当前位置:文档之家› 尿素合成塔概述和结构形式分析

尿素合成塔概述和结构形式分析

尿素合成塔概述和结构形式分析
尿素合成塔概述和结构形式分析

6.6.1概述

尿素作为化学肥料,由于其含氮量高(含氮46%),施用后对土壤无副作用,深受农业工作者的欢迎。尿素除用作化肥外,还广泛用于其他工业和经过深加工作为牙膏、医药、塑料的原料,并可直接掺和在牛羊等反刍动物的饲料中,促进动物长膘。因此尿素工业自实现工业化后,发展很快,尿素的生产也一直成为工业化国家化肥生产水平的重要标志,我国自二十世纪六十年代开始生产尿素,目前也成为世界尿素生产的大国,生产能力居世界首位,但由于我国人口众多,粮食需求量也是世界首位,尿素总需求量仍然满足不了要求。由于原料原因,我国的尿素成本比国外高、缺乏竞争力,老装置的改造和新建的尿素生产装置采用高效生产流程和新型设备是今后发展的方向。

尿素合成塔是尿素生产装置中的关键设备之一,它在尿素生产流程中占有重要的地位。典型的尿素生产流程见图一。可以说尿素工业的发展与尿素合成塔的设计制造技术的发展是紧密相连的。

根据尿素合成反应式:

2NH3+CO2NH4COONH2NH2CONH2+H2O

(氨基甲酸铵)(尿素)

这些介质的混合物在一定温度和压力下,会生成氰酸和氰氧铵。

CO(NH2)2NH3+HCNO NH4CNO

(氰酸) (氰氧铵)

氰酸和氰氧铵是一种非氧化性有机酸。氰氧离子(CNO-)对不锈钢的氧化膜强烈的破坏作用,使一般的不锈钢在尿素介质中失去了耐蚀能力。据有关资料介绍,1Cr18Ni9Ti这种材料在尿素合成反应条件下,年腐蚀率为3mm,而更可怕的是产生选择性局部腐蚀,不等钢材全面腐蚀变薄就在某一局部甚至某一肉眼无法看到的一点腐蚀穿透导致设备泄漏而失效。尿素介质对普通碳钢的年腐蚀率高达2000mm,所以在尿素生产装置中与尿素介质接触的设备是不允许采用碳钢的。正由于尿素反应介质的强腐蚀性,虽然1870年就提出了氨基甲酸胺脱水法合成尿素的工艺,但一直到二十世纪五十多年以后才实现工业化。当时曾先后采用过铝、银、铝青铜作尿素合成塔的内筒,代价昂贵,而使用寿命都不很长。直到廿十世纪五十年代,荷兰斯太米卡邦研究出在尿素合成反应器中加入氧气的办法,使不锈钢得到连续钝化,才使尿素合成塔内筒采用比较廉价的奥氏体

CrNiMo不锈钢。目前,尿素合成塔内筒所用的材料越来越多,其中有316L型不锈钢,铬-钼-氮双相不锈钢等,但目前大量使用的还是以316L和25-22-2铬镍钼氮型为主的奥氏体不锈钢为主。

随着尿素工业装置能力的不断提高,尿素合成塔的结构尺寸和结构型式也在不断地变化,世界上第一套尿素合成装置的能力为6.5吨/天,反应器的直径是φ320mm,高度4m。二十世纪五十年代初期反应器的直径大多在φ800mm。到了二十世纪六十年代,反应器的直径已达到φ1000mm~φ1300mm,高度24m。生产能力达到250吨/天。这之前的尿素合成塔结构多为双套筒式,容器的有效反应空间较小。之后发展了衬里结构,大大提高了高压容器的有效利用率。与此同时,尿素生产流程也大大改进,采用了全循环流程。未反应完的原料通过适当处理又返回合成塔进行反应,大大降低了生产成本,从而使尿素生产的发展在理论上不受限制。随着合成氨工业的大型化,尿素工业装置也沿着大型化发展。目前,我国生产的尿素合成塔的最大直径已达φ2800mm,高度36000mm,容积达200m3,生产能力达到1740吨/天。我国从一九六五年开始制造尿素合成塔,起初为双套筒的结构,一九六八年开始制造φ800mm内衬Cr-Mn-Ni(A4)双相不锈钢小型尿素合成塔,生产能力为80吨/天。一九七○年以后全国建有33个这样规模的尿素工厂,全部由国内自行设计和制造。一九七五年以后,从国外开始引进13套年产48~52万吨的大型尿素生产装置,尿素合成塔的内径为φ2100mm~φ2800mm不等,从一九八三年开始,我国也开始自行设计和制造大型尿素合成塔,并对原有的中小型尿素合成塔进行改造,目前我国制造的尿素合成塔规格十分繁多,有φ800mm、φ1000mm、φ1200mm、φ1250mm、φ1400mm、φ1500mm、φ1600mm、φ1800mm、φ2100mm、φ2200mm、φ2650mmφ2800mm等,适用于年产4万吨、8万吨、11万吨、12万吨、16万吨、21万吨和52万吨的尿

图一典型尿素生产流程

素生产装置,尿素合成塔的操作压力根据不同的工艺也不尽相同,主要有21Mpa 和16Mpa两种系列,操作温度均小于200℃。

尿素的转化率与在反应器内停留的时间有关,停留的时间过短,转化率就低,停留的时间过长,则反应器的利用率就会降低,生产强度下降。尿素在塔内的停留时间与尿素塔的长径比有关。一般设计要求尿素塔的长径比≥11,则生产能力与尿素塔的容器成正比。可以约略按8~10吨/米3,日估算尿素合成塔的生产能力。所以目前的年产52万吨尿素装置的合成塔净容积为200米3。

尿素合成塔最原始的设计是又细又长的,除底部有一混合物料用的混合器外,整个塔是一个内空的圆筒,象烟窗式的。物料(CO2、液氨和氨基甲酸铵)从底部进入,从塔顶引出管流出,呈活塞流状态。随着生产能力的增加,反应器的容积要求越来越大,无限增加长度实际上已不可能。因此势必从增加直径找出路。直径增大以后,活塞流被破坏,发生物料反混现象,即已合成的尿素部分下降,未反应的CO2等迅速上升并通过上部溢流管溢出,大大降低了尿素的转化率。为了克服这种毛病,在塔内增加了螺旋板混合器或多孔挡板,使物料的反应效果大大改善。目前设计上采用的有螺旋板混合器只加2~5块多孔筛板的,也有2~8块开孔率不等的多孔筛板的。一般认为设置两块筛板,效果就很明显了,增加到8块以上作用就很小了。

本文所叙述的尿素合成塔制造工艺吸收了国内外尿素合成塔设计制造的先进经验,并有自己的特点。由于尿素合成塔的设计和结构形式与化工工艺过程密切相关,因此不同的尿素生产工艺,对尿素合成塔的结构尺寸和结构形式也略有不同。但总体上是不会有太大的区别。正由于尿素合成塔是一种典型的耐压、耐较高温度和耐强烈腐蚀的反应器,制造质量的优劣直接影响到正常运行,甚至影响到整个尿素生产装置的安全可靠性。为此对其制造技术、产品质量要求很高,制造厂必须严格按国家标准和相应的工程标准进行设计、选材、制造和验收,制造竣工后进行认真的质量评议,得到行业专家的认可后才能出厂交付使用。

制造尿素合成塔除按压力容器制造有关标准外还必须熟悉并掌握以下一些规范和标准:

1)尿素合成塔技术条件GB9842

2)尿素高压设备制造检验方法尿素级超低碳奥氏体不锈钢晶间腐蚀倾向性实验的试样制取HG/T3172

3)尿素高压设备制造检验方法尿素级超低碳奥氏体不锈钢晶间腐蚀倾向性实验HG/T3173

4)尿素高压设备制造检验方法尿素级超低碳奥氏体不锈钢的选择性腐蚀检查和金相检查HG/T3174

5)尿素高压设备制造检验方法不锈钢带极自动堆焊层超声波检验HG/T3175

6)尿素高压设备制造检验方法尿素合成塔氨渗漏试验方法HG/T3176 7)尿素高压设备堆焊工艺评定和焊工技能评定HG/T3179

8)尿素高压设备衬里板及内件的焊接工艺评定和焊工技能评定HG/T3180 除此以外,如果工程公司或用户另有要求的话,还应包括工程公司的工程标准和用户提交的书面附加要求,这些要求一般都在设备采购说明书附件中列出并作为合同的附件,是制造单位和检验、监检部门必须遵循的文件,在制造和验收过程中都必须严格执行。

6.6.2. 尿素合成塔结构型式与制造工艺分析

尿素合成塔的结构与工艺设计要求和制造工艺方法有密切关系,既要满足工艺流程、生产能力的要求,又要适应承担制造的制造厂本身制造工艺方法的要求。在工程建设中往往是由工程公司或用户提出设计条件(数据表或条件图)与制造单位签订合同后由制造单位自已进行尿素合成塔结构施工图设计,设计的施工图由工程公司或用户审查确认后即可投料制造。因此,具体的尿素合成塔结构型式往往是由制造厂决定的。尿素合成简图八所示,主要由高压筒体、上下封头,底部封头物料接管与封头的连接、人孔密封结构、检漏系统、内件等组成。现对这些主要结构简要介绍如下:

6.6.2.1 高压筒体结构型式的选择

尿素合成塔的高压筒体是提供尿素生成必要的空间,是该设备的主体。它承受着高压、高温和强腐蚀介质的作用。由工艺条件确定筒体内径和容积,扣去上下封头的内容积,即可决定筒体的净长度。筒体的长度在整个尿素合成塔的造价中占有重要的份量。对于大型尿素生产装置,尿素合成塔的直径、长度和重量成为运输安装的主要难道。我国在这方面已经积累了丰富的经验,制造、运输和安装技术已达到世界先进水平。

尿素合成塔筒体由碳钢外层和不锈钢内层组成。其组合型式可以是多种多

样的,主要有以下几种类型:

1)单层外壳,松衬不锈钢衬里层。

2)单层外壳、爆炸衬里不锈钢层。

3)热套多层壳体,热套内层不锈钢衬里层或松衬不锈钢衬里层

4)多层包扎焊接壳体,松衬不锈钢内层。

5)以不锈钢作为内筒外层直接包扎焊接炭钢多层层板。

等等。但经过多年的实践和比较,目前用的最多的,最可靠的结构型式是以不锈钢作为内筒外层直接包扎焊接碳钢多层层板及内筒热套不锈钢衬里后再进行多层包扎焊接的筒体结构。

以不锈钢衬里作为内筒的多层包扎焊接式筒体的优点是制造工艺简单、衬里层与外壳碳钢层的贴紧度高、在操作压力下不锈钢内筒由多层包扎产生的压应力与内压引起的拉应力相互抵消,使内筒应力大大降低,甚至为压应力,降低了产生应力腐蚀的可能性。而这一特点在松衬内筒的尿素合成塔中是无法得到的。其次,内筒的不锈钢衬里纵焊缝可以在塔外制作,并进行X光射线探伤和内外侧着色探伤,有缺陷时返修方便且彻底,可充分保证主焊缝的质量。这是确保尿素合成塔避免过早腐蚀泄漏的有力措施。

为了保证不锈钢衬里层外壁在焊接外层碳钢时免受污染和产生低碳马氏体,位于不锈钢和层板之间设置一层过渡层(通常叫盲板),如图二所示。盲层板的纵焊缝不全焊透,只间断焊,且根部有一窄垫板,使焊缝可与内筒隔离。焊道表面不高于盲板外园,以便作为将来的检漏通道。在盲层板的内壁也开出纵横交错的沟槽,作为检漏通道。在强度计算时,衬里层及盲层板均不计入受力厚度,实际上这也是增加了安全裕度。

图二多层包扎结构筒体示意图

6.6.2.2. 上、下封头的结构

尿素合成塔上下封头可以采用整体锻件加工而成,也可以采用厚板冲压成形。从节约材料和改善受力状况考虑,与其他高压容器一样,绝大多数采用半球形封头、球曲或半椭圆形封头。从受力观点看,半球形封头最好,球曲其次,椭圆形封头在高压容器中较少使用。半球形封头或球曲封头的成形工艺,根据各制造厂工艺工装设备条件不同而不同。有分瓣冲压成形后拼接成半球,也有单层板拼焊后整体冲压成半球。随着冶金工业的发展,目前世界上能轧制的专用球封头钢板幅度达到5300×5300,如果能解决运输问题且水压机开档允许的话,为此可省却了拼焊的必须经历的下料、拼接焊缝坡口加工、焊接、无损探伤、热处理等一系列繁复工序,大大降低加工成本和加工周期。除此以外,多层球封头已在石油化工压力容器制造中得到推广使用,它的优点是如同多层高压容器筒体一样,采用薄板重叠后冲压成形,或采用逐层冲压成形后叠合焊接包扎至所需厚度的方法成为多层球封头。如采用逐层重复冲压成形工艺,则可大大减少厚板冲压所需的大吨位水压机。同时,薄板的质量比厚板优良,所有焊缝可以互相错开,不用消除应力热处理,虽较费工,但总的成本相当,而且安全可靠性可以大大提高。是今后发展的方向之一。我国在1976年就制成过φ1400mm内径的高压乙烯球形贮罐,操作压力20Mpa,采用2层钢板叠合冲压成形的,在国内某化工厂使用至今未发生任何问题。

单层厚板制造的球封头,若采用分瓣冲压成形后组焊的工艺,优点是冲压力小,减薄量少,一般不可能有废品。但拼装的工作量大,焊后可能产生的变形,影响了球封头内外表面的圆球度,需要机械加工,否则不利于内表面的不锈钢衬里(带极堆焊或爆炸衬里、机械衬里),所以一般采用整体冲压成形,本厂不具备整体冲压能力的,可以外协解决。

6.6.2.3. 底部封头物料接管与封头连接结构。

尿素合成塔进出口物料接管

与壳体或封头的连接结构对尿素

塔的安全可靠运行有很大的关系。

在我国11万吨/年尿素合成塔的结

构设计中,曾采用过如图三所示的

图三底部封头与接管的销母联接

结构。这种结构的缺点是物料管在开停车时热胀冷缩的影响,销紧螺母会松动,使接管与衬里的连接焊缝受到较大的机械应力。运行较长时间后就会出现疲劳裂纹,造成腐蚀介质的泄漏。

采用图四的“插入加强焊接式结构”,接管与壳体或球封头只有一处固定,其余可以自由伸长,温度波动引起的应力变化不大。这种结构要求焊缝应有足够的强度。焊接工作量稍大且要求较高,坡口加工较困难,但其可靠性高。故已被大量采用,经过多年的实际运行,效果良好。由于这种结构的连接焊缝是奥氏体不锈钢接管与铁素体壳体之间的异种钢焊接,所以在焊接工艺和焊接材料上要正确选择。焊缝的有效深度一般要求≥1.25t,t为按管壁厚。

图四底部封头物料按管连接结构

6.6.2.4. 人孔密封结构和密封垫片

尿素合成塔的人孔密封结构部分虽非浸没于尿素熔融液中,但因其保温效果不好,往往有冷凝液滞留,加上密封垫与密封座合面之间的微小间隙,缺氧现象严重,得不到连续钝化作用,容易遭到腐蚀。有些老式的尿素合成塔密封面设计不合理、垫片材料选用不当,经常发生腐蚀而泄漏。密封面一旦发生腐蚀,现场修理必须采用专门工具,十分麻烦。

密封结构的可靠性主要与密封座

材料的耐蚀性和垫片结构型式有关。密

封座合面的构造一般有两种。一种是堆

焊结构,是在人孔锻件上和人孔盖的锻

件上粗加工一块区域,采用带极堆焊或

手工堆焊的方法堆出密封座,然后再经

图五堆焊密封结构

精加工为密封面,如图五所示。另一种是镶环结构,是在粗加工的槽上镶上一环状不锈钢板或锻件,如图六所示。从实际制造和使用效果来看,镶环结构优越性较多。这主要是因为堆焊结构的堆焊焊肉容易出现微小缺陷,加工后的密封面易有气扎、夹渣出现。对密封和耐腐蚀均不利。堆焊金属最外表面层耐蚀性能最好,一旦出现泄漏后,要重复加工修整密封面,新的密封面耐蚀性就会进一步下降了。镶环一般是用整圈锻件或整圈钢板加工出来的。锻件和钢板均经过固溶处理、表里的耐腐蚀性基本一致,可以重复加工而不降低其耐蚀性能。

图六镶环密封结构

尿素合成塔的人孔一般在φ500~φ800mm之间,操作压力为15~22Mpa。为了尽量缩小密封结构尺寸,降低造价,密封元件一般都采用平垫,很少采用双锥或其它自紧式密封元件。过去,密封垫曾采用铝垫(L1)或不锈钢(316L)皮包复石棉垫,但效果均不太理想。特别是铝平垫,虽然比压较低,但耐尿素——甲铵介质的腐蚀性能较差,尤其是密封压紧力不均匀的情况下,极易发生腐蚀而导致泄漏。不锈钢包复垫可以采用耐尿素介质的316L或25-22-2型不锈钢皮制作,密封比压也较低,耐用蚀性能良好,可是制作工艺复杂,容易损坏,所以难以在尿素高压设备上推广使用。不锈钢齿形垫两面覆盖0.5mm厚的低氯石棉板的密封垫,已在尿素合成塔等高压设备上得到满意的应用。这种垫片是用厚度为4mm的耐尿素介质的不锈钢板,上下两面车出同心圆形齿槽面成的。见图七。使用这种密封垫时两侧覆盖0.5~0.7mm的石棉垫。石棉垫要求氯离子的含量越低

图七齿形密封垫

越好。因为氯离子会造成奥氏体不锈钢的应力腐蚀。一般要求Cl-≤100ppm。这种密封垫实际上与密封座面的接触是齿形尖端,这些同心圆的齿峰把整个密封面分割成7~8道环形腔,而很薄的石棉垫则填入此环形腔中,增加了液体泄漏的阻力,提高了密封的可靠性,这种密封垫的制造和检修都很方便。在检修时只要更换两侧的石棉垫,齿形垫可以重复使用多次。齿形垫可以采用与衬里材料同样的板材制作。因此制造尿素合成塔的厂家均有能力自行加工制造。

6.6.2.5. 检漏系统

尿素合成塔采用不锈钢衬里结构,简化了塔内流程,增加了高压容器有效空间,克服了老式套筒塔的缺点。但是,尿素合成塔在长期运行过程中,难免会发生因焊缝或母材发生泄漏而又未能及时发现,后果不堪设想。如前所述,碳素钢材料对尿素介质是不堪一击的,碳钢层受到腐蚀,修补也十分困难,如不修补,则埋下安全隐患,严重时会发生爆炸。所以尿素合成塔衬里不可能做到绝对保险,那就要设计一套检漏警报系统,方可保证万无一失。

检漏系统包括衬里外壁的检漏网络槽通道、泄漏液引出孔道等。机械松衬和热套式的衬里检漏槽是开在高压容器壳体的内表面上,衬里焊缝采用垫板结构,如图八所示。此检漏槽破坏了高压筒休内壁的完整性,使高压壳体的受力情况

图八尿素合成塔检漏系统结构之一

不好,而且检漏槽的加工也比较困难。盖板式衬里可以克服这个缺点,如图九所示。但盖板式衬里焊缝为角焊缝,焊接质量不易保证,受力情况也不好。所以也不是一种优良的结构。以不锈钢衬里层为内筒的多层包扎焊接式筒体,其检漏槽开在盲层板的内壁。由于盲层板不作为强度计算厚度,不影响外壳的安全使用,检漏槽可以在盲层板包扎之前加工出,制作上比较方便。盲层板上开槽应尽量靠近衬里焊缝的周围,有纵向槽,也有横向槽,以便泄漏物尽快通过检漏槽逸出。

图九尿素合成塔检漏系统结构之二

检漏孔一般指壳体壁上的检漏孔,泄漏介质由衬里层外壁的检漏槽汇于此导出体外,进入检测监控系统。检漏孔的结构型式多种多样,如图十a)、b)、c)等等,各有千秋。除此之外,还有些结构已申请专利,有些为各专业厂的专有技术,不便公开。图中a)型结构适用松衬衬里和热套衬里的尿素合成塔;b)、c)型结构适用于不锈钢为内筒的多层包扎结构;其中b)型结构检漏管与壳体的角焊缝容易焊接和检验,但必须将衬里内筒占通后再补焊,破坏了衬里内筒的完整性,增加了腐蚀泄漏的机会。C)型结构对衬里有利,确保了衬里材料的完整性。但堆焊比较困难,焊接质量不容易保证。根据现场检测,尿素合成塔衬里损坏泄漏出来的介质,在压力降低后立即分解为碳酸氢铵和氨等物质,其中氨气是最易检测到的,通常采用酚酞溶液或试纸于检漏管末端检测即可发现,而无需采用蒸汽扫描检漏法。从国外引进的大型尿素合成塔和国内制造的52万吨/年尿素合成塔均采用C 型结构,也没有采用蒸汽吹扫的方法检漏,这样的话,检漏孔中的堆焊质量要求

就可降低一些,能节约成本。这一点在国内中小型尿素塔设计中还未得到认可。

图十尿素塔检漏孔结构 a

图十尿素塔检漏孔结构 b

图十尿素塔检漏孔结构 c

尿素合成塔安全运行管理示范文本

尿素合成塔安全运行管理 示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

尿素合成塔安全运行管理示范文本使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 20xx年3月21日晚21时,鲁西化工集团第三化肥厂 尿素合成塔又出现恶性事故,虽然事故原因有待调查,但 事故发生之后,各尿素生产企业引起了高度重视,强化了 尿素塔的安全运行管理,以期避免类似事故的再度发生。 笔者结合临泉化工股份有限公司6万t/a尿素合成装置谈一 下尿素合成塔安全运行管理。 一、设备结构与参数 1.水溶液全循环法尿素合成工艺中尿素合成塔是6万 t/a尿素的关键设备,经过改造已突破15万t,该设备内衬 是由公称尺寸8mm厚的316L尿素级不锈钢材料制成,外 壁是一高压筒体保护承压,其内有3块旋流板及多孔板或 球帽型塔盘若干分成反应区,原料液氨、二氧化碳和氨基

甲酸铵从塔底进入,由于它在高温、高压和强腐蚀介质的条件下使用,如使用不当,极易损坏衬里,造成泄漏。 2主要技术参数 设计压力:21.56MPa 工作压力:19.6 MPa 试验压力:26.95 MPa 容器类别:Ⅲ 设计温度:190℃ 工作温度:188±2℃ 容积:23m3 公称尺寸:φ1200mm×21565mm 二、安全运行管理 小氮肥行业尿素装置大都在“七五”前后建设起来的,尿素合成塔运行周期在10年左右,有的已经运行15年,在安全运行管理方面也积累摸索了一些经验(也可以

尿素合成塔 安全生产使用要点 - 制度大全

尿素合成塔安全生产使用要点-制度大全 尿素合成塔安全生产使用要点之相关制度和职责,3月21日,山东省济南市平阴鲁西化工第三化肥厂有限公司一台尿素合成塔发生爆炸,造成4人死亡,1人重伤和重大财产损失。为了防止类似事故再次发生,保障人民生命财产安全,经研究,现就进一步加强... 3月21日,山东省济南市平阴鲁西化工第三化肥厂有限公司一台尿素合成塔发生爆炸,造成4人死亡,1人重伤和重大财产损失。为了防止类似事故再次发生,保障人民生命财产安全,经研究,现就进一步加强尿素合成塔生产使用检验工作通知如下: 一、关于尿素合成塔的制造 (一)结构方面。 1.目前生产的尿素合成塔普遍采用单个筒节多层包扎后再焊接环焊缝的深环焊缝结构,因结构所致不能进行焊后热处理,环焊缝部位存在较大的应力集中,且焊接缺陷不易检测。鉴此原因,尿素合成塔应当尽可能避免采用深环焊缝结构,而宜选用其他结构形式。对直径小于等于1800mm的尿素合成塔,逐步采用整体多层包扎结构,具体要求可参照化工行业标准《整体多层夹紧式高压容器》(HG3129),其层板间的环焊缝和纵焊缝应分别相互错开,相邻层板两条环焊缝间轴向距离不得小于100mm(封头与筒体的环焊缝除外)。 2.检漏孔与盲层(板)或内筒的连接方式应当采用焊接结构,且焊接部分深度不得小于筒体承压壁厚部分的三分之一,以防止介质进入包扎层。结构详见下图。 检漏孔与盲层(板)的连接方式(示意图)(略) 3.尿素合成塔顶部合成物料出口插入管的管端应与塔顶内壁齐平,避免形成气相空间死区。 (二)材料方面。 采用多层包扎结构的尿素合成塔,其层板不得选用15MnVR钢板,应当选用强度等级相对较低的16MnR、20R等材料,且每层层板厚度不得小于8mm。 (三)检验方面。 尿素合成塔制造单位进行泄漏检验时,应当采用不具有腐蚀性的介质作为检漏介质,不得采用氨渗漏法进行检漏。 二、关于在用尿素合成塔的安全管理 (一)定期检验。 山东平阴“3.21”事故发生后,山东、安徽等省质量技术监督局对在用的尿素合成塔及近年来的尿素合成塔检验报告进行了重点检验和查阅,通过检验和查阅检验报告发现,近三分之一的尿素合成塔存在裂纹等严重缺陷,大部分中、小化肥生产企业普遍存在“以修代检”现象。因此,各使用单位应当加强尿素合成塔的安全管理工作。对安全状况等级为1至2级的,每3年至少进行一次全面检验;对于安全状况等级为3级的,在每个停车检修周期检修时,须进行全面检验,且周期不得超过18个月。在进行全面检验时,应认真检查尿素合成塔的运行记录特别是开停车记录,同时应将合成塔的外保温层全部拆除,采取有效的检验检测方法,对内、外表面进行严格检验。对外层板检验发现裂纹的,应当剥开已发现裂纹的层板,继续检查下一层板。需更换层板的,应当由具备相应压力容器制造资格或维修资格的单位进行。 (二)在线检漏。 目前大多数化肥生产企业采用蒸汽对尿素合成塔进行日常检漏,在检修时采用氨渗漏法对内表面进行检漏。采用此种检漏方法,当蒸汽冷凝后形成氨水时,由于一些设备检漏孔结构原

3 21尿素合成塔爆炸事故调查报告

“3 21”尿素合成塔爆炸事故调查报告 2005年3月21日21时20分左右,平阴鲁西化工第三化肥厂有限公司发生尿素合成塔爆炸事故。本次事故共造成4人死亡,32人受伤,截至3月28日直接经济损失约780万元。 3月22日济南市人民政府成立了由济南市安监局牵头,市质监局、监察局、总工会、公安局、平阴县人民政府等部门参加的平阴鲁西化工第三化肥厂有限公司“321”尿素合成塔爆炸事故调查组,并邀请山东省安泰化工压力容器检验中心、济南石油化工设计院和明水化肥厂等单位有关专家参与事故调查。 事故发生经过 2005年3月21日,中班接班后生产稳定,合成氨生产能力17.5机,尿素正常负荷0.75MPa。21时20分左右,尿素合成塔突然发生爆炸并起火。整个尿素车间主框架燃起大火,由十个筒节组成的尿塔塔体断为三段,由上而下第十节在原地与基础连接,第九节向西南方向打入框架二楼楼梯方向,第一节至八节整体向东北方向飞出约86m,落至造气车间前,将外管架上的部分蒸汽、软水、提氢等管道砸断,坠入地下七、八米深。爆炸产生的强烈冲击波使尿素车间主框架遭到严重破坏,并且摧毁了生产厂区内的大部分门窗玻璃。当班调度员在铜洗岗位听到爆炸声后,意识到发生了事故,启动应急救援预案,用对讲机向值班长下达了紧急停车指令。并赶到大压缩机岗位,要求停压缩机时不准开近路和放空,防止发生意外事故。在确认压缩机全部停机后,又通知总配电室电工拉闸停罗茨鼓风机。此时,供气值班长汇报造气炉均已安全停炉,并封死了气柜进出口水封,断开尿素配电室的电源。在全厂停车结束后,平阴鲁西化工第三化肥厂有限公司领导组织人员到尿素车间主框架进行救援和灭火。21时50分左右,尿素车间主框架火势得到控制。22时左右,厂防化连协助消防队将大火彻底熄灭,由于平阴鲁西化工第三化肥厂有限公司制订了事故应急救援预案,并在日常定期演练,事故发生时充分发挥应急救援预案的作用,避免了事故的扩大。 事故调查情况 1.现场勘查情况 爆炸使塔体断为三部分,第一部分是基座,沿第十筒节环焊缝上侧环向断裂,在原地与基础连接,基座严重变形向南偏西45。方向倾斜与地面形成约80。的夹角,混凝土破损钢筋裸露。断口位于环焊缝上部,整个断口平齐,东北方向断面更为平坦,且多纵向裂口,该位置内数4层钢板为全平断口,全断面均能看到剪切方向向外的剪切唇,其中西南方向断口剪切较大,内衬不锈钢板外翻成喇叭型。内衬表面焊缝及封头堆焊层为白亮色,内衬表面为棕褐色,托架检查未见明显减薄。 第二部分是第九个筒节,向南偏西45。斜上方向飞出约12.5m,斜拍在厂西南的控制楼二楼,并反转纵向开裂,开裂面通过安装热电偶位置,除内衬板外的所有层板纵向断裂面的热电偶孔附近及以下区域皆为脆性平断口(总高度为80~100cm),且主断裂面附近可看到有大量纵向张口裂纹,纵向主断裂面的上半部分为韧性的斜断口,断口附近各层板上没有其他裂纹。内衬表面为灰黑色,经擦拭可见金属本色。 第三部分是第八筒节以上部分,该部分重约100吨,整体向北偏东30埃?飞出?86m。该部分断口断面主要部分位于环焊缝上侧。整个断面以斜断口为主,断面向外张成喇叭形,外边向外卷曲。断口东北方向部位断面外层主要位于环焊缝的下部,内层(不计内衬板)有三块钢板断于环焊缝的上部;由东北向西南方,断裂面逐渐由焊缝的下部过渡到环焊缝的上部,并最终在西南方向部位进入上一筒节母材且在母材中形成三角形的撕开口。观察内衬表面为棕褐色,焊缝为白亮色,托架检查未见明显减薄。 爆炸后,第一部分和第三部分塔内焊在内衬上的筛板支架大都发生变形,变形方向全都指向断裂面。塔内塔盘除最顶部第一层留在第三部分塔内顶部外,其它均飞出塔外。

尿素生产原理、工艺流程及工艺指标

尿素生产原理、工艺流程及工艺指标 1.生产原理 尿素是通过液氨和气体二氧化碳的合成来完成的,在合成塔D201中,氨和二氧化碳反应生成氨基甲酸铵,氨基甲酸铵脱水生成尿素和水,这个过程分两步进行。第一步:2NH3,CO2 NH2COONH4,Q 第二步:NH4COONH2 CO(NH2)2,H2O,Q 第一步是放热的快速反应,第二步是微吸热反应,反应速度较慢,它是合成尿素过程中的控制反应。 1、2工艺流程: 尿素装置工艺主要包括:CO2压缩和脱氢、液氨升压、合成和气提、循环、蒸发、解吸和水解以及大颗粒造粒等工序。 1、2、1 二氧化碳压缩和脱氢 从合成氨装置来的CO2气体,经过CO2液滴分离器与来自空压站的工艺空气混合(空气量为二氧化碳体积4%),进入二氧化碳压缩机。二氧化碳出压缩机三段进脱硫、脱氢反应器,脱氢反应器内装铂系催化剂,操作温度:入口?150?,出 口?200?。脱氢的目的是防止高压洗涤器可燃气体积聚发生爆炸。在脱氢反应器中H2被氧化为H2O,脱氢后二氧化碳含氢及其它可燃气体小于50ppm,经脱硫、脱氢后,进入压缩机四段、五段压缩,最终压缩到14.7MPa(绝)进入汽提塔。 二氧化碳压缩机设有中间冷凝器和分离器,二氧化碳压缩机压缩气体设有三个回路,以适应尿素生产负荷的变化,多余的二氧化碳由放空管放空。 2 液氨升压 1、2、 液氨来自合成氨装置氨库,压力为2.3 MPa(绝),温度为20?,进入液氨过滤器,经过滤后进入高压氨泵的入口,液氨流量在一定的范围内可以自调,并设有副线以备

开停车及倒泵用.主管上装有流量计.液氨经高压氨泵加压到18.34 MPa(绝),高压液氨泵是电动往复式柱塞泵,并带变频调速器,可在20—110%的范围内变化,在总控室有流量记录,从这个记录来判断进入系统的氨量,以维持正常生产时的原料N/C(摩尔比)为2.05:1。高压液氨送到高压喷射器,作为喷射物料,将高压洗涤器来的甲铵带入高压冷凝器,高压液氨泵前后管线均设有安全阀,以保证装置设备安全。 1、2、3 合成和汽提 生产原理:合成塔、气提塔、高压甲铵冷凝器和高压洗涤器四个设备组成高压圈,这是本工艺的核心部分,这四个设备的操作条件是统一考虑的,以期达到尿素的最大产率和最大限度的热量回收。 从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分别用两条管线送入合成塔底,液相加气相物料N/C(摩尔比)为2.9—3.2,温度为165--172?。合成塔内设有11块塔板,形成类似几个串联的反应器,塔板的作用是防止物料在塔内返混。物料从塔底至塔顶,设计停留时间1小时,二氧化碳转化率可达58%,相当于平衡转化率90%以上。 尿素合成反应液从塔内上升到正常液位,温度上升到180--185?,经过溢流管从塔下出口排出,经过合成塔出液阀(HPV2201)汽提塔上部,再经塔内液体分配器均匀地分配到每根气提管中,沿管壁成液膜下降,分配器液位高低,起着自动调节各管内流量的作用,尿液在气提管均匀分配并在内壁形成液膜下降,内壁液膜是非常重要的,否则气提管将遭到腐蚀,由塔下部导入的二氧化碳气体,在管内与合成反应液逆流相遇,气提管外以蒸汽加热,合成反应液中过剩氨及未转化的甲铵将被气提气蒸出和分解,从塔顶排出,尿液及少量未分解的甲铵从塔底排出,气提塔出液温度控制在165--174?之间。塔底液位控制在40--80%左右,以 防止二氧化碳气体随着液体流至低压分解工段造成低压设备超压。

尿素合成塔的主要破坏形式及预防措施示范文本

尿素合成塔的主要破坏形式及预防措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

尿素合成塔的主要破坏形式及预防措施 示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 尿素合成塔的爆破事故在国内已经发生了多起,事故 现场触目惊心,给人民生命和国家财产造成的损失,应引 起尿素生产企业的高度重视。 一、尿素合成塔的主要破坏形式 水溶液全循环法尿素合成塔是用不锈钢和低合金钢制 造的多层包扎式高压容器,塔体由多个筒节与上、下封头 焊接而成。多层包扎式厚壁圆筒由内筒、盲层与层板3部 分组成,内筒采用超低碳奥氏不锈钢板材,在高压状态下 要求严密不漏,并具有抵抗介质腐蚀的能力。层板则采用 一定的方法使之很好地贴合在内筒上,且与内筒形成一个 整体筒节,塔体质量的好坏往往取决于层板间的贴合程度

和环焊缝装配及焊接的质量。多层包扎式圆筒在包扎层板时,靠钢丝索拉紧与焊接的收缩作用使各层间存在有预应力,内层受到压紧力,当筒体承受内压时,由于预应力的作用可以抵消部分拉应力,使筒壁内应力较相同条件下的单层筒体分布均匀,可以提高筒体的弹性承载能力。从理论上讲多层包扎厚壁圆筒的壁厚应比相同条件下的单层筒体薄,但因预应力的大小与层板纵焊缝宽度、每层层板上纵焊缝数量、焊接规范、焊接材料、包扎的松紧程度等许多因素有关,在设计时尚无法定量计算。另外,多层包扎式筒体的纵焊缝沿壁厚方向是非连续的,对筒体强度的削弱也较单层筒体小。所以,在设计时仍采用单层厚壁圆筒强度计算公式进行应力计算。 尿素合成塔在使用过程中产生的主要破坏形式有2种,一是内筒泄漏引起的破坏;二是筒节层板和环焊缝发生应力腐蚀断裂而引起的破坏。

尿素工艺

尿素生产原理、工艺流程及工艺指标 字体大小:大- 中- 小xxrtjx发表于09-12-21 11:35 阅读(65) 评论(0) 1.生产原理 尿素是通过液氨和气体二氧化碳的合成来完成的,在合成塔D201中,氨和二氧化碳反应生成氨基甲酸铵,氨基甲酸铵脱水生成尿素和水,这个过程分两步进行。 第一步:2NH3+CO2 NH2COONH4+Q 第二步:NH4COONH2 CO(NH2)2+H2O-Q 第一步是放热的快速反应,第二步是微吸热反应,反应速度较慢,它是合成尿素过程中的控 制反应。 1、2工艺流程: 尿素装置工艺主要包括:CO2压缩和脱氢、液氨升压、合成和气提、循环、蒸发、解吸和 水解以及大颗粒造粒等工序。 1、2、1 二氧化碳压缩和脱氢 从合成氨装置来的CO2气体,经过CO2液滴分离器与来自空压站的工艺空气混合(空气量为二氧化碳体积4%),进入二氧化碳压缩机。二氧化碳出压缩机三段进脱硫、脱氢反应器,脱氢反应器内装铂系[wiki]催化剂[/wiki],操作温度:入口≥150℃,出口≤200℃。脱氢的目的是防止高压洗涤器可燃气体积聚发生爆炸。在脱氢反应器中H2被氧化为H2O,脱氢后二氧化碳含氢及其它可燃气体小于50ppm,经脱硫、脱氢后,进入压缩机四段、五段压缩,最 终压缩到14.7MPa(绝)进入汽提塔。 二氧化碳压缩机设有中间冷凝器和分离器,二氧化碳压缩机压缩气体设有三个回路,以适应尿素生产负荷的变化,多余的二氧化碳由放空管放空。 1、2、2 液氨升压 液氨来自合成氨装置氨库,压力为2.3 MPa(绝),温度为20℃,进入液氨过滤器,经过滤后进入高压氨泵的入口,液氨流量在一定的范围内可以自调,并设有副线以备开停车及倒泵用.主管上装有流量计.液氨经高压氨泵加压到18.34 MPa(绝),高压液氨泵是电动往复式柱塞泵,并带变频调速器,可在20—110%的范围内变化,在总控室有流量记录,从这个记录来判断进入系统的氨量,以维持正常生产时的原料N/C(摩尔比)为2.05:1。高压液氨送到高压喷射器,作为喷射物料,将高压洗涤器来的甲铵带入高压冷凝器,高压液氨泵前后管线均设有安 全阀,以保证装置设备安全。 1、2、3 合成和汽提 生产原理:合成塔、气提塔、高压甲铵冷凝器和高压洗涤器四个设备组成高压圈,这是本工艺的核心部分,这四个设备的操作条件是统一考虑的,以期达到尿素的最大产率和最大限度 的热量回收。 从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分别用两条管线送入合成塔底,液相加气相物料N/C(摩尔比)为2.9—3.2,温度为165--172℃。 合成塔内设有11块塔板,形成类似几个串联的反应器,塔板的作用是防止物料在塔内返混。物料从塔底至塔顶,设计停留时间1小时,二氧化碳转化率可达58%,相当于平衡转化率90% 以上。 尿素合成反应液从塔内上升到正常液位,温度上升到180--185℃,经过溢流管从塔下出口排出,经过合成塔出液阀(HPV2201)汽提塔上部,再经塔内液体分配器均匀地分配到每根

最新事故案例分析

危险化学品 典型事故案例分析 二00七年三月

目录 危险化学品生产环节典型事故分析 (1) 危险化学品运输环节典型事故分析 (12) 附录: 国家总局和省局下发的相关事故通报和文件: 关于近期危险化学品事故情况的通报(安委办明电[2006]9号) (17) 关于江苏省盐城市射阳县盐城氟源化工有限公司临海分公司 “7.28”爆炸事故的通报(安委办[2006]30号) (22) 认真汲取近期几起事故教训切实加强危险化学品安全监管 工作的通知(鲁安监发[2006]47号) (26) 转发国家安监总局、公安部、交通部关于加强危险化学品道路 运输安全管理的紧急通知(鲁安监发[2006]95号) (29) 转发国务院安全生产委员会办公室关于新疆独山子在建原油储罐“10.28”特大爆炸事故的通报(鲁安办发[2006]31号) (38) 关于进一步加强危险化学品道路运输安全监管工作的通知 (鲁安办明电[2007]2号) (43) 2004~2006年我省发生的危险化学品事故 (45)

危险化学品生产环节典型事故分析 一、事故基本情况 (一)聊城市莘县化肥有限责任公司“7.8”液氨泄漏事故 2002年7月8日凌晨0点20分,一辆车号为鲁P-01568的20吨液氨罐车,在莘县化肥有限责任公司液氨库区灌装场地进行液氨灌装,到凌晨2点左右灌装基本结束时,押运员谢甲文在关闭灌装阀门过程中,液氨连接导管突然破裂,大量液氨泄漏。驾驶员王伦芝吩咐押运员谢甲文立即关闭灌装区西侧约64米处的紧急切断阀,自己迅速赶到罐车尾部,对罐车的紧急切断装臵采取关闭措施(后经鉴定该装臵失灵),一边与厂值班人员联系并电话报警。2时09分,莘县公安局接到报警,立即出警,迅速组织抢险和群众疏散。聊城市及相邻县的公安消防部门也迅速调集警力,赶赴现场参加救援。现场救护队员组成了救人、堵漏、器材供应、供水、救援保障和现场警戒六个小组,展开抢险救援工作。搜救工作一直持续到6时30分,共解救遇险人员102人,疏散群众2000余人。这起事故共泄漏液氨约20.1吨,造成15人死亡(其中当时死亡13人,后经抢救无效死亡2人),重度中毒22人,直接经济损失约72万元。 液相连接导管突然破裂是造成事故的直接原因,液氨罐车上的紧急切断装臵失灵是事故扩大的主要原因,企业安全管理制度和责任不落实是发生事故的重要原因。 (二)山东峄山化工集团有限公司金乡尿素厂“9.15”液氨泄漏事故 山东峄化集团金乡尿素厂尿素车间五楼氨冷凝器的下液管至缓冲槽之间的法兰短管(Φ108*4,短管长度为110毫米)曾于2002年7月31日、8月22日两次出现漏点,发生泄漏,均组织人员 3 3

山东平阴鲁西化工第三化肥公司尿素合成塔爆炸事故

山东平阴鲁西化工第三化肥公司尿素合成塔爆炸事故 1.事故概况 2005年3月21日21:26,山东省平阴县鲁西化工第三化肥公司尿素合成塔发生爆炸事故,死亡4人,重伤1人,经济损失惨重。 1)事故设备的基本情况。该公司的尿素合成塔是南京化工工业集团公司化工机械厂1999年的产品,2000年投入使用。设计工作压力21.57MPa,设计温度195℃,实验压力27.26MPa,公称容积37.5m3,工作介质为尿素溶液和氨基甲酸铵。尿素合成塔由10节筒节和上下封头组成。筒节内径1400mm,壁厚110mm,总长26210mm。筒节为多层包扎结构,层板为15MnVR,及16MnR,内衬为8mm的尿素级不锈钢;顶部为20MnMo球形锻件,衬里为堆焊大于8mm的尿素级不锈钢;底部为19Mn6球形封头,衬里为堆焊大于8mm的尿素级不锈钢;端部法兰与顶盖采用双头螺栓连接,密封形式为平面齿形垫结构。 2)事故概况。尿素合成塔塔身爆炸成3节,事故第一现场残存塔基、下封头和第10节整体向西南倾斜15°,合成塔南侧5m处6层主厂房坍塌;西北侧20m处2层厂房坍塌;北侧、东北侧装置受合成塔爆炸影响,外隔热层脱落;东侧2个碱洗塔隔热层全部脱落;冷却排管系统全部损坏。合成塔第9筒节落入南侧主厂房三层一个房间内。筒体两端的多层包扎板局部变为平板,层与层之间分离;筒节环缝处多数层板上有明显的纵向裂纹,爆破口多处呈不规则的裂纹状。第8节以上至上封头,向东北方向飞过一排厂房,上封头朝下斜插入土,距塔基

91m。在第8节筒节环焊缝处的筒板上纵向撕裂350mm长;长约850mm的多层板分层,断裂处焊缝呈不规则状。 2.事故分析 1)引发尿素合成塔爆炸的直接原因是塔体材料(包括焊缝)的应力腐蚀开裂。应力腐蚀开裂导致塔体承载截面严重减少,尤其是发生在爆炸筒节处环焊缝上侧的应力腐蚀开裂使得该处的承载截面急剧下降,最终产生快速断裂,引起塔内介质迅速泄漏,引发塔内介质爆沸和筒节爆炸。 2)塔体在制造过程中,改变了衬里蒸汽捡漏孔的原设计。采取了在盲板上 锥螺纹后再将检漏管拧入连接,这一改变导致氨渗漏检测介质和检漏蒸汽渗漏到多层层板的缝隙中,从而引起塔体层板材料严重应力腐蚀。 3)引起塔体材料的应力腐蚀另一诱因是在制造过程,盲板材料为Q235-A的纵向焊缝未焊满,采取了连接点焊所代替,进一步加剧了氨渗漏检测介质和检漏蒸汽向塔体多层层板间渗漏与扩散。 简评此次事故的直接原因是制造过程中改变原设计,导致氨渗漏检测介质和检漏蒸汽渗漏到塔体多层层板间,造成塔体应力腐蚀开裂。1995年河北迁安 化工厂曾发生了我国首例多层包扎尿素合成塔爆炸事故,其合成塔的结构形式与本次事故的合成塔完全一样,而且是同一制造厂家。同一厂家的同一产品,一而再发生事故,值得深思!1995年的迁安合成塔爆炸事故一些相关职能机构未能作出恰当的结论与处理,在锅炉局的锅炉压力容器事故档中连一纸记录都没有保存。

尿素合成塔3201-D衬里修复方案

XX公司尿素3201-D衬里检修施工技术方案 编制: 审核: 批准: XX公司 2014年11月25日

目录 1、工程概况——————————————————————————3 2、工程施工内容及技术要求——————————————————3-4 3、工程施工组织措施和步骤——————————————————4-5 4、工程施工进度计划——————————————————————5 5、工程施工组织结构——————————————————————6 6、工程施工所需机器具及消化材料———————————————6-7 7、职业健康安全及环境管理措施————————————————7-8

施工技术方案 1工程概况 1.1概述 尿素合成塔(3201-D)由德国莱茵钢厂设计制造,该设备由上、下封头、筒体和内件构成,设备规格为Φ2800×102,设备高度34100mm。筒体段由6个碳钢筒节组成,筒体总长度为5000×6=30000米,筒体采用层板包扎结构,壁厚为13×6.7+4+11=102mm,层板的材料牌号为BH54M,承压厚度为13×6.7=87.1mm;上、下封头为单层球形封头结构,其材料牌号为BH47W,图纸名义厚度为δmin=75mm。筒体的内表面衬有厚度为11mm的不锈钢衬里,上、下封头和人孔内表面衬有厚度为8mm的不锈钢衬里,筒体段衬里材质均为316L(Mod)。塔内现安装11层Casale塔盘(最下面的一层为一块分布板),塔盘间距约2200~2600mm。设计温度193℃,设计压力16.35MPa。根据股份公司设备部“2015年度尿素3201-D衬里检修内容及技术”编制施工方案。 1.2工程施工执行标准 此工程施工过程中所标准如下: 1.2.1、GB150.1~GB150.4-2011《压力容器》; 1.2.2、TSG R0004-2009《固定式压力容器安全技术监察规程》; 1.2.3、GB/T9842 -2004《尿素合成塔技术条件》; 1.2.4、JB/T4730-2005《承压设备无损检测》; 1.2.5、1.2.6 HG25718-93《尿素合成塔维护检修规程》 1.3.6、14-A32S-95《尿素厂X2CrNiMo25.2 2.2不锈钢的材料要求》; 上述标准和技术要求等均执行最新版本,如有冲突,按要求严格者执行。 2工程施工内容及技术要求 2.1工程施工内容 吊装机具就位,拆除有关保温层;拆下吊开人孔盖;拆、装存在缺陷焊缝部位的塔盘或其它内件;衬里纵、横焊缝; 1至6段筒节衬里(腐蚀严重部位)的纵横焊缝打磨、盖面焊,长度约35米,具体数量根据实际检查情况现场定;上下瓜皮焊缝,检查、消缺处理。合成塔内件(溢流管、塔盘、塔盘支耳),检查、消缺处理;人孔及人孔大盖检查、消缺处理。 2.2施工技术要求: 2.2.1设置施工组织机构,把此项目作为专项进行检修管理。施工人员应具备相应的合格资质。 2.2.2焊接材料要求:焊接材料采用SANDVIK R25-22-2LMn焊丝,焊材应有合格证。 2.2.3;焊接工艺要求:塔内不锈钢衬里的所有焊接均应采用氩弧焊,焊接电流不益过大,应严格控制焊接电流在(70~80A)。焊接益采用分段焊、快速焊,严格控制焊接的热输入量。焊接应使焊缝及其热影响区圆滑过渡,表面成形好。 2.2.4打磨方式要求:打磨用砂轮片应采用不锈钢钢玉砂轮片,避免对焊缝表面造成污染,铁素体不合格。其次,打磨应以圆滑过渡为原则,消除焊缝表面疏松层或针孔后,如焊缝高于母材可不补焊。 2.2.5禁止铁器、油污等物质对衬里的污染。 2.2.6氨渗漏试验合格 2.3施工质量要求: 2.3.1着色检测所有焊接部位按JB/T4730.5-2005 Ⅰ级验收合格。 2.3.2铁素体所有焊接部位的铁素体含量FT≤0.6%。 2.3.4酸洗钝化所有焊接、打磨部位均应进行酸洗钝化处理。 3.工程施工组织措施和步骤 3.1.施工前准备:a.检修前应制定完善的技术方案;b.参加检修人员必须了解设备图样及有关技术资料,熟悉其技术要求和注意事项;c.进塔施焊修理的焊工,必须持有相应的焊工合格证,并经过专门的技术培训和考试;d.参加检修的人员施工前应对使用机具、备品备件、材料的型号、规格、数量、质量等进行检查、核实,使其符合技术要求;e.交付检修的设备应按照操作规程泄压降温,清洗置换合格,符合有关安

事故分析

一、某火电公司“ 4.25灼烫事故事故原因: 1?本次事故的直接原因是高温高压蒸汽的灼烫; 2?该火电公司对吹管工作的危险性认识不足,重视不够; 3?吹扫的临时管线在设计上存在缺陷,放空口伸出室外过长且未加固; 4?对现场人员的管理组织不力,吹管工作和现场检查沟通衔接不好; 5?调试人员严重不足。事故性质:本次事故定性为责任事故。 事故教训及预防措施 本次灼烫事故,造成三人不同程度的灼伤,事故的教训是深刻的。希望通过此次灼烫事 故引起各单位领导对试车安全工作的高度重视,要求各装置人员对试车工作严格把关,做好各方面的安全防护和安全措施,确保人员和设备的安全,确保试车工作的顺利进行。 制定措施如下: 1?加强员工安全知识教育,提高全员安全意识; 2?消除所有临时吹扫管线、包括正常生产管线的隐患和缺陷,对放空管线进行加固; 3?加强安全管理,及时联系沟通,确保信息畅通; 4?加强调试力量,增加调试人员。 二、辽阳石化分公司聚乙烯装置爆炸事故事故原因分析 第一采购环节存在严重问题;第二工程施工管理混乱;第三工艺、生产管理不严肃第四工程设计和设计管理方面不规范;第五劳动纪律松散,员工责任心不强,用工管理 不严,技术培训有差距 三、广西?广维化工股份有限公司有机厂“8.26 ”爆炸事故事故原因分析 1、直接原因 基于爆炸事故波及范围广、过火面积大、破坏惨重,当班操作记录及主要设备、装置等关键物证被烧毁或损坏,罐区2名当班操作工及其他可能了解当时现场情况的当班人员遇 难,事故调查取证艰难。 截止10月20日,事故调查组尚未对直接原因达成一致意见。争论焦点的“点火源”,仅是各种可能或假设,缺乏证据支持,暂无定论。 2、间接原因: 1、CC-601A?E储存反应液的5台100m3储罐并联使用。若1台发生事故,将殃及其余4 台。导致:泄漏量f,事故后果f。 2、罐区、罐组平面布置及安全设施,不符合现行标准、规范的要求 ①罐组内的储罐为3排(现要求:不应超过2 排) ②料泵设置在防火堤内(现要求:应设置在防火堤外,且满足相应防火间距) ③罐区无可燃气体检测报警设施(现要求:应在可能泄漏甲类气(液)体场所内设置) ④防火堤排水口未设置隔断阀(现要求:污水和雨水,出堤排出口均应安装隔离阀) 3、设备安全管理混乱 ①今年4?5月大修期间,扩建需要而更换罐区至精馏工段2台反应液泵。未同时更换 进出管。采用大小头与原管连接。流量f,扬程f会带来流速f,静电危害f,认识不足,也无对策。② 罐区原设置的泡沫灭火系统,1982年后因缺乏维护已无法使用,1999年擅自 将其拆除。 ③ 罐区操作规程无储罐物料温度控制要求,液位控制指标不明确。 ④CC-601系列罐尾气冷凝器的凝液,从距底板6.65m高的管口直接泻入罐内,冲击液面产生静电点火源,缺乏认识!

尿素合成塔安全生产使用要点(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 尿素合成塔安全生产使用要点 (通用版) Safety management is an important part of production management. Safety and production are in the implementation process

尿素合成塔安全生产使用要点(通用版) 3月21日,山东省济南市平阴鲁西化工第三化肥厂有限公司一台尿素合成塔发生爆炸,造成4人死亡,1人重伤和重大财产损失。为了防止类似事故再次发生,保障人民生命财产安全,经研究,现就进一步加强尿素合成塔生产使用检验工作通知如下: 一、关于尿素合成塔的制造 (一)结构方面。 1.目前生产的尿素合成塔普遍采用单个筒节多层包扎后再焊接环焊缝的深环焊缝结构,因结构所致不能进行焊后热处理,环焊缝部位存在较大的应力集中,且焊接缺陷不易检测。鉴此原因,尿素合成塔应当尽可能避免采用深环焊缝结构,而宜选用其他结构形式。对直径小于等于1800mm的尿素合成塔,逐步采用整体多层包扎结构,具体要求可参照化工行业标准《整体多层夹紧式高压容器》(HG3129),其层板间的环焊缝和纵焊缝应分别相互错开,相邻层板

两条环焊缝间轴向距离不得小于100mm(封头与筒体的环焊缝除外)。 2.检漏孔与盲层(板)或内筒的连接方式应当采用焊接结构,且焊接部分深度不得小于筒体承压壁厚部分的三分之一,以防止介质进入包扎层。结构详见下图。 检漏孔与盲层(板)的连接方式(示意图)(略) 3.尿素合成塔顶部合成物料出口插入管的管端应与塔顶内壁齐平,避免形成气相空间死区。 (二)材料方面。 采用多层包扎结构的尿素合成塔,其层板不得选用15MnVR钢板,应当选用强度等级相对较低的16MnR、20R等材料,且每层层板厚度不得小于8mm。 (三)检验方面。 尿素合成塔制造单位进行泄漏检验时,应当采用不具有腐蚀性的介质作为检漏介质,不得采用氨渗漏法进行检漏。 二、关于在用尿素合成塔的安全管理 (一)定期检验。

年产万吨尿素合成工艺设计

年产万吨尿素合成 工艺设计 1

年产8000吨尿素合成工艺设计 2

目录 摘要 .................................................................... 错误!未定义书签。ABSTRACT ......................................................... 错误!未定义书签。 第一章总论................................................ 错误!未定义书签。 1.1 概述 ................................................................ 错误!未定义书签。 1.1.1 尿素的性质及用途 ..................................... 错误!未定义书签。 1.1.2 市场需求 ..................................................... 错误!未定义书签。 1.2 文献综述 ........................................................ 错误!未定义书签。 1.3 设计任务来源 ................................................ 错误!未定义书签。 第二章尿素生产工艺流程........................ 错误!未定义书签。 2.1 生产方法的确定 ............................................ 错误!未定义书签。 2.2 工艺流程叙述 ................................................ 错误!未定义书签。 2.3 工艺流程简图 ................................................ 错误!未定义书签。 第三章工艺计算........................................ 错误!未定义书签。 3.1物料衡算......................................................... 错误!未定义书签。 3.1.1产量及产品质量与消耗定额 ..................... 错误!未定义书签。 3.1.2 计算条件的确定 ........................................ 错误!未定义书签。 3.1.3 CO2压缩系统............................................. 错误!未定义书签。 3.1.4 尿素合成塔 ................................................. 错误!未定义书签。 3.1.5 预分离器 ..................................................... 错误!未定义书签。 3

常见的几种尿素生产工艺介绍.

常见的几种尿素生产工艺介绍 第一节斯塔米卡邦二氧化碳汽提法尿素工艺 斯塔米卡公司((Stamicarbon.B.V是荷兰国营矿业公司(DSM的子公司,在40年代后期开始研究尿素生产工艺。早期尿素生产由于存在着合成塔等设备的晋严重腐蚀问题,影响生产的正常进行和生产技术的推广。直至1953年,斯塔米卡邦提出在二氧碳原料气中加少量氧气的办法,解决了尿素设备的腐蚀问题,为后来尿素生产的大规模发展开辟了道路。由该公司设计的第一个工业规模尿素厂于1956年投产。在60年代初,斯塔米卡邦与国营矿业公司研究中心一起,开发了新的尿素工艺,即二氧碳化碳汽提法。从工作1964年建设投产日产20吨尿素的实验厂开始,到1967年二氧化碳汽提法尿素工厂正式投产。随后在很多国家建设二氧化碳汽提法尿素工厂。 工艺流程 二氧化碳汽提法尿素生产工艺主要包括:二氧化碳压缩和脱氢、液氨升压、合成和汽提、循环、蒸发造粒、产品贮存和包装、解吸和水解等工序。 (一二氧化碳压缩和脱氢 从合成氨厂来的二氧化碳气体,经过CO2分离罐101——F与工艺空气压缩机101-J供给的一定量的空气混合,空气量为二氧化碳体积的4%,进入二氧化碳压缩机102-J。在二氧化碳压缩机二段进口对二氧化碳气中的氧含量自动栓测。二氧化碳最终压缩到14。1MPa(A进入脱氢反应器101-D,内装铂系催化剂,操作温度:入口 ≥150℃,出口<300℃。脱氢的目的是防止高压洗涤器排出气发生爆炸。在脱氢反应器中H2被选择氧化为H2O。脱氢后二氧化碳含氢及其它可燃气体小于50*10-6。 二氧化碳压缩机102-J是单例蒸汽透平驱动的双缸四段离心式压缩机,带有中间冷凝器和分离器。蒸汽透平机转速,由速度控制器控制并自动调节转速,以适应尿素的生产负荷。多余的二氧化碳由放空管放空,进入二氧化碳压缩机的气量,应超过压缩机的喘振点。为使进口气量小于喘振气量时也不发生故态障,设有自动防喘振系统。

尿素合成塔结构及技术要求

图6-27尿素合成塔的结构示意图 6.3.1结构及技术要求 尿素(Urea)的分子式为CO(NH 2)2,分子量为60.06。尿素为最主要的氮肥。尿素是一种中性速效肥料,含氮量在46﹪(质量)以上,综合肥效高,易贮藏,运输,正因为尿素作为肥料具有诸多优点,目前全世界尿素产量占氮肥总产量的1/3以上,跃居首位,且具有继续上升的趋势。尿素在工业上的用途也很广泛,尿素产量10﹪的以上用作工业原料,主要工业用途是作为高聚物合成原料。尿素合成塔是尿素生产装置中的关键设备之一,它在尿素生产流程中占有重要的地位。可以说尿素工业的发展与尿素合成塔的设计制造技术的发展是紧密相连的。 由于尿素反应介质的强腐蚀性,虽然1870年就提出了氨基甲酸胺脱水法合成尿素的工艺,但一直到二十世纪五十多年以后才实现工业化。直到廿十世纪五十年代,荷兰斯太米卡邦研究出在尿素合成反应器中加入氧气的办法,使不锈钢得到连续钝化,才使尿素合成塔内筒采用比较廉价的奥氏体CrNiMo 不锈钢。目前,尿素合成塔内筒所用的材料越来越多,其中有316L 型不锈钢,铬-钼-氮双相不锈钢等,但目前大量使用的还是以316L 和25-22-2铬镍钼氮型为主的奥氏体不锈钢为主。 一九七五年以后,我国从国外开始引进13套年产48~52万吨的大型尿素生产装置,尿素合成塔的内径为φ2100mm~φ2800mm 不等,从一九八三年开始,我国也开始自行设计和制造大型尿素合成塔,并对原有的中小型尿素合成塔进行改造,目前我国制造的尿素合成塔规格十分繁多,而且操作压力不同工艺也不尽相同,在工作压力上主要有21Mpa 和16Mpa 两种系列,操作温度均小于200℃。 目前,我国生产的尿素合成塔的最大直径已达φ2800mm ,高度36000mm ,容积达200m 3,生产能力达到1740吨/天。 本节简要介绍φ1850mm 尿素合成塔的制造过程。 该设备工作压力15.5Mpa ,设计压力:16.7Mpa ;操作温度188℃,设计温度:210℃,水压试验压力21.71Mpa 。 6.3.1.1总体结构 尿素合成塔的如图6-27所示, 主要包括:人孔、上封头、筒体、 下封头、物料接管等。 ⑴封头结构 高压容器封头常采用的结构有:半球形封头、球曲封头或半椭圆形封头。

产万吨尿素工艺设计方案

摘要 尿素工业化生产以来的百余年间,一直是肥料工业生产的主要品种。本设计是年产10万年吨尿素二氧化碳气提法化工工艺的设计;也介绍了尿素的性质、用途、生产方法和市场的发展状况;尿素生产以煤为原料,采用改进型CO2汽提法工艺。尿素合成中有二氧化碳压缩,液氨升压,合成和气提,蒸发、解读和水解以及造粒等工序。主要进行了尿素的工艺计算、降温设备的设计、设备选型,并绘制工艺流程图。 关键词:尿素,二氧化碳气提法,设计计算

、八 前言 用于尿素生产的C02中都含有一定量的CO、H2、CH4、N2及硫化物等。这是因为C02来源于脱碳后的解读气,无论采用什么方法脱碳,在脱碳液吸收C02的同时,还溶解了一定量的CO、H2、CH4、N2及硫化物等,当脱碳溶液再生时这些气体随同C02 一同被解读出来,另外,通过加空气到C02中以对设备进行防腐保护。上述气体在整个工艺过程中极少或完全不冷凝,并随未反应的NH3及C02由合成塔 顶排放出来,经过高压洗涤塔吸收大部分氨及C02,气体混合物中出、C0、CH4 和02浓度急剧上升,这些可爆气体的存在是尿素生产的最大安全隐患。 尿素主要产品为合成氨、尿素、纯碱、氯化铵、精甲醇、复合肥、精细化工产品和热电产品。尿素生产以煤为原料,采用改进型C02汽提法工艺。C02中带有一 定量的C0、H2、CH4、N2及硫化物等,既存在可燃气体爆炸的安全隐患,又有硫对设备腐蚀的担忧。国内已有尿素系统发生爆炸的先例。

—、总论 < 一)概述 尿素原料主要是二氧化碳和氨。尿素产品用途广泛,其主要用作化肥。工业上还用作制造脲醛树酯、聚氨酯、三聚氰胺-甲醛树脂的原料,在医药、炸药、制革、浮选剂、颜料和石油产品脱蜡等方面也有广泛的作途。据统计,我国现有尿素生产企业200多个,规模分为大型<引进48万吨/年以上)、中型<13—30万吨/年以上)、小型<4—13万吨/年),我国中小氮肥企业中90%采用煤为原料,近年来产能发展较快。 据统计,2005—2007年尿素新建装置增加产能累计987万吨,加上现有装置产能的自然增长,2005—2007年我国累计增加尿素产能1340万吨,到2007年底尿素产能达到5300万吨以上。预计2008—2009年新建装置产能为715万吨,至U 2009年底全国尿素产能将达到6000万吨。 1?产品用途 尿素主要用作化肥。工业上还用作制造脲醛树酯、聚氨酯、三聚氰胺-甲醛树脂的原料,在医药、炸药、制革、浮选剂、颜料和石油产品脱蜡等方面也有广泛的作途。 尿素加热至200C时生成固态的三聚氯酸<即氰尿酸)。三聚氰酸的衍生物三氯异氰尿酸、二氯异氰酸钠、异氰尿酸三<2-羟乙酯)、异氰尿酸三<烯丙基)酯、三<3, 5-二叔丁基-4-羟基苄基)异氰酸酯、异三聚氰酸三缩水甘油醚、氰尿酸三聚氰胺络合物等有许多重要应用。前两者是新型高档消毒、漂白剂,三氯异氰尿酸全世界总所产能力超过8万吨⑷。 2?尿素的基本信息 <1)尿素分子式:CH4N2O;相对分子质量:60. 06。 <2 )外观:无色或白色针状,或棒状结晶体,工业品为白色略带微红固体颗 粒,无臭无味。 <3)密度:1. 335g/mm。 <4)熔点:132. 7° Co <5)溶解性:溶于水、醇,不溶于乙醚、氯仿,呈微碱性。

相关主题
文本预览
相关文档 最新文档