当前位置:文档之家› 煤粉着火

煤粉着火

煤粉着火
煤粉着火

华中科技大学

本科生毕业设计(论文)开题报告

题目:典型煤种在高温低氧条件下的着火和脱挥发份

特性

学号:012006018516

姓名:杨明

指导老师:柳朝晖教授

院系专业:能源与动力工程学院

华中科技大学教务处制

一、研究背景

能源是支持社会发展和经济增长的重要物质基础和生产要素,充足稳定的能源供应不仅为工业提供动力,为农业提供保障,推动技术进步,保障国民经济的发展,而且还促进了人民生活质量的改善,促进人类社会的发展和进步。而世界经济的快速发展,又促进了能源的开发和利用技术水平的提高,两者既相互促进,又相互制约。能源的结构形式、利用效率及与环境的亲和能力是实现人类、社会和环境可持续发展的基本条件。

当今世界一次能源生产和消费以化石能源为主导,以可再生能源和新能源为补充,化石能源占一次能源的90%以上。随着世界经济的不断发展,能源的需求与日俱增,关于谋求经济、社会、资源、环境与发展协调有序和可持续共进的呼声越来越高,强调清洁能源/技术和可再生能源的替代已逐步成为一种发展趋势。能源生产和消费方式对环境造成的影响日益突出,当前,世界各国面临着经济发展和环境保护相互协调的问题。

煤炭在世界能源结构中占有非常重要的地位,在中国更是如此。煤是中国的主要能源,在资源消费结构中约占75%,我国煤炭消费总量约为世界煤炭总消费量的四分之一。但是长期以来,我们在享有煤炭为我们带来的能量的同时,也极大地影响和破坏了人类赖以生存的环境,造成了一系列严重的污染。如:硫氧化物、氮氧化物、二氧化碳、粉尘、以及一些有机污染物等。其中二氧化碳是造成温室效应的主要因素(占64%),越多越多的研究[1-3]已经证实,大气中温室气体浓度的增加是引起全球变暖和极端天气频繁发生的重要原因。

全球变暖、温室效应是由于CO2为代表的温室气体的大量排放导致的温室效应的加剧而造成的。CO2主要产生于矿物燃料的燃烧过程,随着社会经济飞速发展而带来的能源需求日益增多,化石燃料的燃烧利用也同时在不断增长,这样导致CO2排放量也在不断增大。在降低CO2排放所带来的影响的策略上,不外乎控制CO2的产生和回收处理。在燃烧所产生的烟气中回收和利用CO2的技术既是必须的,又是很有潜力的。而O2/CO2循环燃烧技术作为一种新型的燃烧技术,正是从燃烧所产生的烟气中回收和利用CO2这一类技术的较为突出的代表。

二、富氧燃烧技术及MILD燃烧简介

富氧燃烧技术也叫O2/CO2循环燃烧技术,采用烟气再循环的方式,以烟气中的CO2与空气分离获得的O2代替空气作为矿物燃料燃烧时的氧化剂,以提高燃烧排气中的CO2浓度。最早在1986年由美国Argonne 国家实验室(ANL)的Wolsky等[4]提出来的,它是采用空气分离获得的纯氧和一部分锅炉排气构成的混和气代替空气作为燃料燃烧时的氧化剂,以提高燃烧排放气中的CO2的浓度,从而便于从烟气中回收利用CO2。富氧燃烧技术不仅能使分离收集CO2和处理SO2更加容易进行,还能减少NOx的排放,是一种能够综合控制燃煤污染物排放的新型洁净燃烧技术。

O2/CO2燃烧系统与传统的空气环境中的燃烧系统相比,具有排烟损失减小,锅炉效率提高的优点,但由于制氧设备和CO2压缩设备需要耗费大量的电力,因此,总的电站效率有所下降。但是,与使用空气燃烧系统同时加装喷氨脱硫设备的机组相比,使用O2/CO2燃烧系统的电站效率更高,同时研究还表明,该系统优于其他的CO2回收系统。对O2/CO2燃煤方式的经济性分析表明,无论是将CO2液化还是CO2回收处理,发电设备的初投资费用和运行费用都会大幅度的降低。这是由于不需要采用烟气脱硫和脱硝装置所致,另外燃料价格的下降也会使发电效率提高。比较结果表明,脱除二氧化碳技术的可行性是很高的,出人意料的是,它甚至高于可再生能源利用技术的可行性,而且在公众接受方面肯定优于核聚变。

然而在此燃烧方式下,由于工质特性和运行状况都发生了重大变化,故对化石燃料的燃烧利用必然产生巨大影响。高浓度的CO2气氛下,火焰传播速度、燃烧稳定性、煤的燃尽特性、辐射对流传热特性、污染物的排放特性等都会发生相应改变。有效实现氧燃烧方式存在的主要困难是:燃烧稳定性差,机械和化学为燃烧损失大幅增加,导致运行效率降低,而带来的安全经济问题;化石燃料中的非主量组分的迁徙转化行为的变化,所引发的环境问题;以及制氧成本居高必然造成的经济问题。这些困难和问题已经成为制约新型燃烧方式完善和发展,乃至走向应用的关键瓶颈。

MILD燃烧(Moderate or Intense Low oxygen Dilution Combustion)是近十余年国际燃烧领域发展的一种最新的燃烧方式,又被称为无焰燃烧(Flameless Oxidation, FLOX)。在MILD燃烧设备中,燃烧可以发生在1100-1700K这样相对较

低的温度范围,并具有热流分布均匀和温度波动小的特点,实现容积燃烧。相比传统燃烧方式,这种燃烧的效率可提高(甚至超过)30%,NOx和CO等污染物的排放降低70%。该技术由于集节能减排于一身,被国际燃烧界誉为21世纪最有发展前途的燃烧技术之一。目前MILD燃烧多是针对气体燃料或者液体燃料,针对煤等固体燃料的研究和应用非常少。如果能将MILD燃烧与具有高温烟气再循环特点的富氧燃烧方式相结合,可望提高富氧燃烧方式的燃烧效率,强化燃烧的稳定性,改善燃尽程度,降低污染排放,从而在根本上有效解决富氧燃烧方式安全经济运行问题。所以对固体燃烧在高温低氧浓度条件下的着火、脱挥发份及燃尽特性开展研究是很重要的。

三、国内外研究现状

1.常规条件下煤粉着火的研究

目前,已经有很多研究者对常规气氛下煤焦的燃烧特性以及动力学特性开展了卓有成效地研究,围绕煤燃烧特性(包括煤着火、挥发分释放、燃烬、积炭、结渣特性、磨损和污染物的排放特性等)人们进行了大量的研究工作,得出了很多有意义的结论,也总结出了很多实用的研究方法。具体来说,研究煤焦燃烧特性的方法主要有:热重分析(TGA)、管式垂直沉降炉DTFS(drop-tube furnace system)、用石英玻璃管流化床和电加热、用脉冲激光点燃记录其燃烧的全过程。

2.O2/CO2条件下煤粉着火的研究

国内外关于煤粉颗粒在燃烧气氛中脱挥发份和粉煤颗粒热分解的研究,初见于1981年在国际燃烧会议上的两篇文章。W.J.Mclean等[5]对燃烧气氛下粉煤颗粒的脱挥发份进行了直接观察研究,采用高速相机捕捉了平面火焰携带流反应器中颗粒图像。W.R.Seeker[6]采用平面火焰下行炉开展了实验研究,采用高速相机捕捉了煤粉颗粒图像,并采用双色高温计对煤粉颗粒温度进行了采集。

Kiga等[7]、Takano S.I[8]、Toshipuki Suda等[9]、K.Okazaki和D.Yossefi[10]利用微重力设备测量煤粉云中火焰的传播速度来研究着火特性,微重力设备能保证煤粉颗粒分布均匀,防止自然对流的影响,他们发现O2/CO2气氛下煤粉的火焰传播速度远比在O2/N2和O2/Ar下有明显的下降,下降了1/3~1/5。且火焰传播速度随着氧浓度的提高而提高。这主要是由于CO2体积比热容比N2的高,导致了火焰传播速度的减慢。

3.高温低氧条件下煤粉着火的研究

国外较早有W.J.Mclean[11]和W.R.Seeker[12]等利用高速摄像和全息摄影等对燃烧气氛下煤粉颗粒的着火和热分解特性开展了直接观察研究。近几年美国Sandia国家实验室的Shaddix[13]等利用层流光学携带流反应系统,通过采集颗粒图像,对富氧燃烧条件下1750K时煤粉单颗粒的着火和脱挥发份特性开展了详细的研究。Zhang等[32]利用高速相机采集煤粉在滴管炉内的颗粒图像,对煤粉在O2/N2和O2/CO2条件的下,温度为1073K和1273K时的燃烧特性开展了相关研究。对于高温低氧浓度下的相关研究国内外还鲜见报道。

四、本课题的研究内容

本文对煤粉在高温低氧条件的着火及脱挥发份特性做了深入的研究。本实验在平面火焰携带流反应系统上进行,气流携带煤粉进入燃烧器,煤粉燃烧时采用高速摄像捕捉单颗粒的瞬时图像进行直接观察,燃烧后的煤焦由取样枪收集用于以后的实验研究。

本实验采用三种不同的煤为实验对象,粒径为74~97μm的大同烟煤,粒径为74~97μm的大庆褐煤和粒径为45~74μm的大同烟煤,分别在不同氧浓度(2%、5%、10%、20%、30%)下的O2/N2和O2/CO2气氛中燃烧,在O2/N2气氛中分别在1940K、1773K、1673K、1573K、1473K温度下燃烧,在O2/CO2气氛中分别在1773K、1673K、1573K、1473K温度下燃烧。大粒径的大同煤又分别以两种不同的给粉速度给粉,分别为5g/h和2.5g/h,大庆煤的给粉速度为2.5g/h,小粒径的大同煤的给粉速度为5g/h,以便分析颗粒浓度对煤粉燃烧特性的影响。

本实验中使用了MATLAB软件对原始图像进行处理,并使用chemkin软件对停留时间进行计算。本文对实验的数据进行了三个方面的研究:煤粉的着火点、脱挥发份特性和颗粒的燃烧历程。讨论了氧浓度、温度、气氛、煤种、粒径和给粉量对煤粉燃烧特性的影响。

五、参考文献

【1】M.A.Benarde, Global Warming, New York ,John Wiley&Sons,1992-4

【2】J.E.Hansen,D.Johnson and https://www.doczj.com/doc/df5912249.html,cis, Climate Impact of Increasing Atmospheric Carbon Dioxide.Sience,1981.213:937-966

【3】 C.Genthon er al, Climatic Response to CO2 and Orbital forcing Changes over the lase climatic cycle, The Nature ,1987.329:411-418

【4】Solomon PR, Hamblen DG, Carangelo RM, et, al. General Model of Coal Devolatilization, Energy and Fuels, 1988, 2(3): 405~422

【5】W.J.Mclean, D.R.Hardesty, J.H.Pohl. Direct observations of devolatilizing

pulverized coal particles in a combustion environment. Eighteenth

symposium(international) on combustion, p1239~1248, the combustion

institute,1981

【6】W.R.Seeker, G.S.Samuelsen, M.P.Heap, J.D.Trolinger. The thermal decomposition of pulverized coal particles. Eighteenth

symposium(international) on combustion, p1239~1248, the combustion

institute,1981

【7】Kiga.T, Takano.S, Kimura.N et al. Characteristics of pulverized-coal combustion in the system of oxygen/recycled flue gas combustion. Energy

conversion and management, 1997,38(9999):129-134.

【8】Takano S.I, Kiga.T, Endo.Y, et al. CO2 recovery from PCF power plant with O2/CO2 combustion process. IHI engineering review,1995,28(4):446~450. 【9】Toshiyuki Suda, Katsumi Masuko et al. Effect of carbon dioxide on flame propagation of pulverized coal clouds in CO2/O2 combustion.Fuel,2007

【10】W.J. Mclean, D.R. Hardesty, J.H. Pohl. Direct observations of devolatizing pulverzed coal particles in a combustion environment[J], 18th Symposium (International) on Combustion,1981,1240-1248.

【11】W.R. Seeker, G.S. Samuelsen, et al. The thermal decomposition of pulverized coal particles[J], 18th Symposium (International) on Combustion,1981, 1213-1224

【12】C.R. Shaddix, A. Molina. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proceedings of the Combustion Institute.2009,32: 2091-2098.

【13】Lian Zhang, E. Binner, et al. In situ diagnostics of Victorian brown coal combustion in O2/N2 and O2/CO2 mixtures in drop-tube furnace. Fuel.2010.

煤粉燃烧器的安全技术

煤粉燃烧器的安全技术Through the process agreeme nt to achieve a uni fied action policy for differe nt people, so as to coord in ate acti on, reduce bli ndn ess, and make the work orderly.

编制:____________________ 审核:____________________ 批准:____________________

煤粉燃烧器的安全技术 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 煤粉燃烧器是煤粉炉的主要燃烧设备。煤粉燃烧器的型式很多,一般可按气流形式分为直流燃烧器和旋流燃烧器两大类。 燃烧器(又叫喷燃器)常见的故障有喷燃器烧坏、燃烧不稳、灰火打炮、炉膛或喷口处结焦、磨损漏粉等,所以对喷燃器的安装、运行、检修等都要有一定的安全技术要求。 1?喷燃器的安全要求 1)喷燃器的安装应按设计要求进行。当燃料变化时,可根据试验结果进行必要的改进。喷燃器与水冷壁的固定时应防止水冷壁管被拉裂。喷燃器的平衡配重应按设计要求安装, 保证水冷壁管不受过大的附加力和能随着水冷壁膨胀而能自由调整,不被卡涩。喷燃器及输粉管、风管亦能膨胀正常; 2)运行值班人员应根据某种和负荷的变化正确调整一、二次风的风量和风速。确保燃烧正常,防止灭火打炮、结焦 和烧坏喷燃器;

煤炭燃烧特性指标

煤炭燃烧特性指标 几乎所有的煤炭特性指标都与煤炭的燃烧特性是相关的,反之,也没有一个能完全、全面表征煤炭燃烧特性的指标。与此同时,不同的煤炭特性指标对于煤炭燃烧特性的重要性,也随着煤炭燃烧方式的不同而异,并具有相当的差别。作为影响煤炭燃烧特性或者说过程最明显的指标是煤炭的挥发份和粘结性或者说膨胀系数。前者表征着煤炭在燃烧过程中的以气相完成的份额和其对后续固相燃烧过程的影响;后者则关系到煤炭颗粒因形态、尺寸和反应表面积的变化而使其自身的燃烧特性受到的影响。而前者和后者有时又是具有密切联系的。与煤炭燃烧特性有关的还有挥发份的释出特性、焦炭的反应性、煤炭的热稳定值、重度等,以及煤炭在堆放过程中的风化、自燃特性和可磨度。 煤炭颗粒在受热过程中的熔融软化、胶质体和半焦的形式几乎所有的烟煤在受热升温的过程中与挥发份释出的同时,都会出现胶质体,呈塑性和颗粒的软化现象。煤炭颗粒间的粘结就是因颗粒胶体间的相互粘结而产生的,因此煤炭的粘结性也就于其所呈现胶体的条件相关。当一个按一定升温速度,经历着受热过程的煤炭颗粒进行观察时,考虑到在此受热过程中热量总是从表面传向颗粒核心的,在同一时间内表面温度也总高于核心。可以发现不同的烟煤,在表面温度达到320~350℃以前,颗粒的形态变化一般觉察不到,只

有煤化程度低的气煤才可观察到表面开始有挥发份气体释出。在温度到350~420℃时,可以观察到在颗粒表面出现了一层带有气泡的液相膜,表面上也逐渐失去原来的棱角,这层膜就是胶质体。当温度为500~550℃时,一方面因颗粒内部温度升高,使胶质体层向内层发展,以及外部的胶质体层因挥发份释出被蒸干转化为半焦,即从表面到中心由半焦壳、胶质体和原有的煤三层所构成,但这种形态所保持的时间是短暂的。随着受热的继续,胶质体的发展和体积的膨胀,半焦外壳出现裂口,胶质体流出。其后是胶质体向颗粒中心区域的发展,流出的胶质体被蒸干转变为半焦,直到整个颗粒都经历胶质体和半焦的形成。整个的过程如图3-2-2所示:试验证明软化温度越低的煤种,挥发份开始释出的时间越早。因此软化温度Tp(对于不同的烟煤表面开始出现液相膜的温度)和再固化温度TK(呈现最大塑性的温度TMAX以及被蒸干再次呈固体形状的温度)都是表明煤炭流变特性的指标,同样也间接表明了于煤炭燃烧特性密切相关的问题。 Ⅰ软化开始阶段Ⅱ开始形成半焦的阶段Ⅲ煤粒强烈软化和半焦破 裂阶段

煤炭的燃烧过程

一、?煤碳的燃烧过程 ? 煤从进入炉膛到燃烧完毕,一般经历四个阶段:水分蒸发阶段,当温度达到105℃左右时,水分全部被蒸发;挥发物着火阶段,煤不断吸收热量后,温度继续上升,挥发物随之析出,当温度达到着火点时,挥发物开始燃烧。挥发物燃烧速度快,一般只占煤整个燃烧时间的1/10左右;焦碳燃烧阶段,煤中的挥发物着火燃烧后,余下的碳和灰组成的固体物便是焦碳。此时焦碳温度上升很快,固定碳剧烈燃烧,放出大量的热量,煤的燃烧速度和燃烬程度主要取决于这个阶段;燃烬阶段,这个阶段使灰渣中的焦碳尽量烧完,以降低不完全燃烧热损失,提高效率。 良好燃烧必须具备三个条件: 1、温度。温度越高,化学反应速度快,燃烧就愈快。层燃炉温度通常在1100~1300℃。 2、空气。空气冲刷碳表面的速度愈快,碳和氧接触越好,燃烧就愈快。 3、时间。要使煤在炉膛内有足够的燃烧时间。 碳燃烧时在其周围包上一层灰壳,碳燃烧形成的一氧化碳和二氧化碳往往透过灰壳向外四周扩散运动,其中一氧化碳遇到氧后又继续燃烧形成二氧化碳。也就是说,碳粒燃烧时,灰壳外包围着一氧化碳和二氧化碳两层气体,空气中的氧必须穿过外壳才能与碳接触。因此,加大送风,增加空气冲刷碳粒的速度,就容易把外包层的气体带走;同时加强机械拨动,就可破坏灰壳,促使氧气与碳直接接触,加快燃烧速度。如果氧气不充足,搅动不够,煤就烧不透,造成灰渣中有许多未参与燃烧的碳核,另外还会使一部分一氧化碳在炉膛中没有燃烧就随烟气排出。对于大块煤,必须有

较长的燃烧时间,停留时间过短,燃烧不完全。因此,实际运行中,一般采取供给充足的氧气,采用炉拱和二次风来加强扰动,提高燃烧温度,炉膛容积不宜过小等措施保证煤充分燃烧。 ? 二、链条炉排的燃烧特点 ? 链条炉排着火条件较差,主要依靠炉膛火焰和炉拱的辐射热。煤的上 面先着火,然后逐步向下燃烧,在炉排上就出现了明显的分层区域,如图共分五个区。燃料在新燃烧区1中预热干燥,在炉排上占有相当长的区域。在区域2中燃料释放出挥发分,并着火燃烧。燃烧进行得很激烈,来自炉排下部空气中的氧气在氧化区3中迅速耗尽,燃烧产物CO2和水蒸气上升到还原区4后,立即被只热的焦碳所还原。最后在链条炉排尾部形成灰渣区5。 在燃烧准备区1和燃烬区5都不需要很多空气,而在燃烧区2、3必须保证有足够的空气,否则则会出现空气在中部不足,而在炉膛前后过剩的现象。为改善以上燃烧状况,常常采用以下三个措施:合理布置炉拱;采取分段送风;增加二次风. ? 三、链条炉排对煤种的要求 ? 链条炉排对煤种有一定的选择性,以挥发分15%以上,灰熔点高于1250℃以上的弱黏结、粒度适中,热值在18800~21000kJ/kg以上的烟煤最为适宜。

煤粉燃烧过程的数值模拟

煤粉燃烧过程的数值模拟 Ryoichi Kurose 京都大学 高级研究院流体科学与工程学院机械工程与科学系 Hiroaki Wata nabe and Hisao Makino 中央研究所的电力行业能源工程研究实验室 摘要 煤炭是一种能够满足电力进一步需求的重要能源资源,而且煤炭比其他化石燃料的储量丰富得多。在燃煤发电厂,改善对环境污染物如NOx,SOx及包括未燃尽的碳粒在内的灰粒的含量的控制技术十分重要。随着计算机性能的显着提高,人们强烈希望计算流体动力学(CFD)成为一种工具,成为一种研发和设计这种合适的煤粉燃烧的燃烧炉膛和燃烧器的工具。这次审查的重点是突出我们的CFD 研究的最新进展,即煤粉在燃烧中的平均雷诺数纳维斯托克斯(RANS)的模拟和大涡模拟(LES)的最新进展,及未来的一些前景。 关键词:煤粉燃烧,数值模拟,平均雷诺数纳维斯托克斯模拟,大涡模拟 1.介绍 煤炭是一种能够满足电力进一步需求的重要能源资源,而且煤炭比其他化石燃料的储量丰富得多。在燃煤发电厂,改善对环境污染物如NOx,SOx及包括未燃尽的碳粒在内的灰粒的含量的控制技术十分重要。为了实现这些目标和要求,了解煤粉燃烧机理和先进的燃烧技术的发展十分必要。然而,由于煤粉燃烧是一个非常复杂的现象,其中最高的火焰温度超过1500C,以及某些物质难以进行测量,如一些原子团种类和一些高活性固体颗粒,因此在燃烧过程中的煤粉燃烧机 理至今没有得到很好的解释。而且由于研发过程包含许多步骤,因此,新的燃烧炉膛和燃烧器的发展需要较高的成本和较长的时间。 随着计算机性能的显著提升,煤粉燃烧领域的计算流体动力学正在被研发。在这种方法中,电脑解决了燃烧领域的控制方程式,这使它能够提供温度和化学物质种类分布的详细信息和在整个燃烧空间中煤粉颗粒的行为,而上述那些通过实验是不能得到的。此外,此种方法有助于在相对较低的成本条件下重复审查任意条件下的煤粉的流场和各种参数。因此,强烈地希望计算流体动力学(CFD)能够成为燃烧炉炉膛和燃烧器研发和设计的一种工具。

煤粉 燃烧器详细介绍

一种防结焦结构以及煤粉燃烧器 技术领域 本实用新型涉及煤粉燃烧器技术领域,尤其涉及一种防结焦结构以及煤粉燃烧器。 背景技术 5 煤粉燃烧器是指能够让煤粉在短时间内充分燃烧,产生高温涡流的设备,现有的煤粉燃烧器的结构如图1至图3所示,其包括炉体1-1、炉膛1-11、支架1-2与底座1-3,炉体1-1的左侧中部设置有送煤管1-4,送煤管1-4的一端延伸至炉体1-1的外侧,送煤管1-4的另一端延伸至炉体1-1的内侧,送煤管1-4位于外部的一侧底部倾斜设置有煤粉进管10 1-5,送煤管1-4的中心设置有点火管1-6,点火管1-6内通过气缸1-7可水平移动的设置有点火枪1-8,点火枪1-8上设置有雾化喷油嘴,送煤管1-4的右端与点火管1-6的右端之间沿周向均匀的设置有若干第一叶片1-9,炉体1-1内对应送煤管1-4的中部与右侧分别设置有相连通的环形进风腔1-10与第一环形出风腔1-12,第一环形出风腔1-12的右端沿15 周向均匀的设置有若干第二叶片1-13,第一叶片1-9与第二叶片1-13均与轴线呈一定的角度,保证产生旋流效果,炉膛1-11与炉体1-1之间设 与第二环形出风腔1-15,环形进风腔 1-10之间设置有第二耐高温浇注料层1-16,支架1-2上设置有鼓风机1-17,鼓风机1-17分别通过第一供气管20 1-18、第二供气管1-19与第一环形出风腔1-12、第二环形出风腔1-15相连通,在行走电机1-20的带动下,炉体1-1可以在底座1-3上进行移动。 磨煤喷粉机将煤粉从煤粉进管1-5进入,然后通过送煤管1-4后在第一叶片1-9的作用下以旋流的方式喷出,煤粉被点燃后进行燃烧,点25 火枪1-8在点火之后被气缸1-7拉入点火管1-6内,避免烧损,与此同时,

火电厂煤粉燃烧系统

火电厂煤粉燃烧系统 火力发电厂简称火电厂,是利用煤、石油、天然气作为燃料生产电能的工厂,它的基本生产过程是:燃料在锅炉中燃烧加热水生成蒸汽,将燃料的化学能转变成热能,蒸汽压力推动汽轮机旋转,热能转换成机械能,然后汽轮机带动发电机旋转,将机械能转变成电能。今天我的课题是煤粉燃烧系统。 一、煤粉的制备及预热 用火车或汽车、轮船等将煤运至电厂的煤场后,经初步筛选处理,用输煤皮带送到锅炉的原煤仓。煤从原煤仓落入煤斗,由给煤机送入磨煤机磨成煤粉,并经空气预热器来的一次风干燥并带至粗粉分离器。在粗粉分离器中将不合格的粗粉分离返回磨煤机再行磨制,合格的细煤粉被一次风带入旋风分离器,使煤粉与空气分离后进入煤粉仓。 二、煤粉气流的着火和燃烧 (一)煤粉气流的着火 煤粉空气混合物经燃烧器以射流方式被喷入炉膛后,经过湍流扩散和回流,卷吸周围的高温烟气,同时又受到炉膛四周高温火焰的辐射,被迅速加热,热量到达一定温度后就开始着火。有实验表明,煤粉气流的着火温度要比煤的着火温度高一些。因此,煤粉空气混合物较难着火,这是煤粉燃烧的特点之一。 在锅炉燃烧中,希望煤粉气流离开燃烧器喷口不远处就能稳定地着火,如果着火过早可能使燃烧器喷口因过热被烧坏,也易使喷口附近结渣;如果着火太迟,就会推迟整个燃烧过程,使煤粉来不及烧完就离开炉膛,增大机械不完全燃烧损失。另外着火推迟还会使火焰中心上移,造成炉膛出口处的受热面结渣。 煤粉气流着火后就开始燃烧,形成火炬,着火以前是吸热阶段,需要从周围介质中吸收一定的热量来提高煤粉气流的温度,着火以后才是放热过程。将煤粉气流加热到着火温度所需的热量称为着火热。它包括加热煤粉及空气(一次风),并使煤粉中水分加热、蒸发、过热所需热量。 (二)煤粉燃烧的三个阶段 煤粉同空气以射流的方式经喷燃器喷入炉膛,在悬浮状态下燃烧,从燃烧器出口,煤粉的燃烧过程大致可分为以下三个阶段: 1.着火前的准备阶段 煤粉气流喷人炉内至着火这一阶段为着火前的准备阶段。着火前的准备阶段是吸热阶段。在此阶段内,煤粉气流被烟气不断加热,温度逐渐升高。煤粉受热后,首先是水分蒸发,接着干燥的煤粉进行热分解并析出挥发分。挥发分析出的数量和成分取决于煤的特性、加热温度和速度。着火前煤粉只发生缓慢氧化,氧浓度和飞灰含碳量的变化不大。一般认为,从煤粉中析出的挥发分先着火燃烧。挥发分燃烧放出的热量又加热炭粒,炭粒温度迅速升高,当炭粒加热至一定温度并有氧补充到炭粒表面时,炭粒着火燃烧。 2.燃烧阶段 煤粉着火以后进入燃烧阶段。燃烧阶段是一个强烈的放热阶段。煤粉颗粒的着火燃烧,首先从局部开始,然后迅速扩展到整个表面。煤粉气流一旦着火燃烧,

45、煤粉细度对窑的煅烧和熟料质量有什么影响

煤粉细度对窑的煅烧和熟料质量有什么影响 煤粉的粒度直接影响燃烧的速度进而影响烧成带的温度和长度。煤粉细一些,燃烧迅速、完全。如果煤粉过粗,燃烧速度慢,高温带拉长,火力不集中,将降低烧成带温度从而影响质量。对立窑来说,熟料中煤灰份分布不均匀而相对集中,形成所谓的煤灰窝,这样影响熟料质量的均匀性,降低熟料的成品率。在采用白生料和半黑生料的立窑工艺中,作为外加煤,一般要求粒度不大于5mm,其中3mm以下的应占90%以上。但煤粉过细会降低煤磨产量,增加电耗,回转窑用的煤粉细度一般控制0.08mm方孔筛筛余在8%~15%。煤挥发分高的取低值,即应放粗些;反之取高值,即挥发分低的磨得粗些。 对立窑工艺来说,煤粉过细还会对煅烧带来不良后果。因为立窑生产是燃料与生料一起成球入窑,料球在煅烧中逐渐下降,与向上的冷空气逆向而行。由于窑中进行的一系列的物理化学反应消耗了空气中大量氧气,因此当料球进入予热带后,窑内的热气体中的氧就已很少,而碳酸盐却已分解出一定数量的C02气体,该带温度已达750~800℃,此时,料球表面的细煤就与C02发生包氏反应: C+C02→CO (吸热反应) 在底火稳定,通风良好时,生成的CO迅速被气流带到上层,因上层更加缺氧,且温度更低,CO便不能与02燃烧而同烟气一同被排出窑外,造成不完全燃烧热损失,浪费能源。当窑内通风不良且物料间又形成了空穴时,CO不能及时被排往窑外,而大量聚积在空穴中,一旦达到一定浓度且具备其它条件时,则可能发生CO爆炸喷火事故。 另外,煤粉过细,煤粉在烧成带的燃烧速度很快,使底火层较薄,边部更甚,使物料在烧成带煅烧的时间缩短,烧结反应进行得不充分,易产生生烧料。 而较粗的煤粒燃烧速度慢,在予热带不易与C02发生包氏反应,而是下移到温度较高、氧气较多的高温带去燃烧,既使高温带热力集中,提高烧成温度,又可使底火层有一定厚度,使物料在高温带停留必要的时间,充分进行烧结反应。 因此,一般认为立窑煅烧所需的煤粉细度以0.08mm方孔筛筛余在40±5%左右为宜。半黑生料和包壳料球工艺都有考虑避免料球表面煤粉过细的因素。

燃煤锅炉司炉工培训讲义

燃煤锅炉司炉工培训讲义 二、燃煤锅炉优化燃烧及操作技术 (一)链条锅炉的燃烧特点链条炉炉膛内燃料着火条件比较差,煤的着火主要依靠炉膛火焰和前后拱辐射热,因而煤的着火是从上向下、从后向前的方式着火,这样的燃烧过程,在炉排上就出现了明显的区域分层、分段燃烧。煤进入炉膛后,随着炉排逐渐由前向后缓慢移动,出现下述燃烧特点: 1、炉排前部是新进的煤,为燃料预热干燥和挥发份析出区。该区域处于负压区,燃料吸收热量阶段,风量不宜过大,第一道风箱风门应关闭,第二道风箱风门根据锅炉的负荷增大,煤湿度大等情况下,急需开启时方可开启。 2、在炉排中部,是焦炭燃烧区,该区域温度很高,同时进行着氧化和还原反应过程,放出大量热量,风量要充足,燃烧应充分。 3、在炉排的尾部,是灰渣燃尽区,对灰渣中剩余的焦炭急需燃烧,为此,尾部风量也不宜过大,燃尽区灰渣段不宜过长,防止过多冷风进入炉膛降低锅炉出力。 (二)链条炉燃烧对煤的要求 1、煤的燃烧条件不同的煤种挥发份析出温度也不同,如:褐煤的析出温度为150~180oC,烟煤的析出温度为180~250 oC,无烟煤的析出温度为300~400 oC;不同的煤种燃料着火温度也不

同,如:褐煤的着火温度为250~450 oC,烟煤的着火温度为 400~500 oC,无烟煤的着火温度为600~700 oC。 2、链条炉燃烧对煤的要求1)煤的低位发热量热值应在5000kcal/kg(大卡/公斤)左右,灰熔点大于1250 oC。2)煤的颗粒度应小于40~50mm,碎煤量不大于30%,否则大颗粒的煤块在正常炉排速度下,无法燃尽,出现烧不透和炉渣含碳量高的现象。3)煤的湿度应保持在3%~8%之间,即煤用手握紧后松开,煤在手上不会马上散开,而又不很湿为宜;如果煤湿度过大,应适当打大煤挡板,提高炉排转速;煤湿度过小,应适当关小煤挡板,降低炉排转速。4)煤层厚度应在100~200mm之间,煤的颗粒大,给煤挡板适当开大,否则,应适当关小煤挡板。还应根据煤质情况调节煤层厚度:劣质煤煤层厚度应在100~180mm,非黏性煤煤层厚度应在80~140mm,黏性煤煤层厚度应在60~100mm。5)上煤系统装有破碎机是链条炉经济燃烧很重要的条件,否则进炉煤颗粒大或部均匀,造成燃烧不完全损失大、6)为改善链条炉燃烧条件需加装分层分行垄型给煤装置,目的是改善煤层透风条件,并实现垄型滚落燃烧,加强炉排上煤的辐射燃烧强度,使炉膛温度提高,加强燃烧作用。7)煤仓主体设计应为倒塔式,但出口前有10~15度渐扩角,煤仓落煤管应做成整体式,不能做成分叉式,以免煤仓堵煤的现象出现。 (三)链条锅炉启动点火的准备和操作方法

锅炉燃烧器各种风的作用和区别

一次风:一次风是用来输送加热煤粉,使煤粉通过一次风管送入炉膛,并能供给煤粉中的挥发分着火燃烧所需的氧气,采用热风送粉的一次风,同时还具有对煤粉预热的作用。它的作用除了维持一定的气粉混合物浓度以便于输送外,还要为燃料在燃烧初期提供足够的氧气。一次风有冷一次风与热一次风之分。热一次风用于保证煤粉进入锅炉时即有一定的温度,提高能量利用率。冷一次风用于调节热一次风温,以保证热交换率效果达到最大。 一次风携带的煤粉进入炉膛后通过二次风提供氧气燃烧。 二次风:二次风是通过燃烧器的单独通道送入炉膛的热空气,进入炉膛后才逐渐和一次风相混合。二次风为碳的燃烧提供氧气,并能加强气流的扰动,促进高温烟气的回流,促进可燃物与氧气的混合,为完全燃烧提供条件。二次风的风量在一次风、三次风中最大,在总风量中占有相当大的比例。 三次风:三次风是制粉系统排出的干燥风,俗称乏气,它作为输送煤粉的介质,送粉时叫一次风,只有在以单独喷口送入炉膛时时叫做三次风。三次风含有少时煤粉,风速高,对煤粉燃烧过程有强烈的混合作用,并补充燃尽阶段所需要的氧气,由于其风温低、含水蒸汽多,有降低炉膛温度的影响。

中心风:中心风的作用是增加一次风的刚性,防止煤粉离析和散射,并补充空气量,减少碳未完全燃烧损失。中心风是四通道燃烧器与三通道燃烧器的根本区别所在,中心风的作用:1、冷却燃烧器端部,保护喷头。2、在燃烧器端部形成碗状效应(气流内循环),使火焰更加稳定。3、降低端部火焰温度,减少N O X有害气体的形成。 辅助风:辅助风控制系统以二次风风箱压力的差压为被调量,风箱/炉膛压差的定值取为负荷的函数。辅助风控制系统为一单冲量多输出控制系统,控制系统输出同时控制各层的辅助风挡板。在运行时各层磨煤机的负荷可能各不相同,需要不同的配风,因此每层辅助风门都设有一个操作员偏置站。当油枪程控点火时,相应的的辅助风门自动到“油枪点火”位置。 燃料风(周界风):燃料风(周界风)控制系统为比值控制系统,燃料风风门的开度由相应的给煤机转速决定,燃料风风门的为其相应的给煤机转速的函数。

锅炉燃烧系统的控制系统设计

目录 1锅炉工艺简介 (1) 1.1锅炉的基本结构 (1) 1.2工艺流程 (2) 1.2煤粉制备常用系统 (3) 2 锅炉燃烧控制 (4) 2.1燃烧控制系统简介 (4) 2.2燃料控制 (4) 2.2.1燃料燃烧的调整 (4) 2.2.2燃烧调节的目的 (5) 2.2.3直吹式制粉系统锅炉的燃料量的调节 (5) 2.2.4影响炉内燃烧的因素 (6) 2.3锅炉燃烧的控制要求 (11) 2.3.1 锅炉汽压的调整 (11) 3锅炉燃烧控制系统设计 (14) 3.1锅炉燃烧系统蒸汽压力控制 (14) 3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制 (14) 3.2燃烧过程中烟气氧含量闭环控制 (17) 3.2.1 锅炉的热效率 (18) 3.2.2反作用及控制阀的开闭形式选择 (20) 3.2.3 控制系统参数整定 (20) 3.3炉膛的负压控制与有关安全保护保护系统 (21) 3.3.1炉膛负压控制系统 (22) 3.3.2防止回火的连锁控制系统 (23) 3.3.3防止脱火的选择控制系统 (24) 3.4控制系统单元元件的选择(选型) (24) 3.4.1蒸汽压力变送器选择 (24) 3.4.2 燃料流量变送器的选用 (24) 4 DCS控制系统控制锅炉燃烧 (26) 4.1DCS集散控制系统 (26) 4.2基本构成 (27)

锅炉燃烧系统的控制 4.3锅炉自动燃烧控制系统 (31) 总结 (33) 致谢 (34) 参考文献 (35)

1锅炉工艺简介 1.1锅炉的基本结构 锅炉整体的结构包括锅炉本体和辅助设备两大部分。 1、锅炉本体 锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。 炉膛又称燃烧室,是供燃料燃烧的空间。将固体燃料放在炉排上进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转并强烈火烧的圆筒形炉膛称为旋风炉。炉膛的横截面一般为正方形或矩形。燃料在炉膛内燃烧形成火焰和高温烟气,所以炉膛四周的炉墙由耐高温材料和保温材料构成。在炉墙的内表面上常敷设水冷壁管,它既保护炉墙不致烧坏,又吸收火焰和高温烟气的大量辐射热。炉膛的结构、形状、容积和高度都要保证燃料充分燃烧,并使炉膛出口的烟气温度降低到熔渣开始凝结的温度以下。当炉内的温度超过灰熔点时,灰便呈熔融状态。熔融的灰渣颗粒在触及炉内水冷壁管或其他构件时会粘在上面。粘结的灰粒逐渐增多,遂形成渣块,称为结渣。结渣会降低锅炉受热面的传热效果。严重时会堵塞烟气流动的通道,影响锅炉的安全和经济运行。一般用炉膛容积热负荷和炉膛截面热负荷或炉排热负荷表示其燃烧强烈程度。炉膛容积热负荷是单位炉膛容积中每单位时间内释放的热量。在锅炉技术中常用炉膛容积热负荷来衡量炉膛大小是否恰当。容积热负荷过大,则表示炉膛容积过小,燃料在炉内的停留时间过短,不能保证燃料完全燃烧,使燃烧效率下降;同时这还表示炉墙面积过小,难以敷设足够的水冷壁管,结果炉内和炉膛出口处烟气温度过高,受热面容易发生结渣。室燃炉的炉膛截面热负荷是单位时间内单位炉膛横截面上燃料燃烧所释放的热量。在炉膛容积确定以后,炉膛截面热负荷过大会使局部区域的壁面温度过高而引起结渣。层燃炉的炉排热负荷是单位时间内燃料燃烧所释放的热量与炉排面积的比值。炉排热负荷过高会使飞灰大大增加。炉膛设计需要充分考虑使用燃料的特性。每台锅炉应尽量燃用原设计的燃料。燃用特性差别较大的燃料时,锅炉运行的经济性和可靠性都可能降低。 锅筒它是自然循环和多次强制循环锅炉中接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。锅筒筒体由优质厚钢板制成,是锅炉中最重的部件之一。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,

各种因素对煤粉炉燃烧的影响.doc

各种因素对煤粉炉燃烧的影响 现在煤粉锅炉在热力发电厂中应用广泛,而影响煤粉炉燃烧的原因多种多样,下面就从燃料、燃烧器、炉膛、锅炉运行各方面浅谈一下。 一、燃料: (一)燃料品质: 1、挥发分:挥发分是煤粉在加热过程中有机质分解而析出的气体物质。。煤中挥发 分含量对煤粉气流着火过程影响很大,煤粉气流着火温度比对应的煤的高。干燥无灰基挥发分越高的煤,着火温度越低,火焰传播速度也越快。因此挥发分含量高的煤不仅容易着火,而且着火稳定性也越好。 煤中除了挥发分和水分剩余的部分就是焦炭,包括固碳和灰分。煤粉燃烧的过程为:水分先析出,绝大部分挥发分析出,挥发分着火,引燃焦炭和剩余的挥发份。所以挥发分的燃烧对焦炭起加热作用,从而为焦炭的燃烧创造有利条件,一般而言,挥发分越高的煤越容易燃尽,q4(固体未完全燃烧热损失)少。 随着煤的碳化程度不同,挥发分的析出温度也不同,挥发分的成分及含量也不同。挥发分的着火点低,容易燃烧。挥发分高的煤火焰传播速度也越快,火焰也越长,因此一般情况气体燃料和液体燃料比固体燃料的火焰传播速度大。大部分挥发分的着火以及燃尽时间很短,约占整个燃烧时间的百分之十。 对于多相燃烧,反应速度取决于燃料附近氧化剂的浓度和固相物质的表面积。 2、水分:煤粉在加热的过程中首先析出的是水分,水分分为外部水分和内部水分。 水分的增加会影响发热量,从而使炉内温度降低影响燃料着火,增加排烟热损失,加剧尾部受热面的腐蚀和堵灰。 水分的增加影响着火热。水分多时加热煤粉气流的一部分热用于水分的蒸发和过热,使着火热增加,推迟着火。但是煤粉内的水分蒸发后可使煤粉颗粒

的表面积增大,从而提高着火能力和燃烧速度。 火电厂中大容量锅炉为防止尾部受热面低温腐蚀,尾部烟气的温度都很高,烟气中的水蒸气常压下不会凝结,汽化潜热未能被利用,使锅炉效率有所降低。 水分还会影响火焰的传播速度,水分含量大时,火焰的传播速度变低。 3、灰分:焦炭中不能燃烧的部分就是灰分。它可以使单位燃料的发热量降低,还 影响燃料的着火和燃尽,也会造成锅炉受热面积灰,结渣,磨损。 灰分含量增大时,没分的发热量就会降低,燃煤量增加,灰分覆盖在可燃物上减少与氧气的接触面积使着火比较困难,着火稳定性差,着火温度高,影响火焰传播速度。还会是燃烧不完全,增加固体未完全燃烧热损失。 灰分还会形成灰渣附着在水冷壁面,过热器,再热器,省煤器,空气预热器上,增大热阻减少传热,浪费能量。 4、发热量:煤的发热量是指单位质量的煤完全燃烧时放出的全部热量。分为高位 发热量和低位发热量。当发热量中包括煤燃烧后所产生的水蒸气凝结发出的汽化潜热时,称为高位发热量。当不包括水蒸气凝结产生的汽化潜热时,称为低位发热量。现在大型锅炉的尾气温度一般大于120度,尾气中的水蒸气不会凝结,因此我国采用低位发热量。高位发热量可由氧弹式热量计测量。 发热量大可以使煤的分解速度加快,迅速释放出挥发分,有利于达到着火热迅速达到着火温度,并且稳定的燃烧。 5、焦炭:煤失去水分和挥发分后剩余的就是焦炭,焦炭燃烧后的温度高,可以迅 速提高炉膛温度。 6、煤粉细度煤粉越细,其中的挥发分容易析出出来,可以迅速燃烧,也容易着尽, 减少固体未完全燃烧损失,还会提高火焰传播速度。 7、煤粉分布:在炉膛内煤粉分布越均匀越容易燃烧。

煤粉锅炉系统操作规程

煤粉锅炉系统操作规程 一、系统工艺流程介绍 高效洁净燃气煤粉工业锅炉系统主要包括三大部分:1、炉前煤粉储供系统;2、锅炉燃烧及换热系统;3、尾部烟气处理系统。1、煤粉储存及输送 集中制粉站来的密闭罐车直接与煤粉储罐(F001)对接,将符合要求的干煤粉输入煤粉储罐(F001)。煤粉储罐(F001)中的煤粉通过星形卸料器给入中间粉仓(F002)。中间粉仓(F002)的煤粉通过叶轮给料器(F003)定量进入风粉混合器(F004),由一次风输送,通过一次风管进入燃烧器(B002)风粉管道。 2、燃烧及换热 煤粉在锅炉(B001)内与二次风混合进入燃烧,生成高温烟气。高温烟气在炉膛内与工质换热后依次进入高温空气预热器、省煤器、低温空气预热器等尾部受热面,由锅炉下部进入布袋除尘器。冷空气由鼓风机(J002)送入燃烧器二次风道。 3、清灰 煤粉燃烧过程中产生中飞灰绝大部分随烟气进入布袋除尘器(Q001),少部分在炉膛底部及对流管束区沉积,对流管束区积灰通过压缩空气送入炉膛底部除渣机排出。尾部受热面积灰通过声波吹灰器定时清除。 4、烟气净化系统

进入布袋除尘器(Q001)的烟气经过滤除尘后,经引风机进入脱硫塔,达标后排入烟囱(Q003)进入大气。布袋除尘器收集的飞灰落入积灰箱定期密闭排出。 5、点火系统 点火系统分为燃油储存系统,供油管路,油枪系统等。 本锅炉采用燃烧器点火,点火介质采用零号或-10号轻柴油,点火操作过程如下: (1)吹扫完成后,开启油跳闸阀和油循环阀,将油枪到位,高能点火器打火(总打火40秒),开启进油角阀,如果油阀打开后监测不到火焰,关油角阀。油枪进枪不进行吹扫,停用油枪时关闭角阀,吹扫600秒,退出油枪。 (2)启动引风机、加一次风、调整引风机的挡板使炉膛负压维持在-200Pa。点火着火稳定后,调整引风机及点火一次风挡板,使炉膛负压正常。使炉膛燃烧器附件温度平稳上升至1000℃左右,满负荷运行时预热空气温度达130℃以上。 (3)粉仓粉位高于3M,炉内燃烧良好,可以投入煤粉燃烧器。煤粉喷嘴在投用前应先缓慢开启一次风进行冲管,保持一次风速在25-30m/s;将一次风挡板开度应大于90%(风压大于 2500Pa),然后启动对应的给粉机,检查着火良好后再启动二次风助燃。并调整二次风使喷嘴着火良好。 (4)煤粉燃烧器应尽量相对布置,燃烧器逐只投用。燃烧优质煤时,增负荷应先加风,后加煤;减负荷应先减煤后减风。燃烧劣质燃料时,反之,风煤比严格掌握好。

煤粉燃烧器

煤粉燃烧器的分析 摘要:本文分析了几种有代表性的预燃室型煤粉稳燃装置的原理及其特性,并根据其原理提出了几种改进的方案。 关键词:回流区;煤粉锅炉燃烧器;钝体 前言:我国电力行业以劣质媒为主要燃料,这是我国能源政策的要求,同时也是我国煤碳资源分布状况、开采运输条件等所决定的。从经济性和发展趋势看,燃油锅炉和燃用优质煤锅炉所占比重将越来越少,燃用劣质煤锅炉,特别是大容量劣质煤锅炉将越来越多。锅炉燃用劣质煤时普遍存在着火困难、燃烧稳定性差、燃尽率低等问题。对于有些煤种,还存在着炉膛水冷壁结焦、尾部受热面磨损腐蚀、排放物严重污染环境等问题。另一方面,要求越来越多的锅炉机组参加电网调峰。锅炉参加电网调峰时,需要改变负荷和调整运行方式,这就进一步加剧了劣质煤锅炉己存在的问题的严重性。这些问题急需解决,而解决这些问题的重要手段就是研制和开发新燃烧设备。 我们小组从《燃烧学》课本上介绍的两种传统煤粉燃烧稳燃装置出发: 旋流稳燃器: 稳燃原理: 旋流射流的一个最大特点就是射流内部有一个反向回流区,旋转的射流不但从射流外侧卷吸周围的介质,而且还从内部回流区内卷吸介质,而内部回流区的烟气温度很高,能有效助燃和稳燃。 存在的问题: 1.预燃筒壁的积粉和结渣: 不能作为主燃烧器在锅炉运行中长期使用,甚至在短期的锅炉点火启动和低负荷稳燃运行使用时也成问题,因预燃室简壁结焦严重或出现局部温度过高而烧毁预燃室. 2.旋流叶片的磨损: 在长期多变负荷运行过程中,旋流叶片受到高速煤粉流的冲刷,容易磨损变形,造成煤粉流的堵塞,影响旋流效果 3.低负荷条件下工作不稳定,容易熄火,需要喷油助燃。 4.对无烟煤等低挥发分含量煤种的效果不好。 钝体直流稳燃器: 稳燃原理: 钝体是不良流线型体,在大雷诺数下流体流经钝体时在钝体的某个位置会是

煤种及煤粉细度对炉内再燃过程脱硝和燃尽特性的影响

第32卷2004年  第2期 4 月 燃 料 化 学 学 报 JOURNAL OF FUE L CHEMISTRY AND TECHNOLOGY Vol 132 No 12 Apr 1 2004 文章编号:025322409(2004)022*******  收稿日期:2003204215;修回日期:2003212203  基金项目:国家重点基础研究项目(G 2001C B409600);国家自然科学基金(50206018);国家高技术研究发展计划(2002AA527053)  作者简介:周 昊(19732),男,江苏吴江人,副教授,工程热物理专业,主要研究煤的高效低污染燃烧技术。E 2m ail :zh ouhao @cm https://www.doczj.com/doc/df5912249.html, 煤种及煤粉细度对炉内再燃过程脱硝和燃尽特性的影响 周 昊,邱坤赞,王智化,翁安心,岑可法,樊建人 (浙江大学热能工程研究所,能源洁净利用与环境工程教育部重点实验室,浙江杭州 310027) 摘 要:煤粉再燃技术是目前电站锅炉降低NO x 排放的一种有效技术。本文在一维沉降炉上进行了不同煤种、不同煤粉细度的煤粉再燃脱硝降低NO x 排放的试验研究。试验结果表明:高挥发分的煤种在再燃降低NO x 时的效果更显著。对于同一煤种,采用细度更细的煤,合适的再燃区停留时间,可以获得高的降低NO x 排放效果,并可使煤粉的燃尽率达到 90%左右。本文还采用最小燃尽高度的方法探讨了再燃过程中煤粉细度的选择方法,分析得出,为使再燃区的煤粉能完 全燃烧,充分发挥还原NO x 的效果,必须采用细粉或者超细粉。关键词:煤粉再燃;NO x 还原;细度;最小燃尽高度中图分类号:TK 222 文献标识码:A 在燃料燃烧过程中,NO x 污染气体的排放的控制越来越受到重视 [1,2] 。在炉内降低NO x 排放的诸 多方法中,燃料再燃是非常有效的措施之一。研究 者的大量研究结果表明,燃料再燃可使NO x 的排放量降低50%以上[3~5] 。煤粉作为再燃燃料具有使用方便和经济的优点,但煤粉再燃也可能带来飞灰含碳量增加等问题。如何选择合适的再燃煤种、煤粉细度及再燃工况是煤粉再燃技术中关心的问题。 1 试验装置和试验方法 煤粉再燃脱硝试验在一维沉降炉上进行的,试验台架见图1。主炉恒温段长度1m ,炉膛内径50mm ,炉温自动控制。液化石油气和空气在多孔介质燃烧器中燃烧生成模拟烟气,在空气中混入部分氨气进入多孔燃烧器燃烧以生成具有一定浓度NO x 的模拟烟气。模拟烟气经烟气喷口送入炉膛,再燃燃料从燃料喷口送入炉膛,实现再燃脱硝试验。 采用多孔介质燃烧器燃烧强烈而且稳定,不会发生预混或扩散气体火焰易发生的燃烧不稳定,易灭火等问题,方便实现模拟烟气中含氧量和NO x 浓度的控制,相比于采用气体钢瓶配气系统,不需控制很多配气阀门,且生成的模拟烟气各气体组分之间的比例符合实际。调节模拟烟气含氧量等参数时,只需调节送入燃料和空气量即可,简化了试验过程。试验中对氨气在多孔介质燃烧器中转化为NO x 的比例进行了测试,结果表明多孔介质燃烧器后基本无氨气泄漏,这是由于多孔介质燃烧器内燃烧温度 高,燃烧通道曲折而且形成微小的多孔燃烧,从而大大增加了燃烧强度和稳定性,使NH 3的氧化反应进行得非常完全 。 图1 煤粉再燃试验台架示意图 Figure 1 Schematic diagram of the coal reburning testing facility  1—gas analyzer ;2—sucking pum p ;3—s olid sam pler ;4—sam 2 pling probe ;5—therm ocouple ;6—furnace tube ;7—S iC tub ;8—insulation;9—coal feeder ;10—mixer ;11—primary air tube ;12—secondary air tube ;13—flow meter ;14—valve ;15—water extractor ;16—cooling tube ;17—pum ping line ;18—porous media burner ; 19—mixer ; 20—NH 3cylinder ; 21—liquid petroleum gas cylinder ; 22—air com press or ;23—flashback chamber 采用水冷探针对沉降炉沿程的烟气成分进行分 析,并在线监测炉膛出口的烟气组分,炉膛出口同时设置飞灰分离装置,以获得飞灰样品以测试再燃燃料的燃尽率。试验过程中所有测量得到的气体组分浓度都折算到6%含氧量。 采用四种不同煤化程度的煤作为再燃燃料,四种煤涵盖了无烟煤,贫煤和烟煤。无烟煤选用晋城

煤粉燃烧仿真过程);

煤粉燃烧仿真过程 1.导入网格,使用压力基(pressure-based)和稳态计算(steady); 2.选择KE湍流模型; 3.激活能量方程; 4.激活组分输运模型,Mixture Material(燃料)项下选择coal-hv-volatiles-air,勾选Reactions项下 的Volumetric以激活反应,Turbulence-Chemistry-Interaction项下选择涡耗散模型Eddy-Dissipation; 5.激活辐射模型Radiation,并选择P1辐射模型; 6.设置离散相参数,在Discrete Phase项下,设置最大追踪步数为4000,指定长度尺寸为0.0025; 7.使用Define→Injections设置入射流,设置入射流入口为V-1,入射流类型Particle Type为 Combusting燃烧组份,入射流材料Material为coal-hv高挥发性煤,粒径分布Diameter Distribution 为均匀分布uniform,挥发份Devolatilizing Species为高挥发性煤hv_vol;在Point Properties项下设置进口特性,温度Temperature设定为343K,Z方向速度Z-velocity设定为23.11,质量流量Total Flow Rate(kg/s)设置为0.00018264,直径Diameter为1e-6;在Turbulent Dispersion项下激活随机轨道模型Discrete Random Walk Model,轨道数Number of Tries设置为10,尺度长度Time Scale Constant设置为0.15;如果有多股粒径不同的质量流,也可以使用同样的方法设置其它的几股质量流;

锅炉煤粉燃烧器说明书 2

LHX-高效节能型锅炉煤粉燃烧器 产 品 说 明 书 西安路航机电工程有限公司

一、工作原理: ①燃烧器是锅炉的主要燃烧设备,他通过各种形式,将燃料和燃烧所需要的空气送入炉膛使燃料按照一定的气流结构迅速、稳定的着火:连续分层次供应空气,使燃料和空气充分混合,提高燃烧强度。 煤粉燃烧器就是利用二次风旋转射流形成有利于着火的回流区,以及旋转射流内和旋转射流与周围介质之间的强烈混合来加强煤粉气流的着火特性。旋转射流的工质除了二次风外,还可以有一次风。在二次风蜗壳的入口处装有舌形挡板,用以调节气流的旋流强度,蜗壳煤粉燃烧器的结构简单,对于燃烧烟煤和褐煤有良好的效果,也能用于燃烧贫煤 运行参数:一次风率r1,一、二次风量比,一、二次风速w1和w2及风速比w1 /w2有关。。锅炉燃烧器使用的是气化原理,能使燃油完全 气化,整个燃烧器采用三级点火方式,先用高能点火器点燃轻柴油,再用轻柴油点燃浓煤粉,最后点燃淡煤粉,实现煤粉全部燃烧。 ②为避免工业锅炉积灰过多,本产品采取炉外排渣系统.进入锅炉体内的烟气灰渣尘只占燃料燃烧总的渣量的15%,其中只有小部分沉于锅炉体内,绝大部分烟气尘随烟气流入炉外的收尘系统.工业锅炉本体只需采用压缩空气吹灰系统即可避免锅炉本体人工掏渣。本产品的使用效果与燃油燃气的工业锅炉效果基本一致。

③本产品燃烧煤种与水煤浆燃烧煤种大大放宽,而不需要特优烟煤,而对于一般烟煤、无烟煤、褐煤等甚至劣质杂煤均可.使用其煤粉燃烬率可达到99%,炉渣含碳量为1%左右.炉渣为黄白色是农业化肥和建材的良好的混合材,以达到循环利用的目的.其耗煤量与一般链条锅炉可节省煤耗为25-30%以上。 二.环保技术指标: 由于燃烧系统的彻底改进,相对于链条式的工业锅炉,由燃煤层燃燃烧方式改为煤粉燃烧方式,同时又采用炉外排渣技术。其中燃烧筒(立式、卧式)的捕渣率能达到85%以上,进入工业炉的炉渣量几乎小于15%以上,只有极小部分烟尘沉于炉内,大部分随烟气流进炉后收尘系统.这样极大的减轻了炉尾部的收尘器的收尘量,进入锅炉内的细微烟尘只需要设置采用压缩空气吹灰孔即可,锅炉必须设置专用检查炉门。本公司依据水膜旋风除尘器的基本原理研发成功:文氏管双级脱硫水雾除尘器(不锈钢等钢结构见另外产品说明书),进而彻底淘汰多年普遍使用的水膜麻石除尘器,使锅炉后的除尘系统简单化,而除尘效果更优。经测算:除尘效率可达到99%,粉尘含量≤100mg/m3,SO2≤250~ 300mg/m3, NO2≤400mg/m3,总体排放指标,可达到国家城市二类地区的环保指标。 三.全线实现PLC全自动热工仪表控制系统

中央煤粉燃烧器技术方案

1 回转窑煤粉烧嘴 技 术 方 案

目录 1.总则 2.煤粉烧嘴设计要求 3.功能指标、保证值和考核办法4.监造及见证、出厂验收5.安装验收和技术服务 6.附件图纸

1 总则 1.1新型中央煤粉烧嘴是北京**环保设备有限公司研制开发的新一代的燃烧设备,该项目课题组研究人员基于多年的实践经验,根据冷、热态实验的技术参数,以国内外的煤粉烧嘴为基础,采用现代最新燃烧技术的大速差和强旋流理论,结合全国原煤资源的特性以及我国工业炉的燃料燃烧特点,运用计算机仿真技术,综合考虑多学科研究和发展成果研制而成。该燃烧器适用于冶金球团工程的回转窑以及建材水泥行业和石灰行业的及工业窑炉加热装置,具有一次风量比例低、燃烧推力大的显著技术特点。其高速的出口射流,大大强化了煤粉气流和二次热风的混合,最大限度消除了不完全燃烧,减少了不必要的热损失,并有利于降低热耗和利用低、劣质燃料;其独特的结构设计,具有灵便快捷的火焰调节手段,可使火焰形状随时满足窑内工况的需要,有利于建立合理的煅烧制度,提高产品质量;其卓越的燃烧特性,可提高工业窑炉的煅烧能力,充分发掘了设备的潜在能力以增加产量。 1.2本技术方案是适用于太钢**铁矿项目200万t/a链篦机-回转窑球团工程煤粉燃烧 器设备订货、设计、制造、检验、试验及交货等方面提出基本要求和最低要求。 1.3本技术方案未经卖方北京**环保设备有限公司允许,严禁买方转载和复制。 1.4本技术方案是根据北京**国际工程技术有限公司提供煤粉燃烧器的技术规格书要求编制而成。新型煤粉燃烧器由北京**环保设备有限公司完成制造,用户在使用之前要仔细使用手册和相关技术说明,安装、操作及维护等问题作了较为详细的介绍。 2、燃烧器性能保证的前提条件 用户需为本燃烧器的使用提供基本的使用条件,以保证HDF-K55型回转窑用四风道煤粉燃烧器达到良好的使用效果。本燃烧器性能保证的前提条件如下: ●相关工艺系统正常; ●窑头二次风温约1100℃左右; ●送煤风配置误差最大不超过10%; ●送煤粉的空气中不得含有大颗粒的异物或棉纱等物; ●燃烧器的喷嘴及煤粉入口处不允许出现堵塞现象。 2.煤粉烧嘴设计要求 2.1适应的煤粉成份

相关主题
文本预览
相关文档 最新文档