当前位置:文档之家› 纳米电子器件发展

纳米电子器件发展

纳米技术发展史

纳米技术发展史 【摘要】纳米技术是21世纪科技发展的制高点,是新工业革命的主导技术,它将引起一场各个领域生产方式的变革,也将改变未来人们的生活方式和工作方式,使得我们有必要认识一下纳米技术的发展史。纳米技术的发展史是一个很长的过程,同时也是一个广泛应用的过程。 【关键词】发展纳米技术纳米材料 纳米技术基本概念 纳米技术是以纳米科学为基础,研究结构尺度在0.1~100nm范围内材料的性质及其应用,制造新材料、新器件、研究新工艺的方法和手 段。纳米技术以物理、化学的微观研究理论为 基础,以当代精密仪器和先进的分析技术为手 段,是现代科学(混沌物理、量子力学、介观物 理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)相结合的产物。在纳米领域,各传统学科之间的界限变得模糊,各学科高度交叉和融合。 纳米技术包含下列四个主要方面: 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。

过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于 自然界,只是以前没有认识到这个尺度 范围的性能。第一个真正认识到它的性 能并引用纳米概念的是日本科学家,他 们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。2、纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统,用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。3、纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

电子元器件采购合同范本

电子元器件采购合同范本 篇一:电子元器件----采购合同模板 甲方合同编号:乙方合同编号: 采购合同 需方(甲方): 供方(乙方):签订地点: 签订时间: 甲乙双方经过友好协商,依据《中华人民共和国合同法》的有关规定,签订以下条款,以资共同遵守。 第一条其产品型号、厂家、封装、单价、总价等,是否原装、是否无铅如下所列:是否原装:是否进口:是否无铅环保: 第二条产品包装规格及费用(没有请写无)第三条验收方法第四条货款及费用等付款及结算办法第五条交货规定 1.交货方式: 2.交货地点: 3.交货日期: 4.运输费:由方承担 5. 甲方应向乙方支付的货品总价:合计(人民币/美元)第六条经济责任1.乙方应负的经济责任(1)产品型号、品牌、封装、批号、质量不符合本合同规定时,甲方同意使用的,按质论价。不能使用的,乙方

应负责保修、保退、保换。由于上述原因致延误交货时间,每逾期一日,乙方应按逾期交货部分货款总值的万分之计算向甲方偿付逾期交货的违约金。 (2)乙方未按本合同规定的产品数量交货时,少交的部分,甲方如果需要,应照数补交。甲方如不需要,可以退货。由于退货所造成的损失,由乙方承担。如甲方需要而乙方不能交货,则乙方应付给甲方不能交货部分货款总值的%的罚金。(3)产品包装不符合本合同规定时,乙方应负责返修或重新包装,并承担返修或重新包装的费用。如甲方要求不返修或不重新包装,乙方应按不符合同规定包装价值%的罚金付给甲方。 (4)产品交货时间不符合同规定时,每延期一天,乙方应偿付甲方以延期交货部分货款总值万分之的罚金。 (5)乙方未按照约定向甲方交付提取标的物单证以外的有关单证和资料,应当承担相关的赔偿责任。 2.甲方应负的经济责任 (1)甲方如中途变更产品型号、品牌、封装、批号、质量或包装的规格,应偿付变更部分货款(或包装价值)总值%的罚金。 (2)甲方如中途退货,应事先与乙方协商,乙方同意退货的,应由甲方偿付乙方退货部分货款总值%的罚金。乙方不同意退货的,甲方仍须按合同规定收货。(3)甲方

纳米光电子技术的发展及应用

纳米光电子技术的发展及应用 摘要:纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学和现代技术结合的产物,由纳米技术而产生一些先进交叉学科技术,本文主要讲述的纳米光电子技术就是纳米技术与光电技术的结合的一个实例,随着纳米技术的不断成熟和光电子技术的不断发展,两者的结合而产生的纳米光电子器件也在不断的发展,其应用也在不断扩大。 关键词:纳米技术纳米光电子技术纳米光电子器件应用 一、前言 纳米材料与技术是20世纪80年代末才逐步发展起来的前沿性,交叉性的学科领域,为21世纪三大高新科技之一。而如今,纳米技术给各行各业带来了崭新的活力甚至变革性的发展,该性能的纳米产品也已经走进我们的日常生活,成为公众视线中的焦点。[2 纳米技术的概念由已故美国著名物理学家理查德。费因曼提出,而不同领域对纳米技术的看法大相径庭,就目前发展现状而言大体分为三种:第一种,是美国科学家德雷克斯勒博士提出的分子纳米技术。而根据这一概念,可以制造出任何种类的分子结构;第二种概念把纳

米技术定位为微加工技术的极限,也就是通过纳米技术精度的“加工”来人工形成纳米大小的结构的技术;第三种概念是从生物角度出发而提出的,而在生物细胞和生物膜内就存在纳米级的结构 二、纳米技术及其发展史 1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。其中纳米技术主要为以下四个方面 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 2、纳米动力学:主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等. 3、纳米生物学和纳米药物学:如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分

高频磁性纳米材料的电磁性能调控及其在磁性电子器件中的应用

项目名称:高频磁性纳米材料的电磁性能调控及其 在磁性电子器件中的应用 首席科学家:薛德胜兰州大学 起止年限:2012.1至2016.8 依托部门:教育部

一、关键科学问题及研究内容 本项目根据电子信息技术中对GHz频段的高性能、微型化薄膜电感和近场抗电磁干扰器件用高频磁性纳米材料的迫切要求,通过磁性纳米材料与纳米结构的可控制备,突破Snoek理论极限的制约,探索提高磁性纳米材料高频性质的新机制,突破传统微波磁性材料不能同时保持高共振频率和高磁导率的瓶颈,获得1-5 GHz波段内高磁导率的高频磁性纳米材料;并针对高频磁性纳米材料在1-5 GHz电子信息传输和近场抗电磁干扰技术中的具体应用,探索保持优良高频磁性基础上的电磁匹配机制,突破电磁波的连续介质理论,设计并实现具有良好电磁匹配的可工作在1-5 GHz的微型化薄膜电感和近场抗电磁干扰器件。 针对GHz频率下,同时提高磁性纳米材料的共振频率和磁导率,以及获得优异性能的薄膜电感和近场抗电磁干扰器件,拟解决的关键科学问题包括: ●自然共振机制下,同时提高磁性纳米材料共振频率和磁导率的机制,以及双 各向异性控制下大幅度调控高频磁性的机制及磁化强度的动力学过程。 ●非自然共振机制下,提高磁性纳米材料共振频率和磁导率的机制,以及有效 各向异性和体积共同作用下的超顺磁阻塞共振频率对高频磁性的影响机制。 ●描述磁性纳米材料电磁性质的有效理论,以及核/壳结构的形态、相构成和 各相的体积分数对新型磁性/介电纳米材料的高频电磁耦合机制和匹配关系的宽范围调控机制。 ●分离介质对电磁波传输特性的影响机制,以及高性能薄膜电感和抗电磁干扰 器件的设计理论和器件研制。 主要研究内容包括: ●以高饱和磁化强度M s的铁基和钴基铁磁金属及合金为基础,制备磁性纳米 薄膜、颗粒膜及多层膜。通过溅射时外加磁场、倾斜溅射、反铁磁钉扎、衬底修饰等手段,在样品平面内产生单轴或单向磁各向异性。通过薄膜的微结构优化,降低矫顽力H c,提高磁导率 ;改变面内各向异性,探索大范围调控磁性纳米薄膜高频磁性的规律。 ●制备线度比(aspect ratio)大的片状软磁纳米颗粒,调整静态磁矩分布在薄 片平面内,利用形状调控垂直片状纳米颗粒平面的各向异性场,用磁场热处理、应力、取向等方式在片状纳米颗粒平面内产生和调节各向异性场。研究这两个各向异性场的比值与材料高频磁性的关系。寻找大幅度提高双各向异性片状磁性纳米颗粒的规律,探索提高高频磁性的新机制。 ●采用高温热解或还原的方法制备单分散、表面活性剂分子包覆的不同形状的

纳米科技的发展及未来的发展方向

纳米科技的发展及未来的发展方向 论文 理学院 08光信息科学与技术 张箐 0836017

纳米科技的发展及未来的发展方向 一:纳米科技的起源: 纳米是长度度量单位,一纳米为十亿分之一米。纳米科技这一初始概念是已故美国著名物理学家、诺贝尔物理学奖得主费恩曼(R.Feynman)于1959年在美国加州理工学院作题为“在低部还有很大空间”的讲演中提出的。费恩曼指出:如果人类能够在原子或分子尺度上来加工材料、制备装置,则将会有许多激动人心的新发现。他还强调:人们需要新型的微型化仪器来操纵纳米结构并测定其性质。费恩曼憧憬说:试想,如果有一天,人们可以按自己的意志来安排一个个原子,将会产生怎样的奇怪现象。 与所有的天才假想一样,费恩曼的科学思想起初并未被接受。然而科技的迅猛发展很快证明了费恩曼是正确的。继费恩曼之后,许多科学家又尽情发挥想像力,从不同角度继续编织纳米技术的神奇梦想。 纳米科技的迅速发展是在1980年代末1990年代初。1980年代初,宾尼希(C.Binnig)和罗雷尔(H.Rohrer)等人发明了费恩曼所期望的纳米科技研究的重要仪器--扫描隧穿显微镜(scanning tunneling microscopy,STM)。STM 不仅以极高的分辨率揭示出了“可见”的原子、分子微观世界,同时也为操纵原子、分子提供了有力工具,从而为人类进入纳米世界打开了一扇更加宽广的大门。 与此同时,纳米尺度上的多学科交叉迅速形成了一个有广泛学科内容和潜在应用前景的研究领域。1990年,纳米技术获得了重大突破。美国IBM公司阿尔马登研究中心(Almaden Research Center)的科学家使用STM把35个氙原子移动到各自的位置,组成了“IBM”三个字母,这三个字母加起来不到3纳米长。 1990年7月,第一届国际纳米科学技术大会和第五届国际扫描隧穿显微

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

电子元器件采购合同范文(完整版)

合同编号:YT-FS-5941-35 电子元器件采购合同范文 (完整版) Clarify Each Clause Under The Cooperation Framework, And Formulate It According To The Agreement Reached By The Parties Through Consensus, Which Is Legally Binding On The Parties. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

电子元器件采购合同范文(完整版) 备注:该合同书文本主要阐明合作框架下每个条款,并根据当事人一致协商达成协议,同时也明确各方的权利和义务,对当事人具有法律约束力而制定。文档可根据实际情况进行修改和使用。 甲方:地址:联系人:电话:传真: 乙方:地址:联系人:电话:传真: 甲乙双方经友好协商,一致同意按以下合同条款 执行: 一、产品名称、型号、数量、金额(港币): 二、供货确认: (1) 乙方向甲方提供《采购明细表》并以此作为 甲方供货的依据。要求《采购明细表》字迹清楚,并 应详细列出采购产品的名称、规格、数量、价格等要 求。 (2) 甲方收到乙签字盖章的《采购明细表》后, 如无异议,应在24小时内,将由甲方代表签字盖章并 注“同意”的该单传真至乙方,并即按该单之要求执 行。双方签字盖章的《采购明细表》同样具有法律效

力。 三、品质检验: (1) 甲方在将产品供给乙方前,需对产品按国家标准、行业标准或甲方确认的企业标准进行检验。如在合同附本中有技术协议书,甲方还要执行该协议书之各条规定。每批供货产品应有甲方品质管理部门的质检合格证,或质保书。乙方在接收货物后,由乙方品管部门在甲方所在地按上述检验方法进行复检。乙方复检结果是最后的品质裁决(执行标准有争议另议)。 (2) 甲方按《采购明细表》提供的批次产品质量合格率应不小于98%。 (3) 当发生批次产品不合格时,甲方收到乙方的“不合格报告”后,需重新组织生产该产品,以免耽误乙方的生产进度。 (4) 甲方不得将乙方已退货的不合格产品混入下批供货之中,一经乙方发现有此类情况,甲方须接受乙方按该批产品总价的3倍以上的罚款(罚款金额从乙方向甲方支付的货款中抵扣)。

纳米电子学与纳米器件

纳米电子学与纳米电子器件 引言 电子器件是20世纪的伟大发明之一。它的诞生给人类社会带来了巨大的影响。电子器件的发展过程大致可分为三个阶段:即真空电子管、固体晶体管和正在悄然兴起的单电子管。1947年,固体晶体管的发明标志着固体电子学的开始,真空电子学的终结。半个多世纪以来,以集成电路为主要标志的微电子技术和后来的超晶格及其低维量子结构的研究使得电子科学技术发展到了一个前所未有的高度,而且这种发展趋势愈演愈烈。进入21世纪,以纳米量子器件为主攻方向的纳米电子学崭新时代已经来临! 1纳米电子学及其发展路线 1.1纳米电子学基本概念 作为微电子学的下一代,纳米电子学是指在1nm-100 nm的纳米结构(量子点)内探测、识别与控制单个量子或量子波的运动规律,研究单个原子、分子人工组装和自组装技术,研究在量子点内单个量子或量子波所表现出来的特征和功能,用于信息的产生、传递和交换的器件,电路与系统及其在信息科学技术、纳米生物学、纳米测量学、纳米显微学、纳米机械学等应用的学科,也称为量子功能电子学。它的最大特点是把半导体电子学、超导电子学、原子电子学、分子电子学等融为一体,而且高温铜氧化物超导体有可能和半导体硅、化合物半导体、生物膜等一样成为重要的纳米量子材料。 纳米电子学可分为两大类,一为单量子电子学,重点着眼于器件载流子的量子力学行为中的粒子性;二为量子波电子学,重点着眼于器件载流子的量子力学行为中的波动性。按照Moore定律,以硅材料为主的微电子技术到2011年最小尺寸为0.08微米,达到了微电子器件的物理极限,此后将是纳电子学时代。当进入纳电子时代后,在微电子学中适合的Moore定律将不再适应纳电子学。在纳米系统中失去了宏观体系的统计平均性,其量子效应和统计涨落为主要特征。纳米电子学就是讨论这些特性的规律和 利用其规律制成功能器件的学科。 1.2纳米电子学发展路线 一般认为纳米电子的由来与发展有两条路径:一条是以Si和GaAs为主的无机材料的固态电子器件尺寸和维度不断变小的自上而下的发展路径;另一条则是基于化学有机高分子和生物学材料自组装功能器件尺度逐渐变大的自下而上的发展过程,两者的交叠构成21世纪初期新型电子和光电子器件。 1.2.1自上而下的发展路线 纳米科技的提出和发展有着其社会发展强烈需求的背景。首先,来自微电子产业。1965年,英特尔公司的创始人Moore科学而及时地总结了晶体管集成电路的发展规律,提出了著名的“摩尔定律”,即芯片上晶体管数量每18个月将会增加1倍。过去20多年的实践证明了它的正确性,MOS集成电路一直严格遵循这一定律,从最初每个芯片上仅有64个晶体管的小规模集成电路,发展到今天能集成上亿个器件的甚大规模集成电路。预计到2014年,器件特征尺寸为35 nm

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

电子元器件采购合同模板

甲方合同编号: 乙方合同编号: 采购合同 需方(甲方): 供方(乙方): 签订地点: 签订时间:

甲乙双方经过友好协商,依据《中华人民共和国合同法》的有关规定,签订以下条款,以资共同遵守。 第一条其产品型号、厂家、封装、单价、总价等,是否原装、是否无铅如下所列:是否原装:是否进口:是否无铅环保: 第二条产品包装规格及费用(没有请写无) 第三条验收方法 第四条货款及费用等付款及结算办法 第五条交货规定 1.交货方式: 2.交货地点: 3.交货日期: 4.运输费:由方承担 5. 甲方应向乙方支付的货品总价:合计(人民币/美元) 第六条经济责任 1.乙方应负的经济责任 (1)产品型号、品牌、封装、批号、质量不符合本合同规定时,甲方同意使用的,按质论价。不能使用的,乙方应负责保修、保退、保换。由于上述原因致延误交货时间,每逾期一日,乙方应按逾期交货部分货款总值的万分之计算向甲方偿付逾期交货的违约金。 (2)乙方未按本合同规定的产品数量交货时,少交的部分,甲方如果需要,应照数补交。甲方如不需要,可以退货。由于退货所造成的损失,由乙方承担。如甲方需要而乙方不能交货,则乙方应付给甲方不能交货部分货款总值的%的罚金。 (3)产品包装不符合本合同规定时,乙方应负责返修或重新包装,并承担返修或重新包装的费用。如甲方要求不返修或不重新包装,乙方应按不符合同规定包装价值%的罚金付给甲方。 (4)产品交货时间不符合同规定时,每延期一天,乙方应偿付甲方以延期交货部分货款总值万分之的罚金。

(5)乙方未按照约定向甲方交付提取标的物单证以外的有关单证和资料,应当承担相关的赔偿责任。 2.甲方应负的经济责任 (1)甲方如中途变更产品型号、品牌、封装、批号、质量或包装的规格,应偿付变更部分货款(或包装价值)总值%的罚金。 (2)甲方如中途退货,应事先与乙方协商,乙方同意退货的,应由甲方偿付乙方退货部分货款总值%的罚金。乙方不同意退货的,甲方仍须按合同规定收货。 (3)甲方未按规定时间和要求向乙方交付技术资料、原材料或包装物时,除乙方得将交货日期顺延外,每顺延一日,甲方应付给乙方顺延交货产品总值万分之的罚金。如甲方始终不能提出应提交的上述资料等,应视中途退货处理。 (4)属甲方自提的材料,如甲方未按规定日期提货,每延期一天,应偿付乙方以延期提货部分货款总额万分之的罚金。 (5)甲方如未按规定日期向乙方付款,每延期一天,应按延期付款总额万分之 计算付给乙方,作为延期罚金。 (6)乙方送货或代运的产品,如甲方拒绝接货,甲方应承担因而造成的损失和运输费用及罚金。 第七条产品价格如须调整,必须经双方协商。如乙方因价格问题而影响交货,则每延期交货一天,乙方应按延期交货部分总值的万分之作为罚金付给甲 方。 第八条甲、乙任何一方如要求全部或部分注销合同,必须提出充分理由,经双方协商提出注销合同一方须向对方偿付注销合同部分总额%的补偿金。 第九条如因生产资料、生产设备、生产工艺或市场发生重大变化,乙方须变更产品型号、品牌、封装、批号、质量、包装时,应提前__天与甲方协商。 第十条本合同所订一切条款,甲、乙任何一方不得擅自变更或修改。如一方单独变更、修改本合同,对方有权拒绝生产或收货,并要求单独变更、修改合同一方赔偿一切损失。 第十一条甲、乙任何一方如确因不可抗力的原因,不能履行本合同时,应及时向对方通知不能履行或须延期履行,部分履行合同的理由。在取得有关机构证 明后,本合同可以不履行或延期履行或部分履行,并全部或者部分免予承 担违约责任。

纳米电子学的十大难题

纳米电子学的十大难题 1.分子电子整流器或分子电子晶体管 为了增加密度并把纳米电子器件的工作温度提高到低温范围以上,必须在单分子那么大的尺度上制造纳米电子器件。达到此目标的一个重要途径是设计与合成具有传导和控制电流或信号所必需的本征物理特性的单分子。这条途径通常被称为分子电子学。然而,迄今为止,已能正常工作的纳米尺度分子电子交换器件和放大器件(例如分子晶体管和分子量子点)还没有做出来,也没有演示过。但是,一种已能正常工作的分子导线已被合成和测试。正在攻克分子电子晶体管制造和测试难题的小组包括:詹姆斯·图尔和马克·里德小组以及普度大学的一个跨学科小组。 2.把分子晶体管和导线组装成可运转的电子器件 即使知道如何制造分子晶体管和分子导线,但把这些元件组装成一个可以运转的逻辑结构仍是一个棘手的难题。一种可能的途径是利用扫描隧道显微镜按照IBM苏黎世实验室最近演 示过的一种方法把分子元件排列在一个平面上。组装较大电子器件的另一种可能的途径是通过阵列的自组装。普度大学的一个跨学科小组在这个方向上取得了惊人的进展。 3.纳米硅基量子异质结 为了继续把固态电子器件缩小到纳米尺度,就必须构建纳米尺度的量子势阱。为此,必须制造出很小很小的类似层状蛋糕的固体结构,其中不同层是由不同势能的不同半导体制成。这些层状结构称为“半导体异质结”。要可靠地在纳米尺度上制造出半导体异质结非常困难,而在纳米尺度上把硅化合物制造成半导体异质结就更难了。但纳米电子学研究人员还是一致认为,这是固态电子器件继续迅速微型化这个趋势所必需的。 4.纳米尺度量子点电池和无线逻辑器件 圣母大学的伦特教授和波罗教授提出的构建无线量子点计算机逻辑的设计理念对于制造纳米电子计算机来说是一个很有前途的创意。然而,要成为一个实用的设计方案,还需制造出这种类型的纳米器件并对其进行测试。在圣母大学微电子实验室的加里·伯恩斯坦教授的领导下,这个方面的工作正在进行中。 5.兆兆位量子效应电子存储“芯片” 有了制造纳米电子逻辑器件的能力后,用这种器件可以组装成的一种非常有用的扩展结构是兆兆位的存储器阵列或芯片。这可为具备快速存取能力但没有可动机械部件的计算机信息系统提供海量存储手段。其典型应用之一也许是在这样一块芯片上存储一部电影。德州仪器公司的纳米电子学小组与马里兰大学的唐浩(HaoTang)正在合作组装这样一种兆兆位的存储器,他们利用的是微电子与纳米电子混合逻辑线路。

浅谈纳米材料应用及发展前景

Jiangsu University 浅谈纳米材料应用及发展前景

摘要 纳米材料展现了异常的力学、电学、磁学、光学特性、敏感特性和催化以及光活性,为新材料的发展开辟了一个崭新的研究和应用领域。纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的应用前景使得纳米材料及其技术成为目前科学研究的热点之一,被认为是世纪的又一次产业革命。纳米材料向国民经济和高新科技等各个领域的渗透以及对人类社会的进步的影响是难以估计的。 关键词:纳米材料;纳米应用;量子尺寸效应 1.前言 纳米材料和纳米结构无论在自然界还是在工程界都不是新生事物。在自然界存在大量的天然纳米结构,只不过在透射电镜的应用以前人们没有发现而已。 在工程方面,纳米材料80年代初发展起来的,纳米材料其粒径范围在1—100nm之间,故纳米材料又称超微晶材料。它包括晶态、非晶态、准晶态的金属、陶瓷和复合材料等。由于极细的晶粒和大量处于晶界和晶粒缺陷中心的原子,纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前已受到世界各

国科学家的高度重视。美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年内将投资250亿日元发展纳米材料和纳米科学技术;英国也将发展纳米材料科学技术作为重振英国工业的突破;我国的自然科学基金“863”计划、“793”计划以及国家重点实验室都将纳米材料列为优先资助项目[1]。美国科学技术委员会把“启动纳米技术的计划看作是下一次工业革命的核心”[2]。 2.纳米材料的制备 现行的纳米材料制备方法很多。但是真正能够高效低成本制备纳米材料的方法还是现在各个国家研究的重点。目前已报的工艺方法主要有以下几种:物理气相沉积法(PVD)和化学气相沉积法(CVD)、等离子体法、激光诱导法、真空成型法、惰性气体凝聚法、机械合金融合法、共沉淀法、水热法、水解法、微孔液法、溶胶—凝胶法等等。 3.纳米材料的主要应用 3.1纳米材料在工程方面的应用 纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如SiC 等在纳米尺度下在较低的温度下即可烧结,另一方面,纳米材料作为烧结过程中的活性添加剂使用也可降低烧结温度,缩短烧结时间。纳米粉体可用于改善陶瓷的性能,其原因在于微小的纳米微粒不仅比表面积大,而且扩散速度快,因而进行烧结时致密化的速度就快,烧结

电子元器件购销合同模板

编号:GR-WR-85910 电子元器件购销合同模板 After negotiation and consultation, both parties jointly recognize and abide by their responsibilities and obligations, and elaborate the agreed commitment results within the specified time. 甲方:____________________ 乙方:____________________ 签订时间:____________________ 本文档下载后可任意修改

电子元器件购销合同模板 备注:本合同书适用于约定双方经过谈判、协商而共同承认、共同遵守的责任与义务,同时阐述确定的时间内达成约定的承诺结果。文档可直接下载或修改,使用时请详细阅读内容。 供方:_______(以下简称甲方) 地址: 需方:_______(以下简称乙方) 地址: 甲乙双方经友好协商,就乙方向甲方购销电子元器件的事宜达成一致意见,签订本合同如下: 一、标的情况 名称 名称 数量 单价 总价

合计 总量 合计 二、供货确认 1、乙方向甲方提供《购销明细表》并以此作为甲方供货的依据。要求《购销明细表》字迹清楚,并应详细列出购销产品的名称、规格、数量、价格等要求。 2、甲方收到乙签字盖章的《购销明细表》后,如无异议,应在24小时内,将由甲方代表签字盖章并注“同意”的该单邮件至乙方,并即按该单之要求执行。双方签字盖章的《购销明细表》同样具有法律效力。 三、品质检验 1、甲方在将产品供给乙方前,需对产品按国家标准、行业标准或甲方确认的企业标准进行检验。如在合同附本中有技术协议书,甲方还要执行该协议书之各条规定。每批供货

新型高性能半导体纳米线电子器件和量子器件

项目名称:新型高性能半导体纳米线电子器件和量 子器件 首席科学家:徐洪起北京大学 起止年限:2012.1至2016.8 依托部门:教育部中国科学院

一、关键科学问题及研究内容 国际半导体技术路线图(ITRS)中明确指出研制可控生长半导体纳米线及其高性能器件是当代半导体工业及其在纳米CMOS和后CMOS时代的一个具有挑战性的科学任务。本项目将针对这一科学挑战着力解决如下关键科学问题:(1)与当代CMOS工艺兼容、用于新型高性能可集成的纳电子器件的半导体纳米线阵列的生长机制和可控制备;(2)可集成的超高速半导体纳米线电子器件的工作原理、结构设计及器件中的表面和界面的调控;(3)新型高性能半导体纳米线量子电子器件的工作模式、功能设计和模拟、载流子的基本运动规律。 根据这些关键科学问题,本项目包括如下主要研究内容: (一)新型半导体纳米线及其阵列的可控生长和结构性能表征 在本项目中我们将采用可控生长的方法来生长制备高品质的InAs、InSb 和GaSb纳米线及其异质结纳米线和这些纳米线的阵列。 生长纳米线的一个重要环节是选取衬底,我们将研究在InAs衬底上生长高品质的InAs纳米线,特别是要研究在大晶格失配的Si衬底上生长InAs纳米线的技术。采用Si衬底将大大降低生长成本并为与当代CMOS工艺的兼容、集成创造条件。关于InSb和GaSb纳米线的制备,人们还没有找到可直接生长高品质InSb和GaSb纳米线的衬底。我们将研究以InAs纳米线为InSb和GaSb纳米线生长凝结核的两阶段和多阶段换源生长工艺,探索建立生长高品质InSb和GaSb纳米线及其InAs、InSb和GaSb异质结纳米线的工艺技术。本项目推荐首席徐洪起教授领导的小组采用MOCVD 技术已初步证明这种技术路线可行。我们将进一步发展、优化InSb和GaSb纳米线的MOCVD生长工艺技术,并努力探索出用CVD和MBE生长InSb和GaSb纳米线的生长技术。CVD是一种低成本、灵活性高的纳米线生长技术,可用来探索生长大量、多样的InSb、InAs和GaSb纳米线及其异质结,可为项目前期的纳米器件制作技术的发展提供丰富的

纳米光电子器件最新进展及发展趋势

纳米光电子器件最新进展及发展趋势 摘要:纳米光电子技术是一门新兴科技,近年来随着其发展及研究受到越来越多学者和专家的关注,该技术的应用更是成为现代人们关注的热点。文章主要针对纳米光电子器件展开分析,并对其未来发展方向进行了阐述。 标签:纳米光电子器件;发展进展;发展趋势 随着信息产业的不断发展,该行业对于集成电路器件的性能要求越来越严格,这使得工程师们不断探索现有电路器件集成度极限的方法。随着亚微米、深亚微米以及微电子机械系统(MEMS)的不断发展,纳米电子学以及纳米光电子学随之发展起来,并且纳米量子器件作为其产物继承了此类技术的优势。纳米量子器件能够根据其特征分为纳米电子器件以及纳米电子光器件。纳米电子器件由共振隧穿器件、量子点器件以及单电子器件等部件组成;而纳米光电子器件主要是由基于应变自组装的纳米激光器、量子点红外光电探测器等部件组成。 1 纳米光电子器件的进展 在现阶段中已经研制出并在实际生产中能够使用的纳米光电子器件有:纳米激光器、量子点红外光电探测器、InGaAs/GaAs多量子限自电光效应器件、垂直腔面发射激光器、聚光物发光二极管等器件。 1.1 纳米导线激光器 纳米导线激光器能够发射出世界最小的激光,其直径小于人体毛发的千分之一。该激光器除了能够发射紫外激光,还能够发射蓝色-深紫外的激光。研究人员发现,在纯氧化锌晶体中运用取向附生技术能够制造出此类激光器。纳米导线激光器在制造过程中首先需要制造纳米导线,也就是在纯氧化锌的表层上制造一条直径为20nm~150nm且长度为10000nm的导线,其次,当研究人员在温室中使用一种激光照射在纯氧化锌表层上的导线中时,纯氧化锌晶体被激活,其会发射一种波长仅为17nm的激光。纳米导线激光器能够被应用于鉴别化学物质等工作中,并且能够促使磁盘的存储空间增长。 1.2 紫外纳米激光器 紫外纳米激光器能够发射直径小于0.3nm,波长为385nm的激光,并且该激光器件具有制作简单、亮度高、体积小、性能好的优势,能够在高密度纳米线阵列的制作中起到较好的效果,因此,紫外纳米激光器被应用于现代许的GaAs器件无法设计的领域。该激光器主要是应用了催化外延晶体生长的气相输运法合成的原理:(1)将蓝宝石底部贴上一层1nm~3.5nm厚的金膜;(2)将贴膜后的蓝宝石放置在氧化铝上,并将底部与材料放置氨气中加热至880℃~905℃,就能够生产Zn蒸汽;(3)将Zn蒸汽与蓝宝石底部相连,于2~10min中蓝宝石底部会生成截面积为六边形2~10um的纳米线。相关文献表示,ZnO纳米线能够生

功率半导体器件封装技术的新趋势分析

科学技术创新2019.30 功率半导体器件封装技术的新趋势分析 刘乐 (国家知识产权局专利局电学部, 北京100088)现代功率半导体器件的封装,主要朝着小体积和大功率的方 向不断发展,通过这种技术上的升级, 可以显著减低功率半导体硅片与散热器之间的热阻,保障整个输出功率, 可以达到最大,并对接处的阻抗进行数值分析,全面提高功率半导体器件的通流能力。 1功率半导体封装技术要点 功率半导体在目前的换流电路中, 对一些杂散电感,处理能力较差,提高封装技术的应用效果, 可以显著降低这种杂感电感,从而使得功率半导体的阻断电压得到最充分的利用。 1.1绝缘电压控制 封装技术要满足目前功率半导体运行过程当中,面临的绝缘 电压情况,尽可能的降低功率半导体封装的体积, 实现结构设计上的紧凑性,避免绝缘电压的存在, 影响功率半导体阻断的具体运行情况,延长功率半导体器件的使用寿命, 降低咱电感应现象,对于电路的危害[1]。 1.2skiip 技术应用 这种技术最早是在中等功率的半导体元器件封装当中应用,在目前逐,渐向大功率半导体元器件封装技术当中发展。技术人员可以通过半导体封装当中的铲车和牵引仪器,对于热压力进行整 合分析。并且通过直接连接方式, 应用相关陶瓷基片,对于散热器进行优化升级。(1)通过这种设计形式,可以去除掉封装过程当中 的铜底板,从而进一步的压缩整个元器件封装的体积, 提高结构设计的紧凑性。(2)应用这种技术,还可以对于封装过程当中半导体 元器件的汇流排和辅助连接器件, 进行一体式封压,从而全面提高陶瓷基片的控制功能。(3)运用这种焊接方式, 焊料的浪费可以大大的降低。(4)由于底板的去除,整个功率半导体元器件的热阻会 显著的减少。 1.3损耗分析 半导体元器件封装过程当中,硅的损耗是造成散热器温差控 制效果较差的主要原因,通过这种skiip 控制模块的运行方式, 可以将整个散热器运行的温度,下降3-7℃。(1)这种运行方式可以 显著降低整个半导体元件的热阻效应, 基本上可以降低10%左右。(2)同时,由于体积的减少,底板元件去除, 整个陶瓷基片与半导体元件之间,铜底板的连接焊料也就不复存在。(3)技术人员还可以 通过材料系数的相关调整,对于封装过程当中的膨胀系数,进行定量分析,避免传统的封装方式造成半导体元件的热疲劳现象。 1.4机械应力改进 在铲车之类牵引应用的过程当中,skiip 这种封装技术运行非 常可靠。目前这种技术已经具有了比较标准化的发展结构, 可以通过单元式的连续空留方式,与半导体元件的电路, 以及外壳,进行优化的连接,从而形成一个三相桥结构, 不仅可以驱动标准感应电机连续运行,还可以通过独立交流的方式, 与DBC 陶瓷片的基本元器件,进行组合连接, 形成一个控制模组。通过这种封装方式的改进,每个半导体元件封装过程当中的 半桥电感, 最低只有15nh 。而且运用这种方式,功率半导体封装过程当中各个元件上的电流分布更加的均匀, 也就是说,不必再对电流的额定值,进行差异化分析,就可以完成整个单元的分装作业。 2新一代skiip 技术发展2.1新一代skiip 技术原理 新一代skiip 技术,正在朝着总成本优化设计的角度进行发 展,通过这种散热器温度传感的高度智能化控制, 技术人员可以对功率半导体封装过程当中的相电流和直电流,进行智能传感与压 力控制,通过这种集成驱动方式, 可以很好的保护封装过程当中的相应开关损耗,从而通过脉冲测试等等, 随时了解到半导体元器件运行过程当中的热阻值[2] 。 脉冲数值Q 会随着时间的变化而变化,对硅的散失情况进行系统求和,就可以更好的对脉冲数值进行定量分析。方便进行数据检验与数据校核,全面提高整个功率半导体封装过程当中的安全效应,避免元件损坏,提高整个元器件的使用寿命。 2.2沟槽型原包结构 新一代的skiip 组件模块采用第三代芯片, 这种芯片对于电流密度的调节优化作用非常的显著, 可以通过双单元封装模块,对于功率半导体封装过程当中的电流电压传感器,进行一体化的数据 把控。在这种双单元封装模式之下, 电流的输出水平可以从传统的200安提高到400安,有效数值增加20%,连续传输功率上升70%,设备达到最高电流密度的时间下降150%。 2.3陶瓷材料的优化选择 为了适应这种新型的skiip 组件模块技术,要选择优级的氮化 铝陶瓷材料,这种基本原漆片可以保证skiip 封装过程当中, 三相桥模块运行有效,可以提供强大的驱动力, 保障标准电机的正常运行。对于输出功率进行相应的调节, 通过这种标准化的驱动能力,提升整个基本元件的输出功率,一般来说,密度可以上升70%以 上,这种系统优化改进不仅可以增加单元硅片的有效控制面积, 还可以避免散热器安装过程当中传统难点问题,实现机械层面与电气层面的相应兼容。 2.4成套顶装配双单元组件 在进行封装模块优化的过程当中,可以通过这种双单元封装模块的工艺改造,为最终的设备安装与测试流程提供便利。 第一,通过数据更新,将这种装配与测试环节系统分布下来, 通过精细化的封装驱动器控制,进行磨牙和弹簧压得相应调节。 这种skiip 相应驱动器,可以在不同的元件之间进行转换, 从而全面改善模块的可靠性,并且降低封装技术需要的设备成本。摘要:功率半导体体积较小、输出功率非常大,在现代制造行业当中有着非常广泛的应用, 对其封装技术进行讨论,有利于全面提高功率半导体器件应用的有效性。基于此,本文主要分析功率半导体器件封装当中的关键技术, 并结合具体的器件封装发展情况,分析这种封装技术的新趋势。 关键词:功率半导体;器件封装技术; 新趋势中图分类号:TN305文献标识码:A 文章编号:2096-4390(2019)30-0194-02(转下页) 194--

相关主题
文本预览
相关文档 最新文档