当前位置:文档之家› 非对称走时叠前时间偏移方法及应用

非对称走时叠前时间偏移方法及应用

非对称走时叠前时间偏移方法及应用
非对称走时叠前时间偏移方法及应用

叠前时间偏移与叠前深度偏移

叠前时间偏移与叠前深度偏移 摘要:偏移使倾斜反射归位到它们真正的地下界面位置,并使绕射波收敛,即可以提高空间分辨率。按所处理的地震资料是否做过水平叠加划分为叠后偏移和叠前偏移两大类。这里主要讨论叠前偏移。偏移方法分为时间域和深度域两类,时间偏移技术是基于横向速度变化弱的水平层状介质模型产生的,而深度偏移技术是基于横向变速的真实地质深度模型发展而来的。这里主要介绍克希霍夫积分法叠前时间偏移、有限差分法叠前时间偏移、Fourier变换法叠前时间偏移三种叠前时间偏移方法。在叠前深度偏移上面,主要根据其技术的发展历史,现状,及未来趋势进行叙述,并进行了不同偏移技术的成像对比。 关键字:叠前时间偏移叠前深度偏移克希霍夫积分法 正文: 一、引言 偏移使倾斜反射归位到它们真正的地下界面位置,并使绕射波收敛,即可以提高空间分辨率。 按所处理的地震资料是否做过水平叠加划分为叠后偏移和叠前偏移两大类。 偏移方法分为时间域和深度域两类。时间偏移技术是基于横向速度变化弱的水平层状介质模型产生的,而深度偏移技术是基于横向变速的真实地质深度模型发展而来的。 从当前技术发展的状况看,目前国内应用的叠前偏移技术基本上可以概括为以下两类。一种是基于波动方程积分解的克希霍夫积分法叠前偏移。这种技术,在20世纪90年代以前就在研究,目前,随着多年来持续不断地改进和完善,已经成为一种高效实用的叠前偏移方法,它具有高角度成像、无频散、占用资源少和实现效率高的特点,能适应不均匀的空间采样和起伏地表,比较适合复杂构造的成像。目前国际上有多种较为成熟的积分法叠前成像软件,是当前实际生产中使用的主要叠前深度偏移方法。一种是基于波动方程微分解的波动方程叠前偏移。这种技术目前在国内的应用还处于试验阶段。 叠前时间偏移与叠后时间偏移和叠前深度偏移一样,都是基于三大数学工具,即克希霍夫积分、有限差分和Fourier变换。

地震叠前时间偏移处理技术

文章编号:100020747(2006)0420416204 地震叠前时间偏移处理技术 王喜双1,张颖2 (1.中国石油勘探与生产公司;2.中国石油勘探开发研究院) 摘要:叠前时间偏移处理技术对速度场精度的要求较低,在构造复杂但速度横向变化不大的情况下有较好的成像效果,近年来在中国石油天然气股份有限公司各探区得到高度重视和推广应用。对叠前时间偏移处理的关键技术(叠前去噪、振幅补偿、反褶积、静校正、速度建模)进行了分析总结,并对其在富油凹陷整体评价、复杂断块精细勘探、碳酸盐岩岩溶地形识别、岩性地层油气藏勘探等方面的应用效果进行了分析,实践证明,叠前时间偏移是一项具有明显技术优势、应用前途广阔的地震精确成像技术,适合于在横向速度变化不大地区的地震资料处理。图6参7 关键词:叠前时间偏移;克希霍夫法;反褶积;静校正 中图分类号:TE122.3 文献标识码:A Seismic pre2stack time migration techniques WAN G Xi2shuang1,ZHAN G Ying2 (1.Pet roChina Ex ploration&Production Com pany,B ei j ing100011,China;2.Research I nstitute of Pet roleum Ex ploration&Development,Pet roChina,B ei j ing100083,China) Abstract:Prestack time migration processing does not require highly of velocity fields.It can get a good imaging result in the circumstance of a complex structure and smooth lateral variation of velocity field.Thus it has gained much attention and wide applications in prospect areas in PetroChina.The key techniques involved in prestack time migration processing such as prestack noise attenuation,amplitude compensation,deconvolution,static correction and velocity model building are summarized,and their application effects are also analyzed in the overall assessment of oil2abundant sags,the elaborate exploration of complexly faulted blocks,the identification of carbonate karst topography and the exploration of stratigraphic reservoirs.The results prove that prestack time migration is an accurate seismic imaging technique with an evident technical preponderance and broad application prospects,being suitable for seismic data processing in the areas of smooth lateral variation of velocity field. K ey w ords:pre2stack time migration;Kirchhoff;deconvolution;static correction 0引言 随着油气勘探程度的不断提高,地震勘探对象越来越复杂。叠前深度偏移是复杂地质构造成像最好的方法,但其对速度场精度的要求太高,现有的建模技术难以达到要求,制约了其大范围推广应用。与叠前深度偏移相比,叠前时间偏移对速度场的精度要求较低,在构造复杂、速度横向变化不大的情况下有较好的成像效果。因此,叠前时间偏移是现阶段更为合适的地震成像技术,近几年来叠前时间偏移技术迅速发展,在国外已成为一项常规处理技术。中国石油天然气股份有限公司从2003年开始,针对复杂构造勘探、岩性地层油气藏勘探,相继选择了渤海湾盆地大民屯凹陷、南堡凹陷和塔里木盆地轮南地区作为叠前时间偏移技术推广应用试验三大示范区。目前,叠前时间偏移处理技术在中国石油各探区均取得了较好的应用效果,如冀东滩海数亿吨储量规模大油田的发现就直接归功于南堡凹陷叠前时间偏移处理技术的应用。本文对中国石油探区内叠前时间偏移处理技术及其应用进行了总结,以便推动这项技术的更广泛应用,取得更好的油气勘探成果。 1方法原理 克希霍夫积分偏移法和递归偏移法是叠前偏移的两种方法,但是前者更容易实现,计算成本低,对观测系统的适应性强,所以在叠前偏移应用中率先得到推广。克希霍夫叠前时间偏移的基础是计算地下绕射点的时距曲面,根据克希霍夫绕射积分理论,时距曲面上的所有样点信息叠加就得到了该绕射点的偏移结果。因此,克希霍夫叠前时间偏移大多假设震源点到绕射 614 石 油 勘 探 与 开 发 2006年8月 PETROL EUM EXPLORA TION AND DEV ELOPM EN T Vol.33 No.4

叠前时间偏移与叠前深度偏移1

叠前时间偏移与叠前深度偏移 1、叠前偏移从实现方法上可分为叠前时间偏移和叠前深度偏移。 从理论上讲,叠前时间偏移只能解决共反射点叠加的问题,不能解决成像点与地下绕射点位置不重合的问题,因此叠前时间偏移主要应用于地下横向速度变化不太复杂的地区。 当速度存在剧烈的横向变化、速度分界面不是水平层状时,只有叠前深度偏移能够实现共反射点的叠加和绕射点的归位,叠前深度偏移是一种真正的全三维叠前成像技术,但它的成像效果必须依赖于准确的速度-深度模型,而模型的迭代和修改是一个非常复杂和费时的过程,周期长,花费也相当昂贵。 1.1 叠前时间偏移 叠前时间偏移是复杂构造成像和速度分析的重要手段,它可以有效地克服常规NMO、DMO和叠后偏移的缺点,实现真正的共反射点叠加。叠前时间偏移产生的共反射点(CRP)道集,消除了不同倾角和位置的反射带来的影响,不仅可以用来优化速度分析,而且也是进行AVO地震反演的前提。 Kirchhoff叠前时间偏移方法的基础是计算地下散射点的时距曲面。根据Kirchhoff绕射积分理论,时距曲面上的所有样点相加就得到该绕射点的偏移结果。具体的实现过程就是沿非零炮检距的绕射曲线旅行时轨迹对振幅求和,速度场决定求和路径的曲率,对每个共炮检距剖面单独成像,然后将所有结果叠加起来形成偏移剖面。

1.2 叠前深度偏移 实际上,叠前时间偏移可认为是一种能适应各种倾斜地层的广义NMO叠加,其目的是使各种绕射能量聚焦,而不是把绕射能量归位到其相应的绕射点上去,它基于的速度模型是均匀的,或者仅允许有垂直变化,因此,叠前时间偏移仅能实现真正的共反射点叠加,当地下地层倾角较大,或者上覆地层横向速度变化剧烈,速度分界面不是水平层状的条件下,叠前时间偏移并不能解决成像点与地下绕射点位置不重合的问题。 为了校正这种现象,我们可以在时间剖面的基础上,再做一次校正,使成像点与绕射点位置重合,这就是做叠后深度偏移的目的,但叠后深度偏移有缺点,主要是无法避免NMO校正叠加所产生的畸变,而且在实现过程中缺少模型叠代修正的手段,因此叠后深度偏移一般作为叠前深度偏移流程的一部分,用于深度域模型层位的解释。 叠前深度偏移理论是建立在复杂构造三维速度模型基础之上的,叠前深度偏移方法符合斯奈尔定律,遵守波的绕射、反射和折射定律,适用于任意介质的成像问题。它与常规叠后时间偏移处理相比有以下优点:(1)符合斯奈尔定律,成像准确,适用于复杂介质;(2)消除了叠加引起的弥散现象,使得大倾角地层信噪比和分辨率有所提高;(3)能够综合利用地质、钻井和测井等资料来约束处理结果,还可以直接利用得到的深度剖面进行构造解释,方便与实际的钻井数据进行对比。

叠前时间偏移技术浅析

偏移使倾斜反射归位到它们真正的地下界面位置,并使绕射波收敛,即可以提高空间分辨率。按所处理的地震资料是否做过水平叠加划分为叠后偏移和叠前偏移两大类。其中,叠前时间偏移技术受到广泛的重视和关注。主要的特点:①实现这种技术所需的软硬件成本合理。②对偏移速度场无过高的要求。③配套技术比较成熟和完善。 方法原理:叠前时间偏移与叠后时间偏移和叠前深度偏移一样,都是基于三大数学工具,即Kirchhoff积分、有限差分和Fourier变换。从原理和适用性上分析,叠前时间偏移是基于绕射叠加或Claerbout的反射波成像原则,是一种成像射线成像(DMO是法向射线成像)。下面详细叙述有关叠前时间偏移的各种方法。该方法一般在共炮点道集上进行,对二维和三维叠前偏移做法是一致的。 (1)该方法的步骤是将共炮点记录从接收点上向地下外推。外推时要先确定本道集可能产生反射波的地下空间范围,这个范围可以根据倾角、记录长度和道集的水平范围进行估算。这个过程实际上是一个估算偏移孔径的反过程。对向地下延拓的空间范围做一些模拟估算是必要的。外推时使用一般Kirchhoff积分表达式: (1) 式中R为从地下(x,y,z)点到地面点()的距离。 这样求出的结果,等于从地面某个炮点激发,在地下(x,y,z)点上接收的反射波记录。在这个记录上有(x,y,z)点产生的反射波和z深度以下的界面产生的反射波。我们应当做的是把(x,y,z)点处的反射波放到该点上。但是,在该点的记录还有很多其它深度点上的反射波。因此,如何从这个点用积分公式延拓计算出地震道u(x,y,z,t),并从中取出用于在该点成像的波场值,这就是下一步的工作。 (2)计算从炮点O到地下R(x,z)点的地震波入射射线的走时。这可以用均方根速度去除炮点至地下R点的距离近似求出。或者用射线追踪法求取,就更准确。用求出的下行波的走时到u(x,y,z,t)的延拓记录的时刻取出波场值做为该点的成像值。 (3)将所有的深度点上的延拓波场都如第二步那样提取成像值,组成偏移剖面就完成了一个炮道集的Kirchhff积分法偏移。 (4)将所有的炮道集记录都做过上述三步处理后进行按地面点相重合的记录相叠加的原则进行叠加,即完成了叠前时间偏移。在三维情况下,反射点轨迹变为一个旋转椭球面,该椭球是绕炮检距方向由二维条件下的椭圆旋转而成。如果取炮检距方向为x方向,则椭球面的方程为: (2) 通过波动方程的频散关系或波动方程的象征方程以及Fourier变换,可以得到对应的三维波动方程: (3) 如果炮检距方向与观测纵测线的方向成一定的角度时需要进行 坐标变换。新坐标系下的方程为: (4) 用有限差分法解(4)式有一定的难度,但它是可解的。因此对三维面积观测的数据体用该方法进行叠前时间偏移在理论上是可实现的,目前尚未使用。虽然各个方向的共炮检距道集也可以用(3)式进行偏移而且容易实现。但是由于要在不同的方向上抽取新的共炮检距道集,并要重新采样,同时剖面长度会长短不等,因此对处理效率会有影响。(3)式虽然容易求解,但在炮检距方向有转角 时,首先要将数据沿方向和垂直方向进行内插重排,这样内插重排后的三维数据体的水平切片将是某种菱形,造成纵横测线长短不一,给处理带来不便。如果仍按原坐标进行三维叠前偏移处理则必须用(4)式进行偏移。频率-波数(f-k)域叠前偏移是实现叠前时间偏移的一种有效方法。Li(1991)用一组常速实现了叠前偏移。用横向不变的速度偏移常炮检距数据可以在Fourier域进行,与Kirchhoff偏移相比,它具有成像速度快,能处理陡倾角且不会产生算子假频(是一宽带算子)的特点。另外,该算子考虑了由于通过层状介质而发生折射弯曲所造成的相位和振幅变化。另外,F-K偏移算子可以分解为NMO+DMO+ZOM,在常速偏移下,分解正确。若速度随深度变化,这种分解对NMO+DMO部分只是近似值。二维情况下,F-K域叠前时间偏移的向下延拓波场为: (5) 对层状v(z)介质,传播算子 由下式给出: (6) 其中, (7a)(7b)(7c) v是层速度。(7)式是常速频散关系的一扩展形式。三类叠前时间偏移方法分为有限差分法、克希霍夫积分法和频率-波数域法。它们是各自独立发展起来的并在不断地进行自我完善。 多数情况下有限差分法波动方程偏移是求解近似波动方程的一种近似数值解法。一般来说,网格剖分越细,精度越高,但这势必会增加计算量。和其它两种偏移方法相比,有限差分法简单,理论和实际应用都较成熟;由于采用递推算法,在形式上能处理速度的纵、横向变化。缺点是受反射界面倾角的限制;此外还要求等间隔剖分网格。 克希霍夫积分法偏移建立在物理地震学的基础之上,该方法能适应任意倾斜角度的反射界面;对剖分网格要求较灵活。缺点是费时;难以处理横向速度变化;偏移噪声大,“划弧”现象严重;确定偏移参数较困难。 频率-波数域偏移求解波动方程是在频率-波数()这种技术F-K1 Kirchhoff积分法叠前时间偏移 2 有限差分法叠前时间偏移 3 Fourier变换法叠前时间偏移 4 结语 j (转150页) 康勇 冯万馨 (中国地质大学(武汉)资源学院石油系) 叠前时间偏移技术浅析 摘要关键词随着石油勘探程度的不断加深,一些复杂的构造隐蔽油气藏受到广泛重视和关注,与此同时偏移方法由叠后向叠前发展。本文介绍了叠前时间偏移的常见三种实现方法:克希霍夫(Kirchoff)法、有限差分法和傅立叶(Fourier)变换法,对它们的原理做了简要讨论,并进行了优缺点分析。 叠前时间偏移积分法差分法变换法

第2章-叠前时间偏移

第二章叠前时间偏移 地震波成像在油气勘探中占据重要位置。它的作用是使反射波或绕射波返回到产生它们的地下位置,从而得到地下地质构造的精确成像。 从二十世纪60年代偏移过程由计算机实现以来,已从常规偏移即叠后时间偏移发展到了目前的叠前深度偏移。偏移方法的研究和应用是受油气勘探的实际需求驱动的,同时它又受到人们对偏移成像的认识程度和计算机处理能力的制约。常规偏移(即叠后时间偏移)在以往的油气勘探过程中起到了重要作用,但随着勘探难度的提高,在构造较为复杂或/和强横向变速的地区,基于常规偏移的处理方法再也难见成效。究其原因,一方面是由于常规处理是先叠加后偏移,水平叠加过程受水平层状介质假设制约,在复杂地质构造条件下,这种叠加过程很难实现同相叠加,这样会对波场产生破坏,所以用这种失真了的叠后数据去进行偏移处理难以取得好的成像效果就很自然了。为了克服非同相叠加给后续偏移带来的麻烦,人们提出使用叠前偏移,即先偏移处理使波场归位,再把同一地下点的偏移波场相叠加。这样,在横向速度中等变化的较为复杂构造成像中叠前时间偏移可以弥补常规偏移的不足。另一方面是由于时间偏移是建立在均匀介质或水平层状介质的速度模型的基础上的,当速度存在横向变化,或速度分界面不是水平层状的情况下,常规偏移不能满足Snell定律,因此不能进行正确的反射波的偏移成像。为了解决这个问题,出现了深度偏移。这样,在强横向变速的一般构造成像中,叠后深度偏移可以弥补常规偏移的不足;而在强横向变速的复杂构造成像中,叠前深度偏移可以弥补常规偏移的不足。迄今为止,人们已对叠前时间偏移进行了20多年的研究工作,而对叠前深度偏移也进行了十几年的研究和探索工作。本章重点讨论叠前时间偏移。叠前深度偏移将在第四章和第五章讨论。 近年来,随着叠前时间偏移方法和技术的不断成熟和与之配套技术的不断完善以及计算机性能的不断提高,实现叠前时间偏移已成为现实。目前,国内外有多家地球物理处理公司和计算中心已进行叠前时间偏移处理,部分公司还把叠前时间偏移作为常规处理软件加入到常规处理流程中,使之成为常规处理的一个重要内容。叠前时间偏移技术之所以受到如此重视和关注,主要是因为这种技术相对叠后时间偏移和叠前深度偏移技术有如下的几个特点:1)实现这种技术所需的软硬件成本合理,多家处理公司和计算中心都能接受和承受。 2)叠前时间偏移相对叠前深度偏移而言,对偏移速度场无过高的要求,假设条件少,经对常规法进行简单的改进或/和修正使之能够适应中等横向变速的介质,由此可以满足大多数探区的精度要求;相对叠后时间偏移来说,更适用于复杂构造,对目的层和储层的成像有较好的保幅性,所得结果能够更好地进行属性分析、A VO/A V A/A VP反演和其它参数反演。 3)实现叠前时间偏移的配套技术比较成熟和完善,如静校正和去噪等。 上述特点充分说明了我们应用叠前时间偏移技术的可行性、必要性和重要性。下面就叠前时间偏移的基本情况、方法原理、方法技术、应用和与其它技术的比较以及应用该技术的可行性和必要性等做详细讨论和分析。 §2.1 概述 叠前时间偏移已进行了多年研究,上世纪九十年代初期开始初步应用,中后期在不少探区的地震勘探中发挥了重要作用,进入本世纪后开始了较为广泛的应用,目前部分处理公司和计算中心已把该技术作为常规软件加入到常规处理流程中,成为获取保幅信息实现属性分析、A VO/A V A/A VP反演和其它参数反演的重要步骤和依据。 自从上世纪九十年代以来,叠前时间偏移在国外取得了很大发展。在理论研究方面,

第6章-起伏地表条件下的叠前深度偏移

第六章起伏地表条件下的地震成像 §6.1 概述 叠前深度偏移与山地等起伏地表资料处理技术,已受到人们的高度重视,特别是地质家们,对叠前深度偏移技术寄予了较高的期望,希望通过叠前深度偏移处理解决他们所要解决的各种地质问题。叠前深度偏移技术究竟要解决什么问题呢?回答比较简单:是要解决上覆地层速度横向变化剧烈时下伏地层界面反射如何正确偏移成像的问题。因为在这种情况下,运用时间偏移成像技术是不能正确成像的。要作好叠前深度偏移,达到预想的效果,就必须解决好以下几个问题:(1)基准面问题。现有的偏移程序,大都建立在激发点和接收点位于同一个水平面上,这与我们需要进行叠前深度偏移处理地区的实际观测条件不相符合。过去我们用静校正技术来解决这个问题,从波场延拓角度上来说,静校正使波场产生了畸变,再深度偏移时就会生成一系列的误差,严重影响深度偏移的效果。当前,深度偏移效果明显的地方是墨西哥湾海上资料,在那里不存在偏移基准面不符合的问题。对于陆上资料,而且是山地等起伏地表资料,这个问题就比较严重,必需想办法解决好这个问题。(2)静校正问题。叠前深度偏移也是一个叠加的过程,从运动学的概念上来讲,偏移是把每一个信息按照一定的轨迹叠加到各个点上去。我们在计算轨迹时是不考虑静校正量的,当存在静校正量时,偏移轨迹就混乱了,达不到叠加的效果,也就不能实现正确的偏移成像。要作好叠前深度偏移,首先必需解决好静校正问题。 由于山地等起伏地形和近地表速度变化对成像影响很大,传统的校正方式是将观测面校正到一个平滑后的浮动基准面上,但由于山地等复杂地表高程起伏大,基准面校正时差较大,引起波场较大的畸变,同时近地表速度模型对实际地下介质速度的改造也较大,使波场产生较大的畸变,不符合波场传播的规律。因此从起伏观测面上直接进行叠前深度偏移还是被人们接受了。要实现从起伏观测面直接进行深度偏移,必须首先用射线追踪或层析成像法反演出近地表速度,再进一步利用这种速度作深度偏移,替代的一种方法是先用近地表速度做波场延拓,转化到一个平滑的基准面,再用现有的方法作深度偏移。目前,国内外都在极力研究这个问题。准确的方法是先用初至层析法求出近地表速度,建立起近地表速度模型,将此速度模型合并到整个的总模型中,从起伏观测面直接进行深度偏移。 在做偏移处理时,一般要求偏移基准面是水平的,且偏移的零点应在激发和接收的地表。在高差较大的复杂地区,很难同时满足这些要求,为了解决这些问题,钱荣钧在复杂地表区偏移基准面问题研究一文中提出以近地表斜面或圆滑面为偏移参考面的处理方法,然后在资料解释时再进行基准面转换,把以近地表斜面为参考面的资料转换为某一水平面为基准面的资料。 地表高差较大地区偏移基准面的选取问题一直是影响偏移处理效果的重要原因。长期以来,不少人对这一问题作了研究,并提出一些解决办法。主要的方法有:静校正法、零速度层法和波场延拓法。 静校正法是用静校正时移的方法把地震资料校正到一个水平基准面上。由于只做了垂直方向的时移,没有考虑波的传播方向,因此改变了原时间剖面上绕射波的双曲线性质,偏移后收敛较差。由于该方法仅满足基准面水平的条件,而没有考虑偏移原点应在地表这一因素,故这种方法是近似的,只能在地表与基准面的高差较小时使用。零速度层法的基本思路是:先在近地表的参考面上做叠加,然后选择一个高于地表的水平基准面,给出一个填充速度(零或接近零),用静校正的方法把叠加剖面数据校正到这个水平基准面上。然后从水平基准面开始做偏移处理,其中在水平基准面和地面之间所用的偏移速度为零或接近零,地表以下用

基于Rytov近似的叠前深度偏移方法

2001年12月 石油地球物理勘探 第36卷 第6期 基于Rytov近似的叠前深度偏移方法 陈生昌 曹景忠 马在田 (同济大学海洋地质重点实验室) 摘 要 陈生昌,曹景忠,马在田.基于Ry tov近似的叠前深度偏移方法.石油地球物理勘探,2001,36(6): 690~697 本文在频率—波数域和频率—空间域实现了一种基于R ytov近似的叠前深度偏移方法,并在二维空间作了M armo usi模型炮集数据的处理。通过与Split-Step Fourier和Phase-Screen等叠前深度偏移方法的比较,我们认为基于Ryto v近似的叠前深度偏移方法不仅在效果上优于前两者,而且还能更好地处理速度横向变化。 在散射波场的计算中,我们使用了一个比Huang L等(1999)[3]的方法更稳定的散射波场计算公式,扩大了Ryt ov近似的应用范围,使基于R ytov近似的叠前深度偏移方法能够适应更剧烈的横向速度变化。 关键词 叠前深度偏移 Ry tov近似 散射波场 速度横向变化 波场外推 G reen函数 ABSTRAC T Chen Shengchang,Cao Jingzhong and Ma Zaitian.Prestack depth migration method based on Rytov approximation.O GP,2001,36(6):690~697 In this paper,a prestack depth migration method based on Ry tov approx imation is carried out in frequency-w avenum ber domain and frequency-space domain,and is used to process comm on shot g ather data for Marmousi m odel in2-D space.T hroug h com-parison w ith split-step Fourier m igration method and phase-screen m igration methods, w e considered that the prestack depth migration method based on Rytov approximation not only can produce better m igration result than previous tw o methods,but also can better handle lateral velocity variation. During calculation of scattered wavefield,w e use a more stable formula for scat-tered w avefield than that used by Huang L et al.It extends the range of Rytov approx-imation,and makes the prestack depth mig ration method based on Rytov approx im a-tion can adapt strong lateral velocity variation. Key words:prestack depth migration,Ry tov approx imation,scattered w avefield,lat-eral variation of v elocity,wavefield extrapolation,Green function Chen S heng chang,Department of M arine Geology and Geophysics,T ongji University,Shan gh ai City,200092,China 本文于2000年10月20日收到。

叠前时间偏移与叠前深度偏移的特点

1.指出叠前时间偏移和叠前深度偏移的相同和不同之处,分析两者的特点和各 自的优、缺点? 叠前时间偏移主要是指kirchhoff叠前时间偏移,叠前深度偏移包括kirchhoff叠前深度偏移、单程波波动方程偏移、逆时偏移、以及beam类偏移方法。kirchhoff叠前时间偏移与kirchhoff叠前深度偏移都是基于kirchhoff 积分原理和绕射叠加思想。kirchhoff叠前时间偏移与其他叠前深度偏移方法则相同性较小。 从理论上讲叠前时间偏移只能解决共反射点叠加的问题不能解决成像点与地下绕射点位置不重合的问题因此叠前时间偏移主要应用于地下横向速度变化不太复杂的地区。当速度存在剧烈的横向变化、速度分界面不是水平层状时只有叠前深度偏移能够实现共反射点的叠加和绕射点的归位。叠前深度偏移是一种真正的全三维叠前成像技术但它的成像效果必须依赖于准确的速度。 叠前时间偏移是复杂构造成像和速度分析的重要手段,它可以有效地克服常规NMO、DMO和叠后偏移的缺点,实现真正的共反射点叠加。叠前时间偏移产生的共反射点CRP道集,消除了不同倾角和位置的反射带来的影响,不仅可以用来优化速度分析而且也是进行AVO地震反演的前提。 Kirchhoff叠前时间偏移方法的基础是计算地下散射点的时距曲面,时距曲面的计算可以依靠双平方根公式或弯曲射线走时公式。时距曲面的斜率是由均方根速度决定的。根据Kirchhoff绕射积分理论时距曲面上的所有样点相加就得到该绕射点的偏移结果。Kirchhoff叠前时间偏移方法的计算效率很高。然而叠前时间偏移适用的速度模型是均匀的或者仅允许有垂直变化,因此叠前时间偏移仅能实现真正的共反射点叠加。当地下地层倾角较大或者上覆地层横向速度变化剧烈时,叠前时间偏移并不能解决成像点与地下绕射点位置不重合的问题。为了校正这种现象我们可以在时间剖面的基础上再做一次校正,使成像点与绕射点位置重合,这就是时深转换的目的。但时深转换的缺点主要是无法避免叠加所产生的畸变,而且在实现过程中缺少模型叠代修正的手段。

叠前深度偏移技术及其应用的发展历程

叠前深度偏移技术及其应用的发展历程 引言 地震偏移技术是现代地震勘探数据处理的三大基本技术之一,其目的是实现反射界面的空间归位和恢复反射界面的波场特征、振幅变化和反射系数,提高地震空间分辨率和保真度。随着油气勘探开发的进一步深入,油气勘探的重点转向复杂地表和复杂地质条件的区域。复杂构造区地震资料质量通常较差, 且横向速度变化剧烈,叠前时间偏移成像往往得不到精确的地下构造形态, 叠前深度偏移是解决复杂构造成像的有效工具。近年来,随着计算机的发展,尤其是并行计算机的出现,使得计算量庞大的三维地震资料叠前深度偏移成为可能。叠前深度偏移在解决复杂地质构造成像问题的同时能够提高资料信噪比和分辨率,压制多次波以及突出深层反射;不仅如此,与传统的时间域地震剖面相比,深度域成像的地震剖面更具地质意义。叠前深变偏移的广泛研究和应用,对于在复杂地质环境中提高地震勘探的能力将是极大的促进。 一、叠前深度偏移技术发展 常用的时间偏移技术是基于横向速度变化弱的水平层状介质模型产生的,而深度偏移技术是基于横向变速的真实地质深度模型发展而来的。因此时间偏移不能解决速度横向变化引起的非双曲线时差问题,当横向速度变化大、超出常规时间偏移所能适应的尺度时,偏移的成像精度大为降低(这一现象由Hubral P于1977年首次发现)。这个问题立即引起国际勘探地球物理学界的关注,并开始对非均匀介质偏移方法的研究。波动理论的引入促进了深度偏移技术的发展。2O 世纪7O年代,Claerbout 首次把波动方程引入到地震波场偏移成像中,Schneider 提出了基于波动方程积分解的克希霍夫积分法偏移,Gazdag 和Stolt 分别提出波动方程频率一波数域偏移方法,应用的都是简化形式的抛物线波动方程,即单程方程和爆炸反射面模型。2O世纪8O年代出现了全波动方程偏移、逆时偏移成像等算法,但由于当时计算机效率低,对速度模型要求苛刻等原因,未能得到广泛应用。到了9O年代,菲利普斯石油公司首先于1993年宣布使用叠前深度偏移技术在墨西哥湾盐下勘探获得成功,拉开了克希霍夫积分法叠前深度偏移技术成功应用的序幕,将叠前偏移技术的发展推向一次新的发展高潮。PC机群技术得到快速发展(速度达每秒万亿次以上),偏移算法不断完善,使叠前深度偏移技术规模化应用成为可能。 1、为什么要做叠前深度偏移技术

相关主题
文本预览
相关文档 最新文档