)=1-v(1); d(1)=6*((y(2)-y(1))/h(1)-(y(1)-y0)/h0)/(h0+h(1));?% for k=2:n-1?v(k)=h(k-1)/(h(k-1)+h(k));?u(k)=1-v(k);?d(k)= 6*((y(k+1)-y(k))/h(k)-(y(k)-y(k-1))/h(k-1))/(h(k-1)+h(k)); end newv=[v;1];?newu=[1;u]; d0=6*((y(1)-y0)/h0-y1a)/h0; d(n)=6*(y1b-(y(n)-y(n-1))/h(n-1))/h(n-1); newd=[d0;d]; %%%%%%%%%%%% function intersanwj(x,y,x0,y0,y1a,y1b) %三弯矩样条插值?%第一部分?n=length(x);m=length(y); if m~=n?error('xory 输入有误,再来'); end?%重新定义h?h=zeros(n,1); h(1)=x(1)-x0; for k=2:n h(k)=x(k)-x(k-1);?end %sptep1调用三弯矩函数?[a,b,c,d]=sanwj(x,y,x0,y0,y1a,y1b);

实验四三次样条插值Word版

实验四三次样条插值的应用 一、问题描述 The upper portion of this noble beast is to be approximated using clamped cubic spline interpolants. The curve is drawn on a grid from which the table is constructed. Use Algorithm 3.5 to construct the three clamped cubic splines. 二、模型建立 三次样条插值 给定一个列表显示的函数 yi=y(xi),i=0,1,2,...,N-1。特别注意在xj和xj+1之间的一个特殊的区间。该区间的线性插值公式为:

(3.3.1)式和(3.3.2)式是拉格朗日插值公式(3.1.1)的特殊情况。 因为它是(分段)线性的,(3.3.1)式在每一区间内的二阶导数为零,在横坐标为xj处的二阶导数不定义或无限。三次样条插值的目的就是要得到一个内插公式,不论在区间内亦或其边界上,其一阶导数平滑,二阶导数连续。 做一个与事实相反的个假设,除yi的列表值之外,我们还有函数二阶导数y"的列表值,即一系列的yi"值,则在每个区间内,可以在(3.3.1)式的右边加上一个三次多项式,其二阶导数从左边的yj"值线性变化到右边的yj+1"值,这么做便得到了所需的连续二阶导数。如果还将三次多项式构造在xj和xj+1处为零,则不会破坏在终点xj和xj+1处与列表函数值yj和yj+1的一致性。 进行一些辅助计算便可知,仅有一种办法才能进行这种构造,即用 注意,(3.3.3)式和(3.3.4)式对自变量x的依赖,是完全通过A和B对x的线性依赖,以及C和D(通过A和B)对x的三次依赖而实现。可以很容易地验证,y"事实上是该插值多项式的二阶导数。使用ABCD的定义对x求(3.3.3)式的导数,计算dA/dx dB/dx dC/dx dD/dx,结果为一阶导数

基于径向基函数与B样条的散乱数据拟合方法

基于径向基函数与B 样条的散乱数据拟合方法 韩旭里,庄陈坚,刘新儒 中南大学数学科学与计算技术学院,湖南长沙 (410083) E-mail :zcjzym258@https://www.doczj.com/doc/e313590113.html, 摘 要:本文针对散乱数据的曲面拟合问题,提出了一种径向基函数与B 样条插值结合使用的曲面拟合方法.通过分片径向基函数插值,从三维散乱点获取有序网格点,利用张量积B 样条插值有序网格点,从而得到拟合曲面.该方法较好地解决了散乱数据插值和拟合的计算不稳定性问题.最后给出了算法实例. 关键词:曲面拟合; 高斯函数; 双三次B 样条插值; 径向基函数 1 引言 随着激光测距扫描等三维数据获取硬件技术的日趋完善,人们可以得到精度和密度都越来越高的物体表面三维数据,利用物体表面三维数据来建立真实物体数字模型也成为近年来国际图形学界的一种发展趋势,曲面重构作为这种建模方法的一个重要研究课题也得到了广泛的探讨和研究,成为国际上的研究热点之一.曲面重构可分为插值和逼近两种方法.曲面插值就是重构出来的目标曲面必须通过所有的采样点,包括型值点,边界及曲面内部法矢等信息;逼近曲面只是对采样点进行有权逼近,它不一定要求所有的采样点都落在目标曲面上,而只需要重构曲面满足用户的反求设计要求即可.本文笔者通过分析现有方法存在的困难,提出了一种基于径向基函数与B 样条结合使用的曲面拟合方法,较好地解决了散乱数据插值和拟合的计算不稳定性问题. 4][1][2][3][考虑用于多变量函数插值的径向基函数方法.给定函数R R →+:φ,对于数据{}R R f X d j j ?∈,,径向基函数插值法是要寻找如下形式的函数: ()(||||)j j f X a X X φ=?∑, 使其满足 ∑ (1) (||||).j k j k f a X X φ?=关于径向基函数,学者们已作了很多的工作,常用的径向基函数有: 10][7][8][9][(i) Kriging 方法的Gauss 分布函数: 22/)(σφr e r ?=(ii) Hardy 的Multi-Quadric 函数: ββφφ?+=+=) ()()()(2222r c r r c r ,(iii) Duchon 的薄板样条: 122)(ln )(+==k k r r r r r φφ,方程(1)对任何数据{}R R f X d j j ?∈,,当两两不同时都有解的充要条件是:对任 何两两不同的, 矩阵j X j X ||))(||(j k X X ?φ是非奇异的.正定函数是满足这种性质的函数.我们知道,Gauss 函数、逆Multi-Quadric 函数都是正定函数.对于数据量少的情况,径向基函数插值的结果较令人满意,而且计算也比较简单.但同时也存在一些问题,比如方程系数矩阵的条件数问题.径向基函数插值最终归结为求解一个线性方程组,在大数据时这是一个大规模矩阵的求逆问题.当数据较多时,得到的矩阵一般是数值不稳定的. 张量积B 样条插值也是实际中常用的插值方法.对于较均匀的矩形网格数据,其插值效

插值法原理

附:插值法原理 我们知道化学工程中用来描述客观现象的函数f(x)往往是很复杂的,通过实验可以得到的一系列离散点xi及其相应的函数值yi,而xi和yi之间有时不能表达成一个适宜的数学关系式。这种情况下,可以用表格来反应xi和yi之间的关系。但表格法不便于分析其性质和变化规律,不能连续表达变量之间的关系,特别是不能直接读取表中数据点之间的数据。例如水的物理性质(黏度、密度、焓、比热容、热导率、动力黏度、运动黏度等)是在化工过程研究与计算中常用的参数,教科书或手册上往往只给出每隔10℃的相关物理性质数据,而实际应用中常常需要知道任意给定点处的函数值,或者利用已知的测试值来推算非测试点上的函数值,这就需要通过函数插值法来解决。 插值法的基本思想就是构造一个简单函数y = P(x)作为f(x)的近似表达式,以P(x)的值作为函数f(x)的近似值,而且要求P(x)在给定点xi与取值相同,即P(xi) = f(xi)通常称P(x)为f(x)的插值函数,xi称为插值节点。插值的方法很多,这里介绍一元线性插值和二次插值。 1.一元线性插值 已知函数y = f(x),在x0,x1上的值为y0,y1,如何构造一个插值函数y =P(x),使之满足P(x0) = y0,P(x1) = y1,从而使得函数P(x)可以近似地代替f(x)的数据。 一元线性插值法是最简单的插值方法,即该插值函数P(x)是通过A(x0,y0) 与B(x1,y 1)两点的一条直线,以此来近似地表示函数f(x),此直线的方程为 y = P1(x) = y0+ (1) 式(1)中P1(x)是x的一次多项式,即一次函数,这种插值称为线性插值。 将上式整理,可以改写为

三次样条插值的C程序(很全啊)

三次样条插值C/C++程序(自己整理的) 具体推导看书<<数值分析>> code: #include using namespace std; const int MAXN = 100; int n; double x[MAXN], y[MAXN]; //下标从0..n double alph[MAXN], beta[MAXN], a[MAXN], b[MAXN]; double h[MAXN]; double m[MAXN]; //各点的一阶导数; inline double sqr(double pa) { return pa * pa; } double sunc(double p, int i) { return (1 + 2 * (p - x[i]) / (x[i + 1] - x[i])) * sqr((p - x[i + 1]) / (x[i + 1] - x[i])) * y[i] + (1 + 2 * (p - x[i + 1]) / (x[i] - x[i + 1])) * sqr((p - x[i]) / (x[i + 1] - x[i])) * y[i + 1] + (p - x[i]) * sqr((p - x[i + 1]) / (x[i] - x[i + 1])) * m[i] + (p - x[i + 1]) * sqr((p - x[i]) / (x[i + 1] - x[i])) * m[i + 1]; } int main() { int i, j;

freopen("threeInsert.in", "r", stdin); scanf("%d", &n); for (i = 0; i <= n; i++) scanf("%lf%lf", &x[i], &y[i]); // scanf("%lf%lf", &m[0], &m[n]); for (i = 0; i <= n - 1; i++) h[i] = x[i + 1] - x[i]; //第一种边界条件 //alph[0] = 0; alph[n] = 1; beta[0] = 2 * m[0]; beta[n] = 2 * m[n]; //第二种边界条件 alph[0] = 1; alph[n] = 0; beta[0] = 3 * (y[1] - y[0]) / h[0]; beta[n] = 3 * (y[n] - y[n - 1] / h[n - 1]); for (i = 1; i <= n - 1; i++) { alph[i] = h[i - 1] / (h[i - 1] + h[i]); beta[i] = 3 * ((1 - alph[i]) * (y[i] - y[i - 1]) / h[i - 1] + alph[i] * (y[i + 1] - y[i]) / h[i]); } a[0] = - alph[0] / 2; b[0] = beta[0] / 2; for (i = 1; i <= n; i++) { a[i] = - alph[i] / (2 + (1 - alph[i]) * a[i - 1]); b[i] = (beta[i] - (1 - alph[i]) * b[i - 1]) / (2 + (1 - alph[i]) * a[i - 1]); } m[n + 1] = 0; for (i = n; i >= 0; i--) { m[i] = a[i] * m[i + 1] + b[i]; } scanf("%lf", &xx); for (i = 0; i < n; i++) { if (xx >= x[i] && xx <= x[i + 1]) break ; } printf("%lf\n", sunc(xx, i));

三次样条程序

function [a b f]=spline3(x,y,flag,vl,vr) %三次样条插值函数 %(x,y)为插值节点,xx为插值点; %flag表端点边界条件类型: %flag=1:第一类边界条件(端点一阶导数给定); %flag=2:第二类边界条件(端点二阶导数给定); %flag=3:第三类边界条件; %vl,vr表左右端点处的在边界条件值。 %样条函数为:Si(x)=yi+bi*(x-xi)+ci*(x-xi)^2+di*(x-xi)^3 %b,c,d分别为各子区间上的系数值 %yy表插值点处的函数值. if length(x)~=length(y) error('输入数据应成对!'); end n=length(x); a=zeros(n-1,1); b=zeros(n-1,1); dx=a;dy=a; A=zeros(n);B=zeros(n,1); for i=1:n-1 dx(i)=x(i+1)-x(i); dy(i)=y(i+1)-y(i); end for i=2:n-1 A(i,i-1)=dx(i-1)/(dx(i-1)+dx(i)); A(i,i)=2; A(i,i+1)=dx(i)/(dx(i-1)+dx(i)); B(i,1)=6*(dy(i)/dx(i)-dy(i-1)/dx(i-1))/(dx(i)+dx(i-1)); end %---------------------------------% %端点一阶导数条件% if flag==1 A(1,1)=2; A(1,2)=1; A(n,n-1)=1; A(n,n)=2; B(1,1)=6*(dy(1)/dx(1)-vl)/dx(1); B(n,1)=6*(vr-dy(n-1)/dx(n-1))/dx(n-1); c=A\B; end %---------------% %端点二阶导数条件% if flag==2 A(1,1)=2; A(n,n)=2; B(1,1)=2*vl; B(n,1)=2*vr; c=A\B; end

拉格朗日插值公式的证明及其应用讲解

拉格朗日插值公式的证明及其应用 摘要: 拉格朗日(Lagrange)插值公式是多项式中的重要公式之一,在理论和实践中都有着广泛的应用.本文阐述了Lagrange 插值的基本理论,譬如:线形插值,抛物插值,Lagrange 多项式等.然后将线形插值,抛物插值,Lagrange 多项式插值分别应用到高中知识中,并且学会用计算机程序来编写.插值法的思想与中国剩余定理一脉相承, 体现了代数中"线性化" (即表示为求和和数乘的形式) 这一基本思路, 大巧若拙.本文的目的是通过介绍拉格朗日插值公式的推导,唯一性,证明过程及其在解题与实际生活问题中的应用来寻找该公式的优点,并且引人思考它在物理,化学等领域的应用.通过实际鉴定过程,利用插值公式计算生活中的成本问题,可以了解它的计算精度高,方法快捷. 关键词: 拉格朗日插值公式 唯一性 证明 解题应用 资产评估 曲线插值问题,直观地说,认为已知的一批数据点()n k k k f x 0,=是准确的,这些数据点所表现的 准确函数关系()x f 是未知的,在这种情况下要作一条近似曲线()x P 且点点通过这些点,插值问题不仅要讨论这种近似曲线()x P 的构造方法,还要讨论点增多时这种近似曲线()x P 是否稳定地收敛于未知函数()x f ,我们先研究一种简单常用的插值——拉格朗日插值. 一.定义,推导及其在解题中的应用 1.线性插值 1.1. 线性插值的定义 假定已知区间[]1,+k k x x 的端点处的函数值()k k x f y =, ()11++=k k x f y ,要求线性插值多项式()x L 1使它满足()k k y x L =1, ()111++=k k y x L . ()x L y 1=的几何意义:通过两点()k k y x ,和()11,++k k y x 的直线, 如图1所示,()x L 1的表达式由几何意义直接给出,即 ()()k k k k k k x x x x y y y x L ---+ =++111 (点斜式), 图1 ()11111++++--+--= k k k k k k k k y x x x x y x x x x x L (两点式). y=L 1x () y=f x () y k+1 y k x k+1 x k o y x

三次样条插值多项式matlab

三次样条插值多项式 ——计算物理实验作业四 陈万物理学2013级 主程序: clear,clc; format rat x = [1,4,9,16,25,36,49,64]; y = [1,2,3,4,5,6,7,8]; f1 = ; fn = 1/16; [a,b,c,d,M,S] = spline(x,y,f1,fn); 子程序1: function [a,b,c,d,M,S]=spline(x,y,f1,fn) % 三次样条插值函数 % x是插值节点的横坐标 % y是插值节点的纵坐标 % u是插值点的横坐标 % f1是左端点的一阶导数 % fn是右端点的一阶导数 % a是三对角矩阵对角线下边一行 % b是三对角矩阵对角线 % c是三对角矩阵对角线上边一行 % S是插值点的纵坐标

n = length(x); h = zeros(1,n-1); deltay = zeros(1,n); miu = zeros(1,n-1); lamda = zeros(1,n-1); d = zeros(1,n-1); for j = 1:n-1 h(j) = x(j+1)-x(j); deltay(j) = y(j+1)-y(j); end % 得到h矩阵 for j = 2:n-1 sumh = h(j-1) + h(j); miu(j) = h(j-1) / sumh; lamda(j) = h(j) / sumh; d(j) = 6*( deltay(j)/h(j)-(deltay(j-1)/h(j-1)))/sumh; end % 根据第一类边界条件,作如下规定 lamda(1) = 1; d(1) = 6*(deltay(1)/h(1)-f1)/h(1); miu(1) = 1; d(n) = 6*(fn-deltay(n-1)/h(n-1))/h(n-1);

相关主题
文本预览
相关文档 最新文档