当前位置:文档之家› 区间的概念

区间的概念

高一数学函数的概念及表示方法

全方位教学辅导教案姓名性别年级高一 教学 内容 函数与映射的概念及其函数的表示法 重点难点教学重点:理解函数的概念;区间”、“无穷大”的概念,定义域的求法,映射的概念教学难点:函数的概念,无穷大”的概念,定义域的求法,映射的概念 教学目标1.理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素; 2.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法 3.了解映射的概念及表示方法 4.了解象与原象的概念,会判断一些简单的对应是否是映射,会求象或原象. 5.会结合简单的图示,了解一一映射的概念 教学过程课前检 查与交 流 作业完成情况: 交流与沟通 针 对 性 授 课 一、函数的概念 一、复习引入: 初中(传统)的函数的定义是什么?初中学过哪些函数? 设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的 值与它对应,那么就说x是自变量,y是x的函数.并将自变量x取值的集合叫做 函数的定义域,和自变量x的值对应的y值叫做函数值,函数值的集合叫做函数 的值域.这种用变量叙述的函数定义我们称之为函数的传统定义. 初中已经学过:正比例函数、反比例函数、一次函数、二次函数等 问题1:()是函数吗? 问题2:与是同一函数吗? 观察对应: 30 45 60 90 2 1 2 2 2 3 9 4 1 1 -1 2 -2 3 -3 3 -3 2 -2 1 -1 1 4 9 1 2 3 1 2 3 4 5 6 (1)(2) (3)(4) 开平方求正弦 求平方乘以2 A A A A B B B B 1 二、讲解新课:

沪教版高一数学上册1.1 区间的表示方法和集合相关概念 讲义

第一讲:集合与区间的概念及其表示法 知识点一、区间的概念 设 a ,b 是实数,且 a <b ,满足 a ≤x ≤b 的实数 x 的全体,叫做闭区间, 记作 [a ,b ],即,[,]{|}a b x a x b =≤≤。如图: a , b 叫做区间的端点.在数轴上表示一个区间时,若区间包括端点,则端点用实心点表示;若区间不包括端点,则端点用空心点表示. 全体实数也可用区间表示为(-∞,+∞),符号“+∞”读作“正无穷大”,“-∞”读作“负无穷大”,即(,)R =-∞+∞。 知识二、元素与集合:指定对象的全体叫“集合”,简称“集”,用大写英文字母A 、B 、C 等表示,其中的每个对象叫“元素”,用小写英文字母a 、b 、c 表示 1.集合元素的特性: 集合中元素的从属性要明确 反例:大树、好人 集合中元素必须能判定彼此 反例:2,2 集合中元素排列没有顺序 如:{1,2,3}{2,1,3}= 例1、判断下列各组对象能否组成集合: (1)不等式的解; (2)我班中身高较高的同学; (3)直线上所有的点; (4)不大于10且不小于1的奇数。 练习1.给出下列说法: (1)较小的自然数组成一个集合; (2)集合{1,-2,3,π}与集合{π,-2,3,1}是同一个集合; (3)若∈a R ,则a ?Q ; (4)已知集合{x ,y ,z }与集合{1,2,3}是同一个集合,则x =1,y =2,z =3 其中正确说法个数是( ) 例2.集合A 是由元素n 2-n ,n -1和1组成的,其中n ∈Z ,求n 的取值范围。 例3.已知M={2,a,b }N={2a,2,}且M=N ,求a,b 的值 练习2.已知集合M={a,a+d,a+2d},N={a,aq,aq 2},a≠0,且M 与N 中的元素完全相同,求d 和q 的值。 320x +>21y x =-2 b

函数的概念与表示法

函数的概念和函数的表示法 考点一:由函数的概念判断是否构成函数 函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有 唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。 例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( ) ① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y= 3 x ; ② A={x x>0,x ∈R}, B={y y ∈R},对应法则f :x →2y =3x; ③ A=R,B=R, 对应法则f :x →y=2 x ; 变式1. 下列图像中,是函数图像的是( ) ① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( ) ①22x y +=2 1= ③ A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( ) A. y=f (x )图像与直线x=a 必有一个交点 B.y=f (x )图像与直线x=a 没有交点 C.y=f (x )图像与直线x=a 最少有一个交点 D.y=f (x )图像与直线x=a 最多有一个交点 变式4.对于函数y =f(x),以下说法正确的有…( ) ①y 是x 的函数 ②对于不同的x ,y 的值也不同 ③f(a)表示当x =a 时函数f(x)的值,是一个常量 ④f(x)一定可以用一个具体的式子表示出来 A .1个 B .2个 C .3个 D .4个 变式5.设集合M ={x|0≤x ≤2},N ={y|0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( ) A .①②③④ B .①②③ C .②③ D .② 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与y=x 相同( ) ①. y=x ②.y = ③. 2 y = ④.y=t ⑤.3 3x y = ;⑥.2x y =

函数的基本概念及表示法

题一:定义集合{1,2,…,n }到{1,2,…,n }上的函数f :k →i k ,k =1,2,…,n .记作:121,2,,,,,n n i i i ?? ??? . 设121,2,,,,,n n f i i i ??= ??? ,12 1,2,,,,,n n g j j j ??= ??? (这里的j 1,j 2,…,j n n j j j ,,,21 也是1,2,…,n 这n 个整数的一个排列).定义g f 12 1,2,,,,,n n i i i ??= ??? 121,2,,,,,n n j j j ?? ??? ,其中)]([)(k g f k g f = ,k =1,2,…,n ..则? ?? ? ?????? ??4,5,1,2,35,4,3,2,13,1,2,4,55,4,3,2,1= 题二:在加工爆米花的过程中,爆开且不糊的粒数占加工总数的比率称为可食用率p .它的大小主要取决于加工时间t (单位:分钟). 做了三次实验,数据记录如图所示.已知图中三个点都在函数p =-0.2t 2+bt +c 上,则由此得到的理论最佳加工时间为 分钟. 题三:3,10 ()((5)),10x x f x f f x x -≥?=?+

函数的定义及表示方法

函数的定义及表示方法 1若函数()f x 满足(21)1f x x -=+,则(1)f = . 2函数()f x 对于任意实数x 满足条件1(2)() f x f x += ,若(1)5f =-,则((5))f f = . 3若函数2(21)2f x x x +=-,则(3)f = . 4已知函数2 2 (),1x f x x R x =∈+. (1)求1()()f x f x +的值; (2)计算:111 (1)(2)(3)(4)()()()234 f f f f f f f ++++++. 5已知,a b 为常数,若22()43,()1024,f x x x f ax b x x =+++=++求5a b -的值 6设函数3 (100)(),(89).[(5)](100)x x f x f f f x x -≥?=? +

最新区间的概念(教学设计)

区间的概念 【教学目标】 1. 理解区间的概念,掌握用区间表示不等式解集的方法,并能在数轴上表示出来. 2. 通过教学,渗透数形结合的思想和由一般到特殊的辩证唯物主义观点. 3. 培养学生合作交流的意识和乐于探究的良好思维品质,让学生从数学学习活动中获得成功的体验,树立自信心. 【教学重点】 用区间表示数集. 【教学难点】 对无穷区间的理解. 【教学方法】 本节课主要采用数形结合法与讲练结合法.通过不等式介绍闭区间的有关概念,并与学生一起在数轴上表示两种不同的区间,学生类比得出其它区间的记法.在此基础上引导学生用区间表示不等式的解集,为学习用区间法求不等式组的解集打下坚实的基础.【教学过程】

新课区间不包括端点,则端点用空心点表示. 全体实数也可用区间表示为(-∞,+∞),符 号“+∞”读作“正无穷大”,“-∞”读作“负无 穷大”. 例1用区间记法表示下列不等式的解集: (1) 9≤x≤10;(2) x≤0.4. 解(1) [9,10];(2) (-∞,0.4]. 练习1用区间记法表示下列不等式的解集, 并在数轴上表示这些区间: (1) -2≤x≤3;(2) -3<x≤4; (3) -2≤x<3;(4) -3<x<4; (5) x>3;(6) x≤4. 例2用集合的性质描述法表示下列区间: (1) (-4,0);(2) (-8,7]. 解(1) {x | -4<x<0};(2) {x | -8<x≤7}. 练习2用集合的性质描述法表示下列区间, 并在数轴上表示这些区间: (1) [-1,2);(2) [3,1]. 例3在数轴上表示集合{x|x<-2或x≥1}. 解如图所示. 用表格呈现相应的 区间,便于学生对比记 忆. 教师强调“∞”只是 一种符号,不是具体的 数,不能进行运算. 学生在教师的指导 下,得出结论,师生共 同总结规律. 学生抢答,巩固区 间知识. 学生代表板演,其 它学生练习,相互评价. 了铺垫. 学生理解无 穷区间有些难 度,教师要强调 “∞”只是一种 符号,并结合数 轴多加练习。 三个例题 之间,穿插类似 的练习题组,使 学生掌握不等 式记法,区间记 法,数轴表示三 者之间的相互 转化.逐层深 入,及时练习, 使学生熟悉区 间的应用. x 01 -1 -2

函数的概念及表示方法

函数的概念及表示方法 一、选择题(每小题5分,共60分) 1、 数)(x y ?=的图象与直线a x =的交点个数为( ) A 、必有1个 B 、1个或2个 C 、至多1个 D 、可能2个以上 2、 下列四组中的函数 )(x f 与)(x g ,表示相同函数的一组是( ) A 、2)()(,)(x x g x x f == B 、1)(,11)(2-=-+=x x g x x x f C 、 x x x g x x f ==)(,)(0 D 、2)(,)(x x g x x f == 3、 下列选项正确的是( ) (1)x x y -+-= 12可以表示函数 (2)521=-+-y x 可以表示函数(3)122=+y x 可以表示函数 (4)12=+y x 可以表示函数 A 、 (2)(4) B 、(1)(3) C 、(1)(2) D 、(3)(4) 4、下列关于分段函数的叙述正确的是( ) (1) 分段函数的定义域是各段定义域的并集,值域是各段值域的并集 (2)分段函数尽管在定义域不同的部分有不同的对应法则,但它们是同一个函数 (3)若21,D D 分别是分段函数的两个不同对应法则的值域,则Φ=21D D I A 、 (1) B 、(2)、(3) C 、(1)、(2) D 、(1)、(3) 5、设2:x x f →是集合A 到B 的映射,如果{}2,1=B ,那么B A I =( ) A 、 Φ B 、 {}1 C 、Φ 或{}2 D 、Φ或{}1 6、若函数)(x f 满足),)(()()(R y x y f x f y x f ∈+=+,则下列各项不恒成立 的是( ) A 、0)0(=f B 、)1(3)3(f f = C 、)1(2 1)21(f f = D 、0)()(<-x f x f 7、将x y 1=的图像变换至函数23++=x x y 的图像,需先向 平移 个单位,再向 平移 个单位( ) A 、左,2,上,1 B 、左,2,下,1 C 、右,2,上,1 D 、右,2,上,1 8、已知函数)(x f 的定义域是),(b a ,其中b>a+2,则)13()13()(+--=x f x f x f 的定义域是( )

函数的概念与表示法

函数的概念和函数的表示法 考点一:由函数的概念判断是否构成函数 函数概念:设A、B是非空的数集,如果按照某种确定的关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称 f:A→B为从集合A到集合B的一个函数。 例1. 下列从集合A到集合B的对应关系中,能确定y是x的函数的是( ) ①{x x∈Z},{y y∈Z},对应法则f:x→ 3 x; ②{xx>0∈R}, {y y∈R},对应法则f:x→2y=3x; ③, 对应法则f:x→2x; 变式1. 下列图像中,是函数图像的是( ) ①②③④ 变式2. 下列式子能确定y是x的函数的有() ①22 x y+=2 1= A、0个B、1个 C、2个 D、3个变式3.已知函数(x),则对于直线(a为常数),以下说法正确的是() A.(x)图像与直线必有一个交点(x)图像与直线没有交点 (x)图像与直线最少有一个交点(x)图像与直线最多有一个交点 变式4.对于函数y=f(x),以下说法正确的有…( ) ①y是x的函数 ②对于不同的x,y的值也不同

A .1个 B .2个 C.3个 D.4个 变式5.设集合M ={0≤x≤2},N ={0≤y≤2},那么下面的4个图形中,能表示集合M到集合N 的函数关系的有( ) A.①②③④ B .①②③ C.②③ D.② 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与相同( ) ①. x ②.y = ③. 2 y = ④ ⑤.33x y =;⑥.2x y = 变式1.下列函数中哪个与函数y ) A . y = B . y =-y =- D . y x = 变式2. 下列各组函数表示相等函数的是( ) A. 29 3 x y x -=- 与 3y x =+ B. 1y = 与 1y x =- C. 0y x =(x ≠0) 与 1y =(x≠0) D. 21y x =+,x ∈Z 与21y x =-,x ∈Z 变式3. 下列各组中的两个函数是否为相同的函数?

区间概念教案

区间的概念教学设计

新课 新课 设a,b 是实数,且a<b. 满足a≤x≤b 的实数x 的全体,叫做闭区 间,记作 [a,b],如图. a,b 叫做区间的端点.在数轴上表示一个区 间时,若区间包括端点,则端点用实心点表示;若 区间不包括端点,则端点用空心点表示. 全体实数也可用区间表示为(-∞,+∞),符 号“+∞”读作“正无穷大”,“-∞”读作“负无 穷大”. 例 1 用区间表示不等式 3x>2+4x 的解集, 并在数轴上表示出来。 解:解不等式 3x>2+4x 得: x< -2 所以用区间表示不等式的解集是 (-∞,-2) 在数轴上表示如图 练一练:用区间表示不等式 4x>2x+4的解 集,并在数轴上表示出来。 教师讲解闭区间, 开区间的概念,记法和 图示,学生类比得出半 开半闭区间的概念,记 法和图示. 用表格呈现相应的 区间,便于学生对比记 忆. 教师强调“∞”只是 一种符号,不是具体的 数,不能进行运算. 学生在教师的指导 下,得出结论,师生共 同总结规律. 学生抢答,巩固区 间知识. 学生代表板演,其 教师只讲 两种区间,给学 生提供了类比、 想象的空间,为 后续学习做好 了铺垫. 学生理解无 穷区间有些难 度,教师要强调 “∞”只是一种 符号,并结合数 轴多加练习。 三个例题 之间,穿插类似 的练习题组,使 学生掌握不等 式记法,区间记 法,数轴表示三 者之间的相互 转化.逐层深 入,及时练习,

例2 已知集合A=( 0 ,3 ),集合B=[ -1, 2 ],求 A∩B ,A∪B 。 解:两个集合的数轴表示如图所示: 察图形知: A∩B = ( 0 ,2 ] A∪B = [ -1 ,3 ) 练一练 1、已知集合A=[ -3 ,4 ],集合B=[ 1, 6 ],求 A∩B ,A∪B 。: 它学生练习,相互评价. 同桌之间讨论,完 成练习. 使学生熟悉区 间的应用. 小 结 填制表格: 集合区间区间名称数轴表示 {x|a<x<b} {x|a≤x≤b} {x|a≤x<b} {x|a<x≤b} 集合区间数轴表示 {x | x>a } {x | x<a } {x | x≥a } {x | x≤a} 师生共同完成表格.通过表格 归纳本节知识, 有利于学生将 本节知识条理 化,便于记忆。作业布置

3.1函数的概念及其表示法

【课题】 3.1 函数的概念及其表示法 【教学目标】 知识目标: (1) 理解函数的定义;(2) 理解函数值的概念及表示; (3) 理解函数的三种表示方法;(4) 了解利用“描点法”作函数图像的方法. 能力目标: (1) 通过函数概念的学习,培养学生的数学思维能力; (2) 通过函数值的学习,培养学生的计算能力和计算工具使用技能; (3) 会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力. 【教学重点】 (1) 函数的概念;(2) 利用“描点法”描绘函数图像. 【教学难点】 (1) 对函数的概念及记号)(x f y =的理解;(2) 利用“描点法”描绘函数图像. 【教学设计】 (1)从复习初中学习过的函数知识入手,做好衔接; (2)抓住两个要素,突出特点,提升对函数概念的理解水平; (3)抓住函数值的理解与计算,为绘图奠定基础; (4)学习“描点法”作图的步骤,通过实践培养技能; (5)重视学生独立思考与交流合作的能力培养. 【课时安排】2课时.(90分钟) 【教学过程】 *揭示课题 3.1函数的概念及其表示法 *创设情景 兴趣导入 学校商店销售某种果汁饮料,售价每瓶2.5元,购买果汁饮料的瓶数与应付款之间具有什么关系呢? 设购买果汁饮料x 瓶,应付款为y ,则计算购买果汁饮料应付款的算式为 2.5y x =. 因为x 表示购买果汁饮料瓶数,所以x 可以取集合{}0,1,2,3,中的任意一个值,按照算式法则 2.5y x =,应付款y 有唯一的值与之对应. 两个变量之间的这种对应关系叫做函数关系. *动脑思考 探索新知

在某一个变化过程中有两个变量x 和y ,设变量x 的取值范围为数集D ,如果对于D 内的每一个x 值,按照某个对应法则f ,y 都有唯一确定的值与它对应,那么,把x 叫做自变量,把y 叫做x 的函数. 将上述函数记作()y f x =. 变量x 叫做自变量,数集D 叫做函数的定义域. 当0x x =时,函数()y f x =对应的值0y 叫做函数()y f x =在点0x 处的函数值.记作()00y f x =. 函数值的集合(){}|,y y f x x D =∈叫做函数的值域. 函数的定义域与对应法则一旦确定,函数的值域也就确定了.因此函数的定义域与对应法则叫做函数的两个要素. 定义域与对应法则都相同的函数视为同一个函数,而与选用的字母无关.如函数y =与s =表示的是同一个函数. 例如,函数2 x y x =的定义域为{|0}x x ≠,函数y x =的定义域为R .它们的定义域不同,因此不 是同一个函数;函数,0, ,0x x y x x ?=?-

函数的定义域与区间

课题:2.1.2函数-区间的概念及求定义域的方法 教学目的: 1.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法; 2.培养抽象概括能力和分析解决问题的能力; 教学重点:“区间”、“无穷大”的概念,定义域的求法 教学难点:正确求分式函数、根式函数定义域 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 函数的三要素是:定义域、值域和定义域到值域的对应法则;对应法则是函数的核心(它规定了x和y之间的某种关系),定义域是函数的重要组成部分(对应法则相同而定义域不同的映射就是两个不同的函数);定义域和对应法则一经确定,值域就随之确定 前面我们已经学习了函数的概念,,今天我们来学习区间的概念和记号 二、讲解新课: 1.区间的概念和记号 在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号. 设a,b∈R ,且a

{x|aa ,x ≤b ,x=

高一数学教案:2.1.2函数-区间的概念及求定义域的方法

课 题:2.1.2函数-区间的概念及求定义域的方法 教学目的: 1.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法; 2.培养抽象概括能力和分析解决问题的能力; 教学重点:“区间”、“无穷大”的概念,定义域的求法 教学难点:正确求分式函数、根式函数定义域 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 函数的三要素是:定义域、值域和定义域到值域的对应法则;对应法则是函数的核心(它规定了x 和y 之间的某种关系),定义域是函数的重要组成部分(对应法则相同而定义域不同的映射就是两个不同的函数);定义域和对应法则一经确定,值域就随之确定 前面我们已经学习了函数的概念,,今天我们来学习区间的概念和记号 二、讲解新课: 1.区间的概念和记号 在研究函数时 ,常常用到区间的概念,它是数学中常用的述语和符号. 设a,b ∈R ,且aa ,x ≤b ,x

(完整)八年级数学函数概念及表示方法

第四章一次函数 一、函数相关概念及表示方式 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。 例1: 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 注:确定函数自变量的取值范围有两点,第一是要使含有自变量的式子有意义,第二是要使实际问题有意义。 例2: 例3: 例4: 已知等腰三角形的周长为20,设底边长为y,腰长为x,则y与x的函数关系式为________,自变量的取值范围是_________ 例5: 的取值范围是() 3、函数的三种表示法及其优缺点 (1)解析式法/关系式法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法用图像表示函数关系的方法叫做图像法。

例6: 用解析式表示下列函数关系. (1)某种苹果的单价是1.6元/kg,当购买x(kg)苹果时,花费y(元),y(元)与x (kg)之间的函数关系.______; (2)汽车的速度为20km/h,汽车所走的路程s(km)和时间t(h)之间的关系.______.例7: 均匀的向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图像是() 例8: 小明400米/分的速度匀速汽车5分钟,在原地休息了6分钟,然后以500米/分的速度骑回出发地,下列函数图像能表达这一过程的是() 例9: 小明骑自行车上学,开始以正常的速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误课,加快汽车速度,下面是小明离家后他到学校剩下的路程s 关于时间t的函数图像,那么符合小明行驶情况的图像大致是() 例10: 甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()

函数区间的概念及求定义域的方法

课题:2.1.2函数-区间地概念及求定义域地方法教学目地: 1.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域地求法,掌握求函数解析式地思想方法; 2.培养抽象概括能力和分析解决问题地能力; 教学重点:“区间”、“无穷大”地概念,定义域地求法 教学难点:正确求分式函数、根式函数定义域 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 函数地三要素是:定义域、值域和定义域到值域地对应法则;对应法则是函数地核心(它规定了x和y之间地某种关系),定义域是函数地重要组成部分(对应法则相同而定义域不同地映射就是两个不同地函数);定义域和对应法则一经确定,值域就随之确定 前面我们已经学习了函数地概念,,今天我们来学习区间地概念和记号 二、讲解新课: 1.区间地概念和记号 在研究函数时,常常用到区间地概念,它是数学中常用地述语和符号. 设a,b∈R ,且a

这样实数集R 也可用区间表示为(-,+),“”读作“无穷大”,“-”读作“负无穷大”,“+∞”读作“正无穷大”.还可把满足x ≥a,x>a,x ≤b,x=

函数的概念及其表示

函数的概念及其表示 一、什么是函数? 1、函数的定义: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function )。记作: y=f(x),x ∈A . 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ). 注意: 1) “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”。 2) 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,是一个数;而f()表示的 是对应关系。(用集合关系讲解) 2、映射与函数 函数的特殊的映射 二、构成函数的三要素:定义域、对应关系和值域 1、函数是一个整体“y=f(x),x ∈A .”表示一个函数。函数=定义域+对应关系+值域 2、比喻理解: 定义域f ?? →值域 等价于 原材料f ??→产品 一个函数就是一个完整过程,定义域是原材料、对应关系f 是生产设备、值域是生产的产品,而我们是老板,老板刷题就是从三要素出发不断地管理匹配这个生产过程 3、举例说明:2 1,y x x R =+∈ 问:定义域?值域是?对应关系是?

三、求函数定义域 主要题型:偶次方被开方数为非负;分式的分母不为零;零次幂的底数不为零;对数真数大于零;指数对数的底数大于零且不等于1 例题讲解: 1、1()f x x x =- 2、1()11f x x =+ 3 、()f x =4、2()ln(1)f x x =- 5 、()1 f x x = - 四、求函数解析式 1、函数的三种表达方法 解析式法+图像法+列表法 因此我们可以看出解析式是函数的表达方式之一,也是我们学习过程中接触最多的。 2、函数解析式求法 1) 配凑法 由已知条件(())()f g x F x =,可以将()F x 改写成关于()g x 的表达式,然后以x 替代()g x 例题:已知22 22(1))3x f x x ++=-,求()f x 解析式 2) 待定系数法 如已知函数类型(如一次函数、二次函数)可用待定系数法 例题:已知()f x 是一次函数,且满足3(1)()29f x f x x +-=+,求函数()f x 的解析式 3) 换元法 若已知(())f g x 的解析式,可用换元法 例题:已知22 22(1))3x f x x ++=-,求()f x 解析式 4) 解方程组法 已知关于()f x 与1()f x 或者()f x -与()f x 的表达式,可根据条件构造出另外一个等式,组成方程组求解 例题:已知()f x +21 ()f x =3x ,则求()f x 的解析式。

函数概念及表示方法

第二讲 函数的概念及表示方法 【基础知识回顾】 1. 函数的概念:设A B 、是非空的数集 ,如果按照某种对应关系f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数.记作 ,其中x 叫做自变量,x 的取值范围A 叫做函数的 ;与x 的值相对应的y 值叫做函数值,函数值的集合 {}()|f x x A ∈叫做函数的 . 2. 构成函数的三要素: 、 和 . 3. 函数定义域的常见求法: (1)分式的分母 ; (2)偶次根式的被开方数 ; (3)对数的真数大于零,底数 ;(若未学习到可先删去) (4)零次幂的底数 ;(若未学习到可先删去) (5) 已知函数)(x f 的定义域为D ,求函数)]([x g f 的定义域,只需求满足D x g ∈)(的x 的取值范围. (6)复合函数与抽象函数的定义域 4. 函数的值域:常见方法(常见函数、观察、配方、图像、换元、判别式、对勾) 5. 函数解析式的常见求法(待定系数、换元、配凑、赋值、加减消元): (1)待定系数法: 若已知函数的类型,比如二次函数可设为()()20f x ax bx c a =++≠,其中a 、b 、c 是待定系数,根据题设条件列出方程组,解出a 、b 、c 即可. (2)换元法: 已知()()f h x g x =????,求()f x 时,往往可设()h x t =,从中解出x ,代入()g x 进行换元,便可求解. 【例题精讲】 【例1】 试判断以下各组函数是否表示同一函数. (1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x | |,g (x )=???<-≥. 01,01x x (3)()2f x =()( ()21 2n g x n N -* = ∈; (4)f (x )= x 1+x ,g (x )=x x +2; (5)f (x )=x 2-2x -1,g (t )=t 2-2t -1.

区间定义与介绍

◆闭塞:闭塞就是用信号或凭证,保证列车按照前行列车和追踪列车之间必须保持一定距离(空间间隔制)运行的技术方法。 ◆固定闭塞:线路被划分为一固定位置某一长度的闭塞分区,每个分区只能被一列车占用,闭塞分区的长度按最不利条件设计,列车位置的分辨率为一个分区,制动的起点和终点总是某一分区的边界,对列车的控制采用速度码台阶式曲线方式 ◆准移动闭塞:…同前…制动的起点可以延伸,但终点总是某一分区的边界,对列车控制一般采用一次抛物线目标距离制动 ◆移动闭塞:线路没有划分为固定闭塞分区,列车间隔为动态并随前一列车的移动而移动,列车位置分辨率为10米左右,该间隔是按后续列车在当前速度下所需制动距离加上安全裕量计算和控制的,一般采用一次抛物线制动方式 ◆自动闭塞:根据列车运行及有关闭塞分区的状态自动变换通过信号机显示,而司机根据信号行车的方式 ◆移频自动闭塞:以频率参数作为信息的一种闭塞制式,用低频调制载频,将低频搬移到高端载频,形成振幅不变,频率随低频幅值高低交替变化,变化速率为低频的频率,将该信息通过钢轨传递进行行车方式 ◆计轴站间闭塞采用微机计轴设备检查区间空闲,随办理发车进路自动办理闭塞,列车凭出站信号机的显示信号进行发车后,出站信号机自动关闭待列车出清后自动解除闭塞 ◆机车三大件:机车信号无线列调自动停车装置 ◆主体化机车信号车载系统由主机箱、带电源接线盒、双路接收线圈、显示器上下行开关构成 ▲叙述UM2000轨道电路的编码规则:采用移频键控FSK的调整方式,27位信息码,最前边6位为循环冗余校验码。最后三位为预留码位,中间18位为实际使用信息位,其中包括坡度信息4位目标距离信息6位和速度信息8位。UM2000用27个低频信号0.88+n*0.64 ~17.52Hz和一个反映轨道占用/出清的低频信号25.68Hz、 ▲UM71:1调谐区长度26m 2 不具备全程断轨检查3死区段长度10-18m 4 载频单一,无冗余方式,传输长度900m,补偿电容每隔100米补偿一个33uf电容,不随频率而变化,发送器电平等级10级,接收器电平73级,电缆模拟网络7.5km。点式发送器14个频率信息1318.4+1.1*27*n(n=0~17; 3 5 7 9 不取) ◆8信息移频自动闭塞系统构成:FS\ZFL\DLM\GFL\JS\SGB\DY\JC ▲主体化机车信号原理:主机板采用底板加小插板的嵌入式结构,即分成主机板底板和CPU板。主机的每块主机板采用二取二容错安全结构,即每块主机板中有2路独立接收译码通道,2路的译码输出结果进行比较,比较一致才有效输出。主要采用电磁感应方式接收地面钢轨中传输的信号,利用安装在机车前导轮前方相应高度上的一对串联感应器与钢轨中的信息电流发生电磁感应,在感应器中产生了与地面轨道信号的信息完全相同的感应电动势,进而达到了接收地面信号的目的,实现了地面信号向机车的传递。 ▲站内电码化:保证铁路运输安全,对于加强站内行车安全以及机车信号的发展起重要作用。范围为经道岔直向的接车进路,为该进路的所有区段和自动闭塞区段经道岔直向的发车进路中的所有轨道电路区段,经道岔侧向的接车进路中的股道区段。

高一函数的概念及其表示法

函数的概念及其表示

4.分段函数 若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数. 5.区间的概念 1)区间的分类:开区间、闭区间、半开半闭区间; 说明:① 对于a,b ,a,b ,a,b ,a,b 都称数a和数 b 为区间的端点,其中a为左端点, b 为右端点,称b-a 为区间长度; ②引入区间概念后,以实数为元素的集合就有三种表示方法: 不等式表示法:3a, x b, x

解析:由函数的定义,对定义域内的每一个 x 对应着唯一一个y,据此排除①④,③中值域为{ y|0≤y≤3}不 合题意.答案:②

例2、下列函数中哪个与函数y = x 是同一个函数? (1) y ( x)2;(2) y 3x3;(3) y x2 〖解析〗解:( 1) y = x,x≥0,y ≥0,定义域不同且值域不同,不是同一个函数; (2) y=x ,x ∈R,y ∈R ,定义域值域都相同,是同一个函数; x(x 0) (3)y=| x|= ,y ≥0;值域不同,不是同一个函数。 x(x 0) 例3、下列各组,函数f (x)与g(x) 表示同一个函数的是( ) x2 A.f (x)=1,g(x)= x0B.f (x)=x0,g(x) = x C.f (x)=x 2,g(x)=( x)4D.f(x)= x3,g(x)=(3x)9 答案:D 例4、已知函数f (x) =2 x - 3 ,求: (1) f (0),f (2),f (5); (2) f[f (x)] ; (3)若x ∈{0,1,2,3} ,求函数的值域。 答案:( 1) f(0) =-3,f (2)=1,f (5) =7; (2) f[ f (x)] =4x-9; 例5、已知a、b为实数,集合M={ a b,1} ,N={ a, 0} , f :x→ x 表示把M中的元素x映射到集合N中仍 为x,a 则a+b等于( ) A.- 1 B .0 C.1 D .±1 解析:a=1,b=0,∴ a+b=1. 答案:C 3)f(x)=2n 1x2n 1,g(x)=(2n 1x)2n-1(n∈N*); 同步练习: 试判断以下各组函数是否表示同一函数? (1)f(x)= x2,g(x)= x3;2)f(x) |x|,g(x) x x 0, x 0;

文本预览