当前位置:文档之家› 模式识别和机器学习数据挖掘的区别与联系

模式识别和机器学习数据挖掘的区别与联系

模式识别和机器学习数据挖掘的区别与联系
模式识别和机器学习数据挖掘的区别与联系

模式识别和机器学习、数据挖掘的区别与联系

(一)模式识别的诞生与人工智能自动控制起始是从工业革命之后,人们就希望设计出减少人工干预,能自己进行调节(regulate)的机器,工程领域开始想出了根轨迹等等土招儿。等到40年代,伴随二战的需要,计算机的产生,维纳(Wiener)——信息论和控制论(Cybernetics)的祖师爷正式开创了这“两论”。

控制论这个词是维纳根据古希腊词根发明出来的。用老爷子自己的话说就是“Cybernetics :or control and communication in the animal and the machine”。animal先不提,那是人家天才小时候就对生物学有兴趣;在工程方面,控制论的control主要是围着machine转的。因为祖师开山的时候是二战中,初衷就是要让机器代替人进行防空武器的随动瞄准。

维纳是数学家,写出来的理论和公式,让当时的工程师们看着实在头疼。但是维纳不仅仅是数学家和“搞理论”的,实际工程问题,人家二战中参与了,也想到了。最典型的就是对噪声的处理。

典型的负反馈控制系统框图里,从“传感器”的到“给定输入”之间,画一根线就连过来了。可是实际中,传感器有误差,测量回路中有包含噪声,需要的测量值甚至根本就是淹没在

一片嘈杂的信号里面(水声信号)。这时候管识别“真实值”

的问题叫滤波,通过设计各种滤波器来解决。

但是一学到现代信号处理这块就会发现和传统的信号处理

不一样了,不再是时域、频域、Z域的滤波器变来变去了。从维纳最佳滤波的算法和ARMA模型的原理就可以看出来,既然是用随机过程和概率统计来看待和描述信号和噪声,那么已经可以把这个滤波问题用“估计(Estimation)”、“预测(Prediction)”来描述了。此外,对系统的状态方程确定参数的问题,好像是用的“辨识(Identification)”吧,都差不多。之所以罗嗦这些词,是因为这些词在模式识别的分支里出现的词。祖师爷提出、总结这些方法大概主要为了玩转控制问题里的那些传感器。但是,其他不需要machine、不需要控制的领域,但是也需要用传感器去测量、去噪声、估计、预测、辨识啊!其实从需求角度,类似“怎么让机器能像人一样分辨人的语音”的研究,也是从40年代就开始了,一开始也是“语谱图”之类的土招儿,好像是贝尔实验室弄的吧。类似的问题“识别航拍照片”,“识别手写文字”都是类似的工作。这些工作也都希望使用计算机代替人来做呢。

花开两朵各表一枝,先放下各行各业的需求和土招儿暂且不说,再来看看计算机。与此同时,计算机产生之后也需要找到更多的应用领域。除了吸引人的计算速度之外,数学家开始琢磨让计算机再干点别的。

于是,50年代开始出现“人工智能(artificial intelligence AI)”这个词。注意是artificial不是simulation。也就是说,不是

用计算机“模仿”人脑硬件结构和人的思维过程,而是研究怎

么让半导体造计算机用二进制数据结构算法去达到肉长的

人脑的智能“效果”。好比做题,只需要你能得到结果,不看

步骤。数据结构和算法是计算机专业的核心之一,也是当年在“制造计算机”之外,研究怎么“使用计算机”的独门课程。(咱们中国大学里的计算机系大概是60年代从电子系、自动化

系里独立出来的。)所以“会编程、搞软件的”IT民工里,科班生比半路出家的“蓝领”强就强在,除了会if for这些语法之外,就是人家数据结构、算法、离散数学这些方面正经学过。那些“走迷宫”、“8皇后问题”,就是数学家抽象出来,丢给计算机去做的人的智力题。

AI又叫狭义的人工智能,基本可以等同于计算机算法了。当然也确实有研究人脑结构和思维过程,用计算机去simulation人脑的“广义”人工智能,不过那更多是医学、生理学的事情啦。也许有人说不对啊,神经网络(Neural Networks NN)可是就是模拟人的神经元呀的算法啊,算狭义还是广义?这个,统计学家们发来抗议电,说NN压根就没那么玄乎,不过就是类似“投影寻踪回归(Projection Pursuit Regression)”的算法。这个后面写到模式识别具体算法时候

会提到。

但是除了做智力题之外,人的能力里属于智能的到底都有什么呢?经过总结,其中之一是识别能力,然后是决策能力。这下好了,一边是需求,一边是计算机的计算能力。估计、预测、辨识、识别……是时候把这些类似的工作统筹解决了!这样在60年代,模式识别(Pattern Recognition PR)产生了(二)模式识别的流程与机器学习

一个标准的模式识别流程是:

“客观对象”—1—>“数值表示”—2—>“计算机算法”—3—>“识别结果”

但是这个流程只是计算机工作时的流程。而在能这样工作之前还要干很多事。比如人脸识别,一个计算机算法又不是天生就认识很多人,算法要经过训练和学习好了,才能照上面这个过程工作。

那么到底在训练、学习些什么,又是在识别些呢?这个还是要回到定义。“模式识别”这个词不是太容易顾名思义的,我直到研究生入学以后很长时间还是不明白是什么意思,就知道是能分类。

还是说人脸识别吧。对人来说,看见来自于1个人的人脸图像,即使是不同表情和姿势的,我们也能认出这些图像来自于同一个人。而你之所以能认出来,可能是观察了脸型发型,也可能是五官形状的组合。可是到底是图像上的什么决定了你的判断呢?你有的能说出来,可是有的却又说不清道

不明的。于是,就用一个抽象的词——“模式”来形容那些能够让你判断出哪些样本属于同一类别、能够和其他类别相区别的特征或者属性。

我们下面设计计算机算法为每1个人的图像建立唯一的1个“模式”或者说模型,不同的N个人对应于N个模型。很可能每个人的身份编号i对应一个参数模型Mi。这个建立或者说训练(train)过程可能就是“统计”这些图像,确定每个模型的参数。

而开发者为了评价算法性能,也要先预备一些已知类别的图像,分成train set 和test set,这样在训练集上训练好的算法,要测试集上测试一下。根据测试结果调整算法参数,或者实在太差的话要换一种算法了。不断的调整参数、不断改程序,不断的train,不断的test……所以这方面的论文通常要附上算法在各种数据集,各种情况下的结果。一个图,一张表的背后,要写好多程序,花好多时间在电脑上运行。这样训练好后,就可以按上面那个流程工作了。如果一张属于第i人的图片来了,算法用保存的N个人的模型去分别计算相似度,判断这张图片来自于模型Mj的可能性最大,也就等于电脑可以通过看图片识别出了这人的身份是j。如果j 等于真实身份i,那就识别正确了,如果每次都识别对,那电脑就达到了人脑的能力了。

注意算法在输出j的时候是不知道真实身份i的,那么这种工

作,就可以看成是一种预测(Prediction)。如果需要输出是离散变量,比如这里是类别,就称为分类(Classification),而需要预测连续型变量的,比如股指,房价,就称为回归(Regression)。这里的回归没有针对“过去”的值的意思,就是说预测的目标输出的是连续性的值。

好了,现在来说机器学习(Machine Learning ML)。回顾一下你的模型从哪里来的?虽然有些模型假设,但主要从输入的已知身份的数据中来的。而算法的“训练-考试”过程,又很像人的学习过程,于是把这一类计算机算法叫做Machine Learning。其实是Machine Learning from data了。看起来是Machine在不断自己Learning,其实是人写的算法让它一直learning。如果算法是纯用统计学,也可以叫统计学习(Statistical Learning)。

所以在我看来,ML可能是最类似AI的范畴了,都是计算机算法嘛。区别是AI是具备类人能力就行,不管算法怎么来的,一个拍脑袋定义的出来的公式也算。而ML要窄一些,是特指经过Learning from data 过程而获得的“智能”。用统计学的里的概念来说,ML是一种数据驱动的,非参数(Nonparametric)或者半参数(Semiparametric)算法。再来比较PR和ML。可以说,PR里面的算法部分基本上一定是属于ML。区别在于,PR里的ML算法主要就是在做预测。而整个ML就要广多了,如果你的算法输入是棋谱,那么训

练好的算法就可以下棋打牌。但是UCI上面供机器学习算法之间进行能力比较的标准数据集基本都是分类和回归问题。这么看ML和PR实在是太相似了。

说到了这里,PR里面的ML算法,主要都是在用统计学(少部分有图论),问题也就出来了。提出算法的主要是人家数学家、统计学家、或者计算机专业的干的,已经属于science 了。可是怎么模式识别的事净是自动化、电子信息、通信这些专业的搞呢?虽然你们攒一起改叫Electronics Engineering了,可那也是Engineering啊,本科顶多学点高数,线代,复变,信号系统,古典概型和简单数理统计,再学编码啥的,到硕士嘛顶多学点矩阵论,随机过程顶天了。就这点数学底子,提不出啥牛X算法,凭啥模式识别专业还是你们这些工科生霸着啊?丢给数学系、统计系,或者计算机系得了,人家CS好歹也是S啊。

嗯,我也疑惑了很久,明明都是在折腾数学,怎么还是赖在工科里呢?

(三)模式识别中的工程、技术

为什么要说说PR没被数学、统计和计算机专业抢去的问题,实际是想分析一下PR里的科学与技术,理论与工程的问题。如果去学PR,看任何一种这方面的经典教材来看,基本上全是在讲各种理论、各种分类回归算法、和算法的思路。(关于这方面的经典教材,其实特别想单独来说的。如果是第一

本,挑一本对自己胃口的书很重要。原因是经典基本都是700页起的,而且基本满眼望去都是公式。理科生不论,对于看理论经常感觉力不从心,或者没什么耐心的工科生,如果找了一本不对自己胃口的书可能就很难看下去,Amazon上的书评里每本经典都有一堆5星,但是也颇有些1 2星的。)虽然可以说“学PR 就等于学各种分类算法”,但是不等于说PR 就等于分类算法。最起码炮制这方面的论文就不等于炮制分类算法F,想想也是,不然工科生还有的混吗!作为说PR的最后一节,这次工科生要来吹吹牛,看看PR除了统计理论和算法,有什么离不了工程、技术的地方。还是先把流程图再画一遍:

“客观对象”—1—>“数值表示”—2—>“计算机算法”—3—>“识别结果”

上一篇主要说的是“计算机算法”—3—>“识别结果”这块,确实最重要,是核心。“数值表示”—2—>“计算机算法”比较简单:算法要求输入的数据通常都是个很规整的矩阵,比如N 个训练样本,每个样本p个特征(feature),输入就是一个N*p 的矩阵。此外,有的算法需要对列进行标准化,有的不接受连续型变量和离散值变量的混合,有的干脆不接受连续型变量,要量化变成哑变量。所以根据算法的不同,对数据的形式也要稍微做点加工。这也没啥特别的。

关键就在于前面,“客观对象”—1—>“数值表示”。还是继续

以人脸识别为例吧。研究了一个算法,都要在网上的几个标准人脸库中的图像上实验自己的算法。通常库里每个人的照片包括各种姿态(比如稍微左右侧一些,抬头低头),表情

变化,各种光照阴影,有的还有饰物比如眼睛,帽子,发型变化。图像尺寸都是统一的,的比如256*256,灰度也是8bit 这样。

好了,你的算法在几个人脸库上跑得不错,实验数据有了,论文有谱了,你很开心。老板也很开心,于是老板接了个小项目,让你参与做个人脸识别的门禁系统。这时候你就会发现,想按照那个完整流程来工作,1这一步的问题一点也不少。

首先就是传感器的问题。传感器直接决定了图像有没有形变,颜色和灰度有没有改变,是不是清楚,分辨率有多高。通常的问题不是“有还是没有”,而是“有。怎么办?”所以从硬件选型到板卡布置这块首先少不了“专门经验”,然后还有成像这

块和图像处理的知识。得到内外参数,怎么把畸变调整一下,然后降降噪声,直方图均衡调整一下对比度,尺寸也调整一下。这些图像处理课里的内容,虽然也都是简单的数学公式,但是,场合不同,想要的图像效果不同,参数上也总要微调的——让我想起了PID参数的整定。嗯,很工科。

插一句,我所理解的工程学就是对实际问题的专门经验的积累。公式理论简单,而经验的获得,只需要多花时间和实际

问题打交道,自然熟能生巧。这么看工科很easy,经验也没什么神秘的。但是每个人的时间总是有限的,如果专门在一个领域花了比别人多的时间,那么他的经验就变得宝贵起来了。此外“接触实际”四个字也不是人人都喜欢的。实际中没有书本上的“理想条件”,只有各种层出不穷的想不到的问题。挑战性一点不比在理论上探索低。工科的思维就是事前对可能遇到的实际问题的复杂性的敏感和估计,事中遇到问题时的能想法子解决。可以对性能妥协、将就;可以对参数近似、也可以试验出来;可以把原本充满创新的玩意改得朴实无华或者面目全非——一切只为了这玩意最后能工作起来、能动换(然后再慢慢往好看、好用上改)。

嗯,跑题了,继续。现在图像清楚得已经堪比人脸库了,识别效果还不错。找客户来验收吧!可是给客户演示完,人家突然问系统能不能集成到一起,做到DSP和嵌入式系统上;还要这样,还要那样……嗯?等等,你忽然想到好像程序是在双核PC上跑的,好像用了好些个MATLAB导出的函数,有个算法还是R里面的……

你嘴上说是,脸上没反应,但心里浮现的却是《潜伏》里陆桥山审马奎时从牙缝里挤出来的台词:我真想撕烂你的嘴!你当初不是说……

可老板下了死命令,大家只好大干快上干起来!作为开发算法的你,责无旁贷啊!

软件彻底用C和C 重写!不能用好使的MATLAB了,API 真矬,简单的矩阵运算要费劳资这么大劲。不知不觉1礼拜过去了,终于写好了。

赶紧到下载到那边已经是改到第N版刚拿回来,还热乎乎的板卡:

咦,没反应?软件还是硬件问题?那边查电路,这边改程序试试?

呼,有影了,可是噪声咋这么严重,鼻子不是鼻子脸不是脸的?摄像头还是板子上有干扰?软件上能再改改参数?终

于运行起来了,怎么好像卡死了?哦,原来是太慢了。硬件条件比PC机差了好几个档次了,怎么办啊,换个简单一点的算法?那性能咋办?那之前那个算法好不容易得到实验

结果不是都白做了么?

满头黑线了吧?

这个人脸识别的例子有点夸张了,但不是完全虚构出来的。通过这个例子想说的是,数据来源,软硬件的布置,性能的取舍,参数的实验调整都是论文上看不到也写不出来的实际工程问题。通常需要各种不同的传感器和硬件打交道,也需要各行各业的专业背景知识。涉及图像的少不了摄像头、照相机和图像处理的知识;做水声信号和语音识别,少不了拾音器阵列,频域方面的信号处理知识。这也就是为啥自动化,电子,通信、甚至生物医学专业能掺和其中的原因。

最后总结一下我对PR的认识:PR是因为各个领域有“电脑代替人脑”的实际需求才产生的,所以是一定面向应用的。PR不是在标准数据集上验证分类算法的性能就完了,这个是ML的事情。PR是要把ML算法在实际问题中用起来。是理论加实际,科学和技术(虽然理论是核心)。

前三节主要是围绕PR来说,就说到这吧。下面打算试着说说我认识的机器学习算法概貌和一直没露面的数据挖掘。(四)可解释性和数据挖掘

从这节开始,打算把ML算法的概貌描绘一下。ML领域发展特别快,几乎所有的论文都声称自己弄出一种新算法。看论文多了之后我的体会是,如果心里没有几条线索,就分辨不出这一堆算法的区别与联系,最后的结果是学会一堆“支离”的算法,学习了苹果只知道这是苹果,给个鸭梨就不认识了,给个苹果梨就更不明白是什么东西了。至于应用时,更不知道哪种算法更适合自己的问题。一般都是把ML算法分成两大类:有监督学习(Supervised Learning)和无监督学习(Unsupervised Learning)。我觉得这其实是从输入数据的形式上分的,说这个离不了公式和图表了,不想先说这个。从ML的目的和用途来分,可以分成预测(Prediction)和数据挖掘(Data Mining)。我觉得对应用来说,这么分更有意义些。这两大类算法的核心区别就是:预测问题更重视算法的预测能力(Predictive Power),数据挖掘问题更重视算法

的可解释性(Interpretability)。预测之前说过了,针对的目标变量如果是离散的类别标记,比如医学上的某种病的阴性阳性,或者人的身份编号,就叫分类(Classification);如果针对的连续的变量,比如股价,房价,就叫回归(Regression)。预测能力很容易理解,我们只关心train set上训练好的算法在test set上面误差、误分类率要尽可能低。也就是说,模

型给出的预测要尽可能地接近实际结果。

可解释性就要好好说说了。简单说就是,我们更关心输入的p维变量之间的联系,或者算法产生的预测是哪几个变量起了主要作用,也就是说,算法给出预测结果的根据是什么。比如商业智能(BI)上常见的购物篮分析(Market Basket Analysis)就是个典型的看中可解释性的数据挖掘问题。因

为直接有“钱景”,所以几乎每个讲统计的,讲数据挖掘、机

器学习的,甚至讲数据库应用的书,都要提到这个事,现在各个购物购书网站也都在做这个事。

零售商从积攒的海量顾客账单中可以“挖掘”出什么呢?首先,分析哪几种商品容易同时出现在顾客的购物篮里,商场就可以把这些看起来风马牛不相及的东西放在一起,方便顾客购买;另一方面,分析客户办会员卡时留下的个人信息,可以分析出经常光顾本商场的是那些特征的人,这样对外投放使广告便更加有的放矢,可望吸引更多这些类型的人来。

流行的做法是每张账单作为1个p维向量,对应所有p种商

品。买了置1,没买置0。N张账单就组成了一张N*p的值为0-1的表格。用流行的Apriori算法从数据中“挖掘”购物模式。比如一个support = 0.03,confidence = 0.87的Rule:{花生酱,黄油,果酱}=>{面包}这就说明,如果一个顾客同时买了前三种东西,那么他同时买面包的可能性是87%。而这种同时买4种东西的顾客,在总顾客中占3%。

这个模式看起来平淡无奇,可是有时有很奇怪的模式被挖掘出来,忘了从哪里看到的一个例子:

{尿布,奶粉}=>{啤酒,刮胡刀}把这4个放一起确实提高了销量,原因后面再说。

而对客户身份信息的挖掘结果比如说是:support = 0.13,confidence = 0.8{在家讲英语,有住房,职业是professional}=>收入大于$40000。

那就赶紧针对这些人,在他们经常出没的地方做广告吧!注意看这些“模式”,前面的括号里只有2 3个“变量”,远远小于总共p个变量。也就是说,我们做出的预测,只依赖于所有p个变量中特定几个变量。

如果我说这就是可解释性。恐怕大家还是不明白。嗯,佛教上阐释概念,有“表诠”和“遮诠”的说法。为了说明一个概念,表诠就是说“它是什么”;遮诠却不说“它是什么”,而是说“它不是什么,不是什么……”。嗯,下面再和不具备可解释性的算法比一下就知道了。

比如还是N*p的矩阵,如果我想分析什么东西导致了买面包,我把其他p-1种东西1个截距项一共N*p做为X,面包N*1作为Y,做个最小二乘:

Beta = (X’*X)-1*X’*y这个结果Beta意味着什么呢?有了这

个Beta,给我任何一个1*(p-1)的账单x,都能给出买面包与否的预测值y_est = x* Beta。

但是,看着这个回归出来的p维的Beta,我不能像之前那样,简单说出对买面包来说是哪几种别的商品起了更重要的作用,也就没法想出提高销量的方法了。

这就是预测能力和可解释性的区别。

预测能力就是输出结果的准确度,而可解释性是可以用来帮助人们理解模式背后的原因。比如从前面那个{尿布,奶

粉}=>{啤酒,刮胡刀}的购物模式,再配合顾客的年龄和性别,就最后推断出,可能是妻子在坐月子时,年轻父亲们被打发出来购物的。进而可以重新设计实验或者进行改进:不但把这已发现的4种商品摆一起,而且把其他年轻父亲可能会买的东西也摆过来试试。

医学上也是这样。不是特别关注用已有的p项的因素(行为习惯、实验条件、检查化验结果)去准确预测疾病,而更关注如何从p个因素中发现是哪几种因素组合更容易导致疾病,进而可以改进实验设计,改进检查,乃至改进预防和治疗的方案。传统上统计学里作为因素分析(Factor Analysis)问

题来研究,而数据挖掘使用的方法就更多,涉及的更广。而且数据挖掘也不仅仅是用来进行变量选择和重要性分析,可以用树、图、层次聚类之类直观的结构,描述变量之间的复杂依赖关系。

前一段有个书叫《小趋势》(microtrends)的,里面举了美国社会统计学家统计出来的许多看起来奇妙的小众人群,用来描述当今的美国社会。甚至进而有针对性地设计竞选宣传策略,左右选举结果。这都属于看中可解释性的数据挖掘了。总结一下预测和数据挖掘的区别:预测是偏重得到决策结果,数据挖掘是偏重分析决策原因和过程。

预测问题主要是在生物特征鉴别(人脸,语音,指纹,虹膜)、机器视觉、目标跟踪这些领域,直接代替人进行决策。在商业数据,医学数据里,需要解决数据挖掘问题,给人提供参考。

之所以要费劲区分预测和数据挖掘,因为天下没有免费的午餐,一种算法预测精度高了通常很难具备太好的可解释性。要针对具体的应用问题选择合适的算法,就要明白自己更需要的哪种能力。很多算法同时具备一定的预测准确度和可解释性,仅从算法形式上很难分清,还是应该从应用背景上来分析。

计算机视觉与图像处理、模式识别、机器学习学科之间的关系

计算机视觉与图像处理、模式识别、机器学习学科之间的关系 在我的理解里,要实现计算机视觉必须有图像处理的帮助,而图像处理倚仗与模式识别的有效运用,而模式识别是人工智能领域的一个重要分支,人工智能与机器学习密不可分。纵观一切关系,发现计算机视觉的应用服务于机器学习。各个环节缺一不可,相辅相成。 计算机视觉(computer vision),用计算机来模拟人的视觉机理获取和处理信息的能力。就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。 图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。基本内容图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。图像处理一般指数字图像处理。 模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised Classification)和无监督的分类(Unsupervised Classification)两种。模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。应用计算机对一组事件或过程进行辨识和分类,所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。这些对象与数字形式的信息相区别,称为模式信息。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。 机器学习(Machine Learning)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。机器学习在人工智能的研究中具有十分重要的地位。一个不具有学习能力的智能系统难以称得上是一个真正的智能系统,但是以往的智能系统都普遍缺少学习的能力。随着人工智能的深入发展,这些局限性表现得愈加突出。正是在这种情形下,机器学习逐渐成为人工智能研究的核心之一。它的应用已遍及人工智能的各个分支,如专家系统、自动推理、自然语言理解、模式识别、计算机视觉、智能机器人等领域。机器学习的研究是根据生理学、认知科学等对人类学习机理的了解,建立人类学习过程的计算模型或认识模型,发展各种学习理论和学习方法,研究通用的学习算法并进行理论上的分析,建立面向任务的具有特定应用的学习系统。这些研究目标相互影响相互促进。

机器学习与数据挖掘复习.

类器进行投票。他适用于不稳定的学习过程,即数据集的一个小变动会产生大的差别,例如决策树、多层感知器。 6. Boosting 方法:它能提高弱分类器的性能。它是带权值的抽样,改变数据对象的权值,分类好的数据给与小权值,分类不好的数据给与大权值,最终集成分类结果用加权投票的方法。 7. 一些经验: a 如果分类器不稳定用 bagging。 b 如果分类器稳定且简单用 boosting。 c 如果分类器稳定且复杂用随机注入。 d 如果数据有很多类,但是分类器只能处理两个类时,用错误纠正编码。 8. 为什么集成学习有效: a 从统计学角度来说当假设空间很大时,有可能有一些假设有着相同的精度,单一的学习器只能找出他们中的一个假设。然而集成多个假设就有可能找到最可能的假设。 b 从计算角度来讲,很多单一学习算法都只能找到一个局部最优假设,当数据集很大时,可能很难找到一个最优假设,集成学习可以从多个起始点去局部逼近,这样就有可能得到一个全局最优的假设。 c 从表示角度来说,很多情况下最好的假设并不存在于假设空间中,当用集成方法对多个假设空间加权集成时就有可能突破假设空间找到最符合的假设。第十一章聚类分析 1. 什么叫聚类分析:从给定对象中找出一些簇,使在同一簇中的对象要相似,类与类之间的对象要不相似。我们希望类内部越紧越好,类之间界限要越明显越好。 2. 聚类的三类方法和其代表算法思想: a 分层聚类:簇之间是一个嵌套的形式,没有必要定义有多少个类,需要几个都可以。且他可以定义多个含义,具体含义和问题有关。两种方法:聚合方法:每个数据点都看为一个类,两两合并直到合并为一个类。分裂方法:将所有的对象看做一个簇,分类直到每个类里包含一个点时停下。此方法一旦将两个簇合并后就不能再更改,它也没有定义一个明确的目标函数,即不是全局最优化;每种方法都有各种缺点。 b 分区聚类:一个数据对象只属于一个簇。 K-means:1. 随机选择 k 个点作为初始中心点。 2. 计算每个点到不同中心点的距离,将点划分到几个簇里。 3. 重新计算每个簇的中心点。 4. 重复簇的划分直到簇的分布基本不变时停止。 c 基于密度的聚类:对类的定义不同,他认为类是由一些密集的点组成,这些密集的点被一些稀疏的点分开。 DBSCAN:认为类是基于密度的,它认为一个簇是由密度连接的点组成的最大的集合。 3. 层次局类中计算距离的方法: a 两簇之间的最近距离:可以划分大小不同的类;对噪声和例外点敏感。 b 两簇之间的最远距离:

模式识别与机器学习思测试卷附参考标准答案

模式识别与机器学习期末考查 思考题 1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。 机器学习是研究让机器(计算机)从经验和数据获得知识或提高自身能力的科学。 机器学习和模式识别是分别从计算机科学和工程的角度发展起来的。然而近年来,由于它们关心的很多共同问题(分类、聚类、特征选择、信息融合等),这两个领域的界限越来越模糊。机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/视频分析、(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。近年来,机器学习和模式识别的研究吸引了越来越多的研究者,理论和方法的进步促进了工程应用中识别性能的明显提高。 机器学习:要使计算机具有知识一般有两种方法;一种是由知识工程师将有关的知识归纳、整理,并且表示为计算机可以接受、处理的方式输入计算机。另一种是使计算机本身有获得知识的能力,它可以学习人类已有的知识,并且在实践过程中不总结、完善,这种方式称为机器学习。机器学习的研究,主要在以下三个方面进行:一是研究人类学习的机理、人脑思维的过程;和机器学习的方法;以及建立针对具体任务的学习系统。机器学习的研究是在信息科学、脑科学、神经心理学、逻辑学、模糊数学等多种学科基础上的。依赖于这些学科而共同发展。目前已经取得很大的进展,但还没有能完全解决问题。 模式识别:模式识别是研究如何使机器具有感知能力,主要研究视觉模式和听觉模式的识别。如识别物体、地形、图像、字体(如签字)等。在日常生活各方面以及军事上都有广大的用途。近年来迅速发展起来应用模糊数学模式、人工神经网络模式的方法逐渐取代传统的用统计模式和结构模式的识别方法。特别神经网络方法在模式识别中取得较大进展。理解自然语言计算机如能“听懂”人的语言(如汉语、英语等),便可以直接用口语操作计算机,这将给人们带来极大的便利。计算机理解自然语言的研究有以下三个目标:一是计算机能正确理解人类的自然语言输入的信息,并能正确答复(或响应)输入的信息。二是计算机对输入的信息能产生相应的摘要,而且复述输入的内容。三是计算机能把输入的自然语言翻译成要求的另一种语言,如将汉语译成英语或将英语译成汉语等。目前,研究计算机进行文字或语言的自动翻译,人们作了大量的尝试,还没有找到最佳的方法,有待于更进一步深入探索。 机器学习今后主要的研究方向如下: 1)人类学习机制的研究;

机器学习算法在数据挖掘中的应用

龙源期刊网 https://www.doczj.com/doc/df17931535.html, 机器学习算法在数据挖掘中的应用 作者:朱天元 来源:《数字技术与应用》2017年第03期 摘要:近些年,国内社会有了很大发展,各种先进技术和理念不断得到应用和发展,机器学习算法就是一种新型算法,在各行各业中都有很大作用。本文主要对机器学习算法在数据挖掘中的应用进行详细研究,首先借助大量移动终端数据,对GSM网络的户外终端进行有效定位,提出三个阶段的定位算法,进而使定位速度和精度有很大提高。 关键词:机器学习算法;数据挖掘;户外定位 中图分类号:TP311 文献标识码:A 文章编号:1007-9416(2017)03-0166-01 1 数据挖掘概述 在数据挖掘算法内,机器学习与统计算法是比较常见的两种,第一种是借助人工智能技术,可以在大量的样本集训练与学习之后,自动的找到运算所需的模式和参数,第二种是借助判别和概率分析、聚类和相关性分析等开展运算,不同的算法也有不同对应的目标和领域,这些算法可以独自进行使用,也能够互相结合。 机器学习算法内人工神经网络这种方法应用范围比较广泛,具备很好的处理数据能力与自组织学习的能力,还可以进行准确的识别,进而有利于对分类型问题数据进行处理。可以借助建模进行工作,模型比较多样,可以对不同的需求进行满足,从整体出发,这一方法的模型具有较高精度,鲁棒性比较好,描述能力也比较强,进行应用时不需要借助专家的支持,但是也有一些缺陷,训练数据时需要花费较多时间,对知识进行理解时也不是很智能,伸缩性和开放性也存在局限。 2 以机器学习算法为基础的GSM网络定位 (1)定位问题的建模。以支持向量机定位方式为基础,把定位区域栅格化,较小的栅格区域被抽象成类别,然后在定位区域中收集大量终端测量信息,如果要对移动终端进行定位,就需要利用计算对接收测量报告,然后对栅格内村练技术划分收集报告相似性或者距离度量,进而对待定位移动终端栅格进行判断,使用机器学习对这一分类现象进行求解。 (2)采集数据和预处理。此次研究仿真数据都来自某一周边长是10km的城市,在这一 区域的内部有4个时间不同的短路,测量得出4批数据,为了确保以机器学习方法进行定位的有效性,把利用线所测的3批数据当做训练数据,最后得到的数据集当做定位数据,对这批数据周围10米内,有前3组训练数据的集中数据进行删除。在得到待定位的数据之后,需要把不同时间的间隔当做依据,对然后把一致通话内相邻的定位数据进行合并,求取出相同通话内同一基站接受电平与多个相邻定位数据的经纬度平均值。把这一数值作为新的定位数据,因为

黄庆明 模式识别与机器学习 第三章 作业

·在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。问该模式识别问题所需判别函数的最少数目是多少? 应该是252142 6 *74132 7=+=+ =++C 其中加一是分别3类 和 7类 ·一个三类问题,其判别函数如下: d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1 (1)设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。 (2)设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。绘出其判别界面和多类情况2的区域。

(3)设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。 ·两类模式,每类包括5个3维不同的模式,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。) 如果线性可分,则4个 建立二次的多项式判别函数,则102 5 C 个 ·(1)用感知器算法求下列模式分类的解向量w: ω1: {(0 0 0)T , (1 0 0)T , (1 0 1)T , (1 1 0)T } ω2: {(0 0 1)T , (0 1 1)T , (0 1 0)T , (1 1 1)T } 将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x ①=(0 0 0 1)T , x ②=(1 0 0 1)T , x ③=(1 0 1 1)T , x ④=(1 1 0 1)T x ⑤=(0 0 -1 -1)T , x ⑥=(0 -1 -1 -1)T , x ⑦=(0 -1 0 -1)T , x ⑧=(-1 -1 -1 -1)T 第一轮迭代:取C=1,w(1)=(0 0 0 0) T 因w T (1) x ① =(0 0 0 0)(0 0 0 1) T =0 ≯0,故w(2)=w(1)+ x ① =(0 0 0 1) 因w T (2) x ② =(0 0 0 1)(1 0 0 1) T =1>0,故w(3)=w(2)=(0 0 0 1)T 因w T (3)x ③=(0 0 0 1)(1 0 1 1)T =1>0,故w(4)=w(3) =(0 0 0 1)T 因w T (4)x ④=(0 0 0 1)(1 1 0 1)T =1>0,故w(5)=w(4)=(0 0 0 1)T 因w T (5)x ⑤=(0 0 0 1)(0 0 -1 -1)T =-1≯0,故w(6)=w(5)+ x ⑤=(0 0 -1 0)T 因w T (6)x ⑥=(0 0 -1 0)(0 -1 -1 -1)T =1>0,故w(7)=w(6)=(0 0 -1 0)T 因w T (7)x ⑦=(0 0 -1 0)(0 -1 0 -1)T =0≯0,故w(8)=w(7)+ x ⑦=(0 -1 -1 -1)T 因w T (8)x ⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T =3>0,故w(9)=w(8) =(0 -1 -1 -1)T 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代: 因w T (9)x ①=(0 -1 -1 -1)(0 0 0 1)T =-1≯0,故w(10)=w(9)+ x ① =(0 -1 -1 0)T

模式识别研究进展-刘成林and谭铁牛

模式识别研究进展 刘成林,谭铁牛 中国科学院自动化研究所 模式识别国家重点实验室 北京中关村东路95号 摘要 自20世纪60年代以来,模式识别的理论与方法研究及在工程中的实际应用取得了很大的进展。本文先简要回顾模式识别领域的发展历史和主要方法的演变,然后围绕模式分类这个模式识别的核心问题,就概率密度估计、特征选择和变换、分类器设计几个方面介绍近年来理论和方法研究的主要进展,最后简要分析将来的发展趋势。 1. 前言 模式识别(Pattern Recognition)是对感知信号(图像、视频、声音等)进行分析,对其中的物体对象或行为进行判别和解释的过程。模式识别能力普遍存在于人和动物的认知系统,是人和动物获取外部环境知识,并与环境进行交互的重要基础。我们现在所说的模式识别一般是指用机器实现模式识别过程,是人工智能领域的一个重要分支。早期的模式识别研究是与人工智能和机器学习密不可分的,如Rosenblatt的感知机[1]和Nilsson的学习机[2]就与这三个领域密切相关。后来,由于人工智能更关心符号信息和知识的推理,而模式识别更关心感知信息的处理,二者逐渐分离形成了不同的研究领域。介于模式识别和人工智能之间的机器学习在20世纪80年代以前也偏重于符号学习,后来人工神经网络重新受到重视,统计学习逐渐成为主流,与模式识别中的学习问题渐趋重合,重新拉近了模式识别与人工智能的距离。模式识别与机器学习的方法也被广泛用于感知信号以外的数据分析问题(如文本分析、商业数据分析、基因表达数据分析等),形成了数据挖掘领域。 模式分类是模式识别的主要任务和核心研究内容。分类器设计是在训练样本集合上进行优化(如使每一类样本的表达误差最小或使不同类别样本的分类误差最小)的过程,也就是一个机器学习过程。由于模式识别的对象是存在于感知信号中的物体和现象,它研究的内容还包括信号/图像/视频的处理、分割、形状和运动分析等,以及面向应用(如文字识别、语音识别、生物认证、医学图像分析、遥感图像分析等)的方法和系统研究。 本文简要回顾模式识别领域的发展历史和主要方法的演变,介绍模式识别理论方法研究的最新进展并分析未来的发展趋势。由于Jain等人的综述[3]已经全面介绍了2000年以前模式分类方面的进展,本文侧重于2000年以后的研究进展。

数据挖掘分类算法比较

数据挖掘分类算法比较 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。 一、决策树(Decision Trees) 决策树的优点: 1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 7、可以对有许多属性的数据集构造决策树。 8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 二、人工神经网络 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。

人工智能与模式识别

人工智能与模式识别 摘要:信息技术的飞速发展使得人工智能的应用范围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。模式识别是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。模式识别的发展潜力巨大。 关键词:模式识别;数字识别;人脸识别中图分类号; Abstract:The rapid development of information technology makes the application of artificial intelligence become more and more widely. Pattern recognition, as one of the important aspects, has always been an important direction of artificial intelligence research. In the introduction of artificial intelligence and pattern recognition related knowledge at the same time, artificial intelligence in pattern recognition applications were discussed.Pattern recognition is a basic human intelligence, the emergence of the 20th century, 40 years of computer and the rise of artificial intelligence in the 1950s, pattern recognition technology has made great progress. Pattern recognition and statistics, psychology, linguistics, computer science, biology, cybernetics and so have a relationship. It has a cross-correlation with artificial intelligence and image processing. The potential of pattern recognition is huge. Key words:pattern recognition; digital recognition; face recognition; 1引言 随着计算机应用范围不断的拓宽,我们对于计算机具有更加有效的感知“能

模式识别与机器学习期末考查试题及参考答案(20210221222717)

模式识别与机器学习期末考查 试卷 研究生姓名:入学年份:导师姓名:试题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。 答:(1)模式识别是研究用计算机来实现人类的模式识别能力的一门学科,是指对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。主要集中在两方面,一是研究生物体(包括人)是如何感知客观事物的,二是在给定的任务下,如何用计算机实现识别的理论和方法。机器学习则是一门研究怎样用计算机来模拟或实现人类学习活动的学科,是研究如何使机器通过识别和利用现有知识来获取新知识和新技能。主要体现以下三方面:一是人类学习过程的认知模型;二是通用学习算法;三是构造面向任务的专用学习系统的方法。两者关心的很多共同问题,如:分类、聚类、特征选择、信息融合等,这两个领域的界限越来越模糊。机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/ 视频分析(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。 (2)机器学习和模式识别是分别从计算机科学和工程的角度发展起来的,各自的研究侧重点也不同。模式识别的目标就是分类,为了提高分类器的性能,可能会用到机器学习算法。而机器学习的目标是通过学习提高系统性能,分类只是其最简单的要求,其研究更

侧重于理论,包括泛化效果、收敛性等。模式识别技术相对比较成熟了,而机器学习中一些方法还没有理论基础,只是实验效果比较好。许多算法他们都在研究,但是研究的目标却不同。如在模式识别中研究所关心的就是其对人类效果的提高,偏工程。而在机器学习中则更侧重于其性能上的理论证明。试题2:列出在模式识别与机器学习中的常用算法及其优缺点。答:(1)K 近邻法算法作为一种非参数的分类算法,它已经广泛应用于分类、 回归和模式识别等。在应用算法解决问题的时候,要注意的两个方面是样本权重和特征权重。 优缺点:非常有效,实现简单,分类效果好。样本小时误差难控制,存储所有样本,需要较大存储空间,对于大样本的计算量大。(2)贝叶斯决策法 贝叶斯决策法是以期望值为标准的分析法,是决策者在处理 风险型问题时常常使用的方法。 优缺点:由于在生活当中许多自然现象和生产问题都是难以完全准确预测的,因此决策者在采取相应的决策时总会带有一定的风险。贝叶斯决策法就是将各因素发生某种变动引起结果变动的概率凭统计资料或凭经验主观地假设,然后进一步对期望值进行分析,由于此概率并不能证实其客观性,故往往是主观的和人为的概率,本身带有一定的风险性和不肯定性。虽然用期望的大小进行判断有一些风险,但仍可以认为贝叶斯决策是一种兼科学性和实效性于一身的比较完善的用于解决风险型决策问题的方法,在实际中能够广泛应

Python数据挖掘与机器学习实战 - 选题

Python数据挖掘与机器学习实战—选题大纲(一组一章,第一章除外)

或从下列选题中选择:(除第1讲) 选题名称内容结构内容要求 第1讲 机器学习与Python库(该讲不可选)解释器Python3.6与IDE:Anaconda/Pycharm 1.Python基础:列表/元组/字典/类/文件 2.numpy/scipy/matplotlib/panda 的介绍和典型使用 3.多元高斯分布 4.典型图像处理 5.scikit-learn的介绍和典型使用 6.多种数学曲线 7.多项式拟合 8.快速傅里叶变换FFT 9.奇异值分解SVD 10.Soble/Prewitt/Laplacian算子 与卷积网络 代码和案例实践 1.卷积与(指数)移动平均线 2.股票数据分析 3.实际生产问题中算法和特征的关系 4.缺失数据的处理 5.环境数据异常检测和分析 第2讲回归线性回归 1.Logistic/Softmax回归 2.广义线性回归 3.L1/L2正则化 4.Ridge与LASSO 5.Elastic Net 6.梯度下降算法:BGD与SGD 7.特征选择与过拟合 8.Softmax回归的概念源头 9.最大熵模型 10.K-L散度 代码和案例实践 1.股票数据的特征提取和应用 2.泰坦尼克号乘客缺失数据处理和存活率 预测 3.环境检测数据异常分析和预测 4.模糊数据查询和数据校正方法 5.PCA与鸢尾花数据分类 6.二手车数据特征选择与算法模型比较 7.广告投入与销售额回归分析 8.鸢尾花数据集的分类

第3讲 决策树和随机森林熵、联合熵、条件熵、KL散度、互信息 1.最大似然估计与最大熵模型 2.ID3、C4.5、CART详解 3.决策树的正则化 4.预剪枝和后剪枝 5.Bagging 6.随机森林 7.不平衡数据集的处理 8.利用随机森林做特征选择 9.使用随机森林计算样本相似度 10.异常值检测 代码和案例实践 1.随机森林与特征选择 2.决策树应用于回归 3.多标记的决策树回归 4.决策树和随机森林的可视化 5.社会学人群收入预测 6.葡萄酒数据集的决策树/随机森林分类 7.泰坦尼克乘客存活率估计 第4讲SVM 线性可分支持向量机 1.软间隔 2.损失函数的理解 3.核函数的原理和选择 4.SMO算法 5.支持向量回归SVR 6.多分类SVM 代码和案例实践: 1.原始数据和特征提取 2.调用开源库函数完成SVM 3.葡萄酒数据分类 4.数字图像的手写体识别 5.MNIST手写体识别 6.SVR用于时间序列曲线预测 7.SVM、Logistic回归、随机森林三者的 横向比较 第5讲聚类各种相似度度量及其相互关系 1.Jaccard相似度和准确率、召回率 2.Pearson相关系数与余弦相似度 3.K-means与K-Medoids及变种 4.AP算法(Sci07)/LPA算法及其应用 5.密度聚类DBSCAN/DensityPeak(Sci14) 6.谱聚类SC 7.聚类评价和结果指标 代码和案例实践: 1.K-Means++算法原理和实现 2.向量量化VQ及图像近似 3.并查集的实践应用 4.密度聚类的异常值检测 5.谱聚类用于图片分割 第6讲 隐马尔科夫模型 HMM 主题模型LDA 1.词潜入和word2vec 2.前向/后向算法 3.HMM的参数学习 4.Baum-Welch算法详解 5.Viterbi算法详解 6.隐马尔科夫模型的应用优劣比较 7.共轭先验分布 https://www.doczj.com/doc/df17931535.html,place平滑 9.Gibbs采样详解 代码和案例实践: 1.敏感话题分析 2.网络爬虫的原理和代码实现 3.LDA开源包的使用和过程分析 4.HMM用于中文分词

机器学习和数据挖掘的联系与区别_光环大数据培训

https://www.doczj.com/doc/df17931535.html, 机器学习和数据挖掘的联系与区别_光环大数据培训 光环大数据培训机构了解到,从数据分析的角度来看,数据挖掘与机器学习有很多相似之处,但不同之处也十分明显,例如,数据挖掘并没有机器学习探索人的学习机制这一科学发现任务,数据挖掘中的数据分析是针对海量数据进行的,等等。从某种意义上说,机器学习的科学成分更重一些,而数据挖掘的技术成分更重一些。 机器学习(Machine Learning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。其专门研究计算机是怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。 数据挖掘是从海量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程。数据挖掘中用到了大量的机器学习界提供的数据分析技术和数据库界提供的数据管理技术。 学习能力是智能行为的一个非常重要的特征,不具有学习能力的系统很难称之为一个真正的智能系统,而机器学习则希望(计算机)系统能够利用经验来改善自身的性能,因此该领域一直是人工智能的核心研究领域之一。在计算机系统中,“经验”通常是以数据的形式存在的,因此,机器学习不仅涉及对人的认知学习过程的探索,还涉及对数据的分析处理。实际上,机器学习已经成为计算机数据分析技术的创新源头之一。由于几乎所有的学科都要面对数据分析任务,因此机

https://www.doczj.com/doc/df17931535.html, 器学习已经开始影响到计算机科学的众多领域,甚至影响到计算机科学之外的很多学科。机器学习是数据挖掘中的一种重要工具。然而数据挖掘不仅仅要研究、拓展、应用一些机器学习方法,还要通过许多非机器学习技术解决数据仓储、大规模数据、数据噪声等实践问题。机器学习的涉及面也很宽,常用在数据挖掘上的方法通常只是“从数据学习”。然而机器学习不仅仅可以用在数据挖掘上,一些机器学习的子领域甚至与数据挖掘关系不大,如增强学习与自动控制等。所以笔者认为,数据挖掘是从目的而言的,机器学习是从方法而言的,两个领域有相当大的交集,但不能等同。 典型的数据挖掘和机器学习过程 下图是一个典型的推荐类应用,需要找到“符合条件的”潜在人员。要从用户数据中得出这张列表,首先需要挖掘出客户特征,然后选择一个合适的模型来进行预测,最后从用户数据中得出结果。 把上述例子中的用户列表获取过程进行细分,有如下几个部分。 业务理解:理解业务本身,其本质是什么?是分类问题还是回归问题?数据怎么获取?应用哪些模型才能解决? 数据理解:获取数据之后,分析数据里面有什么内容、数据是否准确,为下

机器人动力学

机器人动力学研究的典型方法和应用 (燕山大学 机械工程学院) 摘 要:本文介绍了动力学分析的基础知识,总结了机器人动力学分析过程中比较常用的动力学分析的方法:牛顿—欧拉法、拉格朗日法、凯恩法、虚功原理法、微分几何原理法、旋量对偶数法、高斯方法等,并且介绍了各个方法的特点。并通过对PTl300型码垛机器人弹簧平衡机构动力学方法研究,详细分析了各个研究方法的优越性和方法的选择。 前 言:机器人动力学的目的是多方面的。机器人动力学主要是研究机器人机构的动力学。机器人机构包括机械结构和驱动装置,它是机器人的本体,也是机器人实现各种功能运动和操作任务的执行机构,同时也是机器人系统中被控制的对象。目前用计算机辅助方法建立和求解机器人机构的动力学模型是研究机器人动力学的主要方法。动力学研究的主要途径是建立和求解机器人的动力学模型。所谓动力学模指的是一组动力学方程(运动微分方程),把这样的模型作为研究力学和模拟运动的有效工具。 报告正文: (1)机器人动力学研究的方法 1)牛顿—欧拉法 应用牛顿—欧拉法来建立机器人机构的动力学方程,是指对质心的运动和转动分别用牛顿方程和欧拉方程。把机器人每个连杆(或称构件)看做一个刚体。如果已知连杆的表征质量分布和质心位置的惯量张量,那么,为了使连杆运动,必须使其加速或减速,这时所需的力和力矩是期望加速度和连杆质量及其分布的函数。牛顿—欧拉方程就表明力、力矩、惯性和加速度之间的相互关系。 若刚体的质量为m ,为使质心得到加速度a 所必须的作用在质心的力为F ,则按牛顿方程有:ma F = 为使刚体得到角速度ω、角加速度εω= 的转动,必须在刚体上作用一力矩M , 则按欧拉方程有:εωI I M += 式中,F 、a 、M 、ω、ε都是三维矢量;I 为刚体相对于原点通过质心并与刚

周志华:数据挖掘与机器学习

机器学习与数据挖掘 周志华 南京大学计算机软件新技术国家重点实验室,南京210093 “机器学习”是人工智能的核心研究领域之一,其最初的研究动机是为了让计算机系统具有人的学习能力以便实现人工智能,因为众所周知,没有学习能力的系统很难被认为是具有智能的。目前被广泛采用的机器学习的定义是“利用经验来改善计算机系统自身的性能”[1]。事实上,由于“经验”在计算机系统中主要是以数据的形式存在的,因此机器学习需要设法对数据进行分析,这就使得它逐渐成为智能数据分析技术的创新源之一,并且为此而受到越来越多的关注。 “数据挖掘”和“知识发现”通常被相提并论,并在许多场合被认为是可以相互替代的术语。对数据挖掘有多种文字不同但含义接近的定义,例如“识别出巨量数据中有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程”[2]。其实顾名思义,数据挖掘就是试图从海量数据中找出有用的知识。大体上看,数据挖掘可以视为 机器学习和数据库的交叉,它主要利用机器 学习界提供的技术来分析海量数据,利用数 据库界提供的技术来管理海量数据。 因为机器学习和数据挖掘有密切的联 系,受主编之邀,本文把它们放在一起做一 个粗浅的介绍。 1 无处不在 随着计算机技术的飞速发展,人类收集数据、存储数据的能力得到了极大的提高,无论是科学研究还是社会生活的各个领域中都积累了大量的数据,对这些数据进行分析以发掘数据中蕴含的有用信息,成为几乎所有领域的共同需求。正是在这样的大趋势下,机器学习和数据挖掘技术的作用日渐重要,受到了广泛的关注。 例如,网络安全是计算机界的一个热门研究领域, 特别是在入侵检测方面,不仅有很多理论成果,还出现 了不少实用系统。那么,人们如何进行入侵检测呢?首 先,人们可以通过检查服务器日志等手段来收集大量的 网络访问数据,这些数据中不仅包含正常访问模式还包 含入侵模式。然后,人们就可以利用这些数据建立一个 可以很好地把正常访问模式和入侵模式分开的模型。这 样,在今后接收到一个新的访问模式时,就可以利用这 个模型来判断这个模式是正常模式还是入侵模式,甚至 判断出具体是何种类型的入侵。显然,这里的关键问题是如何利用以往的网络访问数据来建立可以对今后的访问模式进行分类的模型,而这正是机器学习

3模式识别与机器学习期末考查

模式识别与机器学习期末考查 试 卷 研究生姓名:王晓薇 学号:20110777 入学年份:2011 导师姓 名:吴庆祥 试题1(15%):列出你所知道的模式识别与机器学习中的常用算法, 并给出其优 缺点。 答:1. k-近邻法 近邻法是一种最简单的非参数模式识别方法中的模式匹配法,它主要依据样本 间的多维空间距离来实现分类.其基本规则是,在所有N 个样本中找到与测试样本 的k 个最近邻者,其中各类别所占个数表示成k i , i =1,…,c 。定义判别函数 为: g i (x)=k i , i=1, 2,…,c 。 决策规则为: c i x g j i i ,,1;)(m ax arg == 优点:算法简单,易于理解和分析,分类效果好, 在训练样本趋于无穷大时接 近最优。 缺点:可以明显看出它需要的计算量大,存储容量大;没有考虑到决策的风 险;对于近邻法错误率的分析都是建立在样本数趋向于无穷大的假定上的,而这在 实际应用时是很难实现的。而对有限样本集的情况,又缺乏理论上的分析。 2. 贝叶斯决策理论 贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分,是基于概率统计的 基本的判别函数分类理论。 贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用 贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。 贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是: 1. 已知类条件概率密度参数表达式和先验概率 2. 利用贝叶斯公式转换成后验概率 3. 根据后验概率大小进行决策分类 设D 1,D 2,……,D n 为样本空间S 的一个划分,如果以P(D i )表示事件D i 发生 的概率,且P(D i )>0(i=1,2,…,n)。对于任一事件x ,P(x)>0,得到贝叶斯公 式: ∑==n i i i i i i D P D x P D P D x P x D P 1 ) ()|()()|()|( 优点: (1)算法简单,易于理解和分析,其基本概念被众多的先进决策算法运用, 判断结果较精确; (2)能对信息的价值或是否需要采集新的信息做出科学的判断;

数据挖掘三大要素

数据挖掘三大要素 目录 一、数据挖掘中的三种角色 (1) 1. D ATA A NALYZER:数据分析员。 (1) 2. R ESEARCH S CIENTIST:研究科学家。 (1) 3. S OFTWARE D EVELOPER:软件开发工程师。 (1) 二、数据的质量 (1) 案例一:数据的标准 (1) 案例二:数据的准确 (2) 三、数据的业务场景 (3) 四、数据的分析结果 (3) 五、总结 (4)

数据就像一个王座一样,象征着一种权力和征服,但登上去的路途一样令人胆颤。 一、数据挖掘中的三种角色 1.Data Analyzer:数据分析员。 这类人的人主要是分析数据的,从数据中找到一些规则,并且为了数据模型的找不同场景的Training Data。另外,这些人也是把一些脏数据洗干净的人。 2.Research Scientist:研究科学家。 这种角色主要是根据不同的需求来建立数据模型的。他们把自己戏称为不近人间烟火的奇异性物种,就像《生活大爆炸》里的那个Sheldon一样。这些人基本上玩的是数据上的科学。这种角色技术含量最难高。 3.Software Developer:软件开发工程师。 主要是把Scientist建立的数据模型给实现出来,交给Data Analyzer去玩。这些人通常更懂的各种机器学习的算法。 二、数据的质量 目前所流行的Buzz Word——大数据是相当误导人的。数据不分大小,只分好坏。 下面分几个案例来说明: 案例一:数据的标准 在Amazon里,所有的商品都有一个唯一的ID,叫ASIN——Amazon Single Identify Number,这个ID是用来标识商品的唯一性的(来自于条形码)。也就是说,无论是你把商品描述成什么样,只要ASIN一样,这就是完完全全一模一样的商品。 这样,就不像淘宝一样,当你搜索一个iPhone,你会出现一堆各种各样的iPhone,有的叫“超值iPhone”,有的叫“苹果iPhone”,有的叫“智能手机iPhone”,有的叫“iPhone白色/黑色”……,这些同一个商品不同的描述是商家为了吸引用户。但是带来的问题有两点: 1)用户体验不好。以商品为中心的业务模型,对于消费者来说,体验明显好于以商家为中心的业务模型。 2)只要你不能正确读懂(识别)数据,你后面的什么算法,什么模型统统没用。所以,只要你玩数据,你就会发现,如果数据的标准没有建立起来,干什么都没用。数据标准是数据质量的第一道关卡,没这个玩意,你就什么也别玩了。所谓

机器学习的定义

机器学习的定义 从广义上来说,机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。但从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。 机器学习的范围 其实,机器学习跟模式识别,统计学习,数据挖掘,计算机视觉,语音识别,自然语言处理等领域有着很深的联系。 从范围上来说,机器学习跟模式识别,统计学习,数据挖掘是类似的,同时,机器学习与其他领域的处理技术的结合,形成了计算机视觉、语音识别、自然语言处理等交叉学科。因此,一般说数据挖掘时,可以等同于说机器学习。同时,我们平常所说的机器学习应用,应该是通用的,不仅仅模式识别 模式识别=机器学习。两者的主要区别在于前者是从工业界发展起来的概念,后者则主要源自计算机学科。在著名的《Pattern Recognition And Machine Learning》这本书中,Christopher M. Bishop在开头是这样说的“模式识别源自工业界,而机器学习来自于计算机学科。不过,它们中的活动可以被视为同一个领域的两个方面,同时在过去的10年间,它们都有了长足的发展”。 数据挖掘 数据挖掘=机器学习+数据库。这几年数据挖掘的概念实在是太耳熟能详。几乎等同于炒作。但凡说数据挖掘都会吹嘘数据挖掘如何如何,例如从数据中挖出金子,以及将废弃的数据转化为价值等等。但是,我尽管可能会挖出金子,但我也可能挖的是“石头”啊。这个说法的意思是,数据挖掘仅仅是一种思考方式,告诉我们应该尝试从数据中挖掘出知识,但不是每个数据都能挖掘出金子的,所以不要神话它。一个系统绝对不会因为上了一个数据挖掘模块就变得无所不能(这是IBM最喜欢吹嘘的),恰恰相反,一个拥有数据挖掘思维的人员才是关键,而且他还必须对数据有深刻的认识,这样才可能从数据中导出模式指引业务的改善。大部分数据挖掘中的算法是机器学习的算法在数据库中的优化。 统计学习 统计学习近似等于机器学习。统计学习是个与机器学习高度重叠的学科。因为机器学习中的大多数方法来自统计学,甚至可以认为,统计学的发展促进机器学习的繁荣昌盛。例如著名的支持向量机算法,就是源自统计学科。但是在某种程度上两者是有分别的,这个分别在于:统计学习者重点关注的是统计模型的发展与优化,偏数学,而机器学习者更关注的是能够解决问题,偏实践,因此机器学习研究者会重点研究学习算法在计算机上执行的效率与准确性的提升。 计算机视觉 计算机视觉=图像处理+机器学习。图像处理技术用于将图像处理为适合进入机器学习模型中的输入,机器学习则负责从图像中识别出相关的模式。计算机视觉相关的应用非常的多,例如百度识图、手写字符识别、车牌识别等等应用。这个领域是应用前景非常火热的,同时也是研究的热门方向。随着机器学习的新领域深

相关主题
文本预览
相关文档 最新文档