当前位置:文档之家› 射出成型技术入门

射出成型技术入门

射出成型技术入门
射出成型技术入门

射出成型简介

1 射出成形之基本知识。

1.1 射出成形的特征以及组成。

射出成形是将溶融的成形材料以高压的方式填充到封闭的模具内,射出成形的模腔内承受的压力约400KGF/CM2,大约为400个大气压,以这样高的压力来制作产品是它的特征,这是它的优点也是它的缺点。也就是说模具必须制作得相当坚固,因而模具价格也相当昂贵,因此必须大量生产以便与高价的模具费用互相扣抵,例如每批之生产量必须10000PCS以上才合理,换句话说;射出成形的工作必须以大量生产才行。

成型过程所说几个步骤:

1.1.1关门

安全门上才开始成型。

1.1.2 锁模

将移动侧的移动板前进,使得模具关闭,模具关闭以后确实地把模具锁紧。

1.1.3 射出(包括保压)

螺杆快速地往前推进,把熔融之成形材料注入模腔内填充成形,填充之后压力要必须继续保持,这个动作特别取名为“保压”。在刚充填时模具承受的压力,一般叫做射出压或者叫做“一次压”。

1.1.4 冷却(以及下个动作的可塑化工程)

模腔内之成形材料等待冷却凝固之过程叫“冷却”。在这时候射出装置也准备下次工作,这个过程叫做“可塑化过程”。放在料斗里的成形材料,流入加热的料管内加热,是依据螺杆旋转把原料变成熔融状态,螺杆像拨取螺丝的原理一样,一面转一面后退,螺杆前端会储存熔融之成形材料,螺杆旋转时,抵抗螺杆向后退的压力称之为螺杆的“背压”。

1.1.5 打开模具

将移动侧的移动板向后退,模具跟着打开。

1.1.6 打开安全门

安全门打开,这时成形机处于待机中之状能。

1.1.7 取件

将成品取出,然后检视确认模具内未残留任何物件再关门.以上整个成形作业叫做一个CYCLE成型。

成品是由模具的形状成形出来。模具是由母模及公模组合成,公母模模仁之间留有空隙,材料在此流入压缩形成产品。成型材料要流入公母模之前的通路有主流道(SPRUE)流道(RUNNER)闸门(GA TE)等。

1.2 射出成形机

射出成形机以较大项目来区分,可分为两项,锁模装置和射出装置。

1.2.2 锁模装置

将模具关闭不被打开,成形材料在模腔内冷却凝固后,模具才打开然后取出成品等等动作的设备装置之锁模装置。

1.2.3 将成形材料射出,填充到模腔内的设备装置称之射出装置。此两个装置组合而成为射出成形机。

下面继续说明射出成形机的能力,射出成形机之能力基本上是下述3项规定来区分。

A 锁模力

射出时,模具不被打开之最大锁模力,以TON数来表示。

B 射出量

一次射出之重量,一般都是以多少克来表示。

C 可塑化能力

一定的时间内能够熔解多少量的树脂,一般都是以多少克来表示。

最重要的是锁模力,成形品的投影面积,是指以模具开闭方向垂直此方向的投射影子面积(实际也可说模具之面积)。模具内平均压力加到投影面积就叫做锁模力,锁模力如果是模具的“投影面积×平均压力”大于“锁模力”时模具之公母模就会被推开。

锁模力=投影面积×模具内平均压力

一般而言,模具内所能承受的压力为400KGF/ Cm2,因此多以此数字来计算锁模力,但是,锁模力常会因成形材料及成形品的形状不同而不同,差异比较大之参数如PE、PP、PS、ABS原料,这些原料用来做深度较浅的箱子,其参数为300KGF/CM2,若作深度较深的箱子其参数400 KGF/CM2,若作小型精密高的成品,投影面积大概在10CM2以下时,其参数600KGF/CM2,PVC、PC、POM、AS、等原料,这些原料用来做深度较浅的箱子,其参数为400KGF/CM2,若作深度较深的箱子其参数500KGF/CM2,若做小型精密高的成品,投影面积大概在10CM2以下时,其参数800KGF/CM2。(如表)

模腔内平均压力值(单位KGF/Cm2)

现在的射出成型机,一般说来射出能力都相当大,锁模力如果足够的话,实际上在使用时都没有什么问题,但是每次在定成形品之射出量时一定要确认是否包含了主浇道(SPRUE)流道(RUNNER)全部总合的重量。

可塑化的能力一般来说应该没有什么问题,但是在成形品重量相当重且成形的速度又很快时,如果每一循环的成形时间设定得太短时,可塑化的能力就会有不足现象发生,这点应特别注意。

其他重要的项目有大柱之间隔以及行程,如图

B

大柱

所谓大柱,就是射出成形机支撑移支板及固定板的棒子,模具只能在TIE—BAR之内侧才能安装进出。

D

所谓开模行程,就是指成形机的移动板向后退到底时,移动板与固定板之间的距离.锁模装置一般地说,可分为直压式以及曲轴式两种.

1.3附带之设备

1.3.1模具温度控制器

模具温度控制器,是用来冷却模具而使成形品凝固定形.模具的温度原则上是公模,母模分开来控制才较理想,模具温度控制器的水如果想降低到很低温度时,例如要5℃,此时模具温度控制器就要以冷冻机来代替。

另外,一般的水到了95℃以上时便无法正常使用,此时模具温度控制器就必须使用特殊的耐热油,有时模具温度控制器也和电热棒一起使用。

1.3.2原料干燥机以及材料供给装置

通常射出成形机都装置有烘干用的料斗,其上装有鼓风的风车,烘干用的料斗是为了使成形原料干燥去水份。

一般的PS、PP等成形用之材料,以烘干用的料斗来烘干已经十分足够的,但是,要求特别干燥的工程塑胶,高功能的塑胶要成形时,就必须以除湿式热风干燥机来干燥材料不可。1.3.3粉碎机(浇道用)

浇道,流道的粉碎机,主要是用来粉碎模具之浇道与流道,使粉碎后之粉碎料能再度使用之机器。粉碎后的浇道流道再回料斗中使用,要注意再生料不可放入太多,一般多在20%以内才可。

1.3.4热胶道控制器

能有效的调节流道温度来控制成品,节省原料,品质稳定,成型周期短效率高但价格昂贵,易损坏。

2.塑胶的基本知识

2.1塑胶的种类以及用途

塑胶是从石油中提炼出来,经过人工复合而成,具有高分子量的有机物并具有可塑性。

塑胶的优点有:一次即可成形成品、具有高速率生产性、任何形状都可制作、外观美丽、

产品的质量轻。因有上述的特点所以塑胶产品品质良好,可大量制造以及价格便宜。塑胶也有其缺点:耐热性差、刚性很低易脆化、不耐油、易燃烧,特别是抗热性,与金属相比较时,塑胶的抗热性非常差。

塑胶若以较大项来分类时,可分为两大类:

一是热可塑性塑胶——加热时变较,冷却后变坚固,可反复回收使用。

一是热固化塑胶——加热时变较,冷却后变坚固再加热也无变化,不可回收使用。

热可塑性塑胶:其分子构造如表,所见的长形线状,当加热时会移动变软,冷却后则形成不会移动的坚固物体。

热固化塑胶:开始时短的线状会移动的,但加热时,会互相边连结成网目状,变成不可移动的坚固物体,冷却后也无法恢复成原料的状态。

塑胶的分子构造

热可塑性塑胶热固化性塑胶

线状网目状

目前,常常使用的塑胶有热可塑胶性塑胶及热固化塑胶,它们可用下表之方式来分类

热可塑性塑胶又可分为结晶性塑胶以及非结晶性塑两大类

结晶性塑胶是分子排列规则较高。

非结晶性塑胶是分子排列成无定形的构造所有叫非结晶性塑胶。

结晶性塑胶及非结晶性塑胶成形时,其收缩率相当大,结晶性塑胶中PE的收缩率为2.5%、PP为1.6%、POM为1.7%,如果其数值如下表,从此资料可以知道非结晶性塑胶比结晶性塑胶其射出成形之产品可以达到较高之精密度。

选择塑胶材料,除了要注意成品之外观尺寸的精密度、强度以及耐热性、耐药品性、耐天候性等之因素外,成形的难易度、价格的总成本等等因素皆须去确认与估算。

首先讨论使用之温度范围大概在多少度这个问题,一般成形品使用在—20℃到+65℃,若超出这个范围之外使用时,必须选用特殊之材料。

再来讨论油及药品附着之问题,一般塑胶制品是以不会附着到油及药品之条件来使用,如果有须使用在会附着油及药品时,PS、AS、ABS、PC等类原料不可使用这时须使用PP、POM、PA等原料。

再来讨论屋外使用之状况,一般塑胶制品是以室内使用为主,如果必须用在屋外时,则须使用耐候性级数高原料。

上表说明

PP 价格便宜,肉薄时也能成形耐热性普通,耐油性很好,精度差耐候性差,耐候性差。

POM刚性强磨擦系数小耐热性耐油性很好,耐候性差价格贵,精度度无法达到很精密为其特征。

PS 价格便宜,精密度高,成形容易,也能达到透明度之要求,但是反面来说耐热性,耐油性耐候性都不好。

ABS可以达到高精密度,韧性好物性佳是它的特征,但耐热性普通。

PC 非常地强韧,透明性耐热性也都很好。

各种塑胶材料的用途

PP 用在塑胶桶、洗衣机水糟、自动车之挡板等地方,是因为其耐药性及柔软性好。

POM 用在VTR之齿车、含油轴座,是因为其耐韧性及搞磨擦性高。

PS 用来作电视机之前壳、汽车之内装板,是因为其外观性良好以及具有韧性之优点。

PC 用来作照相机手机本体是因为精密度高及韧性强,用来作CD壳子,是利用其

透明性好之优点。

射出成形技术入门

1 成形条件

以PS原料及成形的范例,射出成形的原则为“熔解”“注射”“冷却”等三个阶段。

1.1“熔解”的工程

1.1.1料管温度

料管的温度,每一区须设定在多少温度是一般的常识(区分为料管灌嘴,前部、中部、后部)。

成形条件中比较重要的是,螺杆前端停滞原料的温度,成形操作中直接测定是比较困难且无法执行,所以以料管前端的温度当作材料之温度,料管之温度由前端开始设定,如果前端分成2部份时把它当作同样的温度。

材料之温度,首先参考制造商提供的资料以及模具实际情况来决定,这样先决定料管前端之温度,然后再来设定后部之温度。后部的温度如果太高的话,成形材料立即软化在螺杆上后面的原料就无法被加进去,所以后部须比前部降低20℃之温度。

灌嘴的温度设定,原则上灌嘴的温度应与料管前端的温度一样不可下降,但是如果不下降一点的话,材料会从灌嘴处流漏出来,所以灌嘴的温度比料管前端温度降低10℃。1.1.2螺杆的回转速

成形材料是以螺杆回转来使其熔解,回转的速度太快时因磨擦过多产生过热现象,回转速度太慢时拉长—循环成形的时间因而使成本提高,基本上以不产生过热现象转速快一点来设定。也不要设定太快。

1.1.3螺杆的背压

为了防止螺杆快速的后退,必须给螺杆有个压力,螺杆的背压太低时,因成形材料熔融时,产生的气体会使螺杆后退,那么熔融的成形材料料量就不稳定,如果螺杆的背压太高时,螺杆后退的速度慢,因而使一个循环的时间也增长,背压会使材料的混合达到良好之状态,承受背压的螺杆转速如果快一点,会使材料之混合更好,但是回转速不能太快,背压也不能太高,否则螺杆回转太快了,会因磨擦过剧而产生过热现象。

螺杆背压的多少是以压力表的度数来表示如表上指着10KGF/CM2的话,则实际上背压即为10KGF/CM2。

1.2射出的工程

1.2.1 射出量

是以螺杆后退到所定位置来决定射出量,即指成形材料充填到模具内材料的重量,实际上当螺杆后退到一定的位置后仍然会继续向后退一点,就像螺杆向前进到某一位置后也无法完全切断不让材料继续射出一样,这种虽然到达所定位置应切断停止,却无法切断停止而继续动作的位置,我们叫做“CUSHION”(垫料)。

成形品的体积,是垫料量加上螺杆后退到所定位置来决定。通常垫料量大概为5—10MM程度,例如实际料量需60MM时,应设定为65—70MM,因为垫料量为5—10MM。

1.2.2 射出速度

射出速度是由螺杆前进的速度来决定,螺杆前进速度是指根据机台上已设定的程序,使螺杆由一个位置换到另一个位置,开始时射出速度等于螺杆前进速度,也就是以射出速度来称呼,成形的原则是,材料尚未冷却下来前趁早把材料射出去,所以射出速度应愈早愈快愈好,但是因为模具的不同也有无法趁早快速射出的情况,例如射出速度太快时,由闸门射出材料会造成喷痕的不良现象。

1.2.3 射出压(一次压)

射出压就是把成形材料在瞬间内充填到模具腔内的压力,在许多成形条件中模具的压力变化是属于重要的一个,所以以后要详细说明。在这里我们说的射出压即为螺杆向前推的油压压力。对射出成形机来说,射出压与射出速度是有互相关连的,也就是说射出压力不高时,射出速度也无法达到快速的情况。新作的模具第一次试模时,应以中压中速为益,这是为了避免不小心因射出压太高而使模具损坏。

成形机的设定压力与表压互相关连的换算表,所显示的数字与模具实际的压力并不一样,换算表上所显示数值的1/2等于模具内的压力数值,模具内压力一般为400KGF/M2,压力太高除了会产生毛边之外也会使模具受到损害,所以切记压力不可调得太高,但是压力太低了材料无法在模具各角落都充填得到。

1.2.4 模具温度

模具温度因模具水路位置不同会有所不同,

模具温度的设定的程序,开始把模具温度控制器的水温设定,然后母模与公模分别使用模具温度控制器,水温之温度设定开始时与模具温度一样,母模及公模开始时一样温度。

模具温度高的时候,成形品冷却慢但成形材料流动性较好但会使循环时间长,所以模具温度不要太高。

1.3 保压的工程

1.3.1 保压切换(二次压切换)

为使成形材料于模具内完全地充填,成形机必须于瞬间内给予射出压力,然后保压维持一段时间这样的过程叫做射出成形技术过程。

如果射出压不变地保持一段时间,这样会在GATE附近承受有害的压力以至会有变形及破裂情形发生,也就是射出压力太高,但是射出压力不高,材料又无法在模具各处充填完全,像这种状况就必须想个办法(TECHNIC)来解决。

我们以保压切换位置来说明,何时射出压(一次压)转换成保压(二次压),保压切换是设定螺杆前进位置的基本,当螺杆后退到所设定之位置,其与保压切换位置间距即为螺杆前进量,也就是射出量,射出量如果不够的话,射出压是不会上升,当一次压与二次压在转换时,想要求螺杆前进在某预定的位置立即停止将办不到,因为螺杆会继续前进一点,保压切换位置就是一次压完结之后切换掉使螺杆停止,但是螺杆仍然继续走的位置。

二次压完了之后,螺杆位置在垫料的位置上,保压切换位置比垫料大一点,通常比5mm大一点。

1.3.2 保压(二次压)

在这里保压首先以射出压之1/2来调整,然后观察产品,再调高直到射出压之80%程度为止。

有的成形机,可以用程序来调整,保压随着时间的延长而渐减,开始时一样的一次压压力,太高时闸门周围因不合理的压力影响会变形以及破裂现象发生,但是压力太低成形品的尺寸每次变化相当大,或者欠肉或者会胶线等成形不的的情形发生。

1.3.3 保压时间

保压的原则是,维持成形材料在模具冷却到无法再流动为止,但因闸门有封堵的作用,所以如果闸门冷却凝固后,保压的效果就无作用,维持保压的时间如果太短,压力就放掉,这样保压的效果就会消失,成品会有欠肉缩水等不良情况发生。

1.4 凝固的工程

1.4.1 冷却时间

冷却时间是指保压时间完了之后到模具打开为止所设定的时间,成形材料在模具内冷却,然后由模具取出必须不变形而且坚固才行,冷却时间如果设定太长会使成形的循环时间变长。模具的温度低会使冷却时间缩短,如果冷却时间太短了会使模具内取出的成形品变形。

但是实际成形时,在冷却的这段时间内,也正在为下次成形做可塑化工程,也就是螺杆一面回转一面往后退到所设定的位置,这段时间的长短,应可包含在冷却时间内,如果可塑化的时间比冷却时间长的话,成形的冷却时间就会浪费,这时为了要避免此浪费,可以把螺杆之回转以及螺杆的背压调整,也就是回转数提高或者降低背压这样可以缩短可塑化的时间。

冷却时间是成形循环时间中最长的时间,如果能把冷却时间缩短可以降低成本费用。1.4.2 成形循环(CYCLE TIME)

成形循环是一个成品生产出来到另外一个成品生产出来的时间,在成形机上可以用“定时”来设定为多少时间,在成形如果安全门打开的时间过长,比所定的循环时间还长时,警报器会叫起来,如果安全门打开的时间很短,但是成形循环所定之时间还未到达,下次成形动作也无法开始,为了使产品的尺寸不会有变化起见,每次成形循环(CYCLE)之时间要一定。

如果依照一般原则(在材料未冷却下来时及早把材料射出去),充填时间应该较短较好,充填的时间是可以用射出速度及射出压来调整,为了使模具各个位置都能充分填满材料,射出压高一点比较好而且也有必要,但是射出压应立即换成保压,为的是使闸门附近不会承受到不必要压力。射出压是以成形机的射出压及保压切换位置以及射出速度来调整,保压是以成形机的保压以及保压时间来调整,一般地,保压大概是射出压的1/2程度,成形机所说的保压,实际也是模具内压力会渐渐的下降,这是因为成形材料会渐渐地冷却下来变坚固而引起的结果。

当模具内压力如果降到0时,继续做保压的工作是完全没有效果的,当然成形条件,是由成形机各部的开关操作来控制,像这样模具内压力的变化,以模式来操作成形机器,所得到成形条件的效果就会很好,如果操作都能照此模式来设定成形条件,成品的尺寸变化就不会发生。

模具内压力变化的模式,不包含可塑化工程,也就是料管的温度、螺杆的转速、螺杆背压的变化。

料管的温度,如果长时间的测定时,会有像波浪一样有高有低的情形发生。当螺杆前进至保压切换位置时,仍高速继续前进,将导致保压切换位置延误,如果有这种状况时,则在保压切换位置前,设定程序把速度减小,以便保压切换的变动减少。特别当射出压到达时立即转换成保压状态。会出现模具之压力变化图的标准模式,则成形品的品质良好,尺寸变化也非常地小。

1.5成形条件的平衡

因成形条件操作有时会有满足这个条件,但无法满足那个条件,所以实际成形时,成形条件的平衡相当重要。

就以PS在成形时,会有毛边,欠肉,会胶,不好脱模的例子来说明,射出压(一次压)太低时,虽然易于脱模不易产生毛边,但是产生欠肉及会胶的状况,反过来说,射出压(一次压)太高时,虽然欠肉,会胶不易发生,但毛边易发生,脱模困难。

像这样达到这个要求,相对地就无法达到别个要求,如果仅以射出压的调高或调低来解决,会有困难的。

实际的成形条件是

料管之温度调低、模具温度调高、射出速度要快、射出压(一次压)要低、保压(二次压)要高、保压时间要长,以上述原则实际来试试看,试后再以样品来参考,调整不好再调,调到整个条件都平衡才来定成形条件。

2.不良现象的观察以及原因

如何有把握地观察到不良现象?

首先观察其外观是否与标准一致?不良品首先多由外观显现出来,如果外观没有问题,再检查尺寸,外观与尺寸都没有问题时,再以强度来确认看看。

在成形现场作外观检查时,须以标准样本以及限度样本比照方式来判断。

以尺寸不良的例子来说明一般不良的原因,有下列3个因素(其他不良项目也可以此方式来考虑)。

2.1.1成形材料的不稳定

昨天没有发生不良,但今天却发生不良,这种状况以成形材料的不稳定引起之成份较大,所以每批的成形材料有变化时,一定要先调整成形品的成形条件。

2.1.2 模具的精确度大低(模具的误差)

主要是,因工作的精确度不好引起。

有些模具第一次开始生产时就有毛边,所以新的模具一定要在量产前,就要把所有尺寸检查完成不可。

其次是,成形收缩率的设定不对。

新的模具、新的成型机、或者新的材料在生产时,一定要连续生产到一定的数目,然后量尺寸,例如,生产100个,把成品尺寸标出来,当其中心值与设计数值不一样时,可能是成形收缩率设定不对,成形收缩率,会因成形材料、成形机、模具、成形品的形状、成形条件而有不一样。

使用时精确度不好

模具静止时,检查结果精确度很高,但是成形时,因压力及温度的变化,影响模具的结构因而降低其精确度。这是因为成形机之动作而引起成形之不良,所以在模具设计的阶段就要将模具的目标,设定在高精密及高刚性上,此点很重要。

磨损及破损之情形发生时。如有毛边产生时,应立即送去修理,另外在闸门地方因磨耗而使得材料之流动状况有变动,也会使尺寸产生变化,所以模具须每日检查及定期检查。2.1.3 成形条件的变化(成形的变化)

成形条件,因成形机的不同而会有异,成形条件是指温度、压力、时间、速度、位置等,虽然成形机表上刻度定在同样之位置,实际的成形条件也会不一样,不会一样的原因也有外在因素。

成形现场的室温如果能控制一定,与对成形不良的解决非常有效果,针对尺寸的准确,要特别注意成形压力、模具温度及室温,室温应保持一定,而且每一成型循环时间要严格遵守,如能确实做到则不良情形会降低。

2.2 不良再发生的防止

成型不良原则上非做到“0”的情况是不可能,切记一点“不良无法避免的想法”,是不可以有的,为发防止不良之再发生,一个一个不良的地方应确实的改正,有时良品与不良品都无法确定的情形下就生产,然后再来检查好的与不好的,不良原因不把它完全排除掉,所生产的货品如有不良品混入,这样一定会产生问题。

今日一般塑胶的制品以品质方面的例子来说明,成品的尺寸精密度的问题,如果能做到交进去的成品100%全数是良品时,进料检查不须做,直接就到现场去组装加工。

这种交货方式,如果发生品质异常时,问题就相当大,所以成形业制造产品时,品质必须彻底管控好,同时也要附上出货检查表,这样才能实际地把品质问题完全解决,客户安心而且也不必费人工时间去做进料检查工作,这样客户会对此种成型制造厂优先地给予定单,因此成型工厂对于检验设备的充实是不可欠缺疏忽的。

检验并不是挑选良品,而是以重要之尺寸来确认是否是良品,成型条件有变动时那一批也须全数检查。

常用计算公式

1.模具重量: 长x 宽x 钢比重/1000=KG

2.射出重量:

3.14 x螺杆直径平方/4 x原料密度(0.8)x设定值/1000

3.射出压力: 射出油压缸截面积平方/螺杆截面积平方x设定压力值

4.缩水率: (模仁尺寸-成品尺寸) /模仁尺寸(成品尺寸x0.994=缩水率尺寸)

注塑成型基础知识详解

0 1 注塑机类型及成型原理卧式注塑机 立式注塑机 注塑成型原理

注塑成型又称注射模塑成型,它是一种注射兼模塑的成型方法。 注塑成型方法的优点是生产速度快、效率高,操作可实现自动化,花色品种多,形状可以由简到繁,尺寸可以由大到小,而且制品尺寸精确,产品易更新换代,能成形状复杂的制件,注塑成型适用于大量生产与形状复杂产品等成型加工领域。 在一定温度下,通过螺杆搅拌完全熔融的塑料材料,用高压射入模腔,经冷却固化后,得到成型品的方法。 该方法适用于形状复杂部件的批量生产,是重要的加工方法之一。 Demag住友德马格

德马格塑料集团(Demag plastics Group)是德国注塑机制造商,也是较早螺杆往复式 注塑机生产厂商。 德马格塑料机械(宁波)有限公司是德马格塑料集团在中国设立了10年的独资企业,生产由50t至280t机型; 德马格在中国宁波生产的精密注塑机在国内手机,接插件,导光板,医疗化妆品包装,汽车零部件等众多领域都得到了广泛的应用。 德国的品质和性能,国产的优好性价比使公司产品受到广大客户的欢迎。 0 2 历史 在1868年,海雅特开发了一个塑料材料,他命名为赛璐璐。 赛璐璐已经于1851年由亚历山大?帕克斯发明。海雅特改善它,使它能够被加工为 成品形状。

海雅特同他的兄弟艾赛亚于1872年,注册了第一部柱塞式注射机的专利权。这个机器比20世纪使用的机器相对地简单。 它运行起来基本地像一个巨大的皮下注射器针头。这个巨大的针头(扩散筒)通过一个加热的圆筒注射塑料到模具裏。 在20世纪40年代第二次世界大战做成了对价格便宜、大量生产产品的巨大需求。价格低廉,大量生产的产品。 1946年,美国发明家詹姆斯沃森亨德利建造的第一个注塑机,这使得更精确地控制注射速度和质量产生的物品。本机还使材料混合注射前,使彩色或再生塑料可被彻底混合注入原生物质。 1951年美国研制出第一台螺杆式注射机,它没有申请专利,这种装置仍然持续在使用。在20世纪70年代,亨德利接着开发了首个气体辅助注塑成型过程,并允许生产复杂的、中空的产品,迅速冷却。这大大提高了设计灵活性以及力量和终点制造的部件,同时减少生产时间、成本、重量和浪费。 KraussMaffei克劳斯玛菲

最近的塑胶射出成型技术

一、前言 射出成型系統包括了射出成型機、模具、成型條件、成型方法、成型品設計等重要因素,成型品的品質、成本即受這些因素之影響,而各項因素又會互相干擾。 射出成型機在全電動化、精密控制、專用機台等方面的進步很顯著,尤其是全電動射出成型機的訂單已超高油壓式射出成型機,其優點在於精密控制性以及節約能源方面。 電動射出機以小型機為主,但最近已有鎖模力超過1000噸的大型機了。各公司並開發DVD、連接器、微齒輪等精密成型品的專用成型機。此外模具也在精密化、熱澆道等方面進步顯著。以下因篇幅所限,將以最近的成型法為中心,介紹其代表性例子。 二、超高速射出成型 模穴充填壓力要進一步均一化,可採用多種方法,其一為提高射出速度。對薄肉或複雜形狀的模穴,為將熔融塑料充填至最末端,各公司均開發出超高速射出成型機。可成型厚度0.5mm以下的薄製品,日本FANUC公司利用線性馬達,使射出速度達2000mm/s,加速度13G以上,用此超高速成型機製造厚度0.13mm 的喇叭筒。日精樹脂工業公司則以油壓機開發出射出速度2000mm/s的機台。 熔融塑料是非牛頓性流體,其粘度會隨剪切速度而下降,塑料更因射出成型時的剪切發熱而流動。(圖1)為60*290*2mm的模穴在充填後立即試算出來的料門至145mm位置的塑料溫度分布圖。射出速度愈大,模具壁面相接之固化層部分發生更多剪切發熱,使其溫度上升而阻止固化層的形成,促進塑料流動。射出成型時在最易冷卻的部分,對與固化層相接部位施以最大剪切速度,使該部分粘度下降,且引發自行發熱而保持流動,這是巧妙應用熔融塑料特性的成型法。

三、低壓射出成型 成型品單位投影面積鎖模力為0.3噸/cm2左右者,為一般的射出成型,低壓射出成型的鎖模力則多在其一半以下。代表性的成型法為射出壓縮成型法(圖2),不但模內壓力均一,塑料可均一地流動至模穴末端(圖3),流動長度也可增至2倍(圖4)。0.6mm厚的光碟、各種電子儀器的薄肉外殼等均可用此法成型。射出壓力可精密控制的低壓成型,已被各種射出成型機所採用。

材料成形技术基础知识点总结

材料成形技术基础第一章 1-1 一、铸造的实质、特点与应用 铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。 1、铸造的实质 利用了液体的流动形成。 2、铸造的特点 A适应性大(铸件重量、合金种类、零件形状都不受限制); B成本低 C工序多,质量不稳定,废品率高 D力学性能较同样材料的锻件差。力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松,成分不均匀 3、铸造的应用 铸造毛胚主要用于受力较小,形状复杂(尤其是腔内复杂)或简单、重量较大的零件毛胚。 二、铸造工艺基础 1、铸件的凝固 (1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程。它由晶核的形成和长大两部分组成。通常情况下,铸件的结晶有如下特点: A以非均质形核为主 B以枝状晶方式生长为主。 结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒。晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或混合组织等。 (2)铸件的凝固方式 逐渐的凝固方式有三种类型:A逐层凝固B糊状凝固C中间凝固 2、合金的铸造性能 (1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。 生产上改善合金的充型能力可以从一下各方面着手: A选择靠近共晶成分的趋于逐层凝固的合金,它们的流动性好; B 提高浇注温度,延长金属流动时间; C 提高充填能力 D 设置出气冒口,减少型内气体,降低金属液流动时阻力。 (2)收缩性 A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中。对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。适当控制凝固顺序,让铸件按远离冒口部分最先凝固,然后朝冒口方向凝固,最后才是冒口本身的凝固(即顺序凝固方式),就把缩孔转移到最后凝固的部位——冒口中去,而去除冒口后的铸件则是所要的致密铸件。 具有宽结晶温度范围,趋于糊状凝固的合金,由于液固两相共存区很宽甚至布满整个断

材料成型工艺基础部分复习题答案

材料成型工艺基础(第三版)部分课后习题答案 第一章 ⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响? 答:①合金的流动性是指合金本身在液态下的流动能力。决定于合金的化学成分、结晶特性、粘度、凝固温度围、浇注温度、浇注压力、金属型导热能力。 ②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。 ⑷.何谓合金的收縮?影响合金收縮的因素有哪些? 答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。 ②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。 ⑹.何谓同时凝则和定向凝则? 答:①同时凝则:将浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。 ②定向凝则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 第二章 ⑴.试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。 答:石墨在灰铸铁中以片状形式存在,易引起应力集中。石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。石墨化不充分易产生白口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。 ⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同? 答:①主要因素:化学成分和冷却速度。 ②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。 ⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁? 答:①经孕育处理后的灰铸铁称为孕育铸铁。 ②孕育铸铁的强度、硬度显著提高,冷却速度对其组织和性能的影响小,因此铸件上厚大截面的性能较均匀;但铸铁塑性、韧性仍然很低。 ③原理:先熔炼出相当于白口或麻口组织的低碳、硅含量的高温铁液,然后向铁液中冲入少量细状或粉末状的孕育剂,孕育剂在铁液中形成大量弥散的石墨结晶核心,使石墨化骤然增强,从而得到细化晶粒珠光体和分布均匀的细片状石墨组织。 ⑻.为什么普通灰铸铁热处理效果没球墨铸铁好?普通灰铸铁常用热处理方法有哪些?目的是什 么? 答:①普通灰铸铁组织中粗大的石墨片对基体的破坏作用不能依靠热处理来消除或改进;而球墨铸铁的热处理可以改善其金属基体,以获得所需的组织和性能,故球墨铸铁性能好。 ②普通灰铸铁常用的热处理方法:时效处理,目的是消除应力,防止加工后变形;软化退火,目的是消除白口、降低硬度、改善切削加工性能。 第三章 ⑴.为什么制造蜡模多采用糊状蜡料加压成形,而较少采用蜡液浇铸成形?为什么脱蜡时水温不应达到沸点? 答:蜡模材料可用石蜡、硬脂酸等配成,在常用的蜡料中,石蜡和硬脂酸各占50%,其熔点为50℃~60℃,高熔点蜡料可加入塑料,制模时,将蜡料熔为糊状,目的除了使温度均匀外,对含填充料的蜡料还有防止沉淀的作用。

射出成型工艺

射出成型工艺 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

射出成型工艺 图1 塑胶射出流程 注塑过程中的关键步骤: 1. 塑化计量 1)塑化 达到组分均匀、密度均匀、黏度均匀、温度分布均匀。 2)计量 保证将塑化好的熔体定温、定压、定量射出。 3)塑化效果和能力 柱塞式射出机、螺杆式射出机(普通螺杆塑化、动力熔融)。其中螺杆式射出机的塑化能力强于柱塞式射出机。 2.射出充模 1)流动充模 射出过程中注塑压力和速度的变化。 射出压力与熔体温度、熔体流速的关系。 射出压力与熔体充模特性(充模流动形式和充模速度)的关系。 2)保压补缩 保证将塑化好的熔体定温、定压、定量射出。 保压力、保压时间和模腔压力之间的关系会影响制件的密度、收缩及表面缺陷。

射出成形加工考虑要点 1.模具成形温度 模温过低:熔体流动性差,制件上产生较 大应力、熔接痕,表面质量差。 模温过高:冷却时间、收缩率、翘曲变形 均增大。 模温影响射出的成型性、成型效率、制品 品质。尤其对流动性、尺寸安定性、表面光泽 及内应力有绝对影响. 2. 塑料温度 若低于黏流温度:不利于塑化,熔料黏度 大,成型困难,易出现熔接痕,表面无光泽或 缺料。 若高于热分解温度:引起热降解,导致之间物理和力学性能变差。 3. 螺杆回转速度 当进料时,螺杆回转并在背压作用下向后退,其回转速度将主要影响螺杆对物料的塑化能力,此外对料温也会产生影响。 螺杆转速达到一定数值后,综合塑化效果下降。 4.背压设定 与螺杆转速一起影响螺杆对物料的塑化效果,要综合考虑背压力和螺杆转速的设定。 背压大而螺杆转速小时会发生逆流。 背压过小会使空气进入螺杆前端。 5.射出成形压力 若射出压力过小:模腔压力不足,熔体难以充满模腔。 若射出压力过大:涨模、溢料,压力波动 较大,生产难于稳定控制,制件应力增大。 射出压力确定原则:根据条件,射出压力 尽量高,有助于提高充模速度、熔接痕强度, 防止缺料,使收缩率减小;但同时要注意避免 喷射流动。 6. 射出成形速度 若射出速度过小:制件表层冷却 快,易发生缺料、分层和熔接痕 若射出速度过高:维持熔体温 度,减小熔体黏度,制件比较密实均 匀容易产生喷射,在排气不良时会使 制件灼伤或热降解 同时应当注意要改变聚合物黏度 时应根据聚合物黏度对温度敏感性和 对剪切速率敏感性两个因素确定注射温度和注射速度。 6.保压力和保压时间图2. 螺杆转速与塑化效果的关系 图4. 注嘴结构 图3. 背压油缸结构

射出成型简介

射出成型简介 1 射出成形之基本知识。 1.1 射出成形的特征以及组成。 射出成形是将溶融的成形材料以高压的方式填充到封闭的模具内,射出成形的模腔内承受的压力约400KGF/CM2,大约为400个大气压,以这样高的压力来制作产品是它的特征,这是它的优点也是它的缺点。也就是说模具必须制作得相当坚固,因而模具价格也相当昂贵,因此必须大量生产以便与高价的模具费用互相扣抵,例如每批之生产量必须10000PCS以上才合理,换句话说;射出成形的工作必须以大量生产才行。 成型过程所说几个步骤: 1.1.1关门 安全门上才开始成型。 1.1.2 锁模 将移动侧的移动板前进,使得模具关闭,模具关闭以后确实地把模具锁紧。1.1.3 射出(包括保压) 螺杆快速地往前推进,把熔融之成形材料注入模腔内填充成形,填充之后压力要必须继续保持,这个动作特别取名为“保压”。在刚充填时模具承受的压力,一般叫做射出压或者叫做“一次压”。 1.1.4 冷却(以及下个动作的可塑化工程) 模腔内之成形材料等待冷却凝固之过程叫“冷却”。在这时候射出装置也准备下次工作,这个过程叫做“可塑化过程”。放在料斗里的成形材料,流入加热的料管内加热,是依据螺杆旋转把原料变成熔融状态,螺杆像拨

取螺丝的原理一样,一面转一面后退,螺杆前端会储存熔融之成形材料,螺杆旋转时,抵抗螺杆向后退的压力称之为螺杆的“背压”。 1.1.5 打开模具 将移动侧的移动板向后退,模具跟着打开。 1.1.6 打开安全门 安全门打开,这时成形机处于待机中之状能。 1.1.7 取件 将成品取出,然后检视确认模具内未残留任何对象再关门.以上整个成形作业叫做一个CYCLE成型。 成品是由模具的形状成形出来。模具是由母模及公模块合成,公母模模仁之间留有空隙,材料在此流入压缩形成产品。成型材料要流入公母模之前的通路有主流道(SPRUE)流道(RUNNER)闸门(GATE)等。1.2 射出成形机 射出成形机以较大项目来区分,可分为两项,锁模装置和射出装置。1.2.2 锁模装置 将模具关闭不被打开,成形材料在模腔内冷却凝固后,模具才打开然后取出成品等等动作的设备装置之锁模装置。 1.2.3 将成形材料射出,填充到模腔内的设备装置称之射出装置。此两个装置组合而成为射出成形机。 下面继续说明射出成形机的能力,射出成形机之能力基本上是下述3项规定来区分。 A 锁模力

《材料成形技术基础》习题集答案

填空题 1.常用毛坯的成形方法有铸造、、粉末冶金、、、非金属材料成形和快速成形. 2.根据成形学的观点,从物质的组织方式上,可把成形方式分为、、 . 1.非金属材料包括、、、三大类. 2.常用毛坯的成形方法有、、粉末冶金、、焊接、非金属材料成形和快速成形作业2 铸造工艺基础 2-1 判断题(正确的画O,错误的画×) 1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。因此,浇注温度越高越好。(×) 2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。(O) 3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。(O) 4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。(O) 5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。(×) 6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。(×)7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。(O) 8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。(O) 2-2 选择题 1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D)。 A.减弱铸型的冷却能力; B.增加铸型的直浇口高度; C.提高合金的浇注温度; D.A、B和C; E.A和C。 2.顺序凝固和同时凝固均有各自的优缺点。为保证铸件质量,通常顺序凝固适合于(D),而同时凝固适合于(B)。 A.吸气倾向大的铸造合金; B.产生变形和裂纹倾向大的铸造合金; C.流动性差的铸造合金; D.产生缩孔倾向大的铸造合金。 3.铸造应力过大将导致铸件产生变形或裂纹。消除铸件中残余应力的方法是(D);消除铸件中机械应力的方法是(C)。 A.采用同时凝固原则; B.提高型、芯砂的退让性; C.及时落砂; D.去应力退火。 4.合金的铸造性能主要是指合金的(B)、(C)和(G)。 A.充型能力;B.流动性;C.收缩;D.缩孔倾向;E.铸造应力;F.裂纹;G.偏析;H.气孔。

精密射出成型技术

精密射出成型技術 射出成形近況 塑膠射出成型製品因具有優異的特性﹐使用量正逐年增加﹒根據工業局的統計資料顯示﹐國內塑膠加工業廠家數目近一萬家﹐從業合占製造業總人數的11%﹐產值約占總產值的%﹒但員工人數在50人以下的廠家﹐竟占了85%﹐可見塑膠射出成型加工業﹐屬中小企業的占絕大多數﹒ 成形追求的精密射出技術 如何提升技術﹑創造產品的附加價值﹐乃成為成形界首要努力的目標﹒精密射出成型技術也因此逐漸受到重視﹒ 何謂精密射出成型﹖顧名思義﹐就是以較高的射出成型技術﹐製造出精度高的塑膠製品﹒談到精密射出成型﹐應從二個層面來思考﹒一種是在設計開發階段﹐就先擬定一套完整的生產技術﹐掌握這些生產因素﹐使做出來的成品精度﹐控制在預測的精度範圍內﹒這種技術層次較高﹐似屬於研究開發的技術﹒ 另外一種是在生產前﹐尚無法確保掌握在生產過程中﹐製造出來的成品精度到底是多少﹖只知道它大概在某個程度範圍內﹒有時﹐甚至無法預知製品的精度到底是偏上限﹐還是下限﹖但是在試做過程中﹐可以根據投入的生產因素及得到的製品精度範圍﹐再來調整﹑修正投入的生產條件﹐使製品精度更能符合需求﹐並且更希望在往後的每一次量產中﹐都能得到品質穩定性﹑再現性很高的產品﹒ 以上兩種方式﹐應該都市目前成型界所追求的精密射出成型技術﹒ 何為“精密“射出成型 目前所談到產品的精度﹐除了尺寸﹑公差精度外﹐應包括製品表面精度(縮水﹑凹痕﹑接合線﹑光澤度﹑平坦度……等)﹒ 就塑膠製品尺寸縮水來說﹐層次較高的精密射出成型技術﹐應該在模具設計之初﹐就能根據製品大小﹑形狀﹑塑膠原料﹑澆口大小﹑流動方向﹐決定一個很精確的縮水律﹐而模具

尺寸即依此縮水律來設計﹑加工﹒在射出成型時﹐再依環境﹑原料的處理﹐決定最佳的成型條件﹐使做出來的製品尺寸經過縮水後﹐正好符合成品圖上所要求尺寸精度﹒層次較低的精密射出成型技術﹐就是在模具設計時無法精確的決定縮水率等﹐預知射出後的成品品質﹒只能在以後生產時﹐根據做出來的製品品質的變化定型的後收縮率情況﹐修正生產因素(包括料的乾燥﹑射出條件的調整……等)﹐使製品的最終品質接近成品圖的要求﹐並控制在以後每次生產都能達到這個精度﹒ 因此精密射出成型技術﹐就是(1)無人化全自動(2)成型週期一定的生產技術﹒本文僅就目前成型界較迫切需要改進的後半段加以探討﹐我想應有事半功倍之效﹒ 成形優先改善專案 目前﹐許多成行廠認為要達到精密射出成型﹐最迫切需要優先改善的是﹕精密的模具與高精度自動化射出成型機﹒其實這二個因素﹐只是精密射出成型技術中很小的一環﹐還有許多很重要的部分被我們忽略了﹒ 過分的強調模具及成型機的重要性﹐反而使我們不去重視其它更重要﹑且更應該多注意的部分﹒ 精密成型技術是一種連續性﹑相互關聯的﹑許多技術的組合﹐它代表企業整體的技術能力與水準﹑不良率的高低﹐是整個企業能力的總表現﹐並非某個單位﹑某個人的能力表現﹒品質差﹑不良率的產生﹐也不是某個員工的不對﹐因為沒有員工願意作出不良品﹒ 精密射出宜考慮因素 既然精密射出成型技術﹐是許多相互關聯技術的組合﹐所以我們應該從塑膠原料的品質﹑處理方法﹑加工環境﹑機台性能﹑模具品質﹑射出成型條件的設定等一連貫因素來考慮﹒而這些因素有﹕ (1)季節﹕春﹑夏﹑秋﹑冬氣候的變化﹐冷卻水溫度的差異﹒ (2)時間﹕白天﹑晚上﹑早上﹑週一﹑週六﹑周日的差異﹒ (3)人員﹕人員熟練度﹑情緒﹑疲勞﹑注意力﹑個性﹑習性……等﹒

(完整版)机械制造技术基础知识点整理,推荐文档

Comment [u1]: 这几种属于传统的切 削加工,特种加工包括:电火花成型加工和电火花线切割加工,超声波加工等 1 1.制造工艺过程:技术准备,机械加工,热处理,装配等一般称为制造工艺过程。 2.机械加工由若干工序组成。工序又可分为 安装,工位,工步,走刀。 3.按生产专业化程度不同可将生产分为三种类型:单件生产,成批(小批,中批,大批)生产,大量生产。 4.材料去除成型加工包括 传统的切削加工和特种加工。 5.金属切削加工的方法有 车削,钻削,镗削,铣削,磨削,刨削。 6.工件上三个不断变化的表面 待加工表面,过渡表面(切削表面), 已加工表面。(详见P58) 7.切削用量是以下三者的总称。 (1)切削速度,主运动的速度。 (2)进给量, 在主运动一个循环内刀具与工件之间沿进给方向相对移动的距离。(3)背吃刀量 工件上待加工表面和已加工表面件的垂直距离。8.母线 和 导线 统称为形成表面的 发生线。9.形成发生线的方法 成型法,轨迹法,展成法,相切法。10.表面的成型运动是保证得到工件要求的表面形状的运动。 11.机床的分类:(1)按机床万能性程度分为:通用机床,专门化机床,专用机床。 (2)按机床精度分为:普通机床,精密机床,高精度机床。(3)按自动化程度分为:一般机床,半自动机床,自动机床。(4)按重量分为:仪表机床,一般机床,大型机床,重型机床。 (5)按机床主要工作部件数目分为:单刀机床,多刀机床,单轴机床,多轴机床。(6)按机床具有的数控功能分:普通机床,一般数控机床,加工中心,柔性制造单元等。 12.机床组成:动力源部件,成型运动执行件,变速传动装置,运动控制装置,润滑装置,电气系统零部件,支承零部件,其他装置。 13.机床上的运动:(1)切削运动(又名表面成型运动),包括: 1、主运动 使刀具与工件产生相对运动,以切削工件上多余金属的基本运动。 2、进给运动 不断将多 建议收藏下载本文,以便随时学习! 我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙

材料成型技术基础试题

《材料成形技术基础》考试样题答题页 (本卷共10页) 四、综合题(20分) 1、绘制图5的铸造工艺图(6分) 修 2、绘制图6的自由锻件图,并按顺序选择自由锻基本工序。(6分) 自由锻基本工序: 3、请修改图7--图10的焊接结构,并写出修改原因。 图7手弧焊钢板焊接结构(2分)图8手弧焊不同厚度钢板结构(2分) 修改原因:修改原因:

图9钢管与圆钢的电阻对焊(2分)图10管子的钎焊(2分) 修改原因:修改原因: 《材料成形技术基础》考试样题 (本卷共10页) 注:答案一律写在答题页中规定位置上,写在其它处无效。 一、判断题(16分,每空0.5分。正确的画“O”,错误的画“×”) 1.过热度相同时,结晶温度范围大的合金比结晶温度范围小的合金流动性好。这是因为在结晶时,结晶温度范围大的合金中,尚未结晶的液态合金还有一定的流动能力。 2.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。 3.HT100、HT150、HT200均为普通灰口铸铁,随着牌号的提高,C、Si含量增多,以减少片状石墨的数量,增加珠光体的数量。 4.缩孔和缩松都是铸件的缺陷,在生产中消除缩孔要比消除缩松容易。 5.铸件铸造后产生弯曲变形,其原因是铸件的壁厚不均匀,铸件在整个收缩过程中,铸件各部分冷却速度不一致,收缩不一致,形成较大的热应力所至。 6.影响铸件凝固方式的主要因素是合金的化学成分和铸件的冷却速度。 7.制定铸造工艺图时,铸件的重要表面应朝下或侧立,同时加工余量应大于其它表面。8.铸造应力包括热应力和机械应力,铸造应力使铸件厚壁或心部受拉应力,薄壁或表层受压应力。铸件壁厚差越大,铸造应力也越大。 9.型芯头是型芯的一个组成部分。它不仅能使型芯定位,排气,同时还能形成铸件的内腔。10.为了防止铸钢件产生裂纹,设计零件的结构时,尽量使壁厚均匀;在合金的化学成分上要严格限制硫和磷的含量。 11.用压力铸造方法可以生产复杂的薄壁铸件,同时铸件质量也很好。要进一步提高铸件的机械性能,可以通过热处理的方法解决。 12.铸件大平面在浇注时应朝下放置,这样可以保证大平面的质量,防止夹砂等缺陷。13.自由锻的工序分为辅助工序、基本工序和修整工序,实际生产中,最常用的自由锻基本工序是镦粗、拔长、冲孔和轧制等。 14.制定铸造工艺图时,选择浇注位置的主要目的是保证铸件的质量,而选择分型面的主要目的是简化造型工艺。 15.把低碳钢加热到1200℃时进行锻造,冷却后锻件内部晶粒将沿变形最大的方向被拉长并产生碎晶。如将该锻件进行再结晶退火,便可获得细晶组织。

材料成型技术基础复习提纲整理知识讲解

材料成型技术基础复习提纲整理

第一章绪论 1、现代制造过程的分类(质量增加、质量不变、质量减少)。 2、那几种机械制造过程属于质量增加(不变、减少)过程。 (1)质量不变的基本过程主要包括加热、熔化、凝固、铸造、锻压(弹性变形、塑性变形、塑性流动)、浇灌、运输等。 (2)质量减少过程材料的4种基本去除方法:切削过程;磨料切割、喷液切割、热力切割与激光切割、化学腐蚀等;超声波加工、电火花加工和电解加工;落料、冲孔、剪切等金属成形过程。 (3)材料经过渗碳、渗氮、氰化处理、气相沉积、喷涂、电镀、刷镀等表面处理及快速原型制造方法属于质量增加过程。 第二章液态金属材料铸造成形技术过程 1、液态金属冲型能力和流动性的定义及其衡量方法 液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力。 液态金属的充型能力通常用铸件的最小壁厚来表示。 液态金属自身的流动能力称为“流动性”。液态金属流动性用浇注流动性试样的方法来衡量。在生产和科学研究中应用最多的是螺旋形试样。 2、影响液态金属冲型能力的因素(金属性质、铸型性质、浇注条件、铸件结构)

(1)金属的流动性:流动性好的液态金属,充型能力强,易于充满薄而复杂的型腔,有利于金属液中气体、杂质的上浮并排除,有利于对铸件凝固时的收缩进行补缩。 流动性不好的液态金属,充型能力弱,铸件易产生浇不足、冷隔、气孔、夹杂、缩孔、热裂等缺陷。 (2)铸型性质:铸型的蓄热系数b(表示铸型从其中的金属液吸取并储存在本身中热量的能力)愈大,铸型的激冷能力就愈强,金属液于其中保持液态的时间就愈短,充型能力下降。 (3)浇注条件:浇注温度对液态金属的充型能力有决定性的影响。浇注温度越高,充型能力越好。在一定温度范围内,充型能力随浇注温度的提高而直线上升,超过某界限后,由于吸气,氧化严重,充型能力的提高幅度减小。 液态金属在流动方向上所受压力(充型压头)越大,充型能力就越好。但金属液的静压头过大或充型速度过高时,不仅发生喷射和飞溅现象,使金属氧化和产生”铁豆”缺陷,而且型腔中气体来不及排出,反压力增加,造成“浇不足”或“冷隔”缺陷。 浇注系统结构越复杂,流动阻力越大,液态金属充型能力越低。 (4)铸件结构:衡量铸件结构的因素是铸件的折算厚度R(R=铸件体积/铸件散热表面积=V/S)和复杂程度,它们决定着铸型型腔的结构特点。 R大的铸件,则充型能力较高。R越小,则充型能力较弱。 铸件结构复杂,厚薄部分过渡面多,则型腔结构复杂,流动阻力大,充型能力弱。 铸件壁厚相同时,铸型中的垂直壁比水平壁更容易充满。

西南交通大学 材料成型技术基础复习纲要

第一篇 金属铸造成形工艺 一.掌握铸造定义与实质及其合金的铸造性能。 A铸造:将熔融金属浇入铸型型腔, 经冷却凝固后获得所需铸件的方法。 B铸造实质:液态成形。 C合金:两种或两种以上的金属元素、或金属与非金属元素(碳)熔和在一起,所构成具有金属特性的物质。 D合金的铸造性能:是指合金在铸造过程中获得尺寸精确、结构完整的铸件的能力,流动性和收缩性是合金的主要铸造工艺特性。 二.掌握合金的充型能力及影响合金充型能力的因素。 A合金的充型能力:液态合金充满铸型,获得轮廓清晰、形状准确的铸件的能力。 B影响合金充型能力的因素: (1)铸型填充条件 a. 铸型材料; b. 铸型温度; c. 铸型中的气体 (2)浇注条件 a. 浇注温度(T) T 越高(有界限),充型能力越好。 b. 充型压力 流动方向上所受压力越大, 充型能力越好。 (3)铸件结构

结构越复杂,充型越困难。 三.掌握合金收缩经历的三个阶段及其铸造缺陷的产生。 A合金的收缩:合金从浇注、凝固、冷却到室温,体积 和尺寸缩小的现象。 B合金收缩的三个阶段: (1)液态收缩 合金从 T浇注→ T凝固开始 间的收缩。 (2)凝固收缩 合金从 T凝固开始→T凝固终止 间的收缩。 液态收缩和凝固收缩是形成铸件缩孔和缩松缺陷的基本原因。 (3)固态收缩(易产生铸造应力、变形、裂纹等。) 合金从 T凝固终止→T室 间的收缩。 四.了解形成铸造缺陷(缩孔,缩松)的主要原因及其防止措施。 A产生缩孔和缩松的主要原因:液态收缩 和 凝固收缩 导致。 B缩孔形成原因:收缩得不到及时补充; 缩松形成原因:糊状凝固,被树枝晶体分隔区域难以实现补缩。 C缩孔与缩松的预防: (1)定向凝固,控制铸件的凝固顺序; (2)合理确定铸件的浇注工艺 五.掌握铸件产生变形和裂纹的根本原因。 铸件产生变形和裂纹的根本原因:铸造内应力(残余内应力) 六.掌握预防热应力的基本途径。 预防热应力的基本途径:缩小铸件各部分的温差,使其均匀冷却。借助于冷铁使铸件实现同时凝固。

机械制造技术基础知识点整理

1.制造系统:制造过程及其所涉及的硬件,软件和人员组成的一个将制造资源转变为产品的有机体,称为制造系统。 2.制造系统在运行过程中总是伴随着物料流,信息流和能量流的运动。 3.制造过程由技术准备,毛坯制造,机械加工,热处理,装配,质检,运输,储存等过程组成。 4.制造工艺过程:技术准备,机械加工,热处理,装配等一般称为制造工艺过程。 5.机械加工由若干工序组成。 6.机械加工中每一个工序又可分为安装,工位,工步,走刀等。 7.工序:一个工人在一个工作地点对一个工件连续完成的那一部分工艺过程。 8.安装:在一个工序中,工件在机床或夹具中每定位和加紧一次,称为一个安装。 9.工位:在工件一次安装中,通过分度装置使工件相对于机床床身改变加工位置每占据一个加工位置称为一个工位。 10.工步:在一个工序内,加工表面,切削刀具,切削速度和进给量都不变的情况下完成的加工内容称为工步。 11.走刀:切削刀具在加工表面切削一次所完成的加工内容。 12.按生产专业化程度不同可将生产分为三种类型:单件生产,成批生产,大量生产。 13.成批生产分小批生产,中批生产,大批生产。 14.机械加工的方法分为材料成型法,材料去除法,材料累加法。 15. 材料成型法是将不定形的原材料转化为所需要形状尺寸的产品的一种工艺方法。 16.材料成型工艺包括铸造,锻造,粉末冶金,连接成型。 17.影响铸件质量关键因素是液态金属流动性和在凝固过程中的收缩性。 18.常用铸造工艺有:普通砂型铸造,熔模铸造,金属型铸造,压力铸造,离心铸造,陶瓷铸造。 19.锻造工艺分自由锻造和模膛锻造。 20.粉末冶金分固相烧结和含液相烧结。

材料成型技术基础知识点总结

第一章铸造 1.铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。 2.充型:溶化合金填充铸型的过程。 3.充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。 4.充型能力的影响因素: 金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力 铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性是熔融金属的流动能力,是液态金属固有的属性。 5.影响合金流动性的因素: (1)合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。 (2)化学成份:纯金属和共晶成分的合金流动性最好; (3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。 6.金属的凝固方式: ①逐层凝固方式 ②体积凝固方式或称“糊状凝固方式”。 ③中间凝固方式 7.收缩:液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。 收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。 8.合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。 液态收缩和凝固收缩,通常以体积收缩率表示。液态收缩和凝固收缩是铸件产生缩孔、缩松缺陷的基本原因。 合金的固态收缩,通常用线收缩率来表示。固态收缩是铸件产生内应力、裂纹和变形等缺陷的主要原因。 9.影响收缩的因素 (1)化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。 (2)浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。 (3)铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍。 (4)铸型和型芯对铸件的收缩也产生机械阻力 10.缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为缩孔和缩松。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。 缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状晶体分隔开的液体区难以得到补缩所致。 合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。 缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。

合工大材料成型技术基础复习知识点(全面)

材料成型技术基础 第二章铸造 一、铸造的定义、优点、缺点: 铸造指熔融金属、制造铸型并将熔融金属浇入铸型凝固后,获得具有一定形状、尺寸和性能的金属零件或毛坯的成型方法。 优点:铸造的工艺适应性强,铸件的结构形状和尺寸几乎不受限制;工业上常用的合金几乎都能铸造;铸造原材料来源广泛,价格低廉,设备投资少;铸造适于制造形状复杂、特别是内腔形状复杂的零件或毛坯,尤其是要求承压、抗振或耐磨的零件。 缺点:铸件的质量取决于成形工艺、铸型材料、合金的熔炼与浇注等诸多因素,易出现浇不到、缩孔、气孔、裂纹等缺陷,且往往组织疏松,晶粒粗大。 二、充型能力的定义、影响它的三个因素: 金属液的充型能力指金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力。 影响因素:①金属的流动性;②铸型条件;③浇注条件。 三、影响流动性的因素;纯金属和共晶成分合金呈逐层凝固流动性最好;影响充型能力的铸型的三个条件;浇注温度和压力对充型能力是如何影响的:影响流动性的因素: ①合金成分:纯金属和共晶成分的合金,结晶过程呈逐层凝固方式,流动性好;非共晶成分的合金,呈中间凝固方式,流动性较差;凝固温度范围过大,铸件断面呈糊状凝固方式,流动性最差。结晶温度范围越窄,合金流动性越好。 ②合金的质量热容、密度和热导率:合金质量热容和密度越大、热导率越小,流动性越好。 影响充型能力的铸型的三个条件: ①铸型的蓄热系数:铸型从其中金属液吸收并储存热量的能力。蓄热系数越大,金属液保持液态时间短,充型能力越低。(在型腔喷涂涂料,减小蓄热系数) ②铸型温度:铸型温度越高,有利于提高充型能力。 ③铸型中的气体:铸型的发气量过大且排气能力不足,就会使型腔中气压增大,阻碍充型。 浇注温度和压力对充型能力的影响: ①浇注温度:提高浇注温度,延长保持液态的时间,从而提高流动性。温度不能过高,否则金属液吸气增多,氧化严重,增大了缩孔、气孔、粘砂等缺陷倾向。 ②充型压力(流动方向上的压力):充型压力越大,流动性越好。但充型压力不宜过大,以免金属飞溅,加剧氧化,气体来不及排出产生气孔、浇不到等缺陷。 四、铸造时液态和凝固收缩易产生缩孔和缩松;固态收缩易产生应力、变形和裂纹: 液态收缩(金属在液态时,由于温度降低而发生的体积收缩)和凝固收缩(熔

材料成型技术基础复习重点.

1.1 1.常用的力学性能判据各用什么符号表示?它们的物理含义各是什么? 塑性,弹性,刚度,强度,硬度,韧性 1.2 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。1.3 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 1.4 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 1.5 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 1.6 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。 通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 1.8工程材料的发展趋势 据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 2.0材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象2.1 铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固

注塑成型基础知识

目录 培训目的 (02) 培训对象 (02) 成型条件和要素 (02) 四、加热筒(炉温)温度 (02) 五、注射压力(充填压力、保压) (04) 六、射出速度 (04) 七、射出时间 (05) 八、冷却时间 (05) 九、模具温度 (06) 十、调机的程序 (06) 十一、注意事项 (06) 注塑成型工艺基础 一、培训目的:让调机人员对调机过程中一些常见的事项加深认识,以达到提高大家的操作技能,从而提高生产效率。 二、培训对象:注塑部组长及QC员 三、注塑条件和要素 注塑条件和要素包括以下内容: 温度----炮筒温度、料温、模温、油温、 压力----充填压力、保压、背压、推顶压力、模开压力、锁模压力。 时间----射出时间、填充时间、保压时间、冷却时间、干燥时间。 速度----射出速度、推料螺杆转速、模具的合模速度、推顶杆速度。 量-----计量、推料螺杆回缩量,模开量、推顶量。 因为注塑中上述要素互相有关连,不能各自任意调正。而且产品的形状、胶料的种类;模具的构造也有较大的关系,所以注塑的条件应根据实际注塑情况而进行设定。要想得到稳定的成型工艺条件,应把成型条件误差减少到最低程度。但是产品质的良否,多数起因于产品的形状,即模具形状,因此用注塑机以及注塑条件来弥补才行。 热筒(炉温)温度 关于加热筒的设定温度,根据各种胶料的特性不同,同时胶料生产厂家,等级的不同也有很大的区别。如果各种胶料的加热筒温度设定不当,不但会出现不良品,胶料也会分解产生有毒气体给人体带来严重的危害。同时也有爆发性的胶料,对于加热温度的设定,要充分地掌握胶料的特性和合适的温度之后再进行。 一般通常使用的原料干燥温度范围在75--120℃,但各种胶料的性能不同,因此它所需干燥的温度也不同,加热筒的后部能够起到料流畅,应即起到预热作用,注塑温度应比中部低20℃左右,注射嘴应比中部低5℃。 后部温度的设定/进行材料的供给和软化胶料 一般情况下,为了防止空气的进入以及使材料容易流入应比成型温度调节低20℃-80℃,尼龙66等到胶料温度也有调高的时候。 中部和前部温度的设定 由于加热筒外面加热和内部剪切作用进行胶料的可塑化,使熔化胶料混合均匀化(此时设定的是注塑温度) 注塑嘴温度的设定,根据成型周期,前部温度设定的是注塑温度,为了使注射嘴的熔化胶料

材料成型技术基础知识点总结

第一章铸造 1. 铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状 和尺寸的毛坯或零件的方法。 2. 充型:溶化合金填充铸型的过程。 3. 充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。 4. 充型能力的影响因素: 金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力 铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性是熔融金属的流动能力,是液态金属固有的属性。 5. 影响合金流动性的因素: (1 )合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。 (2 )化学成份:纯金属和共晶成分的合金流动性最好; (3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。 6. 金属的凝固方式: 1 2 3 7收缩 收缩 能使铸件产生 缩孔、缩松、裂纹、变形和内应力等缺陷。 8. 合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。 液态收缩和凝固收缩,通常以体积收缩率表示。液态收缩和凝固收缩是铸件产生缩孔、 缩松缺陷的基本原因。 合金的固态收缩,通常用线收缩率来表示。固态收缩是铸件产生内应力、裂纹和变形 等缺陷的主要原因。 9. 影响收缩的因素 (1) 化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。 (2) 浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。 (3) 铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结 果对铸件收缩产生阻碍。 (4) 铸型和型芯对铸件的收缩也产生机械阻力 10. 缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为 缩孔和缩松。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的 条件下。 缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状 晶体分隔开的液体区难以得到补缩所致。 合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。 缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。 11?缩孔、缩松的防止方法: 课件版本: 冒口、冷铁和补贴的综合运用是消除缩孔、缩松的有效措施。 (1) 使缩松转化为缩孔的方法 : ① 尽量选择凝固区域较窄的合金,使合金倾向于逐层凝固; ② 对凝固区域较宽的合金,可采用增大凝固的温度梯度办法。 逐层凝固方式 体积凝固方式或称“糊状凝固方式”。 中间凝固方式 :液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。

相关主题
文本预览
相关文档 最新文档